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Abstract Hospitals’ daily operations have become

increasingly dependent on medical devices. However, the

occurrence of faults is inevitable. Therefore, it is crucial for

hospitals to make timely fault diagnoses and enact the

corresponding measures and improvements. This paper

proposes a novel concept lattice method for the intelligent

diagnosis of medical device faults. To minimize the

influence of uncertain factors, fuzzy sets are used to

accurately express relationships between concepts. First,

the occurrence frequency and severity of each fault type are

extracted based on the collected information. Then, the

fuzzy formal context of occurrent faults and known faults

can be constructed. Next, the corresponding fuzzy concept

lattice is established and visualized using a Hasse diagram.

Finally, the similarity between the concept lattices is cal-

culated and used for fault diagnosis. Here, the weight

factors are determined using the decision-making trial and

evaluation laboratory (DEMATEL) method. A compara-

tive analysis is performed to show that the proposed

method uses simple calculations and is highly accurate.

Keywords Medical devices � Intelligent fault diagnosis �
Concept lattice � Fuzzy sets � DEMATEL

1 Introduction

In modern medicine, medical devices generally include

instruments, devices, appliances, materials, software and

other items that can be used individually or in combination,

such as ventilators, monitors, syringe pumps, infusion

pumps, computed tomography (CT) scans, magnetic reso-

nance imaging, colour Doppler ultrasounds and blood

dialyzers. These devices have become indispensable parts

of modern hospitals and essential tools for hospitals’ nor-

mal work, such as medical treatments, scientific research,

teaching, and ensuring the necessary conditions for sur-

vival. The economic benefits that are created by such

devices also bring about a great proportion of hospitals’

overall benefits [1], which affect the diagnostic abilities

and technical development of hospitals [2]. The installa-

tion, maintenance, repair and disposal of medical devices

are the main tasks of hospitals and are all directly related to

the effectiveness of testing, collaboration and the conti-

nuity of the hospitals’ overall medical work [3]. In daily

applications, most medical devices utilize advanced tech-

nology and are highly precise instruments that can present

multiple faults [4]. That is, in the process of long-term

storage and protection, the performance of these devices

will attenuate as a result of the influence of various factors

[5]. There will be inevitable mechanical and electrical

component faults that result in errors in the output data. In

less severe cases, a patient’s treatment may be stopped

before it is complete. In serious cases, misdiagnoses may

occur, which may even threaten the life and safety of

patients and cause greater difficulties for the hospitals’

overall medical work [6]. In previous studies, some med-

ical errors were found to be caused by device failures,

resulting in the insufficient medication of patients [7]. The

health of patients has deteriorated in numerous instances

& Xia Li

lixia198005@163.com

1 Department of Management Engineering, School of

Economics & Management, Xidian University,

Xi’an 710071, China

2 State Key Laboratory of Cancer Biology, Department of

Pathology, Xijing Hospital and School of Basic Medicine,

Fourth Military Medical University, Xi’an 710032, China

123

Int. J. Fuzzy Syst. (2020) 22(7):2369–2384

https://doi.org/10.1007/s40815-020-00859-0

http://crossmark.crossref.org/dialog/?doi=10.1007/s40815-020-00859-0&amp;domain=pdf
https://doi.org/10.1007/s40815-020-00859-0


due to malfunctioning or misused medical devices [8]. In

medical applications, the stability, safety and reliability of

medical devices are subject to high demands [9]. There-

fore, fault diagnosis plays an important role in ensuring the

reliability of medical diagnoses [10].

In current studies, the accurate detection and assessment

of faults have gradually become important parts of medical

engineering. These tasks also require hospitals to scientif-

ically manage medical devices, ensure their safe use,

strengthen fault diagnosis technology and improve the

quality of their device inspection and maintenance. All

these measures are implemented to effectively reduce the

failure rate of medical devices. In general, faulty medical

devices can be replaced or fixed through professional

maintenance. However, in practical applications, the costs

of such measures are high. The corresponding causes of the

faults are often not clear, and the maintenance methods are

not systematic, which also leads to increased economic

costs, wasted time, wasted resources and other problems

that are not in line with green development [11]. Moreover,

the development of technology means that the original

information management system cannot fully meet the

needs of medical work, especially the needs of managing

medical device fault diagnosis and maintenance. Tradi-

tional fault diagnosis methods based on observations,

opinions and experience have involve more human factors,

which create some problems, such as the lack of effective

quantitative information. Therefore, the comprehensive

analysis, diagnosis and prediction of device faults by

intelligent methods have become popular research topics in

recent years [12]. As shown in Fig. 1, when a device is in

good condition, standard samples are collected. Prepro-

cessing and extracting feature parameters are conducted to

establish a standard database. Then, the relevant informa-

tion of the device can be input using a human–machine

interface (HMI) to establish the knowledge base. When the

device experiences faults, the information is collected by

the sensor and processed by the HMI. Next, state recog-

nition is conducted to obtain the fault diagnosis result.

Finally, maintenance downtime, key monitoring, circuit

monitoring and other measures are carried out to maintain

and protect the device.

In the overall technical process of device fault diagnosis,

obtaining diagnosis results more accurately and faster is the

research emphasis. In this paper, fuzzy sets, concept lat-

tices, and the decision-making trial and evaluation labo-

ratory (DEMATEL) are integrated to study the intelligent

diagnosis of occurrent faults in medical devices. A concept

lattice is a partially ordered set with conceptual elements

[13]. The structured model is derived from the theory of

formal concept analysis (FCA) and has gradually become a

core data analysis tool. In conceptual thinking, the deno-

tation of a concept refers to all objects with the common

essential attributes of the concept, and the connotation

refers to the common essential attributes of all the con-

ceptual objects [14]. The essence of the concept lattice

describes the relation between objects (samples) and attri-

butes (features) and is used to study the deterministic

relation between denotations and connotations. The process

of generating a concept lattice from a dataset, which is

called the formal context in the concept lattice, is essen-

tially a concept clustering process. However, in a realistic

research process, the concept description is always

expressed using uncertain words and language that is

fuzzy. Therefore, this paper improves traditional concept

lattices and makes the following two contributions. First,

the elements of fuzzy sets are introduced into concept

lattices to solve the problem of uncertainty. A device fault

is regarded as a concept and the corresponding concept

lattice is established by describing the uncertain relation-

ship between its denotation and connotation. In previous

calculation processes, the final weight factor was usually

determined by only one expert, which was relatively sub-

jective. In addition, in the real world, the relationship

Fig. 1 The overall technical process of device fault diagnosis
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between device failures is complex, and sometimes there

will be a ‘‘complication’’, that is, a failure caused by

another failure. In fuzzy decision methods, DEMATEL is

more effective in solving a system with uncertain rela-

tionships between factors. This illustrates the second con-

tribution proposed in this paper: the weight factor is

determined using DEMATEL to reduce the subjectivity

and maximize the accuracy of the conceptual expression.

The rest of this paper is as follows: Sect. 2 provides a

literature review. Some concepts, operations and specific

steps of the proposed method are introduced in Sect. 3.

Section 4 uses a case to explain the model. Comparative

analysis is conducted in Sect. 5. Section 6 provides the

managerial insights. Conclusions are drawn in Sect. 7.

2 Literature Review

In this section, the literature will be briefly reviewed from

two perspectives: one is the domestic and foreign studies

on medical device faults; the other is the fault diagnosis

method.

As early as 1985, the United States launched a repre-

sentative device management system called the Hospital

Device Information System (HEIS), the functional design

of which included device management components such as

preventive maintenance. Mashkoor and Biro thought that

some of the reasons for the increased failure rate of modern

medical devices were the increasing functionality and

complexity of the embedded software that was used [15].

Yang et al. proposed using a health diagnosis to determine

the causes of device faults that played important roles in

failure analysis and reliability analysis [16]. After collect-

ing these signals, Lei believed that as a mechanical big data

processing tool, the process of intelligent fault diagnosis

was faster and more efficient than other diagnosis methods,

and the results were more accurate [17]. Kohani and Pecht

analysed the electrostatic discharge (ESD) faults of medi-

cal devices in their database according to five character-

istics: device types, failure types, failure modes, user

activities and environmental conditions [18]. Simultane-

ously, they proposed relevant suggestions to reduce the risk

of failure. Domestic scholars Li and Zhu stated that intel-

ligent fault diagnoses for medical devices, including fault

detection, identification and isolation, should be automat-

ically completed by the systems [19]. The fault diagnosis

model should be oriented towards prediction. The estab-

lishment of a fault information database also had a certain

guiding role in medical research. Li et al. developed a

medical device maintenance management system based on

enterprise resource planning (ERP), which enabled hospi-

tals to determine device faults and carry out maintenance

more effectively and rapidly [20].

When faults occurred, the traditional diagnosis method

mainly depended on prior knowledge and diagnosis

expertise [16]. In specific, a maintenance engineer analysed

and assessed a medical device system based on its com-

position and working principles using maintenance tools,

such as a multimeter or maintenance tester, according to

the fault [21]. In addition, the maintenance engineer’s

maintenance experience was also used to comprehensively

analyse the fault and obtain the fault diagnosis results. In

this way, human factors always significantly affected the

diagnosis results. There were also problems of low accu-

racy and high time consumption. In response to these

problems, in the era of big data, researchers began to use

intelligent methods to detect and diagnose device faults.

Zhang et al. proposed a sensor fault detection

scheme based on the Bayesian network model to optimize

medical body sensor networks (BSNs) and minimize their

error rates [6]. Kaspi et al. used existing bike-sharing

system data that were collected to estimate the probability

of the availability of bicycles and used an equivalent model

to detect locker faults [22]. Genetic algorithms (GAs),

machine learning (ML) and other intelligent methods have

been widely used in various fault diagnoses [23]. Faults in

photovoltaic systems are generally divided into open cir-

cuit (OC) and short circuit (SC) systems. For these two

faults, Hazra et al. proposed meta-heuristic optimization

techniques based on tabu search (TS) and GAs to locate

and monitor the faults more effectively [24]. Yang et al.

accurately classified SC faults in lithium ion batteries by

integrating GA and random forest (RF) [25]. Kaid et al.

used adaptive neural fuzzy reasoning for the fault diagnosis

of photovoltaic modules to monitor solar power plants [26].

Ahmad et al. demonstrated the importance of predictive

modelling in fault detection and diagnosis by comparing

and studying three models, i.e., integrated machine learn-

ing models based on trees, decision trees (DTs) and support

vector regression (SVR) [27]. Yang et al. put forward a set

of system fault automatic diagnosis methods based on the

fuzzy failure mode and effect analysis (FMEA), which

combined fuzzy theory and grey correlation theory [28].

However, in practical applications, not all possible faults

could be represented by the training sample when dealing

with a mechanical system. Therefore, researchers proposed

simulation methods for fault diagnosis [29]. Torkaman

et al. conducted the numerical analysis and simulation of

switched reluctance motor (SRM) faults using the three-

dimensional time-step finite element method (3D-TSFEM)

[30]. They conducted an in-depth study on the influences of

different failures on the change of the power loss of SRMs.

Rehman et al. used dynamic simulation and multi-objective

optimization to study the effects of ten different technical

faults on solar central heating systems [31]. Ates et al.

proposed an adaptive protection scheme that was
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suitable for distributed generation [32]. They showed the

effectiveness of the scheme under various failure condi-

tions using the Institute of Electrical and Electronics

Engineers’ improved 4-node distribution system for the

simulation. In the research and development process of

data analysis, Wille first proposed the concept lattice in

1982 [33], which is also known as the Cralois lattice and

formal concept analysis. After that, Hao et al. proposed a

K-clique group detection algorithm based on formal con-

cept analysis for community detection in social networks

[34]. Singh et al. extended formal concept analysis (FCA)

to methods such as granular computing, fuzzy settings and

interval values and explained the novelty of each extension

through its application [35]. At present, the concept lattice

has been applied in information retrieval [36], digital

library [37], software engineering [38], knowledge dis-

covery [39] and so on. In the description of the concepts,

fuzzy sets were usually applied due to the existing uncer-

tainty. Hence, the establishment and research of fuzzy

relations between concepts had become a hot topic. Singh

et al. proposed an interval-value fuzzy formal concept

lattice algorithm to simplify the corresponding fuzzy con-

cept lattice structure [40]. They pointed out that the pur-

pose of extending formal concept analysis from simple

settings to fuzzy environments was to deal with uncertain

and fuzzy information. De et al. found the hidden corre-

lations amongst heterogeneous elements such as traffic and

weather in smart cities using fuzzy time concept analysis

based on a distributed real-time computing system [41].

The weights in the calculation process are generally

determined using the fuzzy multi-attribute decision-making

(MADM) method. Wang et al. proposed the fuzzy best–

worst method (BWM) to determine the weights based on

the mutual dependence and interaction between the eval-

uation criteria [42]. Chatterjee et al. obtained the corre-

sponding criteria weights by establishing the network

relation map and implementing the rough analytical net-

work process (R’ANP) [43]. Tian et al. combined the fuzzy

analytic hierarchy process (FAHP) with fuzzy G-TOPSIS

(combining grey base analysis and the technique for order

of preference by similarity to ideal solution) method to

determine the influencing criteria weights [44]. However,

these methods do not minimize the complexity in simpli-

fying the problem. DEMATEL was proposed by American

scholars Fontela and Andre in 1974, which is an effective

method for factor analysis and identification [45]. It can

simplify the composition of and relationships between

criteria. Wang et al. considered independent relationships

between criteria by combining interval-valued fuzzy group

decision tracking and the DEMATEL method to determine

weights [46]. Buyukozkan et al. proposed the fuzzy deci-

sion-making trial and evaluation laboratory (IF-DEMA-

TEL) method to manage uncertainty and identify

relationships between criteria [47]. Zhou et al. integrated

the subjective weights that were determined by the fuzzy

DEMATEL method and the objective weights that were

determined by the anti-entropy weight (AEW) to determine

the final weights [48]. In the medical field, Si et al. used the

DEMATEL method to build an interactive network to

identify the key performance indicators (KPIs) of overall

hospital management [49]. Liou et al. combined the AHP,

DEMATEL and the improved Visekriterijumska Opti-

mizacija i Kompromisno Resenje (VIKOR) method to find

the optimal way to improve electronic health record (EHR)

technology [50].

However, in the previous literature, the application of

the fuzzy concept lattice to medical research is rare. Fur-

thermore, studies on fault diagnosis using the concept lat-

tice are also very few. In addition to the subjectivity

existing in the previous methods, the three points embody

the innovations of this paper, which proposes a novel

DEMATEL-fuzzy concept lattice model for medical device

fault diagnosis. The proposed model can better resolve the

uncertainty in data analysis and the results that are obtained

are more accurate.

3 Methodology

3.1 Materials and Methods

In actual scenarios, the relationship between the connota-

tion and extension of concepts is mostly fuzzy and uncer-

tain. For example, in the concept of ‘‘young people with a

high level of consumption’’, ‘‘young people’’ is the deno-

tation (object), and the people of the age to which youth

refers form a fuzzy set. In addition, a ‘‘high level of con-

sumption’’ is a connotation (attribute), which involves

income, clothing, food, housing, transportation, entertain-

ment and other factors. It can only be expressed by a

degree of membership. Therefore, it is necessary to extend

the concept lattice using fuzzy sets. The relevant defini-

tions are as follows [40, 51–53]:

Definition 1 A formal context is a triple KðU;A; IÞ. U ¼
x1; x2; . . .; xnf g is an object set, and each xiði� nÞ repre-

sents an object. A ¼ a1; a2; . . .; amf g is an attribute set, and

each aiði�mÞ represents an attribute. I is the binary rela-

tionship between U and A, where I � U � A. If ðx; aÞ 2 I,

it means that object x possesses attribute a, i.e., xIa.

If 1 represents ðx; aÞ 2 I and 0 represents ðx; aÞ 62 I, the

formal context can be expressed as a table in which all the

entries are either 0 and or 1.
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Definition 2 Let KðU;A; IÞ be a formal context. The

operations on the object set X � U and attribute set B � A

can be defined as follows:

X� ¼ a a 2 A; 8x 2 X;j xIaf g ð1Þ
B� ¼ x x 2 U; 8a 2 B;j xIaf g ð2Þ

If a binary group ðX;BÞ satisfies X� ¼ B and B� ¼ X, then

ðX;BÞ is a formal concept, or simply a concept. The

extension and connotation are denoted by X and B,

respectively.

Definition 3 Let KðU;A; IÞ be the formal context, and

ðX1;B1Þ and ðX2;B2Þ be two concepts.

ðX1;B1Þ� ðX2;B2Þ , X1 � X2ð, B2 � B1Þ ð3Þ

In this case, the relationship between ðX2;B2Þ and

ðX1;B1Þ is that between a super-concept and sub-concept.

The partially ordered set of all concepts of ðU;A; IÞ is

denoted as LðU;A; IÞ and is called the concept lattice.

Definition 4 Each finite partially ordered set ðS; �Þ can

be represented by a Hasse diagram (partially ordered set

diagram). The Hasse diagram can make the conceptual

structure of a given data context clear and easy to under-

stand by realizing the visual representation of lattices.

A circle ‘‘�‘‘ in a Hasse diagram represents a node, and

each node represents an element (concept). If x; y 2 M

satisfies x\y, then the corresponding circle of element y

should be drawn on the corresponding circle of element x.

If x\y and there is no z that satisfies x\z\y, then y

overrides x and a line segment can be used to connect the

two circles. In addition, non-comparable elements can be

drawn on the same layer.

Theorem 1 The binary relation I describes a fuzzy rela-

tion between objects and attributes, which can be expres-

sed by a membership function.

The weight factor of an event is calculated using

DEMATEL [54].

Step 1: Determine the set of the system’s influencing

factors F ¼ F1;F2; . . .;Fnð Þ.
Step 2: Establish the direct-relation matrix Y .

According to the relationship between the influencing

factors, integer numbers from 0 to 4 are used by

decision-makers to score the factors. Within these

integers, 0 represents no influence between two factors,

1 represents a low influence, 2 represents a moderate

influence, 3 represents a high influence, and 4 represents

an extremely high influence. In this way, an n� n direct-

relation matrix Y can be obtained:

Y ¼

0 y12 � � � y1j � � � y1n

y21 0 � � � y2j � � � y2n

� � � � � � � � � � � � � � � � � �
yi1 yi2 � � � 0 � � � yin
� � � � � � � � � � � � � � � � � �
yn1 yn1 � � � ynj � � � 0

2
6666664

3
7777775

ð4Þ

where yij represents the influence of the ith criterion on

the jth criterion.

Step 3: Establish the normalized direct-relation matrix

X.

The normalized matrix X with a value range from 0 to 1

for each element can be obtained by Eq. (5):

X ¼ k � Y; ð5Þ

where k ¼ 1

max
1� i� n

Pn

j¼1
yij

� � ; i; j ¼ 1; 2; . . .; n:

Step 4: Establish the total-relational matrix T .

The total-relational matrix T can be obtained by Eq. (6).

T ¼ tij
� �

n�n
¼ X þ X2 þ X3 þ . . .þ Xk i; j ¼ 1; 2; . . .; nð Þ

ð6Þ

where tij represents the indirect influence of the ith cri-

terion on the jth criterion.

After the reduction operation, we obtain the following:

T ¼ X þ X2 þ X3 þ � � � þ Xk

¼X E þ X þ X2 þ X3 þ � � � þ Xk�1
� �

E � Xð Þ E � Xð Þ�1
h i

¼X E � Xk
� �

E � Xð Þ�1:

Then,T ¼ X E � Xð Þ�1E, when k ! 1;Xk ¼ 0½ 	n�n.

Hence, T can be represented as Eq. (7):

T ¼ X E � Xð Þ�1 ð7Þ

where E is the unit matrix.

Step 5: Calculate the respective sums of the rows and

columns of T .

The row sum is calculated by Eq. (8):

Di ¼
Xn
j¼1

tij

" #

n�1

¼ ti½ 	n�1; i ¼ 1; 2; . . .; n ð8Þ

The column sum is calculated by Eq. (9):

Rj ¼
Xn
i¼1

tij

" #

1�n

¼ tj
� �

1�n
; j ¼ 1; 2; . . .; n: ð9Þ

Step 6: Construct the causal diagram.

The interactions of criteria can be viewed as a causal

diagram, which takes Dþ Rð Þ as the horizontal axis and

D� Rð Þ as the vertical axis. The data in the diagram

above the horizontal axis are classified as the causal

group, and those below are the effect group.
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Step 7: Calculate the criteria weights.

The criteria weights can be calculated using Dþ Rð Þ in

Eq. (10), as follows:

xp ¼
Dþ Rð ÞpPn

p¼1 Dþ Rð Þp
: ð10Þ

3.2 Proposed Method

With a set of known events, the specific steps to diagnose

what happened are as follows:

Step 1: Collect information to construct the fuzzy formal

context K1ðU;A; IÞ of a known event and present the

data in tables.

Step 2: Process the data before establishing the fuzzy

concept lattice using Eq. (11):

Ih u; að Þ ¼ I u; að Þ; if I u; að Þ
 huai

0; if I u; að Þ\huai

� 	
ð11Þ

where h is a constant between 0 and 1. Let uai denote the

average value of the attributes in each column [59].

Step 3: Establish the fuzzy concept lattice L1 of a known

event.

In each column of the fuzzy formal context table,

attributes with values greater than huai keep their

original values, indicated in bold; otherwise, they are

changed to 0. Next, by selecting the attribute values

greater than huai, a fuzzy concept lattice L1 composed of

the corresponding objects can be constructed, and the

Hasse diagram is drawn.

Step 4: Construct the fuzzy formal context K2ðU;A; IÞ
of the occurrent events and process the data using

Eq. (4). The fuzzy concept lattice L2 of the occurrent

events can be obtained.

Step 5: Calculate the weight factor of the events using

DEMATEL [54] with Eqs. (4)–(10).

Step 6: Calculate the similarity between Ci of L1 and the

concepts in each layer of L2.

C1 U1;A1ð Þ and C2 U2;A2ð Þ are two concepts in the

different fuzzy formal contexts of known and occurrent

events, respectively. Next, use the following:

r ¼ max U1j j; U2j jð Þ; ð12Þ
m ¼ max A1j j; A2j jð Þ: ð13Þ

Then, the similarity between them can be calculated by

Eq. (14) [53]:

Sim C1;C2ð Þ ¼
U1 \ U2j j

r
� xþ U1 \ U2j j

r
� A1 \ A2j j

m
� 1 � 2xð Þ þ A1 \ A2j j

m
� x; U1 \ U2 6¼ ;

0; U1 \ U2 ¼ ;

8<
: :

ð14Þ

Step 7: Calculate the similarity between concepts and

the concept lattice.

The concept with the maximum similarity in the layer is

selected to be a set R. The similarity between concepts

Ci and concept lattice L2 is calculated by Eq. (15):

Sim Ci; L2ð Þ ¼

P
Ck2R

Sim Ci;Ckð Þ

n1

ð15Þ

where n1 is the number of concepts in R.

Step 8: Calculate the similarity between concept lattices.

The similarity between L1 and L2 is calculated by

Eq. (16):

Sim L1; L2ð Þ ¼

P
Ci2L1

Sim Ci; L2ð Þ

n2

ð16Þ

where n2 is the number of concepts in L1.

Step 9: Diagnose the occurrent event.

In the calculation results, the event whose concept lattice

has the greatest similarity to the concept lattice of

occurrent events is selected for making a diagnosis.

