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Abstract In this study, we concentrate on multiple attri-

bute decision-making (MADM) problems in the proba-

bilistic linguistic preference information surroundings

based on novel aggregation operators. Considering inter-

relationships among the multi-input arguments of proba-

bilistic linguistic term sets (PLTSs), we extend dual

Muirhead mean (DMM) operators to the probabilistic lin-

guistic preference environment and develop a decision-

making approach to deal with probabilistic linguistic

MADM (PLMADM) problems. In specific, we define

probabilistic linguistic dual Muirhead mean operators, i.e.,

probabilistic linguistic dual Muirhead mean (PLDMM)

operator and probabilistic linguistic weighted dual Muir-

head mean (PLWDMM) operator, and further investigate

their corresponding propositions, theorems as well as

properties. In the light of VIKOR method, a novel deci-

sion-making approach for PLMADM problems has been

carefully explored. Finally, an application of hospitals

selection can fruitfully demonstrate and signify the prac-

ticality and feasibility of the proposed decision-making

approach.

Keywords Multiple attribute decision making �
Probabilistic linguistic term sets � PLDMM operator �
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1 Introduction

Multiple attribute decision making (MADM) is one of

meaningful and significant behaviors which selects optimal

alternative from several candidates with respect to finite

attributes according to evaluation information given by

decision makers (DMs). It has been widely focused and

largely applied in the various fields, such as the determi-

nation of importance ratings of customer requirements [1],

assessment of the renewable energies [2], evaluation of

water conservancy project [3], research and development

(R&D) project selection [4], investment projects’ selection

for company [5], selection of intelligent medical hospital

[6] and so on. Since the complexity of decision making and

fuzziness of human thinking, one of the challenges in

MADM problems is to correctly depict DMs’ evaluation.

As an extension of hesitant fuzzy sets (HFSs), hesitant

fuzzy linguistic term sets (HFLSs) were introduced by

Rodriguez et al. [7] to quantitatively express experts’

judgement with two or more linguistic terms in case of

hesitancy when DMs evaluate in decision making.

Although HFLSs are powerful, they merely consider dif-

ferent importances/occurance probabilities/preference

degrees for all possible linguistic variables. To mitigate

this issue, Pang et al. [8] proposed probabilistic linguistic

term sets (PLTSs), which can simultaneously present the

hesitancy and preference degree of DMs, to reflect evalu-

ators’ opinions with several linguistic terms and corre-

sponding probabilistic distributions. Then, scholars have

turned to research MADM problems with probabilistic

linguistic preference information called probabilistic lin-

guistic MADM (PLMADM) problems [9–16].

In the PLMADM process, the aggregation of evaluation

information is an essential step, and aggregation operators

have been investigated increasingly. Most classical and
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popular aggregation operators are probabilistic linguistic

arithmetic averaging (PLA) operator and probabilistic lin-

guistic geometric (PLGeo) operator developed by Pang

et al. [8]. A strict assumption of these two operators is that

attributes are seemed as independent when using PLA or/

and PLGeo operators. However, attributes in the real

applications are interrelated but not independent. Some

researchers then focus on aggregation operators which are

able to capture the interrelationship among input arguments

in PLMADM problems. Probabilistic linguistic geometric

Bonferroni mean (PLGeoBM) operator [17] and proba-

bilistic linguistic Heronian mean (PLHM) operator [18]

have been gradually developed to consider interrelation-

ship between arbitrary two input arguments. Besides, Liu

and Li [19] designed probabilistic linguistic geometric

Maclaurin symmetric mean (PLGeoMSM) operator to

capture correlation among any three arguments. However,

there may exist many situations in which multi-input

arguments instead of three or two arguments interrelate

with each other in PLMADM problems. Hence, it is urgent

to introduce more feasible and general operators to capture

interrelationships among any number of input arguments.

Dual Muirhead mean (DMM) operator is just the suit-

able one which enables to consider the interrelationships of

multi-input arguments by a parameter vector and is a

generalization of some existing aggregation operators, such

as averaging operator, geometric operator, geometric BM

operator, geometric MSM operator, etc. At present, DMM

operators have been populated and extended in the light of

several fuzzy sets, such as hesitant fuzzy sets [20],

Pythagorean fuzzy sets [21], interval-valued probabilistic

hesitant fuzzy sets [22], q-rung orthopair fuzzy sets [23],

T-spherical fuzzy sets [24], etc. With the strength of gen-

eralization and flexibility, therefore, DMM operators were

improved in this paper to fuse probabilistic linguistic

preference information.

The information aggregated through above operators

usually was utilized to determine the final decision making

for DMs with the aid of MADM approaches. VIKOR1

method, proposed by Opricovic [25], is one of effective

ways to solve MADM problems especially with incom-

patible and noncommensurable information [26]. VIKOR

mainly concentrates on ranking and selecting from a col-

lection of candidates in the presence of conflicting crite-

rion. It also maximizes the majority’s group utility as well

as minimizes the individual regret for minority so as to

offer DMs a compromised solution [27–30]. Owing to its

features and superiority, we introduce VIKOR method

based on PLTSs and design a powerful decision-making

approach to address PLMADM problems.

Based on above analysis, it is necessary and valuable to

investigate relative theory of PLTS since it can genuinely

depict psychology of evaluators in MADM process.

Besides, DMM operators offer a quite flexible function to

aggregate evaluations and solve MADM problems more

appropriately, and VIKOR method can address conflicts

among attributes as well as give a compromised solution.

Therefore, it is extremely worth processing PLMADM

problems by extending DMM operators to the probabilistic

linguistic environment and exploring a decision-making

approach based on VIKOR method. The innovations of this

paper are summarized as follows:

1. DMM operators are introduced and improved in this

paper to capture interrelationships among any number

of multi-input arguments in PLMADM problems;

2. We define two novel aggregation operators based on

DMM operators, i.e., probabilistic linguistic DMM

(PLDMM) operator and probabilistic linguistic

weighted DMM (PLWDMM), and further investigate

their corresponding propositions, theorems as well as

properties;

3. A powerful decision-making approach based on

PLWDMM operator and VIKOR has been designed

to address complex PLMADM problems.

The rest of the paper is organized as follows. Section 2

briefly reviews the relevant studies. Aggregation operators

(i.e., PLDMM and PLWDMM), and their corresponding

definitions, propositions, theorems as well as properties are

developed in Sect. 3. A novel decision-making approach

based on PLWDMM aggregation operator and VIKOR is

designed to solve a complex PLMADM problem in Sect. 4.

In Sect. 5, an illustrative example is provided to explain the

validity and feasibility of the proposed decision-making

method. Finally, Sect. 6 concludes the paper and elaborates

on future studies.

2 Preliminaries

In this section, we briefly review some basic concepts,

including probabilistic linguistic term sets (PLTSs),

Muirhead mean (MM), and dual Muirhead mean (DMM).

2.1 Probabilistic Linguistic Term Sets (PLTSs)

Probabilistic linguistic term set (PLTS) is a kind of useful

extension of hesitant fuzzy linguistic term set (HFLTS),

which considers the multiple preference information and

their corresponding occurrence probabilities
1 VlseKriterijumska Optimizacija I Kompromisno Resenje (VIKOR)

means multi-criteria optimization and compromise solution, in

Serbian.
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simultaneously. In the following, we introduce some con-

cepts of PLTSs, relative operation and comparison laws.

Definition 1 [8] Let S ¼ Stjt ¼ �s; . . .;�1; 0; 1; . . .; sf g
be a linguistic term set. Then, a PLTS is defined as

LðPÞ ¼ LðkÞ PðkÞ
� ���LðkÞ 2 S; rðkÞ 2 t;PðkÞ � 0;

n

k ¼ 1; 2; . . .;#LðPÞ;
X#LðPÞ

k¼1

PðkÞ
6 1

)
;

ð1Þ

where LðkÞ PðkÞ� �
is the linguistic term LðkÞ associated with

probability PðkÞ, rðkÞ is the subscript of LðkÞ and #LðPÞ is

the number of all linguistic terms in L(P).

To facilitate the information fusion as well as maintain

the consistency, Gou and Xu [31] and Bai et al. [32] have

developed the equivalent transformation functions of

L(P) as follows.

Definition 2 [31, 32] Let S ¼ Stjt ¼ �s; . . .;�1; 0; 1;f
. . .; sg be a linguistic term set. L(P) is a PLTS. Then,

equivalent transformation function of L(P) is given as

g : ½�s; s� ! ½0; 1�; g LðPÞð Þ ¼ g LðkÞ PðkÞ
� �� �n

rðkÞ

2s
þ 1

2

� �
PðkÞ
� �����rðkÞ 2 ½�s; s�

	

¼ LcðPÞ:
ð2Þ

g�1 : ½0; 1� ! ½�s; s�; g�1 LcðPÞ
� �

¼ g�1 LcðkÞ PðkÞ
� �� �n

Sð2c�1Þs PðkÞ
� �����c 2 ½0; 1�

	

¼ LðPÞ:
ð3Þ

Definition 3 [31, 32] Let S ¼ Stjt ¼ �s; . . .;�1; 0; 1;f
. . .; sg be a linguistic term set. k be a positive real number.

L(P), L1ðP1Þ and L2ðP2Þ be three PLTSs, which satisfy the

following operation laws:

(i)

L1ðP1Þ � L2ðP2Þ

¼ g�1
[

gðiÞ
1
2gðL1Þ;gðjÞ2 2gðL2Þ

gðiÞ1 þ gðjÞ2 � gðiÞ1 gðjÞ2

� �
P
ðiÞ
1 P

ðjÞ
2

� �n o
0
B@

1
CA;

i ¼ 1; 2; . . .;#L1ðP1Þ; j ¼ 1; 2; . . .;#L2ðP2Þ;

(ii)

L1ðP1Þ � L2ðP2Þ

¼ g�1
[

gðiÞ
1
2gðL1Þ;gðjÞ2 2gðL2Þ

gðiÞ1 gðjÞ2

� �
P
ðiÞ
1 P

ðjÞ
2

� �n o
0
B@

1
CA;

i ¼ 1; 2; . . .;#L1ðP1Þ; j ¼ 1; 2; . . .;#L2ðP2Þ;

(iii)

kLðPÞ ¼ g�1
[

gðkÞ2gðLÞ
1� 1� gðkÞ

� �k
 �
PðkÞ
� �� 	0

@
1
A;

k ¼ 1; 2; . . .;#LðPÞ;

(iv)
LðPÞð Þk¼ g�1

[
gðkÞ2gðLÞ

gðkÞ
� �k

PðkÞ
� �� 	0

@
1
A;

k ¼ 1; 2; . . .;#LðPÞ:

For the PLTS, it cannot be compared when the numbers

of linguistic terms are unequal. Pang et al. [8] has defined

normalization of PLTSs as follows.

