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Abstract This paper focuses on the non-weighted asyn-
chronous H,, filtering problem for a class of continuous-
time switched nonlinear systems. The nonlinearities of
subsystems are described by Takagi—Sugeno (T-S) fuzzy
models. Using the information of switching instants, the
filters are designed to be time-scheduled and separately in
the asynchronous and synchronous time intervals. Based on
a new time-scheduled fuzzy multiple Lyapunov function
(TSFMLF), sufficient conditions are achieved to guarantee
the switched filtering error system is globally asymptoti-
cally stable with a non-weighted H,, performance. Finally,
an example is presented to demonstrated the effectiveness
of the theoretical results.
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1 Introduction

Researching on switched systems has been widely expan-
ded in recent decades on account of their special charac-
teristics. Such systems consist of several discrete- or
continuous-time subsystems and switching laws governing
them. Switched systems have great theoretical and practi-
cal values and exist extensively in engineering applica-
tions, such as dc/dc convertors [1], mobile robots [2],
aircraft systems [3] and so on.

On the other hand, nonlinearity exists widely in real
systems, so the research on switched nonlinear systems has
also attracted the attention of scholars in recent years. In
[4], Takagi and Sugeno introduced a T-S fuzzy model,
which can approximate the smooth nonlinear systems by
blending the local linear models. Now, it is well known as
an efficient approach to handle the nonlinearity. Recently,
some efforts have extended the T-S fuzzy model to the
investigation of switched nonlinear systems and obtained
many meaningful results [5—15].

Meanwhile, to obtain reliable state estimates of dynamic
systems, the H,, filtering problem has also become a hot
research issue. Zheng et al., Zhang et al., Zheng and Zhang,
Shi et al., Xiang et al. [12-16] have designed the syn-
chronous H filters for switched systems. However, due to
model detection, sensor response delay and other reasons,
the filters and subsystems may not be matched immediately
in practice systems. Therefore, it is meaningful to research
the case of asynchronous filtering [7, 8, 17-21]. It is worth
noting that the H,, performance indices obtained in the
most of above efforts are weighted ones. Referring to
[21-26], the non-weighted ones are more anticipated in
mathematical analysis and practical use. To the best of our
knowledge, there are few efforts on non-weighted
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asynchronous H,, filtering for continuous-time switched X(t) = gogn (x(1), w(?)),
T-S fuzzy systems.

i ¥(1) = sty (x(1), w(1), (1)

In addition, the Lyapunov function is the main tool for
analyzing switched systems. Hong et al., Zhang et al,,
Mahmoud and Shi, Wang et al. [7, 18, 27, 28] have
researched the asynchronous H,, filtering problems for
switched systems based on the multiple Lyapunov function
(MLF) approach, which is time-independent. Generally
speaking, time-scheduled Lyapunov functions are more
flexible and relaxed than the time-independent ones. Shi
et al., Xiang et al., Li et al. [8, 21, 29] have used the
interpolation to improve the MLF and proposed some
novel time-scheduled multiple Lyapunov functions, which
can further reduce the conservatism. Aiming at the swit-
ched T-S fuzzy systems, Zhang et al., Mao and Zhang,
Zheng and Zhang, Zheng et al. [13, 30-32] have introduced
the fuzzy multiple Lyapunov functions (FMLF), which are
more applicable to the fuzzy characteristic of such systems.
However, the proposed FMLFs are still time-independent
and have rooms to improve.

The main contribution of our paper can be sorted as
follows: (1) The non-weighted asynchronous H, filtering
problem for continuous-time switched T-S fuzzy systems is
researched. (2) The synchronous and asynchronous filters
are time-scheduled and designed separately, which can
reduce the conservatism. (3) A new TSFMLF is proposed,
which is more general than the FMLF. The remainder of
this article is organized as follows: the system models and
some preliminaries are introduced in Sect. 2. Section 3
derives out sufficient conditions for non-weighted asyn-
chronous H,, filter design. In Sect. 4, a single-link robot
arm system is provided as the simulation example. In the
end, Sect. 5 concludes the paper.

Notations: N(N™) stands for the set of non-negative
(positive) integers. P>0( > 0) means that P is a semi-
positive definite (positive definite) matrix. || - || and R”"
refer to the Euclidean vector norm and n-dimensional
Euclidean space, respectively. “x” is the ellipsis for the
terms that are introduced by symmetry. The superscript
“T” represents matrix transposition. L, [0, co) is the space
of square integrable infinite sequence. A function o :
[0,00) — [0,00) is said to be class K if it is continuous,
strictly increasing and o(0) = 0. Also, a function f:
[0,00) — [0,00) is of class KL if S(-,¢) is of class K for
each fixed >0 and f(s,7) decreases to 0 as r — oo for
each fixed s > 0.

2 System Descriptions and Preliminaries

Consider a class of continuous-time switched nonlinear
systems described as follows:

where x(¢) € R™ and y(r) € R™ denote the state vector
and output vector, respectively. z(z) € R™ is the objective
signal to be estimated and w(f) € R™ the disturbance input
which belongs to L,[0,00). () is piecewise continuous
switching signal which values belong to the finite set
S§=1{1,2,...,N}, where N € N denotes the number of
subsystems.  gq(1)(*), Us(r)(-) and s4(;)(-) are mnonlinear
functions. Besides, the o(#;) subsystem is said to be acti-
vated when ¢ € [fy, tx41).

In this paper, using the T-S fuzzy model approach, each
subsystem is described by the following IF-THEN fuzzy
rules:

Rule p for subsystem i: IF 0;(¢) is M;,; and --- and
Oim (1) is Mjpy, then

x(t) = Apx(t) + Bipw(2),
Y(t) = ZPX(I) + Dipw(t)7 (2)
2(t) = Hipx(t) + Lipw(1),

where i € S and r; is the number of fuzzy rules, 0 (), .. .,
Oim (1) are the premise variable, M1, . . ., Mjp, are the fuzzy
sets, Aj,, Bj,, andCy,, Dy, Hjp, L;, are real matrices of the
pth local model of the ith subsystem.

After “fuzzy blending”, one can infer the final model of

ith subsystem as

Z hip(D)[Aipx(1) + Bipw(1)],
Z hlp sz + D,pW( )] (3)
Z hip(0)[Hipx(1) + Lipw(1)],
where h;,(1) = 2:1_[‘71\4’;;) is the normalized member-
p=1 imn(

ship function and satisfies /(1) > 0,327 h

Besides, let H;(1) =3, Z;j:l hip (1) hjg (1).

Given a positive scalar 7, we call 7 is the minimum
dwell time if the switching signals satisfy that
tie1 — te > 1, Vk € NT. We denote T as the mismatched
time between filter and subsystem after each switching
occurring. The maximum mismatched time is defined as
T max and satisfies 0 < T < T max <71, Vk € NT. Without
loss of generality, supposed that o(fy) =i,0(t—1) =].
Then, given a positive scalar ¢, the full-order fuzzy filter is
constructed as follows:

P = 1.

@ Springer



1894

International Journal of Fuzzy Systems, Vol. 22, No. 6, September 2020

5o (1) = S (O Ay (0(0) + Bryp(0)y(1)]
Zhjp CFJP x(t) +DFJP( )y ()],

t € [tiytx +Tk)

thp Asz )+BF1P( ) ( )]

Z ]’l,p Cplp ) + DAFip(t)y(t)];
teti+Tite+Te+ @)

t) = Z hip (1) [AFip (§)x(t) + Brip()y(1)]
p=1

thp CFtp (t) +DAFiP(¢))y(t)]’

t€te+Tk+ ¢ tiq1)

where Apiy (1), Brip(t), Crip(t), Drip(2), AFip(f), Briy (1),
épip(t), D},p(t) are time-scheduled filter gains to be
determined.  Then, let  %(r) = [x7(¢),x%(1)]", e(r) =
z(t) — zr (1), the following filtering error system can be
obtained:
{f(f) = Ay(1)x(t) + By(t)w(t)

e(t) = Cyj(1)x(r) + Dy(r)w(1),
tE [t tx +

k)
x(t) = Au(0)x(1) + Bu(H)w(t)
e(t) u(t) (1) + Du( Jw(t), (5)
tete+Tite +Ti+ o)
(1) = Au($)x(1) + Bi(dp)w(t)
e(t) = Ci()x(t) + Da(dp)w(1),
teti+Ti+ ¢, tii)

@ Springer

where
Ap 0
Brig(1)Ciy Aqu(f)}
Biy
(t)D,J
é,j(t) = Hij(t) [Hip - Dqu(t)Cipv _Cqu(t)]
Dy(1) = H;j(t)[Lip — Drjg(1)Dyp]
Ay 0
Brig(1)Cip AAFiq(f)]
R B,
Bii(t) = Hi(t) |:EFiq(t)Dip:|
Cir(t) = Mi(t) [Hip — Drig(1)Cipy - —Crig1) ]
7A)ii(t) = Hii(t)[Lip — ﬁFiq(t)Dip]

_ Aip 0
) =Halt) | o )Co Ara()

Bil) =) 5 0]
Briq(¢)Dip
éii(¢) = Hi(t) [Hip - DAFiq(d))Cipa —éFiq(¢)]
Dii($) = Ha(t) Lp — Drig(¢) D).
Definition 1 [33] A switched system is globally asymp-
totically stable if under any initial condition x(#), there

exists a class CL function fS(-) such that the inequality
[Ix())]] < B(||x (%)), Ve > 0 is satisfied.

Aii(l) = Hi,'(l‘)

S

Definition 2 [24] For y > 0, the switched system (1) is
said to have a non-weighted L, gain no great than 7, if
under zero initial condition, the system is globally
asymptotically stable and inequality
o Y (y()dr <7 [ wT()w(r)dt  holds  for  all
w(t) € £,[0, 00).

Assumption 1 [23, 26, 34] The switching instants fy, .. .,
tx, ... can be detected instantaneously online.

Remark 1 In the above assumption, although the time
when switching occurs can be instantaneously detected, the
activated subsystem at this moment is still unknown and
needs some time to identify. Therefore, the subsystem and
filter may be mismatched in the identified time interval.
This identified time is also be called mode-identifying time
in [34]. Besides, the case that the switching instants cannot
be detected is also discussed in Corollary 1.

Lemma 1 [35] Given real matrices U, W and symmetri-
cal matrix G of appropriate dimensions, for any F satisfy-
ing FTF <I, the inequality G + UFW + WTFT UT <0 will
hold if and only if there exists a scalar ¢ > 0 such that
G +eUUT + & 'WTW <0.
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3 Non-weighted L, Gain Analysis e T s (1125

§= - (10)
The non-weighted L, gain analysis for the filtering error pr— (@ B) T max

system (5) is derived in this section. First, we denote T (s, 7)
and T (s, 1) as the total mismatched time and matched time
for the time interval [s, ], respectively.

Lemma 2 [26] Given a time interval [s, t], the total
mismatched time T(s,t) satisfies

T(s.1) < (1 ; ﬂ) T . (6)
T

Proof The time interval is shown in Fig. 1. Let N denotes
the number of switching in the time interval [s, 7], and
#,...,ty,, are the switching instants, 77,..., Ty, are
mismatched times. From Fig. 1 it can be seen that the total
T(s,1) = S0, Th4 T(ty,1) =
SV T+ min{r — 7, Tyvi1} SNT max + min{r — 7,
Ty.1}t- Then, when ¢—s<NT+ 7T, we choose
T(s,0) <NTax +1— 1y =NTpax +1—5— (1] — s+ 1, —
f+ o+ ty = ty) SNTmax + 1= s — Nt <(1+
@)Tmax. In the other case when ¢ — s> N7 + 7T pax,
T(s,0) <NTmax + Ty <(N+ 1)
T max < (1 + @)T max- The proof is completed. O

mismatched time

we choose

Lemma 3 For the switched filtering error system (5), let
«>0,>0,9>0,¢ > “T/;“"‘X as given scalars, if there
exist non-negative functions V) (%(t)) : RN — R, such

that V(o(ty) = i,0(fx_1) =j) € S X S,i # ],
Vi(x(t)) < Vi(x(5)), (7)
Vi(x(te +Tx)) S Vilx¥ (& +Tx) 7)), (8)
. {aVi(f(t)) —I'(1), t € T(tx, trs1)
Vi(x 1)) < R
= BVi(x(1)) — I'(2), t € T(tx, tr41)

where I'(t) = el (t)e(t) — y*wl (t)w(t). Then, for any
switching signal satisfying ©> ¢ + T max, the system (5) is
globally asymptotically stable with a non-weighted L, gain
no greater than

©)

1 ’ 7
i T o T

Fig. 1 Time interval

Proof First, we will prove the stability of the system (5)
with w(r) = 0. Due to e’ (t)e(t) >0, from (9) one can get
. aVi(x(1)), 1 € T(tx, tei1)
V,’(X 1)< _ R
— BVi(x(2)), t € T(tk, tr+1)
Combining (9) with (7), (8), for any k € N, we can obtain

Viotaer) (X(fk41))
< Vo () ((tis1))
< eaTr/f(tHrrer)Vg(tk)()g(tk))
< e(Hﬁ)TrﬁfVJ(rk) (7))
S e(“+ﬁ)Txnax7ﬁ(¢+Tlnax) VO'(tk) (-f(tk))
<Vo(n) (X(t))-
Therefore, there must exists a constant 0 <{ <1 such that
Vot (F(te1) < EVo (1)) < - <CF Wi (X(00))-
As t — +00, V() (&(z)) will converge to zero. Then, we
can conclude that filtering error system (5) is globally
asymptotically stability.

Next, we will derive the non-weighted L, gain with
disturbance w(t) # 0. Combining (7) (8) (9), we can get

V(1) < e =BTy (1) — [ 60160 [(s5)ds. Since
that V() = 0 and V(¢) >0, let t, = 0, one can achieve

t N
/ TEO=HT60) T (5)e(s)ds
0

t _ ~
< / T =BT (5,2, (s)w(s)ds.
0

. (11)

(13)

Integrating the left-hand side for ¢ from O to oo, we have

o0 t _ g
/ /erxT(s,t)—ﬁT(U)eT(s)e(s>del
o Jo
00 t _
:/ /e(a+/})T(S,l)_ﬂ(t_‘Y)eT(s>e(S)dsdt
o Jo

[ee] t

2/ /e‘li(’_‘g)eT(t)e(t)dsdt (14)
o Jo

> eT

_/o (s)e(s)(/s e P dr)ds

Y
> E/o e (s)e(s)ds.

Similarly, with Lemma 2, integrate of the right-hand side is
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e} t _ N
/ / esz(SJ)*ﬁT(SvI) VZWT(S)W(S)det
0 0

o] t
_ 2 / / BEITEO=B0-9\0T (0Yy(5)dsdr

<y / / (o) (12T T — (15)

w! (s)w(s)dsdt (15)

S y26<°‘+/})7mm><(1 *%)

o0 t —pr
/ / BT man=ie =T (s)yw(s)dsdr
0 0

7,
(1_ n:ax) 00

/yzte(a"’ﬁ)lfmmx

B ﬁf_ (OC_'_B)TmaX
Combining (13), (14) and (15), one can get fooc e’

e(s)ds < %ﬂ " wT'(s)w(s)ds. Then, we can

achieve the non-weighted L, gain } as (10). The proof is
completed.

w! (s)w(s)ds.

Remark 2 1t is noting that the filter is designed under
minimum dwell time constraint in this paper. Meanwhile,
the value of Lyapunov function is non-increasing in
switching and matching instant. Under this circumstance,
the non-weighted L, gain performance can be achieved
with the inequality in Lemma 2.

4 Asynchronous H,, Filter

This section is aimed to design a filter such that the
asynchronous switched filtering error system (5) is globally
asymptotically stable with a non-weighted L, gain
performance.

In this paper, we construct a TSFMLF in following
forms:

Vi(x(t)) = & ()Pi(1)x(1), Vo(n) =i € S, (16)

where

Ti

Pt = > hp(1)Py (1),

p=1

t€ [tk te + Th),

1) = ihip(t)ﬁ,»p(t),

teti+ Ttk +Tr+ ),

Bid) =3 ()P (4)

tete+Te+ ¢, ti).

@ Springer

Considering the asynchronous characteristics, we define
three time intervals for each switching:
D1 = [ti, ke + T max) Dy =ti + Tistx + Ty + @),
Ds; = [ty + T + ¢, 1;+1)- Based on the linear interpolation
approach, D and D, are divided into Land L subintervals,
respectively. Then, the TSFMLF matrices can be con-
structed as

Pip(t) = [1 = (1) Pip,g + 0(t)Pip,g+1, (18)
Pip(t) = [1 = (1)) Pip g + (1) Pip g1 (19)
Piyp(d) =Py, - (20)
where  g=0,1,..,L—1,ii(t) = (1=t — ) /I =

gl{a}{: Tmax/Evg =0,1,...,
V) /e = ghh = /L.

—Lﬁ(t):(t—tk—Tk—

Remark 3 If we choose Pijo=...=P, =P,
Plp,O - = ﬁtp, ﬁ ie };l(t) = E[V; 1 h (t)pip’
Pi(t) = Pip(¢) =y, h,p( )P;, then the TSFMLF will be

reduced to the FMLF in [13, 31, 36], which is time-inde-
pendent. Therefore, the proposed TSFMLF is more
general.

Based on the TSFMLF approach, the following suffi-
cient condition can be achieved.

Theorem 1 For the switched fuzzy system (3), given

constants o> 0, > 0,7 >0, ;, >0, > “Tm“ and posi-

tive integers L, L, zfthere exist matrices X;, Y,, Z: )f,, Y,,

~2
Zl’ Ptpl’ Plpl’ Ptpl’ Ptpl7 Plpl’ Ptpl’ Afpl’ Bﬁpl’ Cﬁpl’ Dﬁpl’

A B, C refo,...,L}, [ €{0,...,L}, such

fip.l> Pfip> ~fipl> fpl’ 3
that ¥d € {0,1}, ve {1,...,ri—1}, g€{0,...,L—1},

§€{0,....L—1}, (i,j)) ESxS,i#j
[Bip (1)] < (21)
sl 2
5 ipd  Lipi
Ppi=|" p: > 0, (22)
L * ip,l
[l 2
5 i P
Poi=| " Ml>o, (23)
L * Pip.,lA
Qijpggra(—2) <0, (24)
Qiipq,md(ﬁ) + Qiiqp,§+d(ﬁ) <0, p<yq, (25)
Qiipq‘,LA(ﬂ) + szqp L(ﬁ) <07 P < q, (26)
20 <Py, 1) (27)
Pypo<P,; (28)
]sir,- i< 7zv,[7 (29)
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iri, = Plvl7 (30)
where
r~11 ~12 ~13 ~14 ~15 ~16 ]
ij ,m ij,m ij,m ij,m ij,m ij,m
~22 ~23 ~24 ~25 ~26
* i Lim Lim Ly L
~33 ~34 ~15 0
~ * * . . 3
Qiipgm(0) = jm i i :
~44 ~25
* * * ij,m ij,m 0
~56
* * * * — yzl Qijm
| * * * * * —1 |
ped{l,.,r}, ge{l,..,1;},
ri—1 r /I ~/1
an o \ P P L(Pip.gUrI B Pip,g)
m :uiv( ivm ir;,m) + T ’
V:] max

ri—1
n n
Z:uiv(Piv,m - Pir,-,m)
v=I
 n Lp .. —P
lpm — + ( ip,g+1 lp,g) m = gA+d’
¢
ri—1
) o ~
Z:uiv(Piv,m - Pir,-,m)Vm = L7
v=1
Qt]m = ATX + CT ﬁqm +XiAiP + Bﬁq-,mCiP
+ 'I’ + “P,pm,

T T
Q =A; Z + C; Bﬁqm+Aﬁq’n+Tnz+O(P1pm7

ij,m
~13

Qi = ﬁ,p ¢ +AZ,X + CT ,Mm,
Q=P — Y, +ATZ 4 CTB
iz;.sm = X;B,, + BjymDip,

Ql]m = H], - CTDW,

Qizm = Aﬁqm + Aggm + lP + ocPlpm,
Q= (P, —Z+ Ag,,,

Q=P =Y+ A

@ = ZByp+ BjomDips oy = —Cpom
Q) =X X, ij“m - —¥,-7,
Qp =-Y,—Y, Qo =L -DlD; .

Then, for any switching signal satisfying © > ¢ + 7 ax, the
filter error system (5) is globally asymptotically stable with
a non-weighted L, gain no greater than (10). Besides, the
filter gains can be achieved as

_ -
Yz 7Bﬁ'p,g + ﬁ( t) Yz 7Aﬁp,g+1 Yt 7Bﬂpyg’+1 ] ,
Dyip ¢ Chip.g+1 Dyip,g+1
~ . -
Apip(t)  Brip(t) ) Y, Aﬁpg
l . = [1 - ()]
Crip(t)  Drip(t) Chpg

Al o~
Y, Bfipgri

1 ~
Yi AﬁpéH
Crip.g+1 Dyip 641

a1 ~ «

lAFip(‘ﬁ) BFip(Cb ] . Y, Aﬁp.i Yl BﬁpL

Chp.r D fip.L

(31)
Proof First, we define A(A,B,P(t),0) = ATBT + BA+
P(t)+oP(t). In the mismatched interval when
t € T(ty, trr1), we have
Vi(#l(1)) — aVi(x(r)) + (1)
_ [)ZT(I) WT(I)]< A(“Zlu(t)7pi(t)7pl(t)v —a
- AT . (32)
PB0], [0, i
el B8 PO [CC) m]) o
= &0 |61() + 05 (n6:(1)| (1),
where
6.(1) — [A(Am, *,<:>,Pi<r>,—oc> P(i)l;];t) |
0s(1) = [Cy(1), Dy(1)], &(r) = [ (1), w" ()]
Then, we will introduce the following inequality:
A(Ay(e), Pi(1), Pi(r), —o) - Pi(0)By(r)  C(0)
* -y Dp(r) | <O
* * -1
(33)
Applying the Schur complement, (33) implies
O.(t) + + 6. ,(1)@,(t) <0, then the inequality V;(i(r))
—aVi(x(2)) +I(¢) <0 can be obtained.
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Next, to design the filter, we define a new matrix:

A(A;(0), E;, Pi(1), —a)

_ *
Q1) =
*
*
_ _ _ (34)
Pi(r) — E; + A} (1) iBi(1)  CL(1)
_ _
—E; - E; By (1) 0 <0,
* — Dg(t)
* * —1
(X v
where E; = ; Y_j . Pre- and post-multiplying (34) by
I Ai(r) 00
0 5’5(;) ] 0| and its transpose respectively will get
0 0 0 1

(33). Therefore, we can sum up that if (34) holds, the
condition V;(x(z)) <aV;(%(f)) — I'(t) of Lemma 3 will
hold. Similarly, when ¢ € T(tk, fy+1), we can define matri-
ces Q(t), 2(¢) which have the same structure as Q(z). If
Q(t)<0,Q(¢)<0 hold, it can be derived out that
Vi(&(r)) < — BV;i(i(¢)) — I'(¢) hold.

Then, we will prove the non-weighted H,, performance
with the filter (31). First, according to 22:1 h},,
(t) = 27 hip(1) 4 har (1) = 0, with (21) and (29), one
can get

S (0P (1)
:ihw() ()+hm() lr,(t)
ri—1
= Zl’iiv(t) [Ptv(t) Eri(t)]
- (35)
= thv(t){[l - ﬁ(t)](P_lVg_ Fl’x g)
+ ﬁ(t)(sz,ngl Plri,§+l)}
ri—1
< i {[1 = 7] (Pivg — Pir,g)
v=1
+ (1) (Pivgr1 — Pirgi1) }-

With (18), we have

- - _ L(Piygy1 — Pips
Bylt) = () (Pynr — Pyg) = e —Pre) - (36)
max
Substituting (5), (31), (35) and (36) to Q(¢) and combining
with (22) and (24), one can obtain

@ Springer

Qi

(1 )
< Hy ({1 — 17(1)]Lijpg.¢(—2
<0,

o) + 77(1)ijpg g1 (=) }

(37)

thus the condition (34) hold. Afterward, from the above
proof, we can conclude that V;(%(r)) <aV;(%(r)) — I'(¢)
hold. Similarly, with (21), (23), (25), (26), (30) and (31),
one can derive out

Q)
< HlO[1~ 70 g a(B) + 70 i1 (B}
<l i) 3 (sl Puags ),

)(Qiiﬂqﬁé(ﬁ) + Qiigp g(B))]

iy <r><9wm<ﬁ>;Qiiqq,g+1<ﬁ>)

+ hlp upq g+1 (ﬁ) + Qiiqp,§+1 (ﬂ))}
<0,
(38)

Q)

< Hli(t) Aupq L(ﬂ)

< 2 Aiipp,[f(ﬁ) + ‘Quqq L(ﬁ)
< Z 2, 0)( 5 ) 59)
S O () () + Ly ()
p=lqg>p
<0,
which can conclude that V;(%(r)) < — BV;(x(r)) — I'(r)
hold.
Finally, with (27) and (28), one can get

Vi(x(te)) = Vi(x(5))

=& (1) [f-(tk) - 1%(¢)Jf(tk) (40)
= Hyi()x" () [Pip.o — Py fX(16)

S 07

Vi(x(te + Tx)) = Vilx((te + Tk) 7))

& (e + Ti)[Pi(ty + Tx) — Pilte + To) [t + T)
- Z hl[) tk + Tk)[ ip,0 — ip,ﬂ-f(tk + Tk)
< O.
(41)
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Therefore, the conditions (7)—(9) of Lemma 3 are all sat-
isfied. According to Lemma 3, the filter error system (5) is
globally asymptotically stable with a non-weighted L, gain
no greater than 7 as (10) for any switching signal satisfying
T > ¢ + T max. The proof is completed. O

Considering the case when switching instants cannot be
detected instantaneously, the filter will not be updated in
the mismatched interval after switching occurring. This
means that the synchronous and asynchronous filters are
not designed separately and will become the traditional
forms. On this occasion, the asynchronous filter gains in (4)
will become A_Fjp(t) = Apjp(¢), B_Fjp(t) = BAFjp((b)s CFJ‘[,([)
= Crjp(9), Drjp(t) = Dgjp(h). Accordingly, the asyn-
chronous Lyapunov function matrix will become P;(t) =
P;(¢). Then, we can get the following corollary:

Corollary 1 For the switched fuzzy system (3), given
constants o> 0, >0,y >0, 1;,>0,¢ > “T% and a

positive integer L if there exist matrices X,, Y, i Z,, P

ip, >
Plp P P,pl, Aﬁp P fp,, Cﬂp,l, ﬁp P [ e {0,...,L}, sucAh that
vd e {0,1}, ve{l,...,ri—1}, £€{0,...,L—1},
(i,j)) ESxS,i#]
[hip (1)] < s (42)
1 ~2
P P
5 ip,l ip,l
il = 3 > 0, (43)
* Pip.lA
Qt]pq L( )<07 (44)
Qiipq,g“rd(ﬁ) + Qiiqp,g+d(ﬁ) <Oa )4 S q, (45)
Qupq L(ﬁ) + ‘Qiiqp?[:(ﬁ) <07 )4 S q, (46)
Ppo< Py, (47)
PAlr, [= PA (48)

Then, for any switching signal satisfying © > ¢ + T max, the
filter error system (5) is globally asymptotically stable with
a non-weighted L, gain no greater than (10). Besides, the
filter gains can be achieved as

1899
AFip (1) Asz (1) . Y_ lAﬁp é
l R . = [1 —7(1)]
Crip(t)  Drip(t) Cﬁp,g‘
P BN =1 ~ s—1 2
Y, ABﬁpg ﬁ(t) Y AAﬁpﬁg‘H Y, ABﬁn,éH ’
Dyip.¢ Crpg+1 Dfipg+1
N . Al A ] o
[Am‘p(@ BFip(¢)] | Y Apr Y By
ész(d)) DAFlp(d)) éﬂp_[ DAﬁp‘[
(49)

Proof Similar proof to Theorem 1 and omitted here. [

Supposed that the synchronous and asynchronous filters
are still designed separately. As discussed in Remark 3, we
can change the TSFMLF to FMLF in [13, 31, 36], and the
corresponding filter gains will become time-independent.
Then, based on the FMLF approach, the following corol-
lary can be established.

Corollary 2 For the switched fuzzy system 3), given
constants o.> 0, > 0,7 > 0, ;, >0, ¢ > - [;““ and posi-

tive integers L L, if there exist matrices X;, Y, Z;, X, Y.

1 ) 3 - = = — ~ ~
Zl’ Ptp’ Ptp’ Ptp’ Pip’ Pip’ Pip’ AﬁP’ Bﬁp’ CﬁP’ DﬁP’ Aﬁp’ Bﬁp’
Crip» Dy, such that Yve{l,...,r—1},
(i,j) €S X S,i#]

[hip (0] < by, (50)

sl 52

[P, P
Pp=| " T|>0, (51)

* P

L ip

[ 51 22

5 Pi Pi
Pip = ! A3p > 0, (52)

L * Piﬂ
Qiqu(—oc) <07 (53)
Qiipg(B) + Qigp(B) <0, p<g, (54)
_ip S qu» (55)
Aip S 7ip» (56)
i, < Piy, (57)
P, <Py, (58)

where V" = S (P — Is:lri), other variables are
similar to Theorem 1. Then, for any switching signal sat-
isfying © > ¢ + T max, the filter error system (5) is globally
asymptotically stable with a non-weighted L, gain no
greater than (10). Besides, the filter gains can be achieved

as
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A Fip Brip I flfl A*ﬁp flfl By, In practice appl'lcatlon, the designed ﬁlte.rs may be
_ - = _ _ , affected by uncertainty. Furthermore, we consider the fol-
Crip Drip L Cap Dyip (59) lowing switched T-S fuzzy system contains the parameter
o 5 [ o1~ P I uncertainty:
Arp Brp | |Y; Ap Y, Bpp y,,
Crip DAFI'P CA'ﬁ'p ﬁfip = Z hip(t)[(Aip + AAj)x(t)
p=1

Proof Similar proof to Theorem 1 and omitted here.

If 7 max = 0, this means the filters and subsystems are
always synchronously matched. Therefore, from Theo-
rem 1, we can also achieve the synchronous H,, filter
condition based on the TSFMLF approach.

Corollary 3 For the switched fuzzy system (3), given
constants 8> 0,7 >0, w;, >0 and positive integer L, if

there exist matrices X,, Y,, Z,, Ptpl’ Plp i Plpl, A)‘lpl’ Bﬂpl,
Cﬂp_’[, DﬁpJﬁ, [€{0,...,L}, such that ¥d e {0,1},
vel{l,..,ri—1},6€{0,....L—1},(i,j)) e SxS,i #j
i ()] < 1 (60)
sl 2
5= PZ’" ;”"A >0, (61)
ip,d

Qipg.g+d(B) + Liigpg+a(B) <0, p<gq, (62)
Qippg £ (B) + Luigp (B <0, p <1, (63)
Ppo <P, (64)
P ir,-,f§ P i, (65)

where the variables are same as Theorem 1. Then, for any
switching signal satisfying T > ¢, the filter error system (5)
is globally asymptotically stable with a non-weighted L,
gain no greater than 7. Besides, the synchronous filter
gains can be achieved as

5 A1

Apip(t)  Brip(t) Y. A
Al[’ Alp Z[l—ﬁ(fﬂ i “ip.g
Crip(t)  Drip(t) Chipg

P N =1 ~ s—1 s

Y ABﬁpg i) Y, AAﬁpﬁg*H Y, ABﬁpA,g*+1 |
Dyip g Chip.g+1 Diip g+1
N « 1 ~ =1 A
AFip(¢) Fip(‘ls)] _ Y, Aﬁp,[ Y Bﬂp,i
Crip(¢)  Drip(¢) Crpi Dy, 1

(66)

Proof Similar proof to the Theorem 1 and omitted here.[]

@ Springer

+ (Bip + 4Bjp)w(1)];

(67)
Z hip(1)[Cipx(1) + Dipw (1)),
Z hip (1) [Hipx(1) + Lipw (1)].
The uncertainty term is [4A;,, ABp) = UpFi(t)[Wijp

s Waipl,
matrices, F;(¢) is an unknown time-varying matrix function
and satisfies F7(t)F;(t) <I. Then, with the same filter
structure as (4), the sufficient condition can be obtained.

where Uy, Wijp, Wa, are known real constant

Corollary 4 For the switched fuzzy system (67), given
constants a>0,ﬁ>0,y>0,8>0,yip20,¢>“T%
and positive integers L_ l: ifthere exist matrices X;, Yi, Z;,

Xl’ Yl’ Zl’ Plp I Plp D P,p [? Plp I Plp I Plp I Aﬁp I Bﬁp I Cﬁp >

Dﬁpl, Afpl’ prl, C)‘tpl’ i 5 le {0,...,L}, [ e {0,.. .7L},

such that vd € {0,1}, ve{l,..,rn—1},

ge{0,....L—1},6€{0,....L—1},(i,j)) e SxS,i #j

inequalities (21), (22), (23), (27), (28), (29), (30) and

Tippg.gra(—2) <O, (68)

fiipq,g”rd(ﬁ) + fiiqp,qud(:B) <Oa p S q, (69)

fiipq,[:(ﬁ) + Tqu L(ﬁ) <07 p S q7 (70)

hold, where

~ Qijpgm () Wiqu Uiqu

Vijpgm(et) = x —e 0 |, (71)
* * —¢l

Wiqu = [Wli[lvovovov WU[,,O}T7 (72)

Uippg = [UUT,X UT UTX UTZ ,0,0" (73)

and other variables are same as Theorem 1. Then, for any
switching signal satisfying 1> ¢ + T max, the filter error
system is globally asymptotically stable with a non-
weighted L, gain no greater than (10). Besides, the filter
gains can be achieved as (31).

the
inequality f‘lj,,q,m(oc) <0 implies

Proof Applying Schur complement, with (71),
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~ 1 T
Qijpgm () + ¢ lej;qu,-qu