The structure for the proposed model is shown in Fig. 2.

4 Numerical Study

In this section, the ventilators in each of the departments of

a hospital in Xi’an are used as an example to analyse the

proposed method. Four parts are considered: the trans-

missions (F1), device components (F2), connectors (F3)

and devices (F4). After collecting the first 3 years of his-

torical records and relevant information about the ventila-

tor faults, the known fault types can be roughly divided

into two categories: mechanical faults and electrical circuit

faults. The specific types are shown in Table 1.

4.1 Illustrative Example

When the formal context of fault diagnosis KðU;A; IÞ is

constructed, the object set U is used to represent the set of

specific fault types, and the attribute set A is used to rep-

resent the extent of the faults, such as their frequency and

severity. The binary relationship I is the membership

function of both (Figs. 3, 4).

Step 1: According to the historical repair records, the

fuzzy formal contexts of the two fault types are

constructed as shown in Tables 2 and 3.
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Fig. 2 The structure of the proposed model

Table 1 Fault information of the ventilators

Types Specific types Faults

Mechanical fault Transmission (F1) Obstruction or jamming due to rust or fall into foreign matter

Device components (F2) Deformation, breakage or fracture

Connector (F3) Loose or fall off

Device (F4) Ageing caused by long-term operation

Electrical circuit fault Transmission (F1) Electrostatic caused by dust or insulation failure

Device components (F2) Solder joint falling off, etc.

Connector (F3) Voltage instability or fuse burn-out

Device (F4) Poor contact due to material oxidation

Fig. 3 The fuzzy concept lattice L1ðU;A; IÞ of mechanical faults

Fig. 4 The fuzzy concept lattice L2ðU;A; IÞ of electrical circuit faults
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Step 2: Process the data using Eq. (4). The results are

shown in Tables 2 and 3.

Step 3: Establish the fuzzy concept lattices to draw the

Hasse diagrams as follows:

Step 4: Construct the fuzzy formal context K3ðU;A; IÞ
and fuzzy concept lattice L3ðU;A; IÞ of the occurrent

faults.

Taking the ventilators with no response and alarm sound,

as an example K3ðU;A; IÞ is constructed according to the

occurrent performance and is shown in Table 4.

Then, the Hasse diagram can be drawn as in Figs. 5 and

6.

Step 5: Establish the direct-relation matrix Y .

The scores of the four faults that are given by the

decision-makers are as follows.

Y ¼

0 3 3 2

2 0 2 1

4 4 0 3

3 0 2 0

2
664

3
775

Step 6: Establish the normalized direct-relation matrix X

using Eq. (5).

k ¼ 0:091

X ¼

0 0:273 0:273 0:182

0:182 0 0:182 0:091

0:364 0:364 0 0:273

0:273 0:273 0:182 0

2
664

3
775

Step 7: Establish the total-relational matrix T using

Eqs. (6)–(7).

T ¼

0:464 0:618 0:600 0:486

0:473 0:282 0:420 0:317

0:856 0:776 0:490 0:633

0:555 0:310 0:435 0:248

2
664

3
775

Step 8: Calculate the Di and Rj of T , respectively.

The results that are calculated using Eq. (8) and Eq. (9)

are shown in Tables 5 and 6, respectively.

Step 9: Construct the causal diagram.

Step 10: Calculate the weight of each fault using

Eq. (10) (Tables 7, 8, 9).

Table 2 Fuzzy formal context K1ðU;A; IÞ of mechanical faults

Extents Frequency Severity

Types a b c d e

1 0.2 0.2 0.6 0.1 0.9

2 0.2 0.7 0.1 0.7 0.3

3 0.7 0.1 0.2 0.7 0.3

4 0.8 0.1 0.1 0.2 0.8

uai 0.475 0.275 0.25 0.425 0.575

huai 0.38 0.22 0.2 0.34 0.46

Bold indicates the attribute value that is not less than huai and keeps

its original value

1—transmission, 2—device components, 3—connector, and 4—

device

a—high frequency, b—medium frequency, c—low frequency, d—

severe, and e—non-severe

Suppose h¼ 0:8

Table 3 Fuzzy formal context K2ðU;A; IÞ of electrical circuit faults

Extents Frequency Severity

Types a b c d e

1 0.8 0.1 0.1 0.1 0.9

2 0.7 0.2 0.1 0.2 0.8

3 0.1 0.6 0.3 0.2 0.8

4 0.1 0.8 0.1 0.7 0.3

uai 0.425 0.425 0.15 0.3 0.7

huai 0.34 0.34 0.12 0.24 0.56

Bold indicates the attribute value that is not less than huai and keeps

its original value

1—transmission, 2—device components, 3—connector, and 4—

device

a—high frequency, b—medium frequency, c—low frequency, d—

severe, and e—non-severe

Suppose h¼ 0:8

Table 4 Fuzzy formal context K3ðU;A; IÞ of occurrent faults

Extents Frequency Severity

Types a b c d e

2 0.2 0.3 0.5 0.4 0.6

3 0.6 0.2 0.2 0.7 0.3

4 0.2 0.7 0.1 0.8 0.2

uai 0.33 0.4 0.27 0.63 0.37

huai 0.27 0.32 0.21 0.51 0.29

Bold indicates the attribute value that is not less than huai and keeps

its original value

Fig. 5 The fuzzy concept lattice L3ðU;A; IÞ of occurrent faults
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Step 11: Calculate the similarity between the concepts of

L3ðU;A; IÞ and the concepts of L1ðU;A; IÞ and

L2ðU;A; IÞ using Eq. (14).

As seen from Eq. (14), if the intersection of the object

sets is empty, the similarity is 0. Therefore, the case in

which the object sets do not intersect will not be shown

in the following table. The corresponding weight xp

depends on the intersection of the object sets.

Step 12: Calculate the similarity between the concepts

of L3ðU;A; IÞ and the concepts of L1ðU;A; IÞ and

L2ðU;A; IÞ using Eq. (15). The results are shown in

Tables 10 and 11, respectively.

