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Abstract In risk investment, investors have to rely on

uncertain information when it is difficult to obtain enough

precise data. Dual hesitant fuzzy set (DHFS) is more

applicable to deal with uncertain information because it

involves membership degrees and non-membership

degrees, which can validly describe positive and negative

information, respectively. Although there has been

research on decision-making based on the DHFS, the focus

still remains on ranking the alternatives and choosing the

best one, which cannot help investors to find the optimal

portfolios. Therefore, to solve this problem, we mainly

propose two novel portfolio selection models based on the

DHFS in this paper. Firstly, we propose a Max-score dual

hesitant fuzzy portfolio selection model with information

preference (Model 3) for investors focusing on returns

regardless of risks. Secondly, to consider the risks of

portfolios, we improve Model 3 and develop a score-de-

viation dual hesitant fuzzy portfolio selection model with

information preference and risk appetite (Model 5).

Finally, a case study is conducted to highlight the effec-

tiveness of the proposed models. A detailed sensitivity

analysis and an efficient frontier analysis show that Model

5 can validly capture investors’ information preferences

and risk appetites. Furthermore, compared with the hesitant

fuzzy portfolio model, Model 5 can offer more options to

the investors with different information preferences.

Keywords Dual hesitant fuzzy set � Portfolio selection �
Score-deviation � Information preference � Risk appetite

1 Introduction

Markowitz’s mean–variance model [1] forms the founda-

tion of the modern portfolio theory, which focuses on the

relationship between returns and risks. Based on

Markowitz’s theory, a lot of research has been carried out.

Sharpe [2] simplified the mean–variance model by using

stock market index. Mao [3] developed a mean-semi-

variance model. Best and Hlouskova [4] took research on

portfolio selection model with uncorrelated and bounded

assets. Basak and Shapiro [5] explored the portfolio models

with Value-at-Risk-Based risk management. However,

most of these models above are based on precise data,

which are sometimes difficult to obtain. Therefore, inves-

tors have to rely on qualitative data in real decision-making

process.

To deal with uncertain information, fuzzy theories have

been developed, such as the fuzzy set [6], the type-2 fuzzy

set [7], the intuitionistic fuzzy set (IFS) [8], and the hesitant

fuzzy set (HFS) [9]. Based on these fuzzy theories, some

portfolio selection models have been proposed. Watada

[10] studied the fuzzy portfolio selection and its application

in decision-making. Tanaka and Guo [11] proposed a

portfolio selection model based on upper and lower expo-

nential possibility distributions. Deng and Pan [12] com-

pared the multi-objective portfolio selection models based

on intuitionistic fuzzy optimization. Zhou and Xu [13]

proposed portfolio selection models for general investors

and risk investors under hesitant fuzzy environment. Zhou

et al. [14] developed a hesitant fuzzy portfolio selection

model based on prospect theory to consider the psycho-

logical behaviors of experts.

Among fuzzy theories, the dual hesitant fuzzy set

(DHFS) [15] is more applicable to describe uncertain

information because it not only overcomes the IFS’s
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limitation that only one membership degree and one non-

membership degree cannot comprehensively describe

information, but also solves the HFS’s problem that

membership degree is powerless to express both positive

and negative information. Recently, the research on the

DHFS has achieved great progress in three aspects. (1)

Some basic concepts and operators are developed, includ-

ing aggregation operators [16], distance and similarity

measures [17], correlation coefficient measures [18] and

entropy measures [19]. (2) Some extended theories based

on the DHFS have been proposed, such as the probabilistic

dual hesitant fuzzy set (PDHFS) [20], the dual hesitant

fuzzy rough set (DHFRS) [21], and the dual hesitant

bipolar fuzzy set (DHBFS) [22]. (3) Practical decision-

making models have been developed, such as project

assignment [23], teacher evaluation [24], and town selec-

tion for land policy [25].

The DHFS has also been applied in the investment area

[26–28] to describe the information of stocks and help

investors make investment decisions. However, it is worth

noting that: (1) the models mentioned above mainly focus

on selecting one stock or company to invest, but not on the

portfolio selection under dual hesitant fuzzy environment.

(2) Portfolio selection models based on the HFS [13] and

IFS [29] have been properly proposed, but the similar

model based on the DHFS cannot be found. It is well

known that the DHFS is more valid in dealing with

uncertain information. If the investment information is

described by DHFSs and an investor wants to find an

optimal portfolio, no applicable model can be used to

satisfy the investor’s requirement. Therefore, to solve this

problem, it is necessary to develop some new portfolio

selection models based on the DHFS.

To build portfolio selection models based on the DHFS,

investors have to evaluate stocks according to some crite-

ria. Different criteria usually have different importance

degrees, so determining criteria weights is necessary.

Generally, criteria weights can be divided into two cate-

gories: subjective weights and objective weights. Subjec-

tive weights are derived from subjective preference

information on criteria provided by decision-makers

[30, 31]. In contrast, objective weights are obtained from

the original evaluation information. One representative

method of objective weights is the entropy method

[32, 33], in which the criteria with bigger entropy values

will be assigned smaller weights. Under dual hesitant fuzzy

environment, there has also been some research on criteria

weights [34–36]. In financial environment, it is difficult for

investors to provide valid preference information on cri-

teria because of the lack of precise data. Therefore, to

better make use of the original information of DHFSs, the

entropy method [32] is extended to dual hesitant fuzzy

environment and used to calculate the objective weights of

criteria in this paper.

When the information of stocks has been well processed,

portfolio selection models can be built based on the DHFS.

In this paper, we mainly propose two novel models under

the dual hesitant fuzzy environment. Firstly, we propose a

Max-score portfolio selection model (Model 3) for inves-

tors focusing on returns regardless of risks. In Model 3, a

parameter a is defined to describe investors’ information

preferences in terms of returns. Secondly, to consider the

risks of portfolios, we improve Model 3 and develop a

score-deviation portfolio selection model (Model 5) for

investors with different information preferences and risk

appetites. In Model 5, another two parameters f and b are

defined to describe investors’ risk appetites and informa-

tion preferences in terms of risks, respectively. Finally, we

conduct a case study to illustrate the effectiveness of the

proposed models. A detailed sensitivity analysis and an

efficient frontier analysis are conducted to show that Model

5 can validly capture investors’ information preferences

and risk appetites. Moreover, Model 5 is compared with the

hesitant fuzzy portfolio selection model to highlight its

wider application.

This paper is organized as follows. In Sect. 2, the basic

definitions and operations of the DHFS are reviewed. In

Sect. 3, the calculation method of criteria weights based on

the DHFS is illustrated. In Sect. 4, we propose a Max-score

dual hesitant fuzzy portfolio selection model with infor-

mation preference. In Sect. 5, we develop a score-deviation

dual hesitant fuzzy portfolio selection model with infor-

mation preference and risk appetite. In Sect. 6, two con-

struction processes of the proposed portfolio selection

models are summarized. In Sect. 7, a case study is con-

ducted to show the availability of the proposed models.

Conclusions are obtained in Sect. 8.

2 Preliminaries

In this section, we briefly introduce some important con-

cepts about the DHFS and the basic operations of DHFSs.

Then, we explain the definitions of returns and risks under

dual hesitant fuzzy environment.

2.1 Dual Hesitant Fuzzy Set

Definition 1 [15] Let X be a fixed set, a DHFS D on X is

described as:

D ¼ x; hðxÞ; gðxÞijx 2 Xhf g; ð1Þ

where hðxÞ and gðxÞ are two sets of values in ½0; 1�,
denoting the possible membership degrees and non-mem-

bership degrees of x 2 X to the set D, respectively, such
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that c 2 hðxÞ, g 2 gðxÞ, 0� c; g� 1, cþ ¼ maxfcjc 2
hðxÞg, gþ ¼ maxfgjg 2 gðxÞg and 0� cþ þ gþ � 1. For

convenience, the pair d ¼ hðxÞ; gðxÞih is called a dual

hesitant fuzzy element (DHFE) and is denoted by

d ¼ h; gih .

Definition 2 [15] Let d ¼ h; gih be a DHFE, the score

function of d is

S ¼ 1

#h

X

c2h
c� 1

#g

X

g2g
g; ð2Þ

where #h and #g are the numbers of elements in h and g,

respectively. Let Sh ¼ 1
#h

P
c2h c and Sg ¼ 1

#g

P
g2g g,

where Sh is the mean of membership degrees and Sg is the

mean of non-membership degrees, then

S ¼ Sh � Sg: ð3Þ

Definition 3 [37] Let d ¼ h; gih be a DHFE. Denote

Stdm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

#h

X

c2h
ðc� ShÞ2

s
ð4Þ

and

Stdn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

#g

X

g2g
ðg� SgÞ2

s
; ð5Þ

where Stdm is the standard deviation of membership

degrees of d and Stdn is the standard deviation of non-

membership degrees of d. Stdm and Stdn reflect the degree

of volatility when a decision-maker determines the values

of elements in the DHFE. The larger the values of Stdm and

Stdn, the more volatile the data determined by the decision-

maker.

According to Definition 3, we define the deviation of the

DHFE as follows.

Definition 4 Let d ¼ h; gih be a DHFE, the deviation

function of d is

V ¼ 1

#h

X

c2h
ðc� ShÞ2 þ

1

#g

X

g2g
ðg� SgÞ2; ð6Þ

where Sh ¼ 1
#h

P
c2h c and Sg ¼ 1

#g

P
g2g g. Let Vh ¼

1
#h

P
c2h ðc� ShÞ2 and Vg ¼ 1

#g

P
g2g ðg� SgÞ2, where Vh is

the deviation of membership degrees and Vg is the devia-

tion of non-membership degrees, then

V ¼ Vh þ Vg: ð7Þ

Let d1 and d2 be two DHFEs, the comparison laws

between them are defined as follows:

(1) If Sd1 [ Sd2 , then d1 is superior to d2, denoted by

d1 � d2.

(2) If Sd1\Sd2 , then d1 is inferior to d2, denoted by

d1 � d2.

(3) If Sd1 ¼ Sd2 , then

(I) if Vd1\Vd2 , then d1 � d2;

(II) if Vd1 [Vd2 , then d1 � d2;

(III) if Vd1 ¼ Vd2 , then d1 is equivalent to d2,

denoted by d1 � d2.

2.2 Operations of DHFSs

Let d1 ¼ h1; g1ih and d2 ¼ h2; g2ih be two DHFEs, and

k[ 0 be a parameter. The basic operations of them are

defined as follows [15]:

1. d1 	 d2 ¼ [c12h1;c22h2fc1 þ c2 � c1c2g;[g12g1;g22g2
�

fg1 g2gi;
2. d1 
 d2 ¼ [c12h1;c22h2fc1c2g;

�
[g12g1;g22g2fg1þ g2 �

g1 g2gi;
3. kd1 ¼ [c12h1f1� ð1� c1Þ

kg;[g12g1fgk1g
ED
;

4. dk1 ¼ [c12h1fck1g;[g12g1f1� ð1� g1Þkg
ED
:

So far, the score function, deviation function, compar-

ison laws and operations of DHFEs have been well defined.

In the next section, the definitions of returns and risks in

dual hesitant fuzzy portfolios are explained.

2.3 Returns and Risks Under Dual Hesitant Fuzzy

Environment

According to Markowitz’s mean–variance model [1], the

mean and variance of stock data represent the return and

risk, respectively. However, statistics data are sometimes

difficult to obtain and process in practical investment. For

some new companies, there are even no useful data in the

stock market, which makes it difficult to find the optimal

investment proportions of new stocks. Therefore, proper

definitions are needed to describe returns and risks under

dual hesitant fuzzy environment.

Based on the model proposed by Zhou and Xu [13] and

the definitions above, it can be found that Definition 2 is

consistent with the definition of the mean. Meanwhile,

Definition 4 describes the deviation degree from score

value in a DHFE, which reflects the volatility degree of a

decision-maker when he evaluates the stocks. The larger

the value of deviation, the more volatile the data. There-
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fore, the score function of Eq. (3) and the deviation func-

tion of Eq. (7) are used to measure returns and risks,

respectively, under dual hesitant fuzzy environment.

3 Calculation Method of Criteria Weights Based
on Dual Hesitant Fuzzy Entropy

To better make use of the original information in DHFSs,

we apply an entropy method to calculate the objective

criteria weights in this paper. This method is similar to that

proposed by Chen and Li [32]. The difference is that our

method adopts dual hesitant fuzzy entropy, whereas the

method of Chen and Li [32] adopts intuitionistic fuzzy

entropy.

3.1 Entropy Measure of the DHFS

To determine the stability of the DHFS, Zhao and Xu [19]

proposed an entropy measure. However, Ren et al. [25]

pointed out that this entropy measure is not applicable

when the numbers of elements in membership degree and

non-membership degree are not equal, so they proposed a

new entropy measure. In portfolio selection, the numbers

of elements in membership degree and non-membership

degree are generally different because of uncertainty.

Therefore, the entropy [25] is used to calculate criteria

weights in this paper.

Definition 5 [25] Let D be a DHFS, the entropy measure

of D can be defined as:

EðDÞ ¼ 1

m

Xm

i¼1

1

ð#hdiÞ � ð#gdiÞ
X

c2hdi ;g2gdi

1� jc� gjk þ ð1� c� gÞk

2

0
@

1
A;

ð8Þ

where m is the number of DHFEs in D, di ¼ hdi ; gdih i is a
DHFE in D. In this paper, let k ¼ 1, then the entropy

measure of the DHFE di can be denoted as:

EðdiÞ ¼
1

ð#hdiÞ � ð#gdiÞ
X

c2hdi ;g2gdi

1� jc� gj þ ð1� c� gÞ
2

:

ð9Þ

3.2 Calculation Process of Criteria Weights Based

on Dual Hesitant Fuzzy Entropy

Assume that there are m alternatives Aiði ¼ 1; 2; . . .;mÞ and
n criteria Cjði ¼ 1; 2; . . .; nÞ. The dual hesitant fuzzy deci-

sion matrix M is

ð10Þ

where dij ¼ hij; gij
��
is the performance value of Ai under

Cj.

Step 1. Calculate the entropy value of each DHFE dij.

Each performance value dij in the decision matrix M is

then turned into an entropy value Eij based on Eq. (9).

The entropy matrix M0 is

ð11Þ

Step 2. Calculate the criteria weights by applying the

following transformation:

kj ¼
1�

Pm
i¼1 Kij

n�
Pn

j¼1

Pm
i¼1 Kij

; ð12Þ

where kj is the weight value of the criterion Cj�Kij is the

normalized value of Eij based on Eq. (13):

Kij ¼
Eij

max
i
ðEijÞ

: ð13Þ

There is another dual hesitant fuzzy entropy method

proposed by Chen et al. [36], which normalizes Eij based

on Kij ¼ Eij

m
. It is obvious that

Pm
i¼1 Kij ¼ 1

m

Pm
i¼1 Eij focu-

ses on averaging the entropy values under each criterion.

However, our method normalizes Eij by using Eq. (13),

which measures the closeness of Eij to the maximum

entropy value under the criterion Cj. In risk investment, the

stock with the highest entropy value is the most unsta-

ble and can be an important reference point for decision-

makers. Therefore, Eq. (13) is more suitable and adopted in

this paper. Next, an example is given to illustrate the cal-

culation process of our entropy method.

Example 1 Assume that there are two alternatives Aiði ¼
1; 2Þ and two criteria Cjði ¼ 1; 2Þ. The dual hesitant fuzzy

decision matrix M is
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Step 1. The entropy matrix M0 is

where E11 ¼ 1
2
� 1�j0:3�0:5jþð1�0:3�0:5Þþ1�j0:4�0:5jþð1�0:4�0:5Þ

2
¼

0:5 and other entropy values can be obtained similarly

based on Eq. (9).

Step 2. The weight values of C1 and C2 are 0.5455 and

0.4545, respectively, where k1 ¼ 1
2�3:65 � 1� 0:5

0:5þ
��

0:45
0:5 Þ� ¼ 0:5455 and k2 ¼ 1

2�3:65 � 1� 0:6
0:6 þ 0:45

0:6

� �� �
¼

0:4545:

4 Max-Score Dual Hesitant Fuzzy Portfolio
Selection Model with Information Preference

In Sect. 2, returns and risks under dual hesitant fuzzy

environment have been well defined. In this section, we

suppose that investors only want to obtain the maximum

returns without taking into account the risks, so we propose

a Max-score portfolio selection model with information

preference under dual hesitant fuzzy environment.

4.1 Max-Score Dual Hesitant Fuzzy Portfolio

Selection Model

In this section, we propose a Max-score dual hesitant fuzzy

portfolio selection model. Assume that there are m new

stocks fa1; a2; . . .; ai; . . .; amg and n criteria

fC1;C2; . . .;Cj; . . .;Cng. An investor wants to put a fund on
these stocks, but cannot get enough quantitative data.

Therefore, the investor collects qualitative data represented

by a dual hesitant fuzzy matrix M ¼ ½dij�m�n, where dij ¼
hij; gij

��
ði ¼ 1; 2; . . .;m; j ¼ 1; 2; . . .; nÞ refers to the dual

hesitant fuzzy information of the stock ai with respect to

the criterion Cj. Firstly, the criteria weights kjðj ¼
1; 2; . . .; nÞ can be obtained based on the entropy method in

Sect. 3. Then, the DHFEs of each stock are aggregated and

the dual hesitant fuzzy matrix M ¼ ½dij�m�n is transformed

into an aggregated decision matrix M ¼ ½di�m�1 based on

Eq. (14), where diði ¼ 1; 2; . . .;mÞ is the aggregated DHFE

of the stock ai.

di ¼ hi; gi
� �

¼ 	n
j¼1kjdij

¼ [cij2hijf1�
Yn

j¼1

ð1� cijÞ
kjg;[gij2gij

Yn

j¼1

gkjij

( )* +
:

ð14Þ

Finally, the optimal investment proportions can be

obtained by using Model 1.

Model 1

maxRðWÞ ¼ Sð	m
i¼1widiÞ

s:t:

Xm

i¼1

wi � 1

wi � 0; i ¼ 1; 2; . . .;m

8
>><

>>:
;

ð15Þ

where 	m
i¼1widi ¼ [ci2hif1�

Qm
i¼1 ð1� ciÞwig;[gi2gi

D

f
Qm

i¼1 g
wi

i gi is the aggregated DHFE of a portfolio, RðWÞ
describes the portfolio return, Sð	m

i¼1widiÞ is the score

function of 	m
i¼1widi based on Eq. (3), kj is the weight

value of the criterion Cj, and wi is the optimal investment

proportion of the stock ai.

Theorem 1 The constraint condition
Pm

i¼1 wi ¼ 1 is

equivalent to
Pm

i¼1 wi � 1 in Model 1.

Proof Let W0 ¼ fw

i g; i ¼ 1; 2; . . .;m be a feasible solu-

tion to Model 1 and
Pm

i¼1 w


i\1. Then, the return of Model

1 at W0 is

RðW0Þ ¼ S [ci2hi 1�
Ym

i¼1

ð1� ciÞw


i

( )
;[gi2gi

Ym

i¼1

g
w

i

i

( )* + !
:

ð16Þ

Next, we will show W
 ¼ ðw

1; . . .;w



i�1; 1�P

j6¼i w


j ;w



iþ1; . . .;wmÞ is a better solution than W0. Based

on Eq. (3), we have

RðW
Þ ¼ S [ci2hi 1� ð1� ciÞ
1�
Pm
j 6¼i

w

j Ym

j 6¼i

ð1� cjÞw


j

8
<

:

9
=

;;

*0

@

[gi2gi g
1�
Pm
j 6¼i

w

j

i

Ym

j 6¼i

g
w

j

j

8
><

>:

9
>=

>;

+1

CA:

ð17Þ

Since
Pm

i¼1 w


i\1 and 0� ci; gi � 1, we have

1�
Pm

j6¼i w


j [w


i ,
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1� ð1� ciÞ
1�
Pm
j 6¼i

w

j Ym

j 6¼i

ð1� cjÞw


j � 1� ð1

� ciÞw


i

Ym

j 6¼i

ð1� cjÞw


j ð18Þ

and

g
1�
Pm
j 6¼i

w

j

i

Ym

j 6¼i

g
w

j

j � g
w

i

i

Ym

j 6¼i

g
w

j

j : ð19Þ

Therefore, RðW
Þ�RðW0Þ. Then, the constraint condi-

tion
Pm

i¼1 wi � 1 is equivalent to
Pm

i¼1 wi ¼ 1.

According to Theorem 1, Model 1 can be transformed

into Model 2:

Model 2

maxRðWÞ ¼ Sð	m
i¼1widiÞ

s:t:

Xm

i¼1

wi ¼ 1

wi � 0; i ¼ 1; 2; . . .;m

8
>><

>>:
:

ð20Þ

For convenience, we denote 	m
i¼1widi as

DR ¼ H;Gh i; ð21Þ

where H ¼ [ci2hif1�
Qm

i¼1

ð1� ciÞwig and

G ¼ [gi2gif
Qm

i¼1

gwi

i g. Let

RðWÞ ¼ S [ci2hif1�
Ym

i¼1

ð1� ciÞwig;[gi2gif
Ym

i¼1

gwi

i g
* + !

¼ SHðWÞ � SGðWÞ;
ð22Þ

where

SHðWÞ ¼ 1

lH

XlH

u¼1

suðWÞ; ð23Þ

SGðWÞ ¼ 1

lG

XlG

e¼1

seðWÞ; ð24Þ

suðWÞ ¼ 1�
Qm

i¼1 ð1� ciÞwi , seðWÞ ¼
Qm

i¼1 g
wi

i , lH is

the number of elements in H and lG is the number of

elements in G.

Lemma 1 (Weierstrass’ Theorem [38, Proposition

A.8]) Let T be a nonempty subset of Rn, the n-dimen-

sional Euclidean space, if f : T 7!R is upper semi-contin-

uous at all points of T and T is closed and bounded, then

there exists a vector x 2 T such that f ðxÞ ¼ supz2T f ðzÞ.

Remark 1 If f : T 7!R is a continuous function, then f is

upper semi-continuous.

Theorem 2 Model 2 has a globally optimal solution.

Proof In Model 2, let Dw ¼ W ¼ ðw1; . . .;w2; . . .f
wmÞT j

Pm
i¼1 wi ¼ 1 ; wi � 0g. It is obvious that Dw is closed

and bounded. In addition, since a function composed of a

finite number of exponential functions and constants is

continuous, suðWÞ ¼ 1�
Qm

i¼1 ð1� ciÞwi and seðWÞ ¼Qm
i¼1 g

wi

i are continuous when 0� ci; gi � 1. Then, we can

derive from Eqs. (22)–(24) that RðWÞ is continuous on Dw.

Therefore, Model 2 is well defined and has a globally

optimal solution according to Lemma 1.

Theorem 3 The objective function of Model 2 is a con-

cave function.

Proof To prove the theorem, we need to prove that the

Hessian matrix of RðWÞ is a negative semi-definite matrix.

According to Eq. (22), if we can prove that the Hessian

matrix of SHðWÞ is a negative semi-definite matrix and the

Hessian matrix of SGðWÞ is a positive semi-definite matrix,

we will prove the theorem. Consider the second-order

mixed partial derivative of RðWÞ:
o2RðWÞ
owiowj

¼ o2SHðWÞ
owiowj

� o2SGðWÞ
owiowj

¼ 1

lH

XlH

u¼1

o2suðWÞ
owiowj

� 1

lG

XlG

e¼1

o2seðWÞ
owiowj

: ð25Þ

Since suðWÞ and seðWÞ are all positive, we can just

consider
o2suðWÞ
owiowj

and
o2seðWÞ
owiowj

.

Firstly, consider the Hessian matrix of suðWÞ. Since
o2suðWÞ
ow2

i

¼ �ðlnð1� ciÞÞ2
Ym

i¼1

ð1� ciÞwi ð26Þ

and

o2suðWÞ
owiowj

¼ � lnð1� ciÞ lnð1� cjÞ
Ym

i¼1

ð1� ciÞwi ; ð27Þ

the Hessian matrix of suðWÞ is

Hu ¼

o2suðWÞ
ow2

1

� � � o2suðWÞ
ow1owi

� � � o2suðWÞ
ow1owm

..

.
� � � ..

.
� � � ..

.

o2suðWÞ
owiow1

� � � o2suðWÞ
ow2

i

� � � o2suðWÞ
owiowm

..

.
� � � ..

.
� � � ..

.

o2suðWÞ
owmow1

� � � o2suðWÞ
owmowi

� � � o2suðWÞ
ow2

m

2

66666666666664

3

77777777777775

: ð28Þ

It is obvious that Hu can be transformed into:
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Hu ¼ AAT � ð�
Ym

i¼1

ð1� ciÞwiÞ; ð29Þ

where A ¼ ðlnð1� c1Þ; . . .; lnð1� ciÞ; . . .; lnð1� cmÞÞ
T

and AAT is a positive semi-definite matrix. Therefore, Hu is

a negative semi-definite matrix.

Secondly, consider the Hessian matrix of seðWÞ simi-

larly. Since

o2seðWÞ
ow2

i

¼ ðln giÞ2
Ym

i¼1

gwi

i ð30Þ

and

o2seðWÞ
owiowj

¼ ln gi ln gj
Ym

i¼1

gwi

i ; ð31Þ

the Hessian matrix of seðWÞ is

He ¼ BBT �
Ym

i¼1

gwi

i ; ð32Þ

where B ¼ ðln g1; . . .; ln gi; . . .; ln gmÞT and BBT is a posi-

tive semi-definite matrix. Therefore, He is a positive semi-

definite matrix and �He is a negative semi-definite matrix.

Finally, we can derive from Eq. (25) that the Hessian

matrix of RðWÞ is a negative semi-definite matrix, so the

objective function of Model 2 is a concave function.

4.2 Max-Score Dual Hesitant Fuzzy Portfolio

Selection Model with Information Preference

As discussed above, the membership degrees and non-

membership degrees in the DHFS can represent positive

and negative information, respectively. In practical

investment, investors usually hold different attitudes to

positive and negative information. Therefore, Model 3 is

constructed based on Model 2 to incorporate investors’

information preferences.

Model 3

maxRðWÞ ¼ aSHðWÞ � ð1� aÞSGðWÞ

s:t:

Xm

i¼1

wi ¼ 1

wi � 0; i ¼ 1; 2; . . .;m

8
>><

>>:
;

ð33Þ

where 0� a� 1. The parameter a describes the investor’s

information preference and its value is determined by the

investor. From the proof of Theorem 2, we can obtain that

the function being maximized in Model 3 is continuous on

Dw, so Model 3 has a globally optimal solution according

to Lemma 1.

Corollary 1 The constraint condition
Pm

i¼1 wi � 1 is

equivalent to
Pm

i¼1 wi ¼ 1 in Model 3.

Proof Let W0 ¼ fw

i g; i ¼ 1; 2; . . .;m be a feasible solu-

tion to Model 3 such that
Pm

i¼1 w


i\1, and W
 ¼

ðw

1; . . .;w



i�1; 1�

P
j 6¼i

w

j ;w



iþ1; . . .;wmÞ. Since 0� a� 1,

we can derive from the proof of Theorem 1 that aSH
ðW
Þ� aSHðW0Þ, ð1� aÞSGðW
Þ� ð1� aÞSGðW0Þ and

RðