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Abstract The finite-time adaptive fuzzy tracking control

problem for a class of strict-feedback uncertain switched

systems is investigated in this paper. Based on fuzzy

approximation and adaptive dynamic surface control

(DSC) technique, a finite-time adaptive state feedback

fuzzy controller is developed via the common Lyapunov

functions. Different from the existing works on uncertain

switched systems, the DSC control scheme is developed

based on a nonlinear filter to solve the ‘‘explosion of

complexity’’ problem, and the structure of the proposed

fuzzy controller is simple. Under the designed controller,

all the signals of the closed-loop system remain semi-

globally bounded, and within a finite-time interval, the

system tracking error converges to an arbitrarily small

region. That is, the semi-globally practical finite-time sta-

bility of the controlled system is guaranteed. To show the

availability of the presented control scheme, a simulation

example is given in this paper.

Keywords Uncertain switched systems � Fuzzy
approximation � Adaptive DSC technique � Finite time

stability

1 Introduction

In the past decades, compared with asymptotic stabiliza-

tion, the systems with finite-time convergence demonstrate

some nice features, such as faster convergence, high

accuracies and better robustness to uncertainties, and these

benefits render that the method of finite-time stabilization

becomes one of the most appealing tools in practical

applications, lots of works have been obtained for a large

variety of systems (e.g., see [1–11]). The fundamental

research of the finite-time stability is proposed in [1].

Subsequently, a lot of finite-time control problems of lin-

ear/nonlinear systems have been solved. For the time-

varying systems and impulsive dynamical systems, some

sufficient conditions of the finite-time stability are estab-

lished in [6, 7]. The finite-time control problems for time-

varying linear systems are studied in [8, 9] using linear

matrix inequalities (LMIs) method. For the disturbed sys-

tem with mismatching condition, the problem of finite-time

output regulation control is investigated based on a com-

posite control design method in [10]. For a class of non-

linear time-varying interconnected systems, the

decentralized control problem is studied in [12]. The finite-

time stability problem of a class of homogeneous stochastic

nonlinear systems modeled by stochastic differential

equations is studied in [11] and it is shown that the finite-

time stability of stochastic system can be ensured under

some appropriate conditions.

In recent years, some significant results of finite-time

control problems for different types of uncertain systems
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have been reported (e.g., see [13–27]). The authors in [14]

study the problem of finite-time stabilization for nonlinear

systems by Hölder continuous state feedback. For nonlin-

ear systems with parametric and dynamic uncertainties, the

non-smooth finite-time stabilization problem is investi-

gated in [16]. For the SISO nonlinear systems, assume that

the system of non-linear functions is unknown, and the

adaptive practical finite-time control problem is addressed

in [26] using backstepping design method. For the nonstrict

feedback nonlinear systems, a finite-time tracking control

scheme based on neural network is established in [27].

As a typical class of hybrid systems, lots of interesting

control problems have been addressed for switched systems

(e.g., see [28–34]), particularly in the finite-time stability

research of the switched systems (e.g., see [35–50]). The

stability analysis for uncertain nonlinear switched systems

is reported in [35]. The authors in [41] study the problem of

finite-time stabilization for a class of switched stochastic

nonlinear systems in p-normal form, and it shows that the

resulting closed-loop system is finite-time stable in prob-

ability. The problem of global adaptive finite-time stabi-

lization for a class of switched nonlinear parameterized

systems is studied in [42]. Furthermore, for uncertain

nonlinear systems with unknown system functions, two

effective control strategies are established using fuzzy

logic systems [43, 44] or NNs [27] to approximate

unknown nonlinear functions. Whereafter, some research

results have been obtained via approximation-based adap-

tive fuzzy or NN control methods for the uncertain non-

linear switched systems, for instance, see [45–47, 51–53]

for adaptive fuzzy control and [48–50, 54] for adaptive NN

control.

Note that for the above-reported works on uncertain

switched systems, the desired finite-time controller is

developed by employing the traditional adaptive back-

stepping method which leads to the repeated differentiation

of the virtual control variables in the design process, and

the ‘‘explosion of complexity’’ problem occurs. To solve

this issue, this paper studies the finite-time adaptive fuzzy

tracking problem for a class of strict-feedback uncertain

switched systems based on DSC technique. The main work

of this paper is listed as following.

(i) To our knowledge, this paper is the first work to

address the finite-time adaptive DSC for uncertain

switched systems to solve the ‘‘explosion of

complexity’’ problem which widely exists in the

reported results (e.g., see [45–50, 54]), and the

adaptive fuzzy controller is developed with a

simple structure.

(ii) The fuzzy logic systems are employed to approx-

imate the unknown common dominant functions of

the considered systems, and the desired controller

is designed using the adaptive DSC method with a

nonlinear filter based on the common Lyapunov

functions. It proves that under the proposed con-

troller, all the signals of the closed-loop system

remain semiglobally bounded, and within a finite

time interval, the system tracking error can con-

verge to an arbitrarily small region.

The following is the organization of this paper. The

problem statement and some preliminaries are introduced

in Sect. 2. Next, adaptive dynamic surface controller design

and stability analysis are presented in Sect. 3. Then, a

simulation example is given in Sect. 4. A conclusion is

drawn in Sect. 5.

2 Problem Statement and Some Preliminaries

Consider the uncertain strict-feedback nonlinear switched

system as following

_xi ¼ xiþ1 þ fi;.ðtÞ �ðxiÞ; i ¼ 1; . . .; n� 1

_xn ¼ uþ fn;.ðtÞ �ðxnÞ;
y ¼ x1;

8
<

:
ð1Þ

where �xi ¼ ½x1; . . .; xi�T 2 Ri; i ¼ 1; . . .; n are the states of

the system, u 2 R is the control input, and y 2 R is the

system output. fið�Þ : Ri ! R are unknown continuously

differentiable functions and .ðtÞ : ½0;1Þ ! N ¼
f1; 2; . . .; pg is the switching signal.

The control objective for system (1) is to design a finite-

time adaptive fuzzy controller such that the system output

follows the appointed reference signal yrðtÞ, and the

boundedness of the other closed-loop signals is guaranteed.

Remark 1 The adaptive control problems have been

widely reported for uncertain switched systems (e.g., see

[45–50, 54, 55]). In this paper, the finite-time adaptive

DSC problem is first addressed for uncertain switched

systems and the proposed control scheme is developed to

solve the ‘‘explosion of complexity’’ problem.

Definition 1 [56] The equilibrium position 1 ¼ 0 of the

nonlinear system _1 ¼ f ð1; uÞ is semi-globally practical

finite-time stable (SGPFS) if for all 1ðt0Þ ¼ 10, there exist a
scalar e[ 0 and a settling time Tðe; 10Þ\1 such that

k1ðtÞk� e;8t[ t0 þ T: ð2Þ

Assumption 1 The reference signal yrðtÞ and its deriva-

tives _yrðtÞ and €yrðtÞ are bounded.

Lemma 1 [48] Let c1, c2 and c3 be positive constants.

Then for any real variables v and f, one has
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jvjc1 jfjc2 � c1
c1 þ c2

c3jvjc1þc2 þ c2
c1 þ c2

c
�c1

c2

3 jfjc1þc2 : ð3Þ

Lemma 2 [54] For zi 2 R; i ¼ 1; 2; . . .; n and 0\l\1,

one has

Xn

i¼1

jzij
 !l

�
Xn

i¼1

jzijl � n1�l
Xn

i¼1

jzij
 !l

: ð4Þ

Lemma 3 [27] Consider a nonlinear system _1 ¼ f ð1; uÞ.
Suppose that there exist a smooth positive definite function

Vð1Þ and scalars a0 [ 0, 0\k\1 and b0 [ 0 such that

_Vð1Þ� � a0V
kð1Þ þ b0;t� 0; ð5Þ

then the nonlinear system _1 ¼ f ð1; uÞ is semi-globally

practical finite-time stable (SGPFS).

Lemma 4 [57, 58] For any e[ 0 and z 2 R, the following

inequality can be obtained

0� jzj � z2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þ e2

p \e: ð6Þ

Lemma 5 [45–47] For any continuous function D(x) on a

compact set X and an expected precision e[ 0, there exists

an FLS h�TSðxÞ such that

sup
x2X

jDðxÞ � h�TSðxÞj � e: ð7Þ

By Lemma 5, for a given e� [ 0 and any continuous

function D(x) on the set X, there exists an FLS h�TSðxÞ,
such that

DðxÞ ¼ h�TSðxÞ þ eðxÞ; ð8Þ

where eðxÞ represents the approximation error satisfying

jeðxÞj � e�, and 0\STðxÞSðxÞ� 1.

3 Adaptive Controller Design and Stability
Analysis

3.1 Adaptive Controller Design

The finite-time adaptive fuzzy DSC scheme is established

based on the backstepping technique, and it contains n

steps as follows. The error variables are defined as

~� ¼ � � �̂, where �̂ is the estimate of �.
• Step 1: The first surface error is defined as z1 ¼ x1 � yr,

and the time derivative of z1 is presented as

_z1 ¼ _x1 � _yr ¼ x2 þ f1;.ðtÞ �ðx1Þ � _yr: ð9Þ

Then the Lyapunov function is designed as

V1 ¼
1

2
z21 þ

1

2c1
~h21; ð10Þ

where ~h1 is the error of estimate h1, and c1 [ 0 is a

design parameter.

In view of Eqs. (12)–(13), the following equation can

be obtained

_V1 ¼ z1ðx2 þ f1;.ðtÞ �ðx1Þ � _yrÞ �
1

c1
~h1

_̂h1

¼ z1ðx2 þ f1;.ðtÞ �ðx1Þ � _yr þ a1 � a1Þ �
1

c1
~h1

_̂h1:

ð11Þ

On the basis of fi;.ðtÞ, we can obtain the following

inequality

jfi;.ðtÞ j �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Xp

j¼1

f 2i;j

v
u
u
t : ð12Þ

Then let Dið�xiÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPp

j¼1 f
2
i;j

q
, and according to Lemma

5, the following equation can be obtained

Dið�xiÞ ¼ h�Ti Sð�xiÞ þ eið�xiÞ: ð13Þ

Using the Young’s inequality and based on Eq. (20),

one has

z1f1;.ðtÞ � jz1jjf1;.ðtÞ j
� jz1jjD1j

� 1

2
þ 1

2
z21h1S

T
1 ð�x1ÞS1ð�x1Þ þ

1

2
z21 þ

1

2
e21;

ð14Þ

where h1 ¼ h�T1 h�1.
In view of (9)–(14), the following inequality can be

obtained

_V1 �
1

2
þ 1

2
z21h1S1Tð�x1ÞS1ð�x1Þ þ

1

2
z21 þ

1

2
e21

þ z1ðx2 þ a1 � a1 � _yrÞ �
1

c1
~h1

_̂h1:
ð15Þ

Design the first virtual control law a1 as

a1 ¼ � 1

2
þ k1

� �

z1 þ _yr �
1

2
z1ĥ1S1Tð�x1ÞS1ð�x1Þ;

ð16Þ

and design the update law of ĥ1 as

_̂h1 ¼
1

2
z21S1Tð�x1ÞS1ð�x1Þ � g1ĥ1; ð17Þ

where k1 [ 0 and g1 [ 0 are design parameters.

In view of (15)–(17), one has
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_V1 � � k1z
2
1 þ z1ðx2 � a1Þ þ

1

2
þ g1

c1
~h1ĥ1 þ

1

2
e21: ð18Þ

In the backstepping design, the second error signal is

designed as x2 � a1 to avoid the ‘‘explosion of com-

plexity’’ problem, and a filtered virtual controller s1 can

be obtained using the following novel nonlinear filter

s1 _s1 ¼ �e1 �
s1M̂

2

1e1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M̂
2

1e
2
1 þ r2

q � s1z1;

s1ð0Þ ¼ a1ð0Þ;

ð19Þ

where the first boundary layer error is presented as

e1 ¼ s1 � a1. M̂1 is used to estimate M1 and the clari-

fication will be provided later. r is any positive con-

stant. s1 is a filter constant and can be designed.

• Step i ði ¼ 2; . . .; n� 1Þ: The ith surface error is

defined as zi ¼ xi � si�1, then the following equation

can be obtained

_zi ¼ xiþ1 þ fi;.ðtÞ þ
M̂

2

i�1ei�1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M̂
2

i�1e
2
i�1 þ r2

q þ zi�1 þ
ei�1

si�1

:

ð20Þ

The Lyapunov function candidate Vi can be designed as

Vi ¼ Vi�1 þ
1

2
z2i þ

1

2ci
~h
2

i : ð21Þ

Using the Young’s inequality and based on Lemma 5,

the following inequality is obtained

zifi;.ðtÞ � jzijjfi;.ðtÞ j
� jzijjDij

� 1

2
þ 1

2
z2i hiSiTð�xiÞSið�xiÞ þ

1

2
z2i þ

1

2
e2i ;

ð22Þ

where hi ¼ h�Ti h�i .
Then we can design the virtual control law ai and the

update law ĥi as following

ai ¼� 1

2
þ ki

� �

zi � 2zi�1 �
1

2
ziĥiSiTð�xiÞSið�xiÞ

� M̂
2

i�1ei�1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M̂
2

i�1e
2
i�1 þ r2

q � ei�1

si�1

;
ð23Þ

_̂hi ¼
1

2
z2i SiTð�xiÞSið�xiÞ � giĥi; ð24Þ

where ki and gi are positive design parameters, ĥi is the
estimate of hi.
In view of (20)–(24), consider the time derivative of Vi

as

_Vi ¼ _Vi�1 þ zi _zi �
1

ci
~hi
_̂hi

� �
Xi

j¼1

kjz
2
j þ

Xi�1

j¼1

zjej þ ðxiþ1 � aiÞzi þ
i

2
þ
Xi

j¼1

1

2
e2j

þ
Xi

j¼1

gj
cj
~hjĥj:

ð25Þ

The filtered virtual controller si can be obtained using

the following nonlinear filter

si _si ¼ �ei �
siM̂

2

i eiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M̂
2

i e
2
i þ r2

q � sizi;

sið0Þ ¼ aið0Þ;

ð26Þ

and define

ei ¼ si � ai; ð27Þ

where the ith boundary layer error is ei. M̂i is the

estimate of Mi and the clarification will be presented

later. si is a filter constant.

• Step n: Consider the nth surface error as zn ¼ xn � sn�1,

and the following equation holds

_zn ¼ uþ fn;.ðtÞ þ
M̂

2

n�1en�1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M̂
2

n�1e
2
n�1 þ r2

q þ zn�1 þ
en�1

sn�1

:

ð28Þ

The Lyapunov function candidate Vn is designed as

Vn ¼ Vn�1 þ
1

2
z2n þ

1

2cn
~h
2

n; ð29Þ

and consider the time derivative of Vn as

_Vn ¼ _Vn�1 þ znðuþ fn;.ðtÞ þ
M̂

2

n�1en�1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M̂
2

n�1e
2
n�1 þ r2

q

þ zn�1 þ
en�1

sn�1

Þ � 1

cn
~hnĥn:

ð30Þ

By applying Young’s inequality and on account of

Lemma 5, the following inequality is obtained

znfn;.ðtÞ � jznjjfn;.ðtÞ j
� jznjjDnj

� 1

2
þ 1

2
z2nhnSnTð�xnÞSnð�xnÞ þ

1

2
z2n þ

1

2
e2n;

ð31Þ

where hn ¼ h�Tn h�n.
Design the actual control law u as
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u ¼� 1

2
þ kn

� �

zn � 2zn�1 �
1

2
znĥnSnTð�xnÞSnð�xnÞ

� M̂
2

n�1en�1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M̂
2

n�1e
2
n�1 þ r2

q � en�1

sn�1

;

ð32Þ

and the update law for ĥi is chosen as

_̂hn ¼
1

2
z2nSnTð�xnÞSnð�xnÞ � gnĥn; ð33Þ

where kn, gn are positive design parameters, ĥn is the

estimate of hn.
In view of (28)–(33), we can obtain the following

inequality

_Vn ��
Xn

j¼1

kjz
2
j þ

Xn�1

j¼1

zjej þ
n

2
þ
Xn

j¼1

1

2
e2j þ

Xn

j¼1

gj
cj
~hjĥj:

ð34Þ

Remark 2 From the above subsection, it can be seen that

the DSC method with a nonlinear filter [58] is introduced to

overcome the ‘‘explosion of complexity’’ problem, and by

introducing a novel estimated parameter, the nonlinear

filter is developed. Then, the desired fuzzy controller is

designed with a simple structure and the practical finite-

time stability of the closed-loop systems is guaranteed.

This is the main advantage of the proposed control method.

3.2 Stability Analysis

Based on the inequality (34), the main result of this paper is

presented using the following theorem.

Differentiating the boundary layer errors ei ¼ si � ai
yields

_ei ¼
�ei
si

� M̂
2

i eiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M̂
2

i e
2
i þ r2

q � zi þ Biðz1; . . .; zi;

e1; . . .; ei; ĥ1; . . .; ĥi;

M̂1; . . .; M̂i; yr; _yr; €yrÞ; i ¼ 1; . . .; n� 1;

ð35Þ

where

B1ð�Þ ¼ � _a1

¼� oa1
ox1

_x1 �
oa1

oĥ1

_̂h1 �
oa1
oyr

_yr �
oa1
o _yr

€yr;
ð36Þ

Bið�Þ ¼ � _ai

¼�
Xi

j¼1

oai
oxj

_xj �
oai

oĥj

_̂hj �
oai
oei�1

_ei�1

� oai
oM̂i�1

_̂Mi�1 �
oai
oyr

_yr �
oai
o _yr

€yr

ð37Þ

and the functions of Bi; i ¼ 1; . . .; n� 1 are continuous.

The Lyapunov function candidate is considered as

following

V ¼ Vn þ
Xn�1

i¼1

1

2
e2i þ

Xn�1

i¼1

1

2bi
~M
2

i ; ð38Þ

where bi, i ¼ 1; . . .; n� 1 are positive design parameters.

Theorem 1 Consider the switched nonlinear strict-feed-

back system (1) including the nonlinear filters (19) and

(26), the virtual control laws (16) and (23), the actual

control law (32), and the update laws (17), (24), and (33).

Under Assumption 1, there exit design parameters ki, ci, bi,
gi, i ¼ 1; . . .; n, sj, and qj, j ¼ 1; . . .; n� 1 such that the

following statements hold:

(i) all the closed-loop signals are semi-globally

bounded.

(ii) the output yðtÞ can track the given signal yrðtÞ in

finite time.

Proof The compact sets are defined as

X1 ¼f½yr; _yr; €yr�T:y2r þ _y2r þ €y2r �B0g; ð39Þ

X2 ¼fVðtÞ� qg; ð40Þ

where B0 and q are known positive constants. It is noted

that set X0 � X1 is also a compact in R4nþ1. As a conse-

quence, the positive constants Mi can be obtained with

jBið�Þj �Mi on X1 � X2. It can be grasped quite clearly that

the definitive values of Mi are unknown. Next, we will

analyze the finite-time stability of the resulting closed-loop

system.

The time derivative of V yields

_V ¼ _Vn þ
Xn�1

i¼1

ei _ei �
Xn�1

i¼1

1

gi
~Mi

_̂Mi

� �
Xn

i¼1

kiz
2
i �

Xn�1

i¼1

e2i
si
�
Xn�1

i¼1

M̂
2

i e
2
iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M̂
2

i e
2
i þ r2

q

þ
Xn�1

i¼1

Mijeij �
Xn�1

i¼1

1

bi
~Mi

_̂Mi þ
n

2
þ
Xn

i¼1

1

2
e2i þ

Xn

i¼1

gi
ci
~hiĥi:

ð41Þ

Form Lemma 4, it follows that
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Mijeij ¼M̂ijeij þ ~Mijeij

� M̂
2

i e
2
iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M̂
2

i e
2
i þ r2

q þ rþ ~Mijeij;
ð42Þ

then the following inequality can be obtained

_V � �
Xn

i¼1

kiz
2
i �

Xn�1

i¼1

e2i
si
�
Xn�1

i¼1

1

bi
~Mið _̂Mi � bijeijÞ

þ ðn� 1Þrþ n

2
þ
Xn

i¼1

1

2
e2i þ

Xn

i¼1

gi
ci
~hiĥi:

ð43Þ

The update law for M̂i is considered as following

_̂Mi ¼ bijeij � qiM̂i; i ¼ 1; . . .; n� 1: ð44Þ

In view of (41)–(44), we can obtain the following

inequality

_V � �
Xn

i¼1

kiz
2
i �

Xn�1

i¼1

e2i
si
þ ðn� 1Þrþ

Xn

i¼1

gi
ci
~hiĥi

þ
Xn�1

i¼1

qi
bi

~MiM̂i þ
n

2
þ
Xn

i¼1

1

2
e2i :

ð45Þ

By the definition of ~hi and ~Mi, the following inequalities

can be obtained

~hiĥi ¼ ~hiðhi � ~hiÞ�
1

2
h2i �

1

2
~h
2

i ; ð46Þ

~MiM̂i ¼ ~MiðMi � ~MiÞ�
1

2
M2

i �
1

2
~M
2

i : ð47Þ

In view of inequalities (35)–(47), one has

_V � �
Xn

i¼1

kiz
2
i �

Xn�1

i¼1

e2i
si
�
Xn

i¼1

gi
2ci

~h
2

i �
Xn�1

i¼1

qi
2bi

~M
2

i

þ ðn� 1Þrþ
Xn

i¼1

gi
ci
h2i þ

Xn�1

i¼1

qi
2bi

M2
i þ

n

2
þ
Xn

i¼1

1

2
e2i :

ð48Þ

By applying Lemma 1 and taking x ¼
Pn

i¼1ð12 z2i Þ, y ¼ 1,

c1 ¼ k, c2 ¼ 1� k and c3 ¼ k�1 into account, the follow-

ing inequality can be obtained

Xn

i¼1

1

2
z2i

� �k

�
Xn

i¼1

1

2
z2i þ ð1� kÞk k

1�k: ð49Þ

Then, the following inequality can be obtained using

Lemma 2

�
Xn

i¼1

1

2
z2i

� �k

� �
Xn

i¼1

1

2
z2i

 !k

: ð50Þ

In view of (49)–(50), one has

�
Xn

i¼1

1

2
z2i � �

Xn

i¼1

1

2
z2i

 !k

þð1� kÞk k
1�k: ð51Þ

Similarly, we can also obtain the following inequalities

�
Xn

i¼1

1

2ci
h2i � �

Xn

i¼1

1

2ci
h2i

 !k

þð1� kÞk k
1�k; ð52Þ

�
Xn�1

i¼1

1

2
e2i � �

Xn

i¼1

1

2
e2i

 !k

þð1� kÞk k
1�k; ð53Þ

�
Xn�1

i¼1

1

2bi
~M
2

i � �
Xn

i¼1

1

2bi
~M
2

i

 !k

þð1� kÞk k
1�k: ð54Þ

In view of inequalities (48)–(54), one has

_V � � a0
Xn

i¼1

1

2
z2i

 !k

�a0
Xn

i¼1

1

2ci
~h
2

i

 !k

� a0
Xn�1

i¼1

1

2
e2i

 !k

�a0
Xn�1

i¼1

1

2bi
~M
2

i

 !k

þb0;

ð55Þ

i.e.,

_V � � a0V
k þ b0; ð56Þ

where

a0 ¼minf2k1. . .2kn;
2

s1
; . . .;

2

sn�1

;

g1; . . .; gn; q1; . . .; qn�1g;
ð57Þ

b0 ¼ðn� 1Þrþ n

2
þ
Xn

i¼1

1

2
e2i þ

Xn

i¼1

gi
ci

1

2
h2i

� �

þ
Xn�1

i¼1

qi
bi

1

2
M2

i

� �

þ 4ð1� kÞk k
1�k:

ð58Þ

Let T� ¼ 1
ð1�kÞna0 ½V

1�kð0Þ � ð b0
ð1�nÞa0Þ

1�k
k �, where V(0) means

the initial value of V(t). On the basis of Lemma 3, for

8t�T�, Vk � b0
ð1�nÞa0, that is, all the signals of the closed-

loop system are SGPFS. Furthermore, based on the defi-

nition of V(t), for 8t�T�, we have

jy� yrj � 2
b0

ð1� nÞa0

� � 1
2k

; ð59Þ

which implies that after the finite time T�, the tracking

error will be in a small neighborhood of the origin. This

completes the proof. h
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4 Simulation Example

To show the availability of the presented control scheme,

the switched RCL circuit system is presented in this paper,

and it is shown in Fig. 1. According to [57], we describe

the switched RCL circuit system as

_x1 ¼ x2 þ f1;.ðtÞ �ðx1Þ
_x2 ¼ uþ f2;.ðtÞ �ðx2Þ
y ¼ x1;

8
<

:
ð60Þ

where .ðtÞ : R ! f1; 2g, f1;1 ¼ f1;2 ¼ ð1=LÞx2 � x2,

f2;1 ¼ �ð1=C1Þx1 � ðR=LÞx2, f2;2 ¼ �ð1=C2Þx1 � ðR=LÞx2,
x1 ¼ qc means the charge in capacitor, x2 ¼ /L stands for

the flux in the inductance for this circuit, Ci denotes the ith

capacitor, L is the inductance, R shows the resistance, u

represents the voltage, which also means the system input.