Definition 4 [8] Let L1ðPÞ ¼ L
ðkÞ
1 P

ðkÞ
1

� ���k ¼ 1; 2; . . .;
n

#L1ðPÞg and L2ðPÞ ¼ L
ðkÞ
2 P

ðkÞ
2

� ���k ¼ 1; . . .;#L2ðPÞ
n o

be

arbitrary two PLTSs, #L1ðPÞ and #L2ðPÞ are their relative
numbers of linguistic terms, separately. Generally,

#L1ðPÞ 6¼ #L2ðPÞ. Therefore, we add #L1ðPÞ �#L2ðPÞ
linguistic terms to L2ðPÞ if #L1ðPÞ[#L2ðPÞ so as to

unify the numbers of linguistic terms in L1ðPÞ and L2ðPÞ.
The added linguistic terms are the smallest ones in L2ðPÞ
following by zero probabilities.

The score function and deviation degree have proposed

by Pang et al. [8] to help DMs compare arbitrary two

PLTSs.

Definition 5 [8] Let LðPÞ ¼ LðkÞ PðkÞ� ���k ¼ 1; 2; . . .;


#LðPÞg be a PLTS, and rðkÞ be the subscript of linguistic

term LðkÞ. Then, the score of L(P) is defined as

E LðPÞð Þ ¼ S~a; ð4Þ

where ea ¼
P#LðPÞ

k¼1 rðkÞ PðkÞ� ��P#LðPÞ
k¼1 PðkÞ, and the devi-

ation degree of L (P) is

r LðPÞð Þ ¼
X#LðPÞ

k¼1

PðkÞ rðkÞ � ~a
� �� �2 !1=2�X#LðPÞ

k¼1

PðkÞ:

ð5Þ

A preorder for PLTSs can be constructed through the

score and deviation degree formulas. Let L1ðP1Þ and

L2ðP2Þ are arbitrary two PLTSs, and the detailed compar-

ison laws are denoted as follows [8]:

1. if EðL1ðP1ÞÞ[EðL2ðP2ÞÞ, then L1ðP1Þ[ L2ðP2Þ;
2. if EðL1ðP1ÞÞ\EðL2ðP2ÞÞ, then L1ðP1Þ\L2ðP2Þ;
3. if EðL1ðP1ÞÞ ¼ EðL2ðP2ÞÞ, then

a. if r L1ðP1Þð Þ[ r L2ðP2Þð Þ, then L1ðP1Þ\L2ðP2Þ;
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b. if r L1ðP1Þð Þ\r L2ðP2Þð Þ, then L1ðP1Þ[ L2ðP2Þ;
c. if r L1ðP1Þð Þ ¼ r L2ðP2Þð Þ, then L1ðP1Þ� L2ðP2Þ:

Pang et al. [8] also designed Euclidean distance measure

between any two PLTSs. The detailed definition is pre-

sented as follows.

Definition 6 [8] Let L1ðPÞ ¼ L
ðkÞ
1 P

ðkÞ
1

� ���k ¼ 1; 2; . . .;
n

#L1ðPÞg and L2ðPÞ ¼ L
ðkÞ
2 P

ðkÞ
2

� ���k ¼ 1; . . .;#L2ðPÞ
n o

be

arbitrary two PLTSs, the Euclidean distance measure

between L1ðP1Þ and L2ðP2Þ is described as:

d L1ðP1Þ; L2ðP2Þð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP#L1ðP1Þ
k¼1 r

ðkÞ
1 P

ðkÞ
1 � r

ðkÞ
2 P

ðkÞ
2

� �2

#L1ðP1Þ

vuut
;

ð6Þ

where #L1ðP1Þ ¼ #L2ðP2Þ. r
ðkÞ
1 and r

ðkÞ
2 are separately

subscripts of L
ðkÞ
1 and L

ðkÞ
2 .

2.2 Muirhead Mean (MM)

Since the superiority of capturing the interrelationship

among multi-input arguments, the MM operator is regarded

as an available aggregation method. The definition of MM

is presented as follows.

Definition 7 [33] Let ajðj ¼ 1; 2; . . .; nÞ be a collection of

real numbers, P ¼ ðp1; p2; . . .; pnÞ 2 Rn be a parameter

vector which denotes the risk appetite values, then MM is

given as

MMPða1; a2; . . .; anÞ ¼
1

n!

X
#2Sn

Yn
j¼1

a
pj
#ðjÞ

 ! 1Pn

j¼1
pj

; ð7Þ

where #ðjÞðj ¼ 1; 2; . . .; nÞ be any permutation of

ð1; 2; . . .; nÞ, and Sn is the set of all possible permutations

of ð1; 2; . . .; nÞ.

2.3 Dual Muirhead Mean (DMM)

Definition 8 [34, 35] Let ajðj ¼ 1; 2; . . .; nÞ be a collec-

tion of real numbers, P ¼ ðp1; p2; . . .; pnÞ 2 Rn be a

parameter vector which denotes the risk appetite values,

then DMM is given as

DMMPða1; a2; . . .; anÞ ¼
1Pn
j¼1 pj

Y
#2Sn

Xn
j¼1

pja#ðjÞ
� � !1

n!

;

ð8Þ

where #ðjÞðj ¼ 1; 2; . . .; nÞ be any permutation of

ð1; 2; . . .; nÞ;
and Sn is the set of all possible permutations of

ð1; 2; . . .; nÞ.

3 Probabilistic Linguistic Dual Muirhead Mean
Operators

We extend the traditional DMM operator to appropriate the

probabilistic linguistic preference environment. Aggrega-

tion operators, i.e., PLDMM operator and PLWDMM

operator, and their corresponding definitions, propositions,

theorems as well as properties are explored detailedly as

follows.

3.1 Probabilistic Linguistic Dual Muirhead Mean

(PLDMM) Operator

Definition 9 Let LiðPiÞ¼fLðkÞi P
ðkÞ
i

��k ¼ 1; 2; . . .;

#LiðPiÞg ði ¼ 1; 2; . . .; nÞ be n PLTSs, P ¼
ðp1; p2; . . .; pnÞ 2 Rn be a parameter vector denoting the

risk appetite values. Then, we define PLDMM operator as

PLDMMPðL1ðP1Þ; . . .; LiðPiÞ; . . .; LnðPnÞÞ

¼ 1Pn
i¼1 pi

�#2Sn �n
i¼1pi L#ðiÞ P#ðiÞ

� �� �� �� �1
n!;

ð9Þ

where #ðiÞði ¼ 1; 2; . . .; nÞ be any permutation of

ð1; 2; . . .; nÞ, and Sn is the set of all possible permutations

of ð1; 2; . . .; nÞ.

We can obtain some outcomes from Definition 9 by

means of operation laws of PLTSs.

Proposition 1 Suppose LiðPiÞ ¼ fLðkÞi P
ðkÞ
i

��k ¼ 1; 2; . . .;

#LiðPiÞgði ¼ 1; 2; . . .; nÞ be n PLTSs, piði ¼ 1; 2; . . .; nÞ is
arbitrary nonnegative number, which denotes the risk

appetite value. #ðiÞði ¼ 1; 2; . . .; nÞ be any permutation of

ð1; 2; . . .; nÞ. Then we have

pi L#ðiÞ P#ðiÞ
� �� �

¼ g�1
[

gðkÞ
#ðiÞ2g L#ðiÞð Þ

1� 1� gðkÞ#ðiÞ

� �pi� �
P
ðkÞ
#ðiÞ

� �n o
0
B@

1
CA:

ð10Þ

Proof With the aid of operation law (iii) depicted in

Definition 3, it is easy to demonstrate the Proposition 1

always holds. h

Proposition 2 Suppose LiðPiÞ ¼ fLðkÞi P
ðkÞ
i

��k ¼ 1; 2; . . .;

#LiðPiÞgði ¼ 1; 2; . . .; nÞ be n PLTSs, piði ¼ 1; 2; . . .; nÞ is
an arbitrary nonnegative number, which denotes the risk

appetite value. #ðiÞði ¼ 1; 2; . . .; nÞ be any permutation of

ð1; 2; . . .; nÞ. Then we have
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�n
i¼1 pi L#ðiÞ P#ðiÞ

� �� �

¼ g�1
[

gðkÞ#ðiÞ 2 g L#ðiÞ
� �

i ¼ 1; 2; . . .; n

1�
Yn
i¼1

1� gðkÞ#ðiÞ

� �pi
 ! Yn

i¼1

P
ðkÞ
#ðiÞ

 !( )
0
BBBBBB@

1
CCCCCCA
:

ð11Þ

Proof In the light of the result of Proposition 1 and the

operation law (i) of Definition 3, we can compute

p1 L#ð1Þ P#ð1Þ
� �� �

� p2 L#ð2Þ P#ð2Þ
� �� �

¼ g�1
[

gðkÞ
#ð1Þ2g L#ð1Þð Þ

1� 1� gðkÞ#ð1Þ

� �p1� �
P
ðkÞ
#ð1Þ

� �n o
0
B@

1
CA

� g�1
[

gðkÞ
#ð2Þ2g L#ð2Þð Þ

1� 1� gðkÞ#ð2Þ

� �p2� �
P
ðkÞ
#ð2Þ

� �n o
0
B@

1
CA

¼ g�1
[

gðkÞ
#ð1Þ2g L#ð1Þð Þ;gðkÞ#ð2Þ2g L#ð2Þð Þ

0
B@

1� 1� gðkÞ#ð1Þ

� �p1
1� gðkÞ#ð2Þ

� �p2� �
P
ðkÞ
#ð1ÞP

ðkÞ
#ð2Þ

� �n o

1
CCCCCCCCA

¼ g�1
[

gðkÞ#ðiÞ 2 g L#ðiÞ
� �

i ¼ 1; 2

1�
Y2
i¼1

1� gðkÞ#ðiÞ

� �pi
 ! Y2

i¼1

P
ðkÞ
#ðiÞ

 !( )

