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Abstract This paper focuses on the non-weighted asyn-

chronous H1 filtering problem for a class of continuous-

time switched nonlinear systems. The nonlinearities of

subsystems are described by Takagi–Sugeno (T-S) fuzzy

models. Using the information of switching instants, the

filters are designed to be time-scheduled and separately in

the asynchronous and synchronous time intervals. Based on

a new time-scheduled fuzzy multiple Lyapunov function

(TSFMLF), sufficient conditions are achieved to guarantee

the switched filtering error system is globally asymptoti-

cally stable with a non-weighted H1 performance. Finally,

an example is presented to demonstrated the effectiveness

of the theoretical results.

Keywords Non-weighted asynchronous H1 filtering �
Continuous-time switched nonlinear systems � Takagi–

Sugeno (T-S) fuzzy models � Time-scheduled fuzzy

multiple Lyapunov function (TSFMLF)

1 Introduction

Researching on switched systems has been widely expan-

ded in recent decades on account of their special charac-

teristics. Such systems consist of several discrete- or

continuous-time subsystems and switching laws governing

them. Switched systems have great theoretical and practi-

cal values and exist extensively in engineering applica-

tions, such as dc/dc convertors [1], mobile robots [2],

aircraft systems [3] and so on.

On the other hand, nonlinearity exists widely in real

systems, so the research on switched nonlinear systems has

also attracted the attention of scholars in recent years. In

[4], Takagi and Sugeno introduced a T-S fuzzy model,

which can approximate the smooth nonlinear systems by

blending the local linear models. Now, it is well known as

an efficient approach to handle the nonlinearity. Recently,

some efforts have extended the T-S fuzzy model to the

investigation of switched nonlinear systems and obtained

many meaningful results [5–15].

Meanwhile, to obtain reliable state estimates of dynamic

systems, the H1 filtering problem has also become a hot

research issue. Zheng et al., Zhang et al., Zheng and Zhang,

Shi et al., Xiang et al. [12–16] have designed the syn-

chronous H1 filters for switched systems. However, due to

model detection, sensor response delay and other reasons,

the filters and subsystems may not be matched immediately

in practice systems. Therefore, it is meaningful to research

the case of asynchronous filtering [7, 8, 17–21]. It is worth

noting that the H1 performance indices obtained in the

most of above efforts are weighted ones. Referring to

[21–26], the non-weighted ones are more anticipated in

mathematical analysis and practical use. To the best of our

knowledge, there are few efforts on non-weighted
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asynchronous H1 filtering for continuous-time switched

T-S fuzzy systems.

In addition, the Lyapunov function is the main tool for

analyzing switched systems. Hong et al., Zhang et al.,

Mahmoud and Shi, Wang et al. [7, 18, 27, 28] have

researched the asynchronous H1 filtering problems for

switched systems based on the multiple Lyapunov function

(MLF) approach, which is time-independent. Generally

speaking, time-scheduled Lyapunov functions are more

flexible and relaxed than the time-independent ones. Shi

et al., Xiang et al., Li et al. [8, 21, 29] have used the

interpolation to improve the MLF and proposed some

novel time-scheduled multiple Lyapunov functions, which

can further reduce the conservatism. Aiming at the swit-

ched T-S fuzzy systems, Zhang et al., Mao and Zhang,

Zheng and Zhang, Zheng et al. [13, 30–32] have introduced

the fuzzy multiple Lyapunov functions (FMLF), which are

more applicable to the fuzzy characteristic of such systems.

However, the proposed FMLFs are still time-independent

and have rooms to improve.

The main contribution of our paper can be sorted as

follows: (1) The non-weighted asynchronous H1 filtering

problem for continuous-time switched T-S fuzzy systems is

researched. (2) The synchronous and asynchronous filters

are time-scheduled and designed separately, which can

reduce the conservatism. (3) A new TSFMLF is proposed,

which is more general than the FMLF. The remainder of

this article is organized as follows: the system models and

some preliminaries are introduced in Sect. 2. Section 3

derives out sufficient conditions for non-weighted asyn-

chronous H1 filter design. In Sect. 4, a single-link robot

arm system is provided as the simulation example. In the

end, Sect. 5 concludes the paper.

Notations: NðNþÞ stands for the set of non-negative

(positive) integers. P� 0ð[ 0Þ means that P is a semi-

positive definite (positive definite) matrix. k � k and Rn

refer to the Euclidean vector norm and n-dimensional

Euclidean space, respectively. ‘‘�’’ is the ellipsis for the

terms that are introduced by symmetry. The superscript

‘‘T’’ represents matrix transposition. L2½0;1Þ is the space

of square integrable infinite sequence. A function a :
½0;1Þ ! ½0;1Þ is said to be class K if it is continuous,

strictly increasing and að0Þ ¼ 0. Also, a function b :

½0;1Þ ! ½0;1Þ is of class KL if bð�; tÞ is of class K for

each fixed t� 0 and bðs; tÞ decreases to 0 as t ! 1 for

each fixed s� 0.

2 System Descriptions and Preliminaries

Consider a class of continuous-time switched nonlinear

systems described as follows:

_xðtÞ ¼ grðtÞðxðtÞ;wðtÞÞ;
yðtÞ ¼ urðtÞðxðtÞ;wðtÞÞ;
zðtÞ ¼ srðtÞðxðtÞ;wðtÞÞ:

ð1Þ

where xðtÞ 2 Rnx and yðtÞ 2 Rny denote the state vector

and output vector, respectively. zðtÞ 2 Rnz is the objective

signal to be estimated and wðtÞ 2 Rnw the disturbance input

which belongs to L2½0;1Þ. rðtÞ is piecewise continuous

switching signal which values belong to the finite set

S ¼ f1; 2; . . .;Ng, where N 2 Nþ denotes the number of

subsystems. grðtÞð�Þ; urðtÞð�Þ and srðtÞð�Þ are nonlinear

functions. Besides, the rðtkÞ subsystem is said to be acti-

vated when t 2 ½tk; tkþ1Þ.
In this paper, using the T-S fuzzy model approach, each

subsystem is described by the following IF-THEN fuzzy

rules:

Rule p for subsystem i: IF hi1ðtÞ is Mip1 and � � � and

himðtÞ is Mipm, then

_xðtÞ ¼ AipxðtÞ þ BipwðtÞ;

yðtÞ ¼ CipxðtÞ þ DipwðtÞ;

zðtÞ ¼ HipxðtÞ þ LipwðtÞ;

8
>><

>>:

ð2Þ

where i 2 S and ri is the number of fuzzy rules, hi1ðtÞ, . . .,
himðtÞ are the premise variable, Mip1; . . .;Mipm are the fuzzy

sets, Aip, Bip, andCip, Dip, Hip, Lip are real matrices of the

pth local model of the ith subsystem.