The related parameters are selected as R ¼ 1, L ¼ 0:5,

C1 ¼ 60 and C2 ¼ 100. The control objective is that within

a finite time interval, the system tracking error can con-

verge to an arbitrarily small region, and the reference

signal yr is chosen as yr ¼ 0:25 sinð2tÞ.
Nine fuzzy sets are defined over [- 2, 2] for all state

variables by choosing the partitioning points as - 2, - 1.5,

- 1, - 0.5, 0, 0.5, 1, 1.5, 2 and the fuzzy membership

functions are presented as follows

lF1
i
ðxiÞ ¼ expð�0:5ðxi þ 2Þ2Þ; lF2

i
ðxiÞ ¼ expð�0:5ðxi þ 1:5Þ2Þ;

lF3
i
ðxiÞ ¼ expð�0:5ðxi þ 1Þ2Þ; lF4

i
ðxiÞ ¼ expð�0:5ðxi þ 0:5Þ2Þ;

lF5
i
ðxiÞ ¼ expð�0:5ðxi þ 0Þ2Þ; lF6

i
ðxiÞ ¼ expð�0:5ðxi � 2Þ2Þ;

lF7
i
ðxiÞ ¼ expð�0:5ðxi � 1:5Þ2Þ; lF8

i
ðxiÞ ¼ expð�0:5ðxi � 1Þ2Þ;

lF9
i
ðxiÞ ¼ expð�0:5ðxi � 0:5Þ2Þ:

According to (8), Si can be constructed for i ¼ 1; 2: Fol-

lowing Theorem 1, we can have adaptive fuzzy controller

(32) with n ¼ 2, the virtual control a1 (16), and adaptive

laws
_̂hi; i ¼ 1; 2 to control system (60).

The design parameters are selected as k1 ¼ 30, k2 ¼ 0:3,

g1 ¼ 3, g2 ¼ 5, b1 ¼ 0:5, q1 ¼ 0:3, s1 ¼ 0:2 and r ¼ 0:3.

The initial conditions of this switched system are presented

as x1ð0Þ ¼ 0:01, x2ð0Þ ¼ 0:1, ĥ1ð0Þ ¼ 0:02, ĥ2ð0Þ ¼ 0:1

and M̂1ð0Þ ¼ 0:01.

According to the above analysis, the simulation results

are displayed in Figs. 2, 3, 4, 5, 6, 7. Figure 2 gives the

switched signal. Figure 3 shows the output tracking per-

formance. Figure 4 shows the tracking error. From Figs. 3,

4, we can find that the control objective of this paper has

been achieved. The control signal u is presented in Fig. 5.

Figure 6 expresses the curves of adaptive laws of ĥ1 and ĥ2.

Figure 7 shows the adaptation of parameter M̂1. It is

obvious that the boundedness of all the signals in this

closed-loop system can be achieved.

Fig. 1 Switched RCL circuit

2264 International Journal of Fuzzy Systems, Vol. 22, No. 7, October 2020

123



5 Conclusions

This paper studies the finite-time adaptive fuzzy tracking

problem for a class of strict-feedback uncertain switched

systems. The unknown system functions are approximated

online using FLS. In addition, the common Lyapunov

functions are presented to deal with the switched signals of

this system. According to a nonlinear filter, a DSC method

is presented to overcome the problem from ‘‘explosion of

complexity’’. The boundedness of all the signals in the

closed-loop system can be guaranteed under the designed

controller and adaptive laws. Furthermore, it shows that the
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Time(sec)
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1

1.5
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Fig. 2 Switched signal
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Fig. 3 The reference trajectory yr and the output signal y
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Fig. 4 Tracking error z1
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Fig. 5 The control signal u
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output signal can track the reference signal to a small

compact in finite time.
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