0
BBBBBBB@

1
CCCCCCCA

then we have

�n
i¼1 pi L#ðiÞ P#ðiÞ

� �� �

¼ g�1
[

gðkÞ#ðiÞ 2 g L#ðiÞ
� �

i ¼ 1; 2; . . .; n

1�
Yn
i¼1

1� gðkÞ#ðiÞ

� �pi
 ! Yn

i¼1

P
ðkÞ
#ðiÞ

 !( )

0
BBBBBBB@

1
CCCCCCCA
:

Hence, we complete the proof of Proposition 2. h

Proposition 3 Suppose LiðPiÞ ¼ fLðkÞi P
ðkÞ
i

��k ¼ 1; 2; . . .;

#LiðPiÞgði ¼ 1; 2; . . .; nÞ be n PLTSs, piði ¼ 1; 2; . . .; nÞ is
an arbitrary nonnegative number, which denotes the risk

appetite value. #ðiÞði ¼ 1; 2; . . .; nÞ be any permutation of

ð1; 2; . . .; nÞ. Then we have

�#2Sn �n
i¼1pi L#ðiÞ P#ðiÞ

� �� �� �

¼ g�1
[

gðkÞ#ðiÞ 2 g L#ðiÞ
� �

i ¼ 1; 2; . . .; n

Y
#2Sn

1�
Yn
i¼1

1� gðkÞ#ðiÞ

� �pi
 ! ! Y

#2Sn

Yn
i¼1

P
ðkÞ
#ðiÞ

 !( )

0
BBBBBBB@

1
CCCCCCCA
:

ð12Þ

Proof From the operation law (ii) in Definition 3 and

Proposition 2, we can compute

�n
i¼1pi L1ðiÞ P1ðiÞ

� �� �� �
� �n

i¼1pi L2ðiÞ P2ðiÞ
� �� �� �

¼ g�1
[

gðkÞ
1ðiÞ 2 g L1ðiÞ

� �

i ¼ 1; . . .; n

1�
Yn
i¼1

1� gðkÞ
1ðiÞ

� �pi
 ! Yn

i¼1

P
ðkÞ
1ðiÞ

 !( )

0
BBBBBBB@

1
CCCCCCCA

� g�1
[

gðkÞ
2ðiÞ 2 g L2ðiÞ

� �

i ¼ 1; . . .; n

1�
Yn
i¼1

1� gðkÞ
2ðiÞ

� �pi
 ! Yn

i¼1

P
ðkÞ
2ðiÞ

 !( )

0
BBBBBBB@

1
CCCCCCCA

¼ g�1
[

gðkÞ
1ðiÞ 2 g L1ðiÞ

� �
; gðkÞ

2ðiÞ 2 g L2ðiÞ
� �

i ¼ 1; . . .; n

0
BBBBBBB@

1�
Yn
i¼1

1� gðkÞ
1ðiÞ

� �pi
 !

1�
Yn
i¼1

1� gðkÞ
2ðiÞ

� �pi
 ! Yn

i¼1

P
ðkÞ
1ðiÞ

Yn
i¼1

P
ðkÞ
2ðiÞ

 !( )!

¼ g�1
[

gðkÞ#ðiÞ 2 g L#ðiÞ
� �

# ¼ 1; 2; i ¼ 1; . . .; n

Y2

#¼1

1�
Yn
i¼1

1� gðkÞ#ðiÞ

� �pi
 ! ! Y2

#¼1

Yn
i¼1

P
ðkÞ
#ðiÞ

 !( )

0
BBBBBBBB@

1
CCCCCCCCA

and we get

�#2Sn �n
i¼1pi L#ðiÞ P#ðiÞ

� �� �� �

¼ g�1 !
[

gðkÞ#ðiÞ 2 g L#ðiÞ
� �

i ¼ 1; 2; . . .; n

Y
#2Sn

1�
Yn
i¼1

1� gðkÞ#ðiÞ

� �pi
 ! ! Y

#2Sn

Yn
i¼1

P
ðkÞ
#ðiÞ

 !( )

0
BBBBBBB@

1
CCCCCCCA
:

ð13Þ

Therefore, the statement of Proposition 3 holds. h
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Proposition 4 Suppose LiðPiÞ ¼ fLðkÞi P
ðkÞ
i

��k ¼ 1; 2; . . .;

#LiðPiÞgði ¼ 1; 2; . . .; nÞ be n PLTSs, piði ¼ 1; 2; . . .; nÞ is
an arbitrary nonnegative number, which denotes the risk

appetite value. #ðiÞði ¼ 1; 2; . . .; nÞ be any permutation of

ð1; 2; . . .; nÞ. Then we have

�#2Sn �n
i¼1pi L#ðiÞ P#ðiÞ

� �� �� �� �1
n!

¼ g�1
[

gðkÞ#ðiÞ 2 g L#ðiÞ
� �

i ¼ 1; 2; . . .; n

Y
#2Sn

1�
Yn
i¼1

1� gðkÞ#ðiÞ

� �pi
 ! !1

n! Y
#2Sn

Yn
i¼1

P
ðkÞ
#ðiÞ

 !8<
:

9=
;

0
BBBBBBB@

1
CCCCCCCA
:

ð14Þ

Proof In accordance with the result of Proposition 3 and

operation law (iv) in Definition 3, it is easy to prove

Proposition 4 always holds. h

Theorem 1 Suppose LiðPiÞ ¼ fLðkÞi P
ðkÞ
i

��k ¼ 1; 2; . . .;

#LiðPiÞgði ¼ 1; 2; . . .; nÞ be n PLTSs, piði ¼ 1; 2; . . .; nÞ is
an arbitrary nonnegative number, which denotes the risk

appetite value. #ðiÞði ¼ 1; 2; . . .; nÞ be any permutation of

ð1; 2; . . .; nÞ. Then, aggregated result by Definition 9 is

shown as

PLDMMPðL1ðP1Þ; . . .; LiðPiÞ; . . .; LnðPnÞÞ

¼ g�1
[

gðkÞ#ðiÞ 2 g L#ðiÞ
� �

i ¼ 1; 2; . . .; n

0
BBBBBBB@

1� 1�
Y
#2Sn

1�
Yn
i¼1

1� gðkÞ#ðiÞ

� �pi
 ! !1

n!

0
@

1
A

1Pn

i¼1
pi

0
B@

1
CA

8><
>:

Y
#2Sn

Yn
i¼1

P
ðkÞ
#ðiÞ

 !)!
:

ð15Þ

Proof According to the outcomes of Proposition 4, Defi-

nition 9 and operation law (iii) described in Definition 3,

we have

PLDMMPðL1ðP1Þ; . . .; LiðPiÞ; . . .; LnðPnÞÞ

¼ 1Pn
i¼1 pi

�#2Sn �n
i¼1pi L#ðiÞ P#ðiÞ

� �� �� �� �1
n!

¼ 1Pn
i¼1 pi

g�1
[

gðkÞ#ðiÞ 2 g L#ðiÞ
� �

i ¼ 1; 2; . . .; n

0
BBBBBBB@

Y
#2Sn

1�
Yn
i¼1

1� gðkÞ#ðiÞ

� �pi
 ! !1

n! Y
#2Sn

Yn
i¼1

P
ðkÞ
#ðiÞ

 !8<
:

9=
;

1
A

¼ g�1
[

gðkÞ#ðiÞ 2 g L#ðiÞ
� �

i ¼ 1; 2; . . .; n

0
BBBBBBB@

1� 1�
Y
#2Sn

1�
Yn
i¼1

1� gðkÞ#ðiÞ

� �pi
 ! !1

n!

0
@

1
A

1Pn

i¼1
pi

0
B@

1
CA

8><
>:

Y
#2Sn

Yn
i¼1

P
ðkÞ
#ðiÞ

 !)

1
CCCCCCCCA
:

h

So, we complete the proof of Theorem 1.

Next, we begin to investigate properties of PLDMM

operator and deduce four corollaries.

Corollary 1 (Monotonity). Let LðPÞa ¼ L1ðP1Þa; . . .;


LnðPnÞa
�

and LðPÞb ¼ L1ðP1Þb; . . .; LnðPnÞb
 �

be arbi-

trary two PLTSs, P ¼ ðp1; p2; . . .; pnÞ 2 Rn be a parameter

vector denoting the risk appetite values. For

gðkÞ#aðiÞ 2 gðL#aðiÞÞ, gðkÞ#bðiÞ 2 gðL#bðiÞÞ, if gðkÞ#aðiÞ 6 gðkÞ#bðiÞ and

P
ðkÞ
#aðiÞ 6 P

ðkÞ
#bðiÞ, then we have

PLDMMP L1ðP1Þa; . . .; LnðPnÞa
� �

6 PLDMMP L1ðP1Þb; . . .; LnðPnÞb
� �

:

Corollary 2 (Idempotency). If LiPi ¼ LðPÞ ¼ LðkÞ PðkÞ� �
��LðkÞ 2 S; rðkÞ 2 t;PðkÞ � 0; k ¼ 1; 2; . . .;#LðPÞ;

P#LðPÞ
k¼1 PðkÞ

6 1
o
for all i ¼ 1; 2; . . .; n, then we have
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PLDMMP L1ðP1Þ; L2ðP2Þ; . . .; LnðPnÞð Þ ¼ LðPÞ:

Corollary 3 (Commutativity). If L
0

iðP
0

iÞ be any permuta-

tion of LiðPÞiði ¼ 1; 2; . . .; nÞ, then we have the

relationship:

PLDMMP L1ðP1Þ; L2ðP2Þ; . . .; LnðPnÞð Þ

¼ PLDMMP L
0

1ðP
0

1Þ; L
0

2ðP
0

2Þ; . . .; L
0

nðP
0

nÞ
� �

:

Corollary 4 (Boundness). Let LðPÞ� ¼ minðL1ðP1Þ;
L2ðP2Þ; . . .; LnðPnÞÞ and LðPÞþ ¼ maxðL1ðP1Þ; L2ðP2Þ;
. . .; LnðPnÞÞ, then we have

PLDMMP LðPÞ�; LðPÞ�; . . .; LðPÞ�ð Þ

6 PLDMMP L1ðP1Þ; L2ðP2Þ; . . .; LnðPnÞð Þ

6 PLDMMP LðPÞþ; LðPÞþ; . . .; LðPÞþ
� �

In the following, we further explore five special cases of

PLDMM operator in accordance with different values of

parameter vector P.

Case 1 If parameter vector is P ¼ ð1; 0; . . .; 0Þ, then

PLDMM operator will reduce to probabilistic linguistic

geometric (PLGeo) operator, which is denoted as

PLDMMð1;0;...;0Þ L1ðP1Þ; L2ðP2Þ; . . .; LnðPnÞð Þ

¼ b
n

i¼1
LiðPiÞð Þ

� �1
n

¼ g�1
[

gðkÞðiÞ 2 g LðiÞ
� �

i ¼ 1; 2; . . .; n

Yn
i¼1

gðkÞðiÞ

 !1
n Yn

i¼1

P
ðkÞ
ðiÞ

 !8<
:

9=
;

0
BBBBBBB@

1
CCCCCCCA
:

ð16Þ

Case 2 If parameter vector is P ¼ ðk; 0; . . .; 0Þ, then

PLDMM operator will reduce to probabilistic linguistic

generalized geometric (PLGGeo) operator, which is pre-

sented as

PLDMMðk;0;...;0Þ L1ðP1Þ; L2ðP2Þ; . . .; LnðPnÞð Þ

¼ 1

k
b

n

i¼1
k LiðPiÞð Þ

� �1
n

¼ g�1
[

gðkÞðiÞ 2 g LðiÞ
� �

i ¼ 1; 2; . . .; n

0
BBBBBBB@

1� 1�
Yn
i¼1

1� 1� gðkÞðiÞ

� �k
 � !1
n

0
@

1
A

1
k

0
B@

1
CA

Yn
i¼1

P
ðkÞ
ðiÞ

 !8><
>:

9>=
>;

1
CCCCCCCCCA

:

ð17Þ

Case 3 If parameter vector is P ¼ ð1; 1; 0; . . .; 0Þ, then

PLDMM operator will reduce to probabilistic linguistic

geometric Bonferroni mean (PLGeoBM) operator, which is

displayed as

PLDMMð1;1;0;...;0Þ L1ðP1Þ; L2ðP2Þ; . . .; LnðPnÞð Þ

¼ 1

2
b

n

i; j ¼ 1

i 6¼ j

LiðPiÞ � LjðPjÞ
� �

0
BBB@

1
CCCA

1
nðn�1Þ

¼ g�1
[

gðkÞðiÞ 2 g LðiÞ; g
ðkÞ
ðjÞ 2 g LðjÞ

� �� �

i; j ¼ 1; 2; . . .; n

i 6¼ j

0
BBBBBBBBBBBBBB@

1� 1�
Yn

i; j ¼ 1

i 6¼ j

1� 1� gðkÞðiÞ

� �
1� gðkÞðjÞ

� �� �

0
BBBBBB@

1
CCCCCCA

1
nðn�1Þ

0
BBBBBBB@

1
CCCCCCCA

1
2

0
BBBBBBBB@

1
CCCCCCCCA

8>>>>>>>><
>>>>>>>>:

Yn

i; j ¼ 1

i 6¼ j

P
ðkÞ
ðiÞ P

ðkÞ
ðjÞ

0
BBBBBB@

1
CCCCCCA

9>>>>>>>=
>>>>>>>;

1
CCCCCCCA
:

ð18Þ

Case 4 If parameter vector is P ¼ ð1; 1; . . .; 1
zfflfflfflfflfflffl}|fflfflfflfflfflffl{m

; 0; . . .; 0
zfflfflffl}|fflfflffl{n�m

Þ,
then PLDMM operator will reduce to probabilistic lin-

guistic geometric Maclaurin Symmetric mean

(PLGeoMSM) operator, that is,
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PLDMMð1; 1; . . .; 1
zfflfflfflfflfflffl}|fflfflfflfflfflffl{m

;0; . . .; 0
zfflfflffl}|fflfflffl{n�m

Þ L1ðP1Þ; . . .; LnðPnÞð Þ

¼ 1

m
�16i1\���\im6n �m

j¼1 LijðPijÞ
� �� � 1

Cmn

¼ g�1
[

gðkÞðiÞ 2 g LðiÞ
� �

i ¼ 1; 2; . . .; n

0
BBBBBBB@

1� 1�
Y

16i1\���\im6n

1�
Ym
j¼1

1� gðkÞðijÞ

� � ! ! 1
Cmn

0
@

1
A

1
m

0
B@

1
CA

8><
>:

Y
16i1\���\im6n

Ym
j¼1

P
ðkÞ
ij

 !)

1
CCCCCCCCA
:

ð19Þ

Case 5 If parameter vector is P ¼ ð1; 1; . . .; 1Þ or

P ¼ ð1n ; 1n ; . . .; 1nÞ, then PLDMM operator will reduce to

probabilistic linguistic arithmetic averaging (PLA) opera-

tor, namely

PLDMMð1;1;...;1Þ L1ðP1Þ;L2ðP2Þ; . . .;LnðPnÞð Þ

¼ 1

n
�n

i¼1 LiðPiÞð Þ
� �

¼ g�1
[

gðkÞðiÞ 2 g LðiÞ
� �

i ¼ 1; 2; . . .; n

1�
Yn
i¼1

1� gðkÞðiÞ

� � !1
n

0
@

1
A Yn

i¼1

P
ðkÞ
ðiÞ

 !8<
:

9=
;

0
BBBBBBB@

1
CCCCCCCA
:

ð20Þ

PLDMMð1n;1n;...;1nÞ L1ðP1Þ; L2ðP2Þ; . . .;LnðPnÞð Þ

¼ �n
i¼1

1

n
LiðPiÞð Þ


 �

¼ g�1
[

gðkÞðiÞ 2 g LðiÞ
� �

i ¼ 1; 2; . . .; n

1�
Yn
i¼1

1� gðkÞðiÞ

� � !1
n

0
@

1
A Yn

i¼1

P
ðkÞ
ðiÞ

 !8<
:

9=
;

0
BBBBBBB@

1
CCCCCCCA
:

ð21Þ

3.2 Probabilistic Linguistic Weighted Dual

Muirhead Mean (PLWDMM) Operator

With the consideration of importance of aggregated multi-

input arguments, we further define PLWDMM operator in

this section.

Definition 10 Let LiðPiÞ¼fLðkÞi P
ðkÞ
i

��k ¼ 1; 2; . . .;

#LiðPiÞg ði ¼ 1; . . .; nÞ be n PLTSs, P ¼ ðp1; . . .; pnÞ 2 Rn

be a parameter vector denoting the risk appetite values.

Suppose that xi be the weight of input argument LiðPiÞ
such that xi 2 ½0; 1� and

Pn
i¼1 xi ¼ 1. Then, PLWDMM

operator is described as

PLWDMMPðL1ðP1Þ; . . .; LiðPiÞ; . . .; LnðPnÞÞ

¼ 1Pn
i¼1 pi

�#2Sn �n
i¼1pi L#ðiÞ P#ðiÞ

� �� �nx#ðiÞ
� �� �1

n!;
ð22Þ

where #ðiÞði ¼ 1; 2; . . .; nÞ be any permutation of

ð1; 2; . . .; nÞ;
and Sn is the set of all possible permutations of

ð1; 2; . . .; nÞ.

Based on the Definition 10 and operation laws depicted

in Definition 3, we can get the following propositions.

Proposition 5 Suppose LiðPiÞ¼fLðkÞi P
ðkÞ
i

��k ¼ 1; 2; . . .;

#LiðPiÞg ði ¼ 1; 2; . . .; nÞ be n PLTSs, piði ¼ 1; 2; . . .; nÞ is
an arbitrary nonnegative number, which denotes the risk

appetite value. #ðiÞði ¼ 1; 2; . . .; nÞ be any permutation of

ð1; 2; . . .; nÞ. Then we have

pi L#ðiÞ P#ðiÞ
� �� �nx#ðiÞ

¼ g�1
[

gðkÞ
#ðiÞ2g L#ðiÞð Þ

1� 1� gðkÞ#ðiÞ

� �nx#ðiÞ
� �pi� �

P
ðkÞ
#ðiÞ

� �n o
0
B@

1
CA:

ð23Þ

Proof In the light of the result of Proposition 1 and

operation law (iv) in Definition 3, we have

pi L#ðiÞ P#ðiÞ
� �� �nx#ðiÞ

¼pig
�1

[

gðkÞ
#ðiÞ2g L#ðiÞð Þ

gðkÞ#ðiÞ

� �nx#ðiÞ
P
ðkÞ
#ðiÞ

� �n o
0
B@

1
CA

¼ g�1
[

gðkÞ
#ðiÞ2g L#ðiÞð Þ

1� 1� gðkÞ#ðiÞ

� �nx#ðiÞ
� �pi� �

P
ðkÞ
#ðiÞ

� �n o
0
B@

1
CA:

So, the statement of Proposition 5 holds. h
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Proposition 6 Suppose LiðPiÞ¼fLðkÞi P
ðkÞ
i

��k ¼ 1; 2; . . .;

LiðPiÞg ði ¼ 1; 2; . . .; nÞ be n PLTSs, piði ¼ 1; 2; . . .; nÞ is

an arbitrary nonnegative number, which denotes the risk

appetite value. #ðiÞði ¼ 1; 2; . . .; nÞ be any permutation of

ð1; 2; . . .; nÞ. Then we have

�n
i¼1 pi L#ðiÞ P#ðiÞ

� �� �nx#ðiÞ

¼ g�1
[

gðkÞ#ðiÞ 2 g L#ðiÞ
� �

i ¼ 1; 2; . . .; n

0
BBBBBBB@

1�
Yn
i¼1

1� gðkÞ#ðiÞ

� �nx#ðiÞ
� �pi ! Yn

i¼1

P
ðkÞ
#ðiÞ

 !( )!
:

ð24Þ

Proof According to outcome of Proposition 5 and oper-

ation law (i) in Definition 3, we have

p1 L#ð1Þ P#ð1Þ
� �� �nx#ð1Þ�p2 L#ð2Þ P#ð2Þ

� �� �nx#ð2Þ

¼ g�1
[

gðkÞ
#ð1Þ2g L#ð1Þð Þ

1� 1� gðkÞ#ð1Þ

� �nx#ð1Þ
� �p1� �

P
ðkÞ
#ð1Þ

� �n o
0
B@

1
CA

� g�1
[

gðkÞ
#ð2Þ2g L#ð2Þð Þ

1� 1� gðkÞ#ð2Þ

� �nx#ð2Þ
� �p2� �

P
ðkÞ
#ð2Þ

� �n o
0
B@

1
CA

¼ g�1
[

gðkÞ
#ð1Þ2g L#ð1Þð Þ;gðkÞ#ð2Þ2g L#ð2Þð Þ

0
B@

1� 1� gðkÞ#ð1Þ

� �nx#ð1Þ
� �p1

1� gðkÞ#ð2Þ

� �nx#ð2Þ
� �p2� �

P
ðkÞ
#ð1ÞP

ðkÞ
#ð2Þ

� �n o�

¼ g�1
[

gðkÞ#ðiÞ 2 g L#ðiÞ
� �

i ¼ 1; 2

1�
Y2
i¼1

1� gðkÞ#ðiÞ

� �nx#ðiÞ
� �pi ! Y2

i¼1

P
ðkÞ
#ðiÞ

 !( )

0
BBBBBBB@

1
CCCCCCCA

and we can get

�n
i¼1 pi L#ðiÞ P#ðiÞ

� �� �nx#ðiÞ

¼ g�1
[

gðkÞ#ðiÞ 2 g L#ðiÞ
� �

i ¼ 1; 2; . . .; n

1�
Yn
i¼1

1� gðkÞ#ðiÞ

� �nx#ðiÞ
� �pi

 ! Yn
i¼1

P
ðkÞ
#ðiÞ

 !( )

0
BBBBBBB@

1
CCCCCCCA
:

Hence, we finish the proof of Proposition 6. h

Proposition 7 Suppose LiðPiÞ¼fLðkÞi P
ðkÞ
i

��k ¼ 1; 2; . . .;

#LiðPiÞg ði ¼ 1; 2; . . .; nÞ be n PLTSs, piði ¼ 1; 2; . . .; nÞ is
an arbitrary nonnegative number, which denotes the risk

appetite value. #ðiÞði ¼ 1; 2; . . .; nÞ be any permutation of

ð1; 2; . . .; nÞ. Then we have

�#2Sn �n
i¼1pi L#ðiÞ P#ðiÞ

� �� �nx#ðiÞ
� �

¼g�1
[

gðkÞ#ðiÞ 2g L#ðiÞ
� �

i¼1;2;...;n

0
BBBBBBB@

Y
#2Sn

1�
Yn
i¼1

1� gðkÞ#ðiÞ

� �nx#ðiÞ
� �pi ! ! Y

#2Sn

Yn
i¼1

P
ðkÞ
#ðiÞ

 !( )!
:

ð25Þ

Proof With the aid of result of Proposition 6 and opera-

tion law (ii) in Definition 3, we have

�n
i¼1pi L1ðiÞ P1ðiÞ

� �� �nx1ðiÞ
� �

� �n
i¼1pi L2ðiÞ P2ðiÞ

� �� �nx2ðiÞ
� �

¼ g�1
[

gðkÞ
1ðiÞ 2 g L1ðiÞ

� �

i ¼ 1; 2; . . .; n

1�
Yn
i¼1

1� gðkÞ
1ðiÞ

� �nx1ðiÞ
� �pi

 ! Yn
i¼1

P
ðkÞ
1ðiÞ

 !( )

0
BBBBBBB@

1
CCCCCCCA

� g�1
[

gðkÞ
2ðiÞ 2 g L2ðiÞ

� �

i ¼ 1; 2; . . .; n

1�
Yn
i¼1

1� gðkÞ
2ðiÞ

� �nx2ðiÞ
� �pi ! Yn

i¼1

P
ðkÞ
2ðiÞ

 !( )

0
BBBBBBB@

1
CCCCCCCA

¼ g�1
[

gðkÞ
1ðiÞ 2 g L1ðiÞ

� �
; gðkÞ

2ðiÞ 2 g L2ðiÞ
� �

i ¼ 1; 2; . . .; n

1�
Yn
i¼1

1� gðkÞ
1ðiÞ

� �nx1ðiÞ
� �pi !(

0
BBBBBBB@

1�
Yn
i¼1

1� gðkÞ
2ðiÞ

� �nx2ðiÞ
� �pi ! Yn

i¼1

P
ðkÞ
1ðiÞ

Yn
i¼1

P
ðkÞ
2ðiÞ

 !)!

¼ g�1
[

gðkÞ#ðiÞ 2 g L#ðiÞ
� �

# ¼ 1; 2; i ¼ 1; 2; . . .; n

0
BBBBBBB@

Y2
#¼1

1�
Yn
i¼1

1� gðkÞ#ðiÞ

� �nx#ðiÞ
� �pi ! ! Y2

#¼1

Yn
i¼1

P
ðkÞ
#ðiÞ

 !( )

1
CCCCCCCCA

then
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�#2Sn �n
i¼1pi L#ðiÞ P#ðiÞ

� �� �nx#ðiÞ
� �

¼ g�1
[

gðkÞ#ðiÞ 2 g L#ðiÞ
� �

i ¼ 1; 2; . . .; n

0
BBBBBBB@

Y
#2Sn

1�
Yn
i¼1

1� gðkÞ#ðiÞ

� �nx#ðiÞ
� �pi ! ! Y

#2Sn

Yn
i¼1

P
ðkÞ
#ðiÞ

 !( )

1
CCCCCCCCA
:

Therefore, Proposition 7 always holds. h

Proposition 8 Suppose LiðPiÞ¼fLðkÞi P
ðkÞ
i

��k ¼ 1; 2; . . .;

#LiðPiÞg ði ¼ 1; 2; . . .; nÞ be n PLTSs, piði ¼ 1; 2; . . .; nÞ is
an arbitrary nonnegative number, which denotes the risk

appetite value. #ðiÞði ¼ 1; 2; . . .; nÞ be any permutation of

ð1; 2; . . .; nÞ. Then we have

�#2Sn �n
i¼1pi L#ðiÞ P#ðiÞ

� �� �nx#ðiÞ
� �� �1

n!

¼ g�1
[

gðkÞ#ðiÞ 2 g L#ðiÞ
� �

i ¼ 1; 2; . . .; n

0
BBBBBBB@

Y
#2Sn

1�
Yn
i¼1

1� gðkÞ#ðiÞ

� �nx#ðiÞ
� �pi ! !1

n! Y
#2Sn

Yn
i¼1

P
ðkÞ
#ðiÞ

 !8<
:

9=
;

1
CCCCCCCCCA

:

ð26Þ

Proof It is not difficult to demonstrate Proposition 8

through the outcome of Proposition 7 and operation law

(iv) presented in Definition 3. h

Theorem 2 Suppose LiðPiÞ¼fLðkÞi P
ðkÞ
i

��k ¼ 1; 2; . . .;

LiðPiÞg ði ¼ 1; 2; . . .; nÞ be n PLTSs, P ¼ ðp1; . . .; pnÞ 2 Rn

be a parameter vector denoting the risk appetite values, xi

be the weight of input argument LiðPiÞ with xi 2 ½0; 1� andPn
i¼1 xi ¼ 1. Then aggregated result by Definition 10 is

shown as

PLWDMMPðL1ðP1Þ; . . .; LiðPiÞ; . . .; LnðPnÞÞ

¼ g�1
[

gðkÞ#ðiÞ 2 g L#ðiÞ
� �

i ¼ 1; 2; . . .; n

0
BBBBBBB@

1� 1�
Y
#2Sn

1�
Yn
i¼1

1� gðkÞ#ðiÞ

� �nx#ðiÞ
� �pi ! !1

n!

0
@

1
A

1Pn

i¼1
pi

0
B@

1
CA

8><
>:

Y
#2Sn

Yn
i¼1

P
ðkÞ
#ðiÞ

 !)!
:

ð27Þ

Proof Based on Theorem 1, Propositions 5–8 and opera-

tion laws of PLTSs described in Definition 3, we have

PLWDMMPðL1ðP1Þ; . . .; LiðPiÞ; . . .; LnðPnÞÞ

¼ 1Pn
i¼1 pi

�#2Sn �n
i¼1pi L#ðiÞ P#ðiÞ

� �� �nx#ðiÞ
� �� �1

n!

¼ 1Pn
i¼1 pi

g�1
[

gðkÞ#ðiÞ 2 g L#ðiÞ
� �

i ¼ 1; 2; . . .; n

0
BBBBBBB@

Y
#2Sn

1�
Yn
i¼1

1� gðkÞ#ðiÞ

� �nx#ðiÞ
� �pi ! !1

n! Y
#2Sn

Yn
i¼1

P
ðkÞ
#ðiÞ

 !8<
:

9=
;

1
A

¼ g�1
[

gðkÞ#ðiÞ 2 g L#ðiÞ
� �

i ¼ 1; 2; . . .; n

0
BBBBBBB@

1� 1�
Y
#2Sn

1�
Yn
i¼1

1� gðkÞ#ðiÞ

� �nx#ðiÞ
� �pi ! !1

n!