After ‘‘fuzzy blending’’, one can infer the final model of

ith subsystem as

_xðtÞ ¼
Xri

p¼1

hipðtÞ½AipxðtÞ þ BipwðtÞ�;

yðtÞ ¼
Xri

p¼1

hipðtÞ½CipxðtÞ þ DipwðtÞ�;

zðtÞ ¼
Xri

p¼1

hipðtÞ½HipxðtÞ þ LipwðtÞ�;

8
>>>>>>>>>>><

>>>>>>>>>>>:

ð3Þ

where hipðtÞ ¼
Qm

n¼1
MipnðtÞPri

p¼1

Qm

n¼1
MipnðtÞ

is the normalized member-

ship function and satisfies hipðtÞ� 0;
Pri

p¼1 hipðtÞ ¼ 1.

Besides, let HijðtÞ ¼
Pri

p¼1

Prj
q¼1 hipðtÞhjqðtÞ.

Given a positive scalar s, we call s is the minimum

dwell time if the switching signals satisfy that

tkþ1 � tk � s; 8k 2 Nþ. We denote T k as the mismatched

time between filter and subsystem after each switching

occurring. The maximum mismatched time is defined as

T max and satisfies 0�T k �T max � s; 8k 2 Nþ. Without

loss of generality, supposed that rðtkÞ ¼ i; rðtk�1Þ ¼ j.

Then, given a positive scalar /, the full-order fuzzy filter is

constructed as follows:
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_xFðtÞ ¼
Xrj

p¼1

hjpðtÞ½ �AFjpðtÞxðtÞ þ �BFjpðtÞyðtÞ�

zFðtÞ ¼
Xrj

p¼1

hjpðtÞ½ �CFjpðtÞxðtÞ þ �DFjpðtÞyðtÞ�;

8
>>>>><

>>>>>:

t 2 ½tk; tk þ T kÞ

_xFðtÞ ¼
Xri

p¼1

hipðtÞ½ÂFipðtÞxðtÞ þ B̂FipðtÞyðtÞ�

zFðtÞ ¼
Xri

p¼1

hipðtÞ½ĈFipðtÞxðtÞ þ D̂FipðtÞyðtÞ�;

8
>>>>><

>>>>>:

t 2 ½tk þ T k; tk þ T k þ /Þ

_xFðtÞ ¼
Xri

p¼1

hipðtÞ½ÂFipð/ÞxðtÞ þ B̂Fipð/ÞyðtÞ�

zFðtÞ ¼
Xri

p¼1

hipðtÞ½ĈFipð/ÞxðtÞ þ D̂Fipð/ÞyðtÞ�;

8
>>>>><

>>>>>:

t 2 ½tk þ T k þ /; tkþ1Þ

ð4Þ

where �AFipðtÞ, �BFipðtÞ, �CFipðtÞ, �DFipðtÞ, ÂFipðtÞ, B̂Fip (t),

ĈFipðtÞ, D̂FipðtÞ are time-scheduled filter gains to be

determined. Then, let ~xðtÞ ¼ ½xTðtÞ; xTFðtÞ�
T ; eðtÞ ¼

zðtÞ � zFðtÞ, the following filtering error system can be

obtained:

_~xðtÞ ¼ �AijðtÞxðtÞ þ �BijðtÞwðtÞ

eðtÞ ¼ �CijðtÞxðtÞ þ �DijðtÞwðtÞ;

(

t 2 ½tk; tk þ T kÞ
_~xðtÞ ¼ ÂiiðtÞxðtÞ þ B̂iiðtÞwðtÞ

eðtÞ ¼ ĈiiðtÞxðtÞ þ D̂iiðtÞwðtÞ;

8
<

:

t 2 ½tk þ T k; tk þ T k þ /Þ
_~xðtÞ ¼ Âiið/ÞxðtÞ þ B̂iið/ÞwðtÞ

eðtÞ ¼ Ĉiið/ÞxðtÞ þ D̂iið/ÞwðtÞ;

8
<

:

t 2 ½tk þ T k þ /; tkþ1Þ

ð5Þ

where

�AijðtÞ ¼ HijðtÞ
Aip 0

�BFjqðtÞCip
�AFjqðtÞ

� �

�BijðtÞ ¼ HijðtÞ
Bip

�BFjqðtÞDip

� �

�CijðtÞ ¼ HijðtÞ Hip � �DFjqðtÞCip; � �CFjqðtÞ
� �

�DijðtÞ ¼ HijðtÞ½Lip � �DFjqðtÞDip�

ÂiiðtÞ ¼ HiiðtÞ
Aip 0

B̂FiqðtÞCip ÂFiqðtÞ

" #

B̂iiðtÞ ¼ HiiðtÞ
Bip

B̂FiqðtÞDip

� �

ĈiiðtÞ ¼ HiiðtÞ Hip � D̂FiqðtÞCip; �ĈFiqðtÞ
� �

D̂iiðtÞ ¼ HiiðtÞ½Lip � D̂FiqðtÞDip�

Âiið/Þ ¼ HiiðtÞ
Aip 0

B̂Fiqð/ÞCip ÂFiqð/Þ

" #

B̂iið/Þ ¼ HiiðtÞ
Bip

B̂Fiqð/ÞDip

� �

Ĉiið/Þ ¼ HiiðtÞ Hip � D̂Fiqð/ÞCip; �ĈFiqð/Þ
� �

D̂iið/Þ ¼ HiiðtÞ½Lip � D̂Fiqð/ÞDip�:

Definition 1 [33] A switched system is globally asymp-

totically stable if under any initial condition xðt0Þ, there

exists a class KL function bð�Þ such that the inequality

kxðtÞk� bðkxðt0ÞkÞ;8t� 0 is satisfied.

Definition 2 [24] For �c[ 0, the switched system (1) is

said to have a non-weighted L2 gain no great than �c, if

under zero initial condition, the system is globally

asymptotically stable and inequality
R1

0
yTðtÞyðtÞdt� �c2

R1
0

wTðtÞwðtÞdt holds for all

wðtÞ 2 Ł2½0;1Þ.

Assumption 1 [23, 26, 34] The switching instants t0, . . .,

tk, . . . can be detected instantaneously online.

Remark 1 In the above assumption, although the time

when switching occurs can be instantaneously detected, the

activated subsystem at this moment is still unknown and

needs some time to identify. Therefore, the subsystem and

filter may be mismatched in the identified time interval.

This identified time is also be called mode-identifying time

in [34]. Besides, the case that the switching instants cannot

be detected is also discussed in Corollary 1.

Lemma 1 [35] Given real matrices U, W and symmetri-

cal matrix G of appropriate dimensions, for any F satisfy-

ing FTF� I, the inequality Gþ UFW þWTFT UT\0 will

hold if and only if there exists a scalar e[ 0 such that

Gþ eUUT þ e�1WTW\0.
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3 Non-weighted L2 Gain Analysis

The non-weighted L2 gain analysis for the filtering error

system (5) is derived in this section. First, we denote �Tðs; tÞ
and T̂ðs; tÞ as the total mismatched time and matched time

for the time interval [s, t], respectively.

Lemma 2 [26] Given a time interval [s, t], the total

mismatched time �Tðs; tÞ satisfies

�Tðs; tÞ� 1 þ t � s� T max

s

� �

T max: ð6Þ

Proof The time interval is shown in Fig. 1. Let N denotes

the number of switching in the time interval [s, t], and

t01; . . .; t
0
Nþ1 are the switching instants, T 0

1; . . .; T
0
Nþ1 are

mismatched times. From Fig. 1 it can be seen that the total

mismatched time �Tðs; tÞ ¼
PN

i¼1 T
0
i þ �Tðt0N ; tÞ ¼

PN
i¼1 T

0
i þ minft � t0N ; T 0

Nþ1g�NT max þ minft � t0N ;

T 0
Nþ1g. Then, when t � s\Nsþ T max, we choose

�Tðs; tÞ�NT max þ t � t0N ¼ NT max þ t � s� ðt01 � sþ t02 �
t01þ � � � þ t0N � t0N�1Þ �NT max þ t� s � Ns �ð1þ
t�s�T max

s ÞT max. In the other case when t � s�Nsþ T max,

we choose �Tðs; tÞ�NT max þ T 0
Nþ1 �ðN þ 1Þ

T max �ð1 þ t�s�T max

s ÞT max. The proof is completed. h

Lemma 3 For the switched filtering error system (5), let

a[ 0; b[ 0; c[ 0;/[ aT max

b as given scalars, if there

exist non-negative functions VrðtÞð~xðtÞÞ : RN ! R, such

that 8ðrðtkÞ ¼ i; rðtk�1Þ ¼ jÞ 2 S � S; i 6¼ j,

Við~xðtkÞÞ�Vjð~xðt�k ÞÞ; ð7Þ

Við~xðtk þ T kÞÞ�Við~xððtk þ T kÞ�ÞÞ; ð8Þ

_Við~xðtÞÞ�
aVið~xðtÞÞ � CðtÞ; t 2 �Tðtk; tkþ1Þ

� bVið~xðtÞÞ � CðtÞ; t 2 T̂ðtk; tkþ1Þ

(

ð9Þ

where CðtÞ ¼ eTðtÞeðtÞ � c2wTðtÞwðtÞ. Then, for any

switching signal satisfying s�/þ T max, the system (5) is

globally asymptotically stable with a non-weighted L2 gain

no greater than

�c ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

bseðaþbÞT maxð1�T max
s Þ

bs� ðaþ bÞT max

s

c: ð10Þ

Proof First, we will prove the stability of the system (5)

with wðtÞ 	 0. Due to eTðtÞeðtÞ� 0, from (9) one can get

_Við~xðtÞÞ�
aVið~xðtÞÞ; t 2 �Tðtk; tkþ1Þ

� bVið~xðtÞÞ; t 2 T̂ðtk; tkþ1Þ

(

: ð11Þ

Combining (9) with (7), (8), for any k 2 Nþ, we can obtain

Vrðtkþ1Þð~xðtkþ1ÞÞ
�VrðtkÞð~xðtkþ1ÞÞ
� eaT k�bðtkþ1�tk�T kÞVrðtkÞð~xðtkÞÞ
� eðaþbÞT k�bsVrðtkÞð~xðtkÞÞ
� eðaþbÞT max�bð/þT maxÞVrðtkÞð~xðtkÞÞ
\VrðtkÞð~xðtkÞÞ:

ð12Þ

Therefore, there must exists a constant 0\f\1 such that

Vrðtkþ1Þ ð~xðtkþ1ÞÞ \ fVrðtkÞð~xðtkÞÞ \ � � �\fkþ1Vrðt0Þð~xðt0ÞÞ.
As t ! þ1, VrðtÞð~xðtÞÞ will converge to zero. Then, we

can conclude that filtering error system (5) is globally

asymptotically stability.

Next, we will derive the non-weighted L2 gain with

disturbance wðtÞ 6¼ 0. Combining (7) (8) (9), we can get

VðtÞ� ea
�Tðt0;tÞ�bT̂ðt0;tÞVðt0Þ �

R t
t0
ea

�Tðs;tÞ�bT̂ðs;tÞ CðsÞds. Since

that Vðt0Þ ¼ 0 and VðtÞ� 0, let t0 ¼ 0, one can achieve
Z t

0

ea
�Tðs;tÞ�bT̂ðs;tÞeTðsÞeðsÞds

�
Z t

0

ea
�Tðs;tÞ�bT̂ðs;tÞc2wTðsÞwðsÞds:

ð13Þ

Integrating the left-hand side for t from 0 to 1, we have
Z 1

0

Z t

0

ea
�Tðs;tÞ�bT̂ðs;tÞeTðsÞeðsÞdsdt

¼
Z 1

0

Z t

0

eðaþbÞ �Tðs;tÞ�bðt�sÞeTðsÞeðsÞdsdt

�
Z 1

0

Z t

0

e�bðt�sÞeTðtÞeðtÞdsdt

�
Z 1

0

eTðsÞeðsÞð
Z 1

s

e�bðt�sÞdtÞds

� 1

b

Z 1

0

eTðsÞeðsÞds:

ð14Þ

Similarly, with Lemma 2, integrate of the right-hand side is

Fig. 1 Time interval
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Z 1

0

Z t

0

ea
�Tðs;tÞ�bT̂ðs;tÞc2wTðsÞwðsÞdsdt

¼ c2

Z 1

0

Z t

0

eðaþbÞ �Tðs;tÞ�bðt�sÞwTðsÞwðsÞdsdt

� c2

Z 1

0

Z t

0

eðaþbÞð1þt�s�T max
s ÞT max�bðt�sÞ

wTðsÞwðsÞdsdt

� c2eðaþbÞT maxð1�T max
s Þ

Z 1

0

Z t

0

e
ðaþbÞT max�bs

s ðt�sÞwTðsÞwðsÞdsdt

� c2seðaþbÞT maxð1�T max
s Þ

bs� ðaþ bÞT max

Z 1

0

wTðsÞwðsÞds:

ð15Þ

Combining (13), (14) and (15), one can get
R1

0
eTðsÞ

eðsÞds� bseðaþbÞT maxð1�T max
s Þ

bs�ðaþbÞT max
c2
R1

0
wTðsÞwðsÞds. Then, we can

achieve the non-weighted L2 gain �c as (10). The proof is

completed.

Remark 2 It is noting that the filter is designed under

minimum dwell time constraint in this paper. Meanwhile,

the value of Lyapunov function is non-increasing in

switching and matching instant. Under this circumstance,

the non-weighted L2 gain performance can be achieved

with the inequality in Lemma 2.

4 Asynchronous H1 Filter

This section is aimed to design a filter such that the

asynchronous switched filtering error system (5) is globally

asymptotically stable with a non-weighted L2 gain

performance.

In this paper, we construct a TSFMLF in following

forms:

Við~xðtÞÞ ¼ ~xTðtÞPiðtÞ~xðtÞ; 8rðtkÞ ¼ i 2 S; ð16Þ

where

PiðtÞ ¼

�PiðtÞ ¼
Xri

p¼1

hipðtÞ �PipðtÞ;

t 2 ½tk; tk þ T kÞ;

P̂iðtÞ ¼
Xri

p¼1

hipðtÞP̂ipðtÞ;

t 2 ½tk þ T k; tk þ T k þ /Þ;

P̂ið/Þ ¼
Xri

p¼1

hipðtÞP̂ipð/Þ;

t 2 ½tk þ T k þ /; tkþ1Þ:

8
>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>:

ð17Þ

Considering the asynchronous characteristics, we define

three time intervals for each switching:

D1 ¼ ½tk; tk þ T maxÞ, D2 ¼ ½tk þ T k; tk þ T k þ /Þ,
D3 ¼ ½tk þ T k þ /; tkþ1Þ. Based on the linear interpolation

approach, D1 and D2 are divided into �L and L̂ subintervals,

respectively. Then, the TSFMLF matrices can be con-

structed as

�PipðtÞ ¼ ½1 � �gðtÞ� �Pip; �g þ �gðtÞ �Pip; �gþ1; ð18Þ

P̂ipðtÞ ¼ ½1 � ĝðtÞ�P̂ip;ĝ þ ĝðtÞP̂ip;ĝþ1; ð19Þ

P̂ipð/Þ ¼ P̂ip;L̂: ð20Þ

where �g ¼ 0; 1; . . .; �L� 1; �gðtÞ ¼ ðt � tk � �w �gÞ= �h; �w �g ¼
�g �h; �h ¼ T max= �L; ĝ ¼ 0; 1; . . .; L̂� 1; ĝðtÞ ¼ ðt � tk � T k�
ŵĝÞ=ĥ; ŵĝ ¼ ĝĥ; ĥ ¼ /=L̂.

Remark 3 If we choose �Pip;0 ¼ . . . ¼ �Pip; �L ¼ �Pip,

P̂ip;0̂ ¼ . . . ¼ P̂ip;L̂ ¼ P̂ip, i.e., �PiðtÞ ¼
Pri

p¼1 hipðtÞ �Pip,

P̂iðtÞ ¼ P̂ipð/Þ ¼
Pri

p¼1 hipðtÞP̂ip, then the TSFMLF will be

reduced to the FMLF in [13, 31, 36], which is time-inde-

pendent. Therefore, the proposed TSFMLF is more

general.

Based on the TSFMLF approach, the following suffi-

cient condition can be achieved.

Theorem 1 For the switched fuzzy system (3), given

constants a[ 0; b[ 0; c[ 0; lip � 0;/[ aT max

b and posi-

tive integers �L; L̂, if there exist matrices �Xi, �Yi, �Zi, X̂i, Ŷ i,

Ẑi, �P
1
ip;�l,

�P
2
ip;�l,

�P
3
ip;�l, P̂

1

ip;l̂, P̂
2

ip;l̂, P̂
3

ip;l̂,
�Afip;�l, �Bfip;�l,

�Cfip;�l, �Dfip;�l,

Âfip;l̂, B̂fip;l̂, Ĉfip;l̂, D̂fip;l̂,
�l 2 f0; . . .; �Lg, l̂ 2 f0; . . .; L̂g, such

that 8d 2 f0; 1g, v 2 f1; . . .; ri � 1g, �g 2 f0; . . .; �L� 1g,

ĝ 2 f0; . . .; L̂� 1g, ði; jÞ 2 S � S; i 6¼ j

j _hipðtÞj � lip; ð21Þ

�Pip;�l ¼
�P

1
ip;�l

�P
2
ip;�l

� �P
3
ip;�l

" #

[ 0; ð22Þ

P̂ip;l̂ ¼
P̂

1

ip;l̂ P̂
2

ip;l̂

� P̂
3

ip;l̂

2

4

3

5[ 0; ð23Þ

�Xijpq; �gþdð�aÞ\0; ð24Þ

X̂iipq;ĝþdðbÞ þ X̂iiqp;ĝþdðbÞ\0; p� q; ð25Þ

X̂iipq;L̂ðbÞ þ X̂iiqp;L̂ðbÞ\0; p� q; ð26Þ

�Pip;0 � P̂jq;L̂; ð27Þ

P̂ip;0 � �Pip;�l; ð28Þ
�Piri;�l � �Piv;�l; ð29Þ
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P̂iri;l̂
� P̂iv;l̂; ð30Þ

where

~Xijpq;mðaÞ ¼

~X
11

ij;m
~X

12

ij;m
~X

13

ij;m
~X

14

ij;m
~X

15

ij;m
~X

16

ij;m

� ~X
22

ij;m
~X

23

ij;m
~X

24

ij;m
~X

25

ij;m
~X

26

ij;m

� � ~X
33

ij;m
~X

34

ij;m
~X

15

ij;m 0

� � � ~X
44

ij;m
~X

25

ij;m 0

� � � � � c2I ~X
56

ij;m

� � � � � � I

2

6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
5

;

p 2 f1; ::; rig; q 2 f1; . . .; rjg;

�W
n
m ¼

Xri�1

v¼1

livð �P
n
iv;m � �P

n
iri;m

Þ þ
�Lð �Pn

ip; �gþ1 � �P
n
ip; �gÞ

T max

;

Ŵ
n

m ¼

Xri�1

v¼1

livðP̂
n

iv;m � P̂
n

iri;m
Þ

þ
L̂ðP̂n

ip;ĝþ1 � P̂
n

ip;ĝÞ
/

;m ¼ ĝþ d;

Xri�1

v¼1

livðP̂
n

iv;m � P̂
n

iri;m
Þ;m ¼ L̂;

8
>>>>>>>>>><

>>>>>>>>>>:

~X
11

ij;m ¼ AT
ip
~X
T

j þ CT
ip
~B
T

fjq;m þ ~XjAip þ ~Bfjq;mCip

þ ~W
1

m þ a ~P
1

ip;m;

~X
12

ij;m ¼ AT
ip
~Z
T

j þ CT
ip
~B
T

fjq;m þ ~Afjq;m þ ~W
2

m þ a ~P
2

ip;m;

~X
13

ij;m ¼ ~P
1

ip;m � ~Xj þ AT
ip
~X
T

j þ CT
ip
~B
T

fjq;m;

~X
14

ij;m ¼ ~P
2

ip;m � ~Yj þ AT
ip
~Z
T

j þ CT
ip
~B
T

fjq;m;

~X
15

ij;m ¼ ~XjBip þ ~Bfjq;mDip;

~X
16

ij;m ¼ HT
ip � CT

ip
~D
T

fjq;m;

~X
22

ij;m ¼ ~A
T

fjq;m þ ~Afjq;m þ ~W
3

m þ a ~P
3

ip;m;

~X
23

ij;m ¼ ð ~P2

ip;mÞ
T � ~Zj þ ~A

T

fjq;m;

~X
24

ij;m ¼ ~P
3

ip;m � ~Yj þ ~A
T

fjq;m;

~X
25

ij;m ¼ ~ZjBip þ ~Bfjq;mDip; ~X
26

ij;m ¼ � ~C
T

fjq;m;

~X
33

ij;m ¼ � ~Xj � ~X
T

j ;
~X

34

ij;m ¼ � ~Yj � ~Z
T

j ;

~X
44

ij;m ¼ � ~Yj � ~Y
T

j ;
~X

56

ij;m ¼ LTip � DT
ip
~D
T

fjq;m:

Then, for any switching signal satisfying s�/þ T max, the

filter error system (5) is globally asymptotically stable with

a non-weighted L2 gain no greater than (10). Besides, the

filter gains can be achieved as

�AFipðtÞ �BFipðtÞ
�CFipðtÞ �DFipðtÞ

" #

¼ ½1 � �gðtÞ�
�Y
�1
i

�Afip; �g

�Cfip; �g

"

�Y
�1
i

�Bfip; �g

�Dfip; �g

#

þ �gðtÞ
�Y
�1
i

�Afip; �gþ1
�Y
�1
i

�Bfip; �gþ1

�Cfip; �gþ1
�Dfip; �gþ1

" #

;

ÂFipðtÞ B̂FipðtÞ

ĈFipðtÞ D̂FipðtÞ

" #

¼ ½1 � ĝðtÞ�
Ŷ
�1

i Âfip;ĝ

Ĉfip;ĝ

2

4

Ŷ
�1

i B̂fip;ĝ

D̂fip;ĝ

#

þ ĝðtÞ
Ŷ
�1

i Âfip;ĝþ1 Ŷ
�1

i B̂fip;ĝþ1

Ĉfip;ĝþ1 D̂fip;ĝþ1

2

4

3

5;

ÂFipð/Þ B̂Fipð/Þ

ĈFipð/Þ D̂Fipð/Þ

" #

¼
Ŷ
�1

i Âfip;L̂ Ŷ
�1

i B̂fip;L̂

Ĉfip;L̂ D̂fip;L̂

2

4

3

5:

8
>>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð31Þ

Proof First, we define DðA;B;PðtÞ; aÞ ¼ ATBT þ BAþ
_PðtÞ þ aPðtÞ. In the mismatched interval when

t 2 �Tðtk; tkþ1Þ, we have

_Við~xðtÞÞ � aVið~xðtÞÞ þ CðtÞ

¼ ½~xTðtÞ;wTðtÞ�
 

Dð �AijðtÞ; �PiðtÞ; �PiðtÞ;�a

�

"

�PiðtÞ �BijðtÞ
�c2I

#

þ
�CTijðtÞ
�DT
ijðtÞ

" #

½�CijðtÞ; �DijðtÞ�
!

~xðtÞ
wðtÞ

� �

¼ nðtÞT �H1ðtÞ þ �H
T
2 ðtÞ �H2ðtÞ

h i
nðtÞ;

ð32Þ

where

�H1ðtÞ ¼
Dð �AijðtÞ; �PiðtÞ; �PiðtÞ;�aÞ �PiðtÞ �BijðtÞ

� � c2I

" #

;

�H2ðtÞ ¼ ½�CijðtÞ; �DijðtÞ�; nðtÞ ¼ ½~xTðtÞ;wTðtÞ�T :

Then, we will introduce the following inequality:

Dð �AijðtÞ; �PiðtÞ; �PiðtÞ;�aÞ �PiðtÞ �BijðtÞ �CTijðtÞ
� � c2I �DT

ijðtÞ
� � � I

2

6
4

3

7
5\0:

ð33Þ

Applying the Schur complement, (33) implies

�H1ðtÞ þ �H
T
2 ðtÞ �H2ðtÞ\0, then the inequality _Við~xðtÞÞ

�aVið~xðtÞÞ þCðtÞ \0 can be obtained.
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Next, to design the filter, we define a new matrix:

�XðtÞ ¼

Dð �AijðtÞ; �Ej; �PiðtÞ;�aÞ

�

�

�

2

6
6
6
6
6
4

�PiðtÞ � �Ej þ �AT
ijðtÞ �E

T
j

�Ej
�BijðtÞ �CTijðtÞ

� �Ej � �E
T
j

�Ej
�BijðtÞ 0

� � c2I �DT
ijðtÞ

� � � I

3

7
7
7
7
7
7
5

\0;

ð34Þ

where �Ej ¼
�Xj

�Yj
�Zj

�Yj

� �

. Pre- and post-multiplying (34) by

I �AT
ijðtÞ 0 0

0 �BT
ijðtÞ I 0

0 0 0 I

2

4

3

5 and its transpose respectively will get

(33). Therefore, we can sum up that if (34) holds, the

condition _Við~xðtÞÞ� aVið~xðtÞÞ � CðtÞ of Lemma 3 will

hold. Similarly, when t 2 T̂ðtk; tkþ1Þ, we can define matri-

ces X̂ðtÞ; X̂ð/Þ which have the same structure as �XðtÞ. If

X̂ðtÞ\0; X̂ð/Þ\0 hold, it can be derived out that
_Við~xðtÞÞ� � bVið~xðtÞÞ � CðtÞ hold.

Then, we will prove the non-weighted H1 performance

with the filter (31). First, according to
Pri

p¼1
_hip

ðtÞ ¼
Pri�1

v¼1
_hipðtÞ þ _hiriðtÞ ¼ 0, with (21) and (29), one

can get

Xri

p¼1

_hipðtÞ �PipðtÞ

¼
Xri�1

v¼1

_hivðtÞ �PivðtÞ þ _hiriðtÞ �PiriðtÞ

¼
Xri�1

v¼1

_hivðtÞ½ �PivðtÞ � �PiriðtÞ�

¼
Xri�1

v¼1

_hivðtÞf½1 � �gðtÞ�ð �Piv; �g � �Piri; �gÞ

þ �gðtÞð �Piv; �gþ1 � �Piri; �gþ1Þg

�
Xri�1

v¼1

livf½1 � �gðtÞ�ð �Piv; �g � �Piri; �gÞ

þ �gðtÞð �Piv; �gþ1 � �Piri; �gþ1Þg:

ð35Þ

With (18), we have

_�PipðtÞ ¼ _�gðtÞð �Pip; �gþ1 � �Pip; �gÞ ¼
�Lð �Pip; �gþ1 � �Pip; �gÞ

T max

: ð36Þ

Substituting (5), (31), (35) and (36) to �XðtÞ and combining

with (22) and (24), one can obtain

�XðtÞ
�HijðtÞf½1 � �gðtÞ� �Xijpq; �gð�aÞ þ �gðtÞ �Xijpq; �gþ1ð�aÞg
\0;

ð37Þ

thus the condition (34) hold. Afterward, from the above

proof, we can conclude that _Við~xðtÞÞ� aVið~xðtÞÞ � CðtÞ
hold. Similarly, with (21), (23), (25), (26), (30) and (31),

one can derive out

X̂ðtÞ
�HiiðtÞf½1 � ĝðtÞ�X̂iipq;ĝðbÞ þ ĝðtÞX̂iipq;ĝþ1ðbÞ�g

� ½1 � ĝðtÞ�½
Xri

p¼q¼1

h2
ipðtÞð

X̂iipp;ĝðbÞ þ X̂iiqq;ĝðbÞ
2

Þ

þ
Xri

p¼1

Xri

q[ p

hipðtÞhiqðtÞðX̂iipq;ĝðbÞ þ X̂iiqp;ĝðbÞÞ�

þ ĝðtÞ½
Xri

p¼q¼1

h2
ipðtÞð

X̂iipp;ĝþ1ðbÞ þ X̂iiqq;ĝþ1ðbÞ
2

Þ

þ
Xri

p¼1

Xri

q[ p

hipðtÞhiqðtÞðX̂iipq;ĝþ1ðbÞ þ X̂iiqp;ĝþ1ðbÞÞ�

\0;

ð38Þ

X̂ð/Þ
�HiiðtÞX̂iipq;L̂ðbÞ

�
Xri

p¼q¼1

h2
ipðtÞð

X̂iipp;L̂ðbÞ þ X̂iiqq;L̂ðbÞ
2

Þ

þ
Xri

p¼1

Xri

q[ p

hipðtÞhiqðtÞðX̂iipq;L̂ðbÞ þ X̂iiqp;L̂ðbÞÞ

\0;

ð39Þ

which can conclude that _Við~xðtÞÞ� � bVið~xðtÞÞ � CðtÞ
hold.

Finally, with (27) and (28), one can get

Við~xðtkÞÞ � Vjð~xðt�k ÞÞ
¼ ~xTðtkÞ½ �PiðtkÞ � P̂jð/Þ�~xðtkÞ
¼ HijðtÞ~xTðtkÞ½ �Pip;0 � P̂jq;L̂�~xðtkÞ
� 0;

ð40Þ

Við~xðtk þ T kÞÞ � Við~xððtk þ T kÞ�ÞÞ
¼ ~xTðtk þ T kÞ½P̂iðtk þ T kÞ � �Piðtk þ T kÞ�~xðtk þ T kÞ

¼
Xri

p¼1

hipðtÞ~xTðtk þ T kÞ½P̂ip;0 � �Pip;�l�~xðtk þ T kÞ

� 0:

ð41Þ
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Therefore, the conditions (7)–(9) of Lemma 3 are all sat-

isfied. According to Lemma 3, the filter error system (5) is

globally asymptotically stable with a non-weighted L2 gain

no greater than �c as (10) for any switching signal satisfying

s�/þ T max. The proof is completed. h

Considering the case when switching instants cannot be

detected instantaneously, the filter will not be updated in

the mismatched interval after switching occurring. This

means that the synchronous and asynchronous filters are

not designed separately and will become the traditional

forms. On this occasion, the asynchronous filter gains in (4)

will become �AFjpðtÞ ¼ ÂFjpð/Þ, �BFjpðtÞ ¼ B̂Fjpð/Þ, �CFjpðtÞ
¼ ĈFjpð/Þ, �DFjpðtÞ ¼ D̂Fjpð/Þ. Accordingly, the asyn-

chronous Lyapunov function matrix will become �PiðtÞ ¼
P̂jð/Þ. Then, we can get the following corollary:

Corollary 1 For the switched fuzzy system (3), given

constants a[ 0; b[ 0; c[ 0; lip � 0;/[ aT max

b and a

positive integer L̂, if there exist matrices X̂i, Ŷ i, Ẑi, P̂
1

ip;l̂,

P̂
2

ip;l̂, P̂
3

ip;l̂, Âfip;l̂, B̂fip;l̂, Ĉfip;l̂, D̂fip;l̂, l̂ 2 f0; . . .; L̂g, such that

8d 2 f0; 1g, v 2 f1; . . .; ri � 1g, ĝ 2 f0; . . .; L̂� 1g,

ði; jÞ 2 S � S; i 6¼ j

j _hipðtÞj � lip; ð42Þ

P̂ip;l̂ ¼
P̂

1

ip;l̂ P̂
2

ip;l̂

� P̂
3

ip;l̂

2

4

3

5[ 0; ð43Þ

X̂ijpq;L̂ð�aÞ\0; ð44Þ

X̂iipq;ĝþdðbÞ þ X̂iiqp;ĝþdðbÞ\0; p� q; ð45Þ

X̂iipq;L̂ðbÞ þ X̂iiqp;L̂ðbÞ\0; p� q; ð46Þ

P̂ip;0 � P̂jq;L̂; ð47Þ

P̂iri;l̂
� P̂iv;l̂: ð48Þ

Then, for any switching signal satisfying s�/þ T max, the

filter error system (5) is globally asymptotically stable with

a non-weighted L2 gain no greater than (10). Besides, the

filter gains can be achieved as

ÂFipðtÞ B̂FipðtÞ

ĈFipðtÞ D̂FipðtÞ

" #

¼ ½1 � ĝðtÞ�
Ŷ
�1

i Âfip;ĝ

Ĉfip;ĝ

2

4

Ŷ
�1

i B̂fip;ĝ

D̂fip;ĝ

#

þ ĝðtÞ
Ŷ
�1

i Âfip;ĝþ1 Ŷ
�1

i B̂fip;ĝþ1

Ĉfip;ĝþ1 D̂fip;ĝþ1

2

4

3

5;

ÂFipð/Þ B̂Fipð/Þ

ĈFipð/Þ D̂Fipð/Þ

" #

¼
Ŷ
�1

i Âfip;L̂ Ŷ
�1

i B̂fip;L̂

Ĉfip;L̂ D̂fip;L̂

2

4

3

5:

8
>>>>>>>>>>>>>><

>>>>>>>>>>>>>>:

ð49Þ

Proof Similar proof to Theorem 1 and omitted here. h

Supposed that the synchronous and asynchronous filters

are still designed separately. As discussed in Remark 3, we

can change the TSFMLF to FMLF in [13, 31, 36], and the

corresponding filter gains will become time-independent.

Then, based on the FMLF approach, the following corol-

lary can be established.

Corollary 2 For the switched fuzzy system (3), given

constants a[ 0; b[ 0; c[ 0; lip � 0;/[ aT max

b and posi-

tive integers �L; L̂, if there exist matrices �Xi, �Yi, �Zi, X̂i, Ŷ i,

Ẑi, �P
1
ip, �P

2
ip, �P

3
ip, P̂

1

ip, P̂
2

ip, P̂
3

ip, �Afip, �Bfip, �Cfip, �Dfip, Âfip, B̂fip,

Ĉfip, D̂fip, such that 8v 2 f1; . . .; ri � 1g,

ði; jÞ 2 S � S; i 6¼ j

j _hipðtÞj � lip; ð50Þ

�Pip ¼
�P

1
ip

�P
2
ip

� �P
3
ip

" #

[ 0; ð51Þ

P̂ip ¼
P̂

1

ip P̂
2

ip

� P̂
3

ip

2

4

3

5[ 0; ð52Þ

�Xijpqð�aÞ\0; ð53Þ

X̂iipqðbÞ þ X̂iiqpðbÞ\0; p� q; ð54Þ

�Pip � P̂jq; ð55Þ

P̂ip � �Pip; ð56Þ
�Piri � �Piv; ð57Þ

P̂iri � P̂iv; ð58Þ

where ~W
n ¼

Pri�1
v¼1 livð ~P

n

iv � ~P
n

iri
Þ, other variables are

similar to Theorem 1. Then, for any switching signal sat-

isfying s�/þ T max, the filter error system (5) is globally

asymptotically stable with a non-weighted L2 gain no

greater than (10). Besides, the filter gains can be achieved

as
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�AFip
�BFip

�CFip
�DFip

" #

¼
�Y
�1
i

�Afip
�Y
�1
i

�Bfip

�Cfip
�Dfip

" #

;

ÂFip B̂Fip

ĈFip D̂Fip

" #

¼
Ŷ
�1

i Âfip Ŷ
�1

i B̂fip

Ĉfip D̂fip

2

4

3

5:

8
>>>>>><

>>>>>>:

ð59Þ

Proof Similar proof to Theorem 1 and omitted here.

If T max ¼ 0, this means the filters and subsystems are

always synchronously matched. Therefore, from Theo-

rem 1, we can also achieve the synchronous H1 filter

condition based on the TSFMLF approach.

Corollary 3 For the switched fuzzy system (3), given

constants b[ 0; c[ 0; lip � 0 and positive integer L̂, if

there exist matrices X̂i, Ŷ i, Ẑi, P̂
1

ip;l̂, P̂
2

ip;l̂, P̂
3

ip;l̂, Âfip;l̂, B̂fip;l̂,

Ĉfip;l̂, D̂fip;l̂, l̂ 2 f0; . . .; L̂g, such that 8d 2 f0; 1g,

v 2 f1; . . .; ri � 1g, ĝ 2 f0; . . .; L̂� 1g, ði; jÞ 2 S � S; i 6¼ j

j _hipðtÞj � lip; ð60Þ

P̂ip;l̂ ¼
P̂

1

ip;l̂ P̂
2

ip;l̂

� P̂
3

ip;l̂

2

4

3

5[ 0; ð61Þ

X̂iipq;ĝþdðbÞ þ X̂iiqp;ĝþdðbÞ\0; p� q; ð62Þ

X̂iipq;L̂ðbÞ þ X̂iiqp;L̂ðbÞ\0; p� q; ð63Þ

P̂ip;0 � P̂jq;L̂; ð64Þ

P̂iri;l̂
� P̂iv;l̂; ð65Þ

where the variables are same as Theorem 1. Then, for any

switching signal satisfying s�/, the filter error system (5)

is globally asymptotically stable with a non-weighted L2

gain no greater than c. Besides, the synchronous filter

gains can be achieved as

ÂFipðtÞ B̂FipðtÞ

ĈFipðtÞ D̂FipðtÞ

" #

¼ ½1 � ĝðtÞ�
Ŷ
�1

i Âfip;ĝ

Ĉfip;ĝ

2

4

Ŷ
�1

i B̂fip;ĝ

D̂fip;ĝ

#

þ ĝðtÞ
Ŷ
�1

i Âfip;ĝþ1 Ŷ
�1

i B̂fip;ĝþ1

Ĉfip;ĝþ1 D̂fip;ĝþ1

2

4

3

5;

ÂFipð/Þ B̂Fipð/Þ

ĈFipð/Þ D̂Fipð/Þ

" #

¼
Ŷ
�1

i Âfip;L̂ Ŷ
�1

i B̂fip;L̂

Ĉfip;L̂ D̂fip;L̂

2

4

3

5:

8
>>>>>>>>>>>>>><

>>>>>>>>>>>>>>:

ð66Þ

Proof Similar proof to the Theorem 1 and omitted here.h

In practice application, the designed filters may be

affected by uncertainty. Furthermore, we consider the fol-

lowing switched T-S fuzzy system contains the parameter

uncertainty:

_xðtÞ ¼
Xri

p¼1

hipðtÞ½ðAip þ DAipÞxðtÞ

þ ðBip þ DBipÞwðtÞ�;

yðtÞ ¼
Xri

p¼1

hipðtÞ½CipxðtÞ þ DipwðtÞ�;

zðtÞ ¼
Xri

p¼1

hipðtÞ½HipxðtÞ þ LipwðtÞ�:

8
>>>>>>>>>>>>>><

>>>>>>>>>>>>>>:

ð67Þ

The uncertainty term is ½DAip;DBip� ¼ UipFiðtÞ½W1ip

;W2ip�, where Uip;W1ip;W2ip are known real constant

matrices, FiðtÞ is an unknown time-varying matrix function

and satisfies FT
i ðtÞFiðtÞ� I. Then, with the same filter

structure as (4), the sufficient condition can be obtained.

Corollary 4 For the switched fuzzy system (67), given

constants a[ 0; b[ 0; c[ 0; e[ 0; lip � 0;/[ aT max

b

and positive integers �L; L̂, if there exist matrices �Xi, �Yi, �Zi,

X̂i, Ŷ i, Ẑi, �P
1
ip;�l,

�P
2
ip;�l,

�P
3
ip;�l, P̂

1

ip;l̂, P̂
2

ip;l̂, P̂
3

ip;l̂,
�Afip;�l, �Bfip;�l,

�Cfip;�l,

�Dfip;�l, Âfip;l̂, B̂fip;l̂, Ĉfip;l̂, D̂fip;l̂,
�l 2 f0; . . .; �Lg, l̂ 2 f0; . . .; L̂g,

such that 8d 2 f0; 1g, v 2 f1; . . .; ri � 1g,

�g 2 f0; . . .; �L� 1g, ĝ 2 f0; . . .; L̂� 1g, ði; jÞ 2 S � S; i 6¼ j

inequalities (21), (22), (23), (27), (28), (29), (30) and

�� ijpq; �gþdð�aÞ\0; ð68Þ

�̂ iipq;ĝþdðbÞ þ �̂ iiqp;ĝþdðbÞ\0; p� q; ð69Þ

�̂ iipq;L̂ðbÞ þ �̂ iiqp;L̂ðbÞ\0; p� q; ð70Þ

hold, where

~� ijpq;mðaÞ ¼
~Xijpq;mðaÞ ~Wijpq

~Uijpq

� � eI 0

� � � e�1I

2

6
4

3

7
5; ð71Þ

~Wijpq ¼ ½W1ip; 0; 0; 0;W1ip; 0�T ; ð72Þ

~Uijpq ¼ ½UT
ip
~X
T

j ;U
T
ip
~Z
T

j ;U
T
ip
~X
T

j ;U
T
ip
~Z
T

j ; 0; 0�T ð73Þ

and other variables are same as Theorem 1. Then, for any

switching signal satisfying s�/þ T max, the filter error

system is globally asymptotically stable with a non-

weighted L2 gain no greater than (10). Besides, the filter

gains can be achieved as (31).

Proof Applying the Schur complement, with (71),

inequality ~� ijpq;mðaÞ\0 implies
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~Xijpq;mðaÞ þ e�1 ~Wijpq
~W
T

ijpq þ e ~Uijpq
~U
T

ijpq\0: ð74Þ

Then, according to Lemma 1, one can conclude that if (74)

satisfied, then the following inequality will hold:

~Xijpq;mðaÞ þ ~UijpqFiðtÞ ~W
T

ijpq þ ~WijpqF
T
i ðtÞ ~U

T

ijpq\0: ð75Þ

Meanwhile, replacing Aip;Bip with Aip þ DAip;Bip þ DBip

in ~Xijpq;mðaÞ of Theorem 1, one will get the left-hand side

of inequality (75). Therefore, from Theorem 1, this corol-

lary can be proved. h

5 Numerical Example

A practical single-link robot arm system is given in this

section to demonstrate the effectiveness of our results.

From [5, 8, 15], the system model can be described as

follows:

€xðtÞ ¼ �migl

Ji
sinðxðtÞÞ � Di

Ji
_xðtÞ þ 1

Ji
uðtÞ; ð76Þ

where i 2 f1; 2; 3g, mi;Di and Ji are the mass, damping and

inertia of the arm, respectively. x(t) denotes the angle of the

arm and we set x1ðtÞ ¼ xðtÞ; x2ðtÞ ¼ _xðtÞ. u(t) is the control

input. Referring to [15], the system parameters can be

achieved as

A11 ¼
0 1

�4:9 � 3

� �

;A12 ¼
0 1

�4:2 � 3

� �

;

A21 ¼
0 1

�4:3 � 3:4

� �

;A22 ¼
0 1

�2:5 � 3:4

� �

;

A31 ¼
0 1

�5:5 � 3:2

� �

;A32 ¼
0 1

�2:9 � 3:2

� �

;

Bip ¼ 0 0:1½ �T ;Cip ¼ 1 0½ �;Dip ¼ 0:2;Hip ¼ 0 1½ �;
Lip ¼ �0:2; i 2 f1; 2; 3g; p 2 f1; 2g;

and the normalized membership functions are

hi1 ¼ ðsin2ðx1ðtÞÞ þ sin2ðx2ðtÞÞÞ=2, hi2 ¼ 1 � hi1. Using

the method of [37], we can set lip ¼ 4.

First, given a ¼ 0:01, b ¼ 0:02, T max ¼ 0:1, / ¼ 0:1,

�L ¼ L̂ ¼ 1, s ¼ 0:2. According to Theorem 1, we will find

the minimum non-weighted L2 gain parameters

c ¼ 0:0531, �c ¼ 0:1063. Due to the space constraints, the

filter gains are omitted here. Assuming the disturbance

input wðtÞ ¼ 2 sinðptÞ expð�tÞ, under the switching signal

shown in Fig. 2, the output signal and its estimation are

shown in Fig. 3. Figure 4 shows the trajectory of the fil-

tering error. The simulation results verify the effectiveness

of our proposed filters.

Then, consider the synchronous H1 filtering problem

and change T max ¼ 0. According to Corollary 3, the non-

Fig. 2 Switching signal rðtÞ

Fig. 3 Output signal z(t) and estimation zFðtÞ without uncertainty

Fig. 4 Filtering error e(t) without uncertainty
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weighted L2 gain can be found as �c ¼ 0:0525, which is less

than the asynchronous one. Therefore, the synchronous

switching has better non-weighted H1 performance.

In addition, if we change �L; L̂, the obtained optimized

non-weighted L2 gains �c are displayed in Fig. 5. It is

obvious that Theorem 1 can get smaller L2 gains than

Corollaries 1 and 2, and thus is less conservative. Actually,

Corollaries 1 and 2 can be seen as special cases of Theo-

rem 1. It also reminds us, from the view of practical

application, obtaining the information of switching instants

online can reduce the conservatism.

Finally, supposed that the switched system has uncer-

tainty and the corresponding parameters are

Uip ¼
0:1 0:5

0:2 0:3

� �

;W1ip ¼
0:2 0:1

0 0:2

� �

;W2ip ¼ 0:2 0½ �T ;

where i 2 f1; 2; 3g; p 2 f1; 2g. Let a ¼ 0:01, b ¼ 0:02,

e ¼ 0:5, T max ¼ 0:1, / ¼ 0:1, �L ¼ L̂ ¼ 1, s ¼ 0:2.

According to Corollary 3, the feasible solution can be

found with c ¼ 0:3568, �c ¼ 0:7141. Under the same dis-

turbance and switching signal, the simulation results are

displayed in Figs. 6 and 7.

6 Conclusion

This article investigates the non-weighted asynchronous

H1 filtering problem for continuous-time switched T-S

fuzzy systems. First, under the assumption that the

switching instants can be detected instantaneously online,

we have designed the filters separately in mismatched and

matched intervals. Based on this idea, a more general

TSFMLF approach is proposed to achieve the sufficient

conditions for the filtering error system with non-weighted

H1 performance. In addition, the conditions under the case

when the switching instants cannot be detected instanta-

neously have also been derived. Comparing these two cases

can be known that obtaining the information of switching

instants can further reduce the conservatism. Furthermore,

we have extended the TSFMLF to research the syn-

chronous switching behavior and parameter uncertainty.

Finally, an example is presented to illustrate the effec-

tiveness of our schemes.
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Fig. 5 Optimized non-weighted L2 gain

Fig. 6 Output signal z(t) and estimation zFðtÞ with uncertainty
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