=+ 8UiquU§pq<0' (74)

Then, according to Lemma 1, one can conclude that if (74)
satisfied, then the following inequality will hold:

~ ~ ~T ~ ~T
Qipgm (@) + Upg Fi()W s, + WiipgFl (1)U, <0. (75)

Meanwhile, replacing A;,, B, with A;, + 4A;,,B;, + 4B,
in Qjjpym(®) of Theorem 1, one will get the left-hand side

of inequality (75). Therefore, from Theorem 1, this corol-
lary can be proved. O

5 Numerical Example

A practical single-link robot arm system is given in this
section to demonstrate the effectiveness of our results.
From [5, 8, 15], the system model can be described as
follows:

(1) = Dite) +

sin(x(1)) — T,X(t) + Z_u(l),

m,gl

. (76)

where i € {1,2,3}, m;, D; and J; are the mass, damping and
inertia of the arm, respectively. x(¢) denotes the angle of the
arm and we set x; () = x(¢), x2(¢) = X(t). u(?) is the control
input. Referring to [15], the system parameters can be
achieved as

Ay = 0 : }An = [ 0 : }
|49 -3 42 -3
0 1 0 1
A=l 45 3.4} Az = {—2.5 - 3.4}’

|0 R 1
N loss —3277 T |29 —32)
B,=1[0 01]),C,=[1 0],D,, =02,H;,, =[0 1],

Lp=-02, ie{1,2,3},pe{l,2},

and the normalized membership functions are
hiy = (sin®(x;(¢)) + sin®(x2(¢))) /2, hip =1 — h;;. Using
the method of [37], we can set Wip = 4,

First, given o = 0.01, f =0.02, 7 px = 0.1, ¢ = 0.1,
L=IL= 1, T = 0.2. According to Theorem 1, we will find
the minimum non-weighted L, gain parameters
y = 0.0531, y = 0.1063. Due to the space constraints, the
filter gains are omitted here. Assuming the disturbance
input w(z) = 2sin(nt) exp(—t), under the switching signal
shown in Fig. 2, the output signal and its estimation are
shown in Fig. 3. Figure 4 shows the trajectory of the fil-
tering error. The simulation results verify the effectiveness
of our proposed filters.

Then, consider the synchronous H., filtering problem
and change 7 ,x = 0. According to Corollary 3, the non-

T T
subsystem — — — controller ‘

Switching law

Output response

t

Filter error

-0.01

-0.02

-0.03

t

Fig. 4 Filtering error e(f) without uncertainty
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— Theorem 1 0.08
0.114}F — — — Corollary 1 |4
— - — Corollary 2
0.04
OM12F— — — — E
- 0.02
A ~ ~
0.11 ~ 1 o
~ - 5
I . :
0.108} ST - 1 = -0.02
- E
0.106 -0.04
-0.06
0.104
1 2 3 4 5 6 -0.08 - L L L
_ ~ 0 2 4 6 8 10
L=1L

0.1

]
o
o
o

Output response
5

-0.15

-0.2

_0.25 . . . .

Fig. 6 Output signal z(¢) and estimation zz(¢) with uncertainty

weighted L, gain can be found as y = 0.0525, which is less
than the asynchronous one. Therefore, the synchronous
switching has better non-weighted H., performance.

In addition, if we change L, I:, the obtained optimized
non-weighted L, gains y are displayed in Fig. 5. It is
obvious that Theorem 1 can get smaller L, gains than
Corollaries 1 and 2, and thus is less conservative. Actually,
Corollaries 1 and 2 can be seen as special cases of Theo-
rem 1. It also reminds us, from the view of practical
application, obtaining the information of switching instants
online can reduce the conservatism.

Finally, supposed that the switched system has uncer-
tainty and the corresponding parameters are

[0 05 o2 01 o2 of
T lo2 03" T o o2 ’

@ Springer

Fig. 7 Filtering error e(f) with uncertainty

where i€ {1,2,3},p € {1,2}. Let o =0.01, =0.02,
£=05 Tmx=01 ¢=01 L=L=1 =02
According to Corollary 3, the feasible solution can be
found with y = 0.3568, y = 0.7141. Under the same dis-
turbance and switching signal, the simulation results are
displayed in Figs. 6 and 7.

6 Conclusion

This article investigates the non-weighted asynchronous
H,, filtering problem for continuous-time switched T-S
fuzzy systems. First, under the assumption that the
switching instants can be detected instantaneously online,
we have designed the filters separately in mismatched and
matched intervals. Based on this idea, a more general
TSFMLF approach is proposed to achieve the sufficient
conditions for the filtering error system with non-weighted
H, performance. In addition, the conditions under the case
when the switching instants cannot be detected instanta-
neously have also been derived. Comparing these two cases
can be known that obtaining the information of switching
instants can further reduce the conservatism. Furthermore,
we have extended the TSFMLF to research the syn-
chronous switching behavior and parameter uncertainty.
Finally, an example is presented to illustrate the effec-
tiveness of our schemes.
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