0
@

1
A

1Pn

i¼1
pi

0
B@

1
CA

8><
>:

Y
#2Sn

Yn
i¼1

P
ðkÞ
#ðiÞ

 !)!
:

h

Thus, we complete the proof of Theorem 2.

Likewise, we further explore desirable properties for

PLWDMM operator and give four corollaries.

Corollary 5 (Monotonity). Let LðPÞa ¼ L1ðP1Þa; . . .;


LnðPnÞa
�
and LðPÞb ¼ L1ðP1Þb; . . .; LnðPnÞb

 �
be arbitrary

two PLTSs, P ¼ ðp1; p2; . . .; pnÞ 2 Rn be a parameter vec-

tor denoting the risk appetite values. For gðkÞ#aðiÞ 2 gðL#aðiÞÞ,
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gðkÞ#bðiÞ 2 gðL#bðiÞÞ, if gðkÞ#aðiÞ 6 gðkÞ#bðiÞ and P
ðkÞ
#aðiÞ 6 P

ðkÞ
#bðiÞ, then

we have

PLWDMMP L1ðP1Þa; . . .; LnðPnÞa
� �

6 PLWDMMP L1ðP1Þb; . . .; LnðPnÞb
� �

:

Corollary 6 (Idempotency). If LiPi¼LðPÞ¼ LðkÞ PðkÞ� �
��LðkÞ 2 S; rðkÞ 2 t;PðkÞ � 0; k ¼ 1; 2; . . .;#LðPÞ;

P#LðPÞ
k¼1 PðkÞ

6 1
o
for all i ¼ 1; 2; . . .; n, then we have

PLWDMMP L1ðP1Þ; L2ðP2Þ; . . .; LnðPnÞð Þ ¼ LðPÞ:

Corollary 7 (Commutativity). If L
0

iðP
0

iÞ be any permuta-

tion of LiðPÞiði ¼ 1; 2; . . .; nÞ, then we have the

relationship:

PLWDMMP L1ðP1Þ; L2ðP2Þ; . . .; LnðPnÞð Þ

¼ PLWDMMP L
0

1ðP
0

1Þ; L
0

2ðP
0

2Þ; . . .; L
0

nðP
0

nÞ
� �

:

Corollary 8 (Boundness). Let LðPÞ� ¼ minðL1ðP1Þ;
L2ðP2Þ; . . .; LnðPnÞÞ and LðPÞþ ¼ maxðL1ðP1Þ; L2ðP2Þ;
. . .; LnðPnÞÞ, then we have

PLWDMMP LðPÞ�; LðPÞ�; . . .;LðPÞ�ð Þ

6 PLWDMMP L1ðP1Þ; L2ðP2Þ; . . .; LnðPnÞð Þ

6 PLWDMMP LðPÞþ; LðPÞþ; . . .; LðPÞþ
�

If x ¼ ð1n ; 1n ; . . .; 1nÞ, then PLWDMM operator is reduced

to PLDMM operator. Therefore, PLDMM operator is

regarded as a special case of PLWDMM operator.

According to Theorems 1 and 2, it is clear that PLWDMM

operator being an effective extension of PLDMM operator

is more appropriate to capture the interrelationship and

importance of multi-input arguments in the PLMADM

problems.

4 A Novel Decision-Making Approach
to PLMADM Based on PLWDMM Operator
and VIKOR

In this section, we investigate a novel method in accor-

dance with PLWDMM aggregation operator and VIKOR to

handle complicated PLMADM problems.

4.1 Problem Description

For a PLMADM problem, DMs are required to pick out the

optimal or best alternative from several candidates with

regard to finite attributes. Therefore, alternatives and

attributes should be decided first. Let A ¼
a1; . . .; ai; . . .; amf g be a discrete collection of m alterna-

tives, C ¼ c1; . . .; cj; . . .; cn
 �

be a finite set of n attributes,

and weight sector of attributes is given as x ¼
x1; . . .;xj; . . .;xn

� �T
such that

Pn
j¼1 xj ¼ 1 and

xj 2 ½0; 1�. Suppose that DM ¼ dm1; . . .; dmq; . . .; dme

 �
be a set of DMs with relative weights

k ¼ k1; . . .; kq; . . .; ke
� �T

. Similarly, for q ¼ 1; 2; . . .; e, kq
satisfies

Pe
q¼1 kq ¼ 1 and kq 2 ½0; 1�. According to lin-

guistic scale S ¼ Stjt ¼ �s; . . .;�1; 0; 1; . . .; sf g, each DM

is invited to choose suitable linguistic terms in set S and

display corresponding possible probability/preference

degree when providing his/her evaluation information on

each alternative with respect to attributes. Let Dq ¼

rqij

� �
m	n

be alternatives–attributes probabilistic linguistic

evaluation matrix given by decision maker

dmqðq ¼ 1; 2; . . .; eÞ. The matrix Dq can be written as

follows:

Dq ¼

rq11 rq12 � � � rq1j � � � rq1n

rq21 rq22 � � � rq2j � � � rq2n

..

. ..
. ..

. ..
. ..

. ..
.

rqi1 rqi2 � � � rqij � � � rqin

..

. ..
. ..

. ..
. ..

. ..
.

rqm1 rqm2 � � � rqmj � � � rqmn

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

:

where for all i ¼ 1; 2; . . .;m; j ¼ 1; 2; . . .; n, rqij ¼ Lqij Pq
ij

� �

presents probabilistic linguistic evaluation information

provided by decision maker dmq over alternative ai about

attribute cj.

4.2 Decision Procedures for PLMADM Based

on PLWDMM Operator and VIKOR

DMs are invited one by one to offer their real evaluation on

alternatives regarding to different attributes. Then e alter-

natives–attributes probabilistic linguistic evaluation matri-

ces are successfully constructed. In the light of PLWDMM

operator, collective result of alternative ai with respect to

attribute cj is fused by means of formulas (22) and (27) for

all i ¼ 1; 2; . . .;m; j ¼ 1; 2; . . .; n. The outcome is denoted

as
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rij ¼LijðPijÞ ¼ PLWDMMPðr1ij; . . .; r
q
ij; . . .; r

e
ijÞ

¼PLWDMMP L1ij P1
ij

� �
; . . .; Lqij Pq

ij

� �
; . . .; Leij Pe

ij

� �� �

¼ g�1
[

gðkÞ#ðqÞ 2 g Lq#ðqÞ

� �

q ¼ 1; 2; . . .; e

0
BBBBBBBB@

1� 1�
Y
#2Se

1�
Ye
q¼1

1� gðkÞ#ðqÞ

� �ek#ðqÞ
 �pq
 ! !1

e!

0
@

1
A

1Pe

q¼1
pq

0
B@

1
CA

8><
>:

Y
#2Se

Ye
q¼1

P
ðkÞ
#ðqÞ

 !)

1
CCCCCCCCA
;

ð28Þ

where #ðqÞðq ¼ 1; 2; . . .; eÞ be any permutation of

ð1; 2; . . .; eÞ;
and Se is the set of all possible permutations of

ð1; 2; . . .; eÞ.
Similarly, we can obtain other aggregated information.

Then alternatives–attributes group evaluation matrix

denoted as D ¼ rij
� �

m	n
is built and depicted as follows:

D ¼

r11 r12 � � � r1j � � � r1n

r21 r22 � � � r2j � � � r2n

..

. ..
. ..

. ..
. ..

. ..
.

ri1 ri2 � � � rij � � � rin

..

. ..
. ..

. ..
. ..

. ..
.

rm1 rm2 � � � rmj � � � rmn

0
BBBBBBBBBB@

1
CCCCCCCCCCA

;

where for all i ¼ 1; 2; . . .;m; j ¼ 1; 2; . . .; n, rij ¼ Lij Pij

� �
presents group probabilistic linguistic evaluation informa-

tion on alternative ai regarding to attribute cj.

According to Definition 4, group evaluation matrix D

can be normalized as �D, in which the numbers of linguistic

terms in all evaluation information are identical.

Next, we further use VIKOR method to solve PLMA-

DM problem described in Sect. 4.1. First of all, we need to

find the positive ideal solutions and negative ideal solutions

according to matrix �D. Let Rþ¼ðrþ1 ; . . .; rþj ; . . .; rþn Þ
and R� ¼ ðr�1 ; . . .; r�j ; . . .; r�n Þ be positive and negative

ideal solutions, respectively. rþj and r�j separately denote

the best and the worst solutions on attribute cj, which are

computed by formulas (29) and (30):

rþj ¼ �Lj �Pj

� �þ¼ �L
ð1Þ
j

� �þ
; . . .; �L

ðkÞ
j

� �þ
; . . .; �L

ð# �LijðPÞÞ
j

� �þ� 	
;

ð29Þ

where �L
ðkÞ
j

� �þ
¼ S max

1 6 i 6 m
r
ðkÞ
ij P

ðkÞ
ijf g

, # �LijðPÞ presents

number of linguistic terms in �LijðPÞ. For all i ¼ 1; . . .;m;

j ¼ 1; . . .; n, r
ðkÞ
ij is the subscript of the linguistic term �L

ðkÞ
ij

and P
ðkÞ
ij be corresponding possible probability or prefer-

ence degree of linguistic term �L
ðkÞ
ij .

r�j ¼ �Lj �Pj

� ��¼ �L
ð1Þ
j

� ��
; . . .; �L

ðkÞ
j

� ��
; . . .; �L

ð# �LijðPÞÞ
j

� ��n o
;

ð30Þ

where �L
ðkÞ
j

� ��
¼ S min

1 6 i 6 m
r
ðkÞ
ij P

ðkÞ
ijf g

, # �LijðPÞ presents

number of linguistic terms in �LijðPÞ. For all i ¼ 1; . . .;m;

j ¼ 1; . . .; n, r
ðkÞ
ij is the subscript of the linguistic term �L

ðkÞ
ij

and P
ðkÞ
ij be corresponding possible probability or prefer-

ence degree of linguistic term �L
ðkÞ
ij .

For each alternative ai, we then compute group utility Si
and individual regret Ri based on the positive ideal solu-

tions and negative ideal solutions.

The group utility Si is given by

Si ¼
Xn
j¼1

xj

d rþj ; rij

� �

d rþj ; r
�
j

� � : ð31Þ

The individual regret Ri can be calculated by

Ri ¼
max

1 6 j 6 n
xj

d rþj ; rij

� �

d rþj ; r
�
j

� � ; ð32Þ

where xj be the weight of attribute cj, d rþj ; rij

� �
presents

the distance between rþj and rij. Distance measure of

PLTSs is cited from [8] depicted in Definition 6.

Now, we calculate total utility Qi for every alternative ai
by the following formula:

Qi ¼ l
Si � Sþ

S� � Sþ
þ ð1� lÞRi � Rþ

R� � Rþ;
ð33Þ

where Sþ¼min
i
Si, S

�¼max
i

Si, Rþ¼min
i
Ri, R

�¼max
i

Ri.

Parameter lðl2½0;1�Þ denotes weight of maximum group

utility, and 1�l is the weight of individual regret. In

general, l is equal to 0.5 [26, 29, 36].

According to values of Si;Ri;Qi, three ranking results

for all alternatives in ascending orders are obtained.
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Assumed that Að1Þ;Að2Þ; . . .;AðmÞ be a increasing ranking

based on values of Qiði ¼ 1; 2; . . .;mÞ. Að1Þ is a promising

solution if satisfying the following two constraints:

(i) Acceptable advantage: Q Að2Þ� �
� Q Að1Þ� �

� 1
m�1

;

(ii) Acceptable stability: alternative Að1Þ also be in first

position by Si or/and Ri.

However, these two conditions sometimes cannot be met

simultaneously, then compromised solutions have been

developed as follows:

If constraint (ii) is not satisfied, then Að1Þ and Að2Þ are
regarded as compromised solutions. If constraint (i) is not

met, then Að1Þ;Að2Þ; . . .;AðMÞ are considered as compro-

mised solutions, in which value of M is obtained by

Q AðMÞ� �
� Q Að1Þ� �

\ 1
m�1

for maximum M.

4.3 The Algorithm for PLMADM Based

on PLWDMM Operator and VIKOR

Based on the above-detailed decision procedures, we fur-

ther summarize our proposed decision-making approach

described in Fig. 1 and put forward a powerful algorithm

for dealing with complex PLMADM problems through

PLWDMM operator and VIKOR method. The algorithm

for PLMADM is depicted as follows:

Step 1: Identify alternatives set A ¼ fa1; . . .;
ai; . . .; amg, attributes set C ¼ fc1; . . .;
cj; . . .; cng and DMs set DM ¼ fdm1; . . .;

dmq; . . .; dmeg. Given that weight vectors

of attributes and DMs are denoted as x ¼
x1; . . .;xj; . . .;xn

� �T
and k ¼ k1; . . .;ð

kq; . . .; keÞT , respectively. Each evaluator is

invited to choose linguistic term in set

S ¼ Stjt ¼ �s; . . .;�1; 0; 1; . . .; sf g and

express relative possible probability/prefer-

ence degree when evaluating each candidate

with regard to attributes;

Step 2: Construct e alternatives–attributes probabilis-

tic linguistic evaluation matrices;

Step 3: Fuse collective result of alternative ai with

respect to attribute cj by means of formula

(28), and obtain the alternatives–attributes

group evaluation matrix D ¼ rij
� �

m	n
i ¼ 1;ð

2; . . .;m; : j ¼ 1; 2; . . .; nÞ;
Step 4: Acquire normalized group evaluation matrix

�D according to Definition 4;

Step 5: Find the positive ideal solutions Rþ ¼
ðrþ1 ; . . .; rþj ; . . .; rþn Þ and negative ideal solu-

tions R� ¼ ðr�1 ; . . .; r�j ; . . .; r�n Þ with the aid

of formulas (29) and (30);

Step 6: Compute group utility Si and individual regret

Ri by formulas (31) and (32) for each

alternative ai;

Step 7: Calculate total utility Qi for every alternative

ai in the light of formulas (6) and (33);

Step 8: Obtain three ranking results for all candidates

in ascending orders according to values of

Si;Ri; Qi;

Step 9: Determine the compromised solution:

assumed that Að1Þ;Að2Þ; . . .;AðmÞ be an increas-

ing ranking based on values of Qiði ¼ 1;

2; . . .;mÞ. If Að1Þ meets constraints of accept-

able advantage and acceptable stability, then

Að1Þ is a promising solution; If only constraint

of acceptable advantage is satisfied, then Að1Þ

and Að2Þ are regarded as compromised solu-

tions. If only condition of acceptable stability

is met, then Að1Þ;Að2Þ; . . .;AðMÞ are considered

as compromised solutions, in which value of

M is obtained by Q AðMÞ� �
� Q Að1Þ� �

\ 1
m�1

for maximum M.

5 Illustrative Example

In the following, we further demonstrate the practicality

and feasibility of the proposed decision-making approach

by a practical example adapted from Liang et al. [17].

Owing to severe ceaselessly environment pollution in

China and finite medical resources, some domestic hospi-

tals have to be assessed to seek the optimal one, especially

their personalized healthcare systems. Suppose that three

DMs DM ¼ fdm1; dm2; dm3g with the weight vector k ¼
ð0:3; 0:3; 0:4ÞT are invited to evaluate four hospitals aiði ¼
1; 2; 3; 4Þ according to three attributes. They are (1) the

environmental factor of medical and health service ðc1Þ; (2)
personalized diagnosis and treatment optimization ðc2Þ; (3)
social resource allocation optimization under the pattern of

wisdom medical and health services ðc3Þ. The weights of

attributes are given as x ¼ ð0:2; 0:1; 0:7ÞT . And the origi-

nal decision matrices expressed in the form of PLTSs are

integrated and presented in Table 1.

5.1 The Proposed Decision-Making Approach

for the Example

According to the designed decision-making approach

described in Sect. 4, we first aggregate the probabilistic

linguistic evaluation information presented in Table 1. The

collective result for every candidate ai with respect to

attribute cjði ¼ 1; 2; 3; 4; j ¼ 1; 2; 3Þ can be acquired in the
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light of PLWDMM aggregation operator depicted in the

formula (28) when parameter vector is given as

P ¼ ð1; 1; 1Þ. The obtained group evaluation matrix D is

presented in Table 2. Based on Definition 4, we normalize

group evaluation matrix D and get the normalized group

evaluation matrix.

Based on the normalized group evaluation matrix as well

as formulas (29) and (30), we then find the positive ideal

solutions Rþ ¼ ðfS3; S0:306; S0:1728; S0:0708g; fS1:005; S0:875;
S0:2625; S0:213g; fS3; S0:072; S0; S0gÞ and negative ideal

solutions

R� ¼ ðfS0:36; S0; S0; S0g; fS0:03; S0; S0; S0g; fS0:012; S0;
S�0:114; S�0:116gÞ. We further calculate group utility Si,

individual regret Ri and total utility Qi for each alternative

aiði ¼ 1; 2; 3; 4Þ with the aid of formulas (31–33). The

calculation and ranking results for all candidates are inte-

grated and shown in Table 3.

From two constraints of VIKOR method and results

shown in Table 3, it is clear that alternative a2 is the best in

the ranking lists of S and R. However, QðAð2ÞÞ � QðAð1ÞÞ
¼ 0:14\1=ð4� 1Þ 
 0:33. It implies that constraint (i) is

not met. We then deduce the following relationship:

QðAð3ÞÞ � QðAð1ÞÞ ¼ 0:6[ 1=ð4� 1Þ 
 0:33. Hence, the

alternative hospitals a2 and a3 are the compromised

solutions.

5.2 The Effect of Risk Appetite Parameter

on Ranking Result

In Sect. 5.1, we have taken the relationships parameter

vector P ¼ ð1; 1; 1Þ. Obviously, P can also take other val-

ues with different risk appetites. Generally, if DM is risk-

seeking, then parameter vector is defined as P ¼

ð1; 1; 0; . . .; 0Þ or/and P ¼ ð1; . . .; 1
zfflfflffl}|fflfflffl{m

; 0; . . .; 0
zfflfflffl}|fflfflffl{n�m

Þ in PLWDMM

operator; on the contrary, if DM prefers to risk-averse,

parameter vector is given as P ¼ ð1; 0; . . .; 0Þ or

P ¼ ðk; 0; . . .; 0Þ; if DM is risk-neutral, parameter vector is

denoted as P ¼ ð1; 1; . . .; 1Þ or P ¼ ð1n ; 1n ; . . .; 1nÞ. For dis-

cussing the effect of parameter vector P on the ranking list,

several values of P are introduced to analyze the ranking

results which are depicted in Table 4.

As shown in Table 4, we find that three kinds of ranking

results are almost the same and are in accordance with the

Fig. 1 Framework of our proposed decision-making approach to PLMADM
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ranking a2 [ a3 [ a4 [ a1 except the ranking result from

Q derived when parameter vector is given as P ¼ ð2; 0; 0Þ.
When P ¼ ð2; 0; 0Þ presents the risk appetite values of

DMs, we can compute QðAð2ÞÞ � QðAð1ÞÞ ¼ 0\0:33 and

QðAð3ÞÞ � QðAð1ÞÞ ¼ 1[ 0:33. Based on the two con-

straints of VIKOR method, we deduce alternative hospitals

a2 and a3 are the compromised solutions which are exactly

consistent with the outcomes from other values of param-

eter vector P. Therefore, a meaningful conclusion is sum-

marized as follows: the compromised solutions (i.e., a2 and

a3) determined by PLWDMM operator and VIKOR are

totally unchanged in this example although the parameter

vector P changes. This interesting phenomenon can also

illustrate the proposed decision-making approach has

wonderful robust property.

5.3 Further Discussions

To further signify the superiorities and strength of proposed

decision-making approach in handling MADM problems

under probabilistic linguistic preference environment, we

further compare the proposed method with other existing

approaches in this section.

5.3.1 Comparison with Method from Pang et al.

[8]

Based on the MADM with PLTSs, Pang et al. [8] fused

evaluation information by PLWA operator and utilized

TOPSIS method to deal with PLMADM problems. As

mentioned in Sect. 3.1, PLDMM operator will become

PLA operator as long as parameter vector is P ¼
ð1; 1; . . .; 1Þ or P ¼ ð1=n; 1=n; . . .; 1=nÞ. To reduce the

Table 1 The integrated

decision matrix provided by all

DMs

DMs c1 c2 c3

dm1

a1 fS0ð0:4Þ; S1ð0:6Þg fS2ð1Þg fS0ð1Þg
a2 fS3ð1Þg fS0ð1Þg fS1ð0:2Þ; S2ð0:4Þ; S3ð0:4Þg
a3 fS1ð1Þg fS1ð0:5Þ; S2ð0:5Þg fS2ð0:6Þ; S3ð0:4Þg
a4 fS2ð0:5Þ; S3ð0:5Þg fS0ð0:4Þ; S1ð0:6Þg fS1ð1Þg

dm2

a1 fS0ð0:5Þ; S1ð0:5Þg fS1ð0:5Þ; S2ð0:5Þg fS�2ð0:2Þ; S�1ð0:4Þ; S0ð0:4Þg
a2 fS1ð0:3Þ; S2ð0:3Þ; S3ð0:4Þg fS0ð1Þg fS3ð1Þg
a3 fS0ð0:3Þ; S1ð0:7Þg fS1ð1Þg fS3ð1Þg
a4 fS1ð0:2Þ; S3ð0:8Þg fS1ð1Þg fS0ð0:1Þ; S1ð0:9Þg

dm3

a1 fS1ð1Þg fS2ð1Þg fS0ð1Þg
a2 fS3ð1Þg fS0ð1Þg fS3ð1Þg
a3 fS1ð0:8Þ; S2ð0:2Þg fS1ð0:7Þ; S2ð0:3Þg fS1ð0:2Þ; S2ð0:8Þg
a4 fS3ð1Þg fS1ð1Þg fS1ð1Þg

Table 2 The group evaluation

matrix D
c1 c2 c3

a1 fS0:72ð0:5Þ; S1:02ð0:3Þ; S0:38ð0:2Þg fS2:01ð0:5Þ; S1:75ð0:5Þg fS0:03ð0:4Þ; S�0:57ð0:2Þ; S�0:29ð0:4Þg
a2 fS3ð1Þg fS0:03ð1Þg fS3ð1Þg
a3 fS1:02ð0:56Þ; S1:42ð0:14Þ; fS1:43ð0:35Þ; S1:02ð0:35Þ; fS3ð1Þg

S0:72ð0:24Þ; S1:18ð0:06Þg S1:75ð0:15Þ; S1:42ð0:15Þg
a4 fS3ð1Þg fS1:02ð0:6Þ; S0:72ð0:4Þg fS1:02ð0:9Þ; S0:72ð0:1Þg

Table 3 The calculation and

ranking results for all

alternatives

Si Ranking result Ri Ranking result Qi Ranking result

a1 0.92 4 0.7 4 1 4

a2 0.14 1 0.1 1 0 1

a3 0.25 2 0.18 2 0.14 2

a4 0.57 3 0.49 3 0.6 3
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differences and enhance the comparability; therefore,

PLWDMM operator with parameter vector P ¼ ð1; 1; 1Þ or
P ¼ ð1=n; 1=n; 1=nÞ is used to compare the proposed

approach and method from Pang et al. [8]. The decision

results of these two techniques are presented in Table 5.

Table 5 shows that ranking results are remaining the

same in spite of derived from different decision-making

methods. It implies the outcome acquired by designed

decision-making approach is reasonable and proposed

technique is feasible. In the following, we analyze some

characteristics of different aggregation operators which are

listed in Table 6. According to the result of Table 6, we

find that being a special case of PLWDMM, PLWA

operator has two limitations when aggregating evaluations:

(1) input arguments are regarded as independent when

fusing information by PLWA operator; (2) PLWA operator

does not consider interrelationships of input arguments in

PLMADM problems. However, PLWDMM aggregation

operator not only takes these interrelationships into account

but also is a generalization of most existing operators (in-

cluding PLWA operator). Hence, our proposed PLWDMM

operator is more flexible and general than PLWA operator

to fuse input arguments in PLMADM problems. Besides,

though ideal solutions are involved both in TOPSIS tech-

nique and VIKOR method, VIKOR is more suitable to

handle sophisticated MADM problems especially with

conflicted attributes. Therefore, proposed approach is

totally superior than method from Pang et al. [8] in dealing

with PLMADM problems.

5.3.2 Comparison with Method from Liang et al.

[17]

Similarly, Liang et al. [17] proposed the PLWGeoBM

operator to aggregate information and employed GRA to

solve PLMADM problems. Since PLWDMM operator with

Table 4 The ranking results for

different values of parameter

vector P

P Si Ranking result Ri Ranking result Qi Ranking result

P ¼ ð1; 0; 0Þ
a1 0.91 4 0.7 4 1 4

a2 0.22 1 0.1 1 0 1

a3 0.37 2 0.17 2 0.18 2

a4 0.59 3 0.46 3 0.57 3

P ¼ ð2; 0; 0Þ
a1 0.91 4 0.7 4 1 2

a2 0.2 1 0.1 1 0 1

a3 0.39 2 0.17 2 0 1

a4 0.56 3 0.44 3 1 2

P ¼ ð3; 0; 0Þ
a1 0.91 4 0.7 4 1 4

a2 0.19 1 0.1 1 0 1

a3 0.38 2 0.17 2 0.19 2

a4 0.54 3 0.43 3 0.52 3

P ¼ ð1; 1; 0Þ
a1 0.92 4 0.7 4 1 4

a2 0.3 1 0.18 1 0 1

a3 0.5 2 0.27 2 0.25 2

a4 0.58 3 0.5 3 0.54 3

P ¼ ð1; 1; 1Þ
a1 0.92 4 0.7 4 1 4

a2 0.14 1 0.1 1 0 1

a3 0.25 2 0.18 2 0.14 2

a4 0.57 3 0.49 3 0.6 3

P ¼ ð1=3; 1=3; 1=3Þ
a1 0.92 4 0.7 4 1 4

a2 0.14 1 0.1 1 0 1

a3 0.25 2 0.18 2 0.14 2

a4 0.57 3 0.49 3 0.6 3
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parameter vector P ¼ ð1; 1; 0; . . .; 0Þ is equivalent to

PLWGeoBM with parameters p ¼ q ¼ 1, we use

PLWDMM operator with P ¼ ð1; 1; 0Þ and VIKOR to

compare with method from Liang et al. [17]. And the

decision results determined by proposed approach and

method from Liang et al. [17] are shown in Table 7.

From results of Table 7, we know that ranking result

from proposed approach is in accordance with the result

from Liang et al. [17], which not only further demonstrates

the rational of outcome obtained from proposed approach

but also explains the available of designed decision-making

approach. Although PLWGeoBM being a special case of

PLWDMM operator involves the interrelationship of two

input arguments according to the result of Table 6, it

cannot capture these interrelationships among three or

multiple input arguments and lacks of the ability to make

decision-making approach flexible. On the contrary,

PLWDMM operator can accurately analyze interrelation-

ships of multi-input arguments and make the designed

decision-making method flexible. In real situation, input

arguments in PLMADM problems are interrelated even

multiple; therefore, PLWDMM operator plays better at

dealing with multi-input arguments in PLMADM

problems. Compared with GRA, VIKOR can provide DMs

with compromised solutions in the situation where criterion

are conflicted. So, it also proves that proposed approach is

better at addressing complex PLMADM problems than

method in Liang et al. [17].

Based on above analysis, the desirable advantages of our

proposed method are concluded as follows: (1) it not only

contains probabilistic linguistic preference information, but

also fully captures the interrelationships among multi-input

arguments; (2) it is flexible with the aid of parameter vector

and is fulfilled with robust property. (3) Our proposed

method offers DMs an effective way to get compromised

solutions under PLP environment. Thus, our proposed

method is more appropriate to deal with complicated

PLMADM problems.

6 Conclusion

With the consideration of interrelationships among multi-

input arguments, we extend the traditional DMM operator

into probabilistic linguistic preference surroundings. In this

paper, we separately define PLDMM and PLWDMM

Table 5 The ranking results derived by proposed method and method from Pang et al. [8]

Aggregation operator Decision-making technique Ranking result

Our proposed approach PLWDMM VIKOR a2 [ a3 [ a4 [ a1

ðP ¼ ð1; 1; 1Þð or P ¼ ð1=3; 1=3; 1=3ÞÞ
The method in Pang et al. [8] PLWA TOPSIS a2 [ a3 [ a4 [ a1

Table 6 The characteristics of three aggregation operators

Approaches Whether interrelationship of two input

arguments is captured

Whether interrelationship of three even multiple

input arguments is captured

Whether it makes the method

flexible by parameter vector

PLWA [8] No No No

PLWGeoBM

[17]

Yes No No

PLWDMM Yes Yes Yes

Table 7 The ranking results determined by proposed method and method from Liang et al. [17]

Aggregation operator Decision-making technique Ranking result

Our proposed approach PLWDMM VIKOR a2 [ a3 [ a4 [ a1

ðP ¼ ð1; 1; 0Þ
The method in Liang et al. [17] PLWGeoBM GRA a2 [ a3 [ a4 [ a1

ðp ¼ q ¼ 1Þ

Y. Du and D. Liu: A novel approach for probabilistic linguistic multiple... 259

123



aggregation operators which have the characteristics of

generalization, flexibility and robust property. For sophis-

ticated PLMADM problems, we investigate a new exten-

sion of the VIKOR method and design a corresponding

decision-making approach in the light of PLWDMM

operator. Introduction of DMM operator not only con-

tributes to expand the application of PLTSs and propose

relative aggregation operators but also conduces to develop

a novel technique based on improved PLWDMM operator

and VIKOR method to solve PLMADM problems. Our

designed decision-making approach can also be powerful

in addressing other operational research problems, such as

supplier selection, performance evaluation for enterprises,

assessment of project quality, etc. Future work will further

focus on exploring new generalized operators and decision-

making methods to handle complex PLMADM problems.
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