Step 13: Calculate the similarity between the concepts

of L3ðU;A; IÞ and the concepts of L1ðU;A; IÞ and

L2ðU;A; IÞ using Eq. (16).

Sim L1; L3ð Þ ¼ 0:2023 þ 0:4809 þ 0:327 þ 0:5396 þ 0:1523

5

¼ 0:3404

Sim L2;L3ð Þ¼ 0:7038þ0:2329þ0:4146þ0:2346þ0:6758

5

¼ 0:4523

Step 14: Diagnose the occurrent ventilator faults.

Sim L1; L3ð Þ\Sim L2; L3ð Þ can be obtained based on the

above results. Therefore, the occurrent faults of the

ventilators are electrical circuit faults.

In the above calculation process, the fault with the

greatest similarity is the recommended result of intelligent

diagnosis. The clear comparison result (0.4523[ 0.3404)

obtained by the fuzzy concept lattice accelerates the pro-

cess of diagnosis. In the real world, experts have the

advantage of rich experience and distinctive creative

thinking. However, the application of intelligent diagnosis

can improve the accuracy of the whole process.

4.2 Numerical Evaluation

The historical records of ventilator faults collected in the

first 3 years of the hospital are evaluated as case data,

including 112 cases of mechanical faults and 87 cases of

electrical circuit faults. The fault data of each case contain

the specific representations needed to construct the fuzzy

concept lattice. The above calculation steps are used to

calculate the sample data. In practice, there will second

round of diagnosis and maintenance if the first diagnosis is

not accurate. Therefore, the accuracy of the first diagnosis

and the average running time are taken as the criteria to

compare the experimental results with the actual diagnosis

results. Table 12 shows the diagnosis results of the actual

and proposed methods.

There is a difference of 0.9% and 4.6% in the diagnosis

rate between the two methods. Although the difference is

small, the diagnosis rate of the proposed method is higher

than that of the actual method. In addition, it is obvious that

the proposed method has a shorter running time than the

actual diagnosis method. In real applications, this saves

time in diagnosis, improves the timeless of maintenance

Fig. 6 Causal diagram of faults

Table 5 Computations of the row sum and column sum

Fault types Di Rj

Transmission (F1) 2.168 2.347

Device components (F2) 1.491 1.985

Connector (F3) 2.755 1.945

Device (F4) 1.548 1.684

Table 6 The causal relationships of faults

Faults types Dþ R D� R Group

Transmission (F1) 4.515 - 0.179 Effect

Device components (F2) 3.476 - 0.494 Effect

Connector (F3) 4.700 0.810 Cause

Device (F4) 3.232 - 0.137 Effect

Table 7 The weight of each

fault
Faults Types Transmission (F1) Device component (F2) Connector (F3) Device (F4)

xp 0.284 0.218 0.295 0.203
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Table 8 The similarity

between the concepts of

L3ðU;A; IÞ and the concepts of

L1ðU;A; IÞ

Concepts of occurrent fault Concepts of mechanical fault xp r m Similarity

({2,3},{e}) ({1,3},{c}) 0.295 2 1 0.1475

({2,3},{d}) 0.257 2 1 0.257

({3,4},{a}) 0.295 2 1 0.1475

({2},{b,d}) 0.218 2 2 0.109

({3},{a,c,d}) 0.295 2 3 0.1475

({3,4},{d}) ({1,3},{c}) 0.295 2 1 0.1475

({1,4},{e}) 0.203 2 1 0.1015

({2,3},{d}) 0.295 2 1 0.6475

({3,4},{a}) 0.249 2 1 0.249

({3},{a,c,d}) 0.295 2 3 0.3142

({4},{a,e}) 0.203 2 2 0.1015

({2},{c,e}) ({2,3},{d}) 0.218 2 2 0.109

({2},{b,d}) 0.218 1 2 0.218

({3},{a,d,e}) ({1,3},{c}) 0.295 2 3 0.1475

({2,3},{d}) 0.295 2 3 0.3142

({3,4},{a}) 0.295 2 3 0.3142

({3},{a,c,d}) 0.295 1 3 0.765

({4},{b,d}) ({1,4},{e}) 0.203 2 2 0.1015

({3,4},{a}) 0.203 2 2 0.1015

({4},{a,e}) 0.203 1 2 0.203

Table 9 The similarity

between the concepts of

L3ðU;A; IÞ and the concepts of

L2ðU;A; IÞ

Concepts of occurrent fault Concepts of electrical circuit fault xp r m Similarity

({2,3},{e}) ({1,2,3},{e}) 0.257 3 1 0.7523

({1,2},{a,e}) 0.218 2 2 0.359

({1,3},{e}) 0.295 2 1 0.6475

({2,3},{e}) 0.257 2 1 1

({3,4},{b}) 0.295 2 1 0.1475

({2},{a,e}) 0.218 2 2 0.359

({3},{b,c,e}) 0.295 2 3 0.3142

({3,4},{d}) ({1,2,3},{e}) 0.295 3 1 0.0983

({1,3},{e}) 0.295 2 1 0.1475

({2,3},{e}) 0.295 2 1 0.1475

({3,4},{b}) 0.249 2 1 0.249

({3},{b,c,e}) 0.295 2 3 0.1475

({4},{b,d}) 0.203 2 2 0.3515

({2},{c,e}) ({1,2,3},{e}) 0.218 3 2 0.2757

({1,2},{a,e}) 0.218 2 2 0.359

({2,3},{e}) 0.218 2 2 0.359

({2},{a,e}) 0.218 1 2 0.609

({3},{a,d,e}) ({1,2,3},{e}) 0.295 3 3 0.2422

({1,3},{e}) 0.295 2 3 0.3142

({2,3},{e}) 0.295 2 3 0.3142

({3,4},{b}) 0.295 2 3 0.1475

({3},{b,c,e}) 0.295 1 3 0.53

({4},{b,d}) ({3,4},{b}) 0.203 2 2 0.3515

({4},{b,d}) 0.203 1 2 1
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and can also reduce the phenomenon of service faults due

to device faults.

5 Comparative Analysis

In this section, the advantages are highlighted by com-

paring the results of the proposed method, a typical three-

layer back propagation neural network (BPNN) and fuzzy

fault tree analysis. The fault data of ventilators in the

hospital in the first half of 2019 are analysed and the results

are shown in Tables 13 and 14.

The structure of the BPNN used for comparison is set as

follows:

Setting 1: The number of neurons used for input is set to

8 because there are 8 specific fault types that are

mentioned in Sect. 4.

Setting 2: According to Kolmogorov’s theorem, if there

are n neurons in the input layer, then there are 2nþ 1

neurons in the hidden layer [55]. Therefore, this paper

sets 17 neurons in the hidden layer.

Setting 3: The output result is a mechanical fault or

electrical circuit fault, so there are 2 neurons in the

output layer.

Setting 4: The training data are from the first 3 years of

historical records and the relevant information about the

ventilator faults of the abovementioned hospital in

Xi’an.

As seen from Table 13, the results obtained by the three

methods are very similar, which proves that the proposed

method is feasible and reasonable. The differences in

Table 14 are as follows:

(1) Compared with the BPNN, the proposed method has

certain advantages in terms of diagnosis rate and

running time. The structure of the BPNN will be

more complicated if there is too much input

information. The training time and costs will also

greatly increase and may even reduce the perfor-

mance of the network. Nevertheless, the proposed

method based on the fuzzy concept lattice in this

paper has powerful classification and analysis func-

tions that can obtain results more accurately and

rapidly; thus, preventative measures can be quickly

taken in response to the faults that occurred.

(2) The evaluation of the performance of the fuzzy fault

tree and the proposed method shows that they are

basically similar. However, in real scenarios, the

high accuracy of the fuzzy fault mechanism required

by fault tree cannot be achieved. In addition, fuzzy

Table 10 The similarity between the concepts of L3ðU;A; IÞ and L1ðU;A; IÞ

Concepts of occurrent fault Concepts of mechanical fault Similarity Whether be selected Sim Ci;L1ð Þ

({2,3},{e}) ({1,3},{c}) 0.1475 (0.257 ? 0.1475)/2 = 0.2023

({2,3},{d}) 0.257 Selected

({3,4},{a}) 0.1475

({2},{b,d}) 0.109

({3},{a,c,d}) 0.1475 Selected

({3,4},{d}) ({1,3},{c}) 0.1475 (0.6475 ? 0.3142)/2 = 0.4809

({1,4},{e}) 0.1015

({2,3},{d}) 0.6475 Selected

({3,4},{a}) 0.249

({3},{a,c,d}) 0.3142 Selected

({4},{a,e}) 0.1015

({2},{c,e}) ({2,3},{d}) 0.109 Selected (0.109 ? 0.218)/2 = 0.327

({2},{b,d}) 0.218 Selected

({3},{a,d,e}) ({1,3},{c}) 0.1475 (0.3142 ? 0.765)/2 = 0.5396

({2,3},{d}) 0.3142 Selected

({3,4},{a}) 0.3142

({3},{a,c,d}) 0.765 Selected

({4},{b,d}) ({1,4},{e}) 0.1015 Selected (0.1015 ? 0.203)/2 = 0.1523

({3,4},{a}) 0.1015

({4},{a,e}) 0.203 Selected
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fault tree generally does not describe the fault

degree. However, the numerical values are all

represented in this paper. With the whole fault

diagnosis system, the information obtained by the

proposed method can be more comprehensive than

that obtained by the fuzzy fault tree and the results

can be more accurate.

In addition, it is necessary to compare the existing

methods of medical device fault diagnosis to further

demonstrate the improvement from the proposed method.

The two models are chosen from two papers of Zhang

et al., and they effectively diagnosed faults using a hidden

Markov model (HMM) in 2016 [10] and a Bayesian net-

work model in 2018 [6]. However, the two models do not

fully consider the correlation between the observed objects

due to independence. The proposed model in this paper can

more accurately describe the relationship between objects,

but there are still some limitations. There are many ways to

construct a concept lattice, and the results of different

methods may be different. Therefore, the results in this

paper only represent the proposed method, which means

that they are not comprehensive.

6 Managerial Insights

(1) Maintain medical devices regularly on a planned

schedule

The operating state of a device should be tested

periodically. If the device is found to have potential

problems, the hospital must immediately take mea-

sures to address it. This also sets higher requirements

for engineers, who need to be proficient in the

structure and working principle of the device. They

should have rich experience and proficient operation

skills.

(2) Establish a fault information database of medical

devices

Fault information resource databases can strengthen

the collection, classification, analysis and utilization

of medical device fault information so that device

maintenance is carried out more smoothly and has a

Table 11 The similarity between the concepts of L3ðU;A; IÞ and L2ðU;A; IÞ

Concepts of occurrent fault Concepts of electrical circuit fault Similarity Whether be selected Sim Ci; L2ð Þ

({2,3},{e}) ({1,2,3},{e}) 0.7523 Selected (0.7523 ? 1?0.359)/3 = 0.7038

({1,2},{a,e}) 0.359

({1,3},{e}) 0.6475

({2,3},{e}) 1 Selected

({3,4},{b}) 0.1475

({2},{a,e}) 0.359 Selected

({3},{b,c,e}) 0.3142

({3,4},{d}) ({1,2,3},{e}) 0.0983 Selected (0.0983 ? 0.249 ? 0.3515)/3 = 0.2329

({1,3},{e}) 0.1475

({2,3},{e}) 0.1475

({3,4},{b}) 0.249 Selected

({3},{b,c,e}) 0.1475

({4},{b,d}) 0.3515 Selected

({2},{c,e}) ({1,2,3},{e}) 0.2757 Selected (0.2757 ? 0.359 ? 0.609)/3 = 0.4146

({1,2},{a,e}) 0.359 Selected

({2,3},{e}) 0.359

({2},{a,e}) 0.609 Selected

({3},{a,d,e}) ({1,2,3},{e}) 0.2422 Selected (0.2422 ? 0.3142 ? 0.1475)/3 = 0.2346

({1,3},{e}) 0.3142 Selected

({2,3},{e}) 0.3142

({3,4},{b}) 0.1475

({3},{b,c,e}) 0.53 Selected

({4},{b,d}) ({3,4},{b}) 0.3515 Selected (0.3515 ? 1)/2 = 0.6758

({4},{b,d}) 1 Selected
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greater effect. A database can not only quickly train

excellent maintenance engineers, but also improve

digital construction and promote medical device

maintenance communication, resource sharing, feed-

back and so on.

(3) Ensure detailed device management

Informationization is widely used in the medical

industry. In current medical device maintenance

management, maintenance personnel not only need

to have comprehensive technology maintenance

skills but should also keep a record of related device

maintenance management work. Maintenance files

can be established to better grasp the situation of

devices and solve the fault in a timely manner.

Maintenance records require technicians to register

the work on each device in detail and to classify and

manage medical devices.

(4) Increase the capital investment in medical devices

and improve maintenance quality

The maintenance of medical devices is strongly

technical work, and the means of maintenance are

complex. The personnel of the device management

department can express the latest ideas to hospital

management to increase the capital investment in

medical devices and improve management ability.

The comprehensive quality of maintenance person-

nel should also be increased to ensure the quality of

device maintenance.

(5) Improve the quality of medical device management

personnel

The relevant departments need to build a team of

Table 13 Diagnosis results of the three methods

Date Faults Diagnosis results

BPNN Fuzzy fault tree The proposed method

January 10th Power-off with alarm sound Electrical circuit Electrical circuit Electrical circuit

January 28th Monitor black screen Mechanical Mechanical Mechanical

February 15th Monitor black screen Mechanical Mechanical Mechanical

February 20th Power-off Electrical circuit Electrical circuit Electrical circuit

March 4th No gas output after startup Electrical circuit Electrical circuit Electrical circuit

March 20th Oxygen concentration alarm Electrical circuit Mechanical Mechanical

March 31st Normal air supply but with alarm sound Mechanical Mechanical Mechanical

April 5th Key failure Electrical circuit Electrical circuit Electrical circuit

April 19th Normal air supply but with alarm sound Mechanical Mechanical Mechanical

April 29th Insufficient patient inhalation Electrical circuit Mechanical Mechanical

May 2nd Large error between oxygen concentration output and setting Mechanical Electrical circuit Electrical circuit

May 9th Low breathing rate alarm Mechanical Mechanical Mechanical

May 18th Insufficient patient inhalation Mechanical Mechanical Mechanical

May 30th Key failure Electrical circuit Electrical circuit Electrical circuit

June 17th Loss of air pressure Mechanical Mechanical Mechanical

June 24th Monitor black screen Mechanical Electrical circuit Mechanical

Table 12 The comparative results of the actual and proposed method

Diagnosis results First diagnosis

numbers

Misdiagnosis

numbers

Diagnosis rate

(%)

Average running time

(min)

Mechanical faults The proposed

method

91 21 81.25 5

The actual method 90 22 80.35 27

Electrical circuit

faults

The proposed

method

74 13 85.06 7

The actual method 70 17 80.46 30
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high-quality talent and hire managers with higher

professional quality who are required to have

maintenance and management experience with med-

ical devices and to master advanced work skills. At

the same time, it is necessary to conduct periodic

training for staff so that they can master all kinds of

advanced technologies and find faults and problems

in medical devices in a timely manner.

7 Conclusions

In the context of the rapid development of modern medical

devices, the maintenance, control and testing of medical

devices have become increasingly crucial. These measures

are also of great significance for clinical diagnosis and

treatment. Improving the efficiency and accuracy of med-

ical device fault diagnosis can improve the ability of

technical personnel to address faults and promote the

overall performance of the whole hospital. This paper

provides a scientific and effective method for medical

device fault diagnosis that uses a novel decision-making

method based on the DEMATEL-fuzzy concept lattice.

The conclusions of this study are as follows:

(1) The concept lattice clearly describes the association

between objects and attributes. The fault types are

considered as the objects, and the frequency and

severity of faults are considered as the attributes for

the research in this paper.

(2) The generated Hasse diagram directly reflects the

reasoning process. The construction and application

of the concept lattice based on medical device fault

diagnosis are more intuitive and concise than general

diagnosis decision-making.

(3) In an uncertain environment, adding fuzzy set

elements in the research can better address the

problem of uncertainty in the concept description.

(4) In fuzzy decision-making methods, DEMATEL is

more suitable for a system with uncertain relations

amongst its factors. Using the DEMATEL method to

determine the weight factor can eliminate the

subjectivity problem in the calculation process and

make the result more accurate.

(5) The ventilator is taken as an example to explain the

specific operation of the proposed model in a case

study.

(6) The proposed method in this paper is compared with

a BPNN, a fuzzy fault tree and other existing

methods of medical device fault diagnosis. The

results verify the effectiveness of the proposed

method. Moreover, the differences between the

different methods are illustrated through a process

comparison to highlight the advantages of the

proposed method.

As a future research direction, the proposed method can

be further extended to establish a concept lattice of more

specific faults to analyse and diagnose occurrent faults in a

more specific and detailed way. In addition, in a case in

which the data scale is large and there are many core

attributes, the layout optimization of the Hasse diagram

becomes a major point to be solved in the study. In the

existing research on concept lattices, attribute reduction is

also widely used. When attribute reduction is applied in the

fault diagnosis of medical devices, it can delete redundant

attributes and simplify diagnostic rules, which can be used

for more test samples.
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45. Fontela, E., André, G.: DEMATEL: progress achieved. Futures

6(4), 361–363 (1974)

46. Wang, Z., Ren, J., Goodsite, M.E., Xu, G.: Waste-to-energy,

municipal solid waste treatment, and best available technology:

comprehensive evaluation by an interval-valued fuzzy multi-cri-

teria decision-making method. J. Clean. Prod. 172, 887–899

(2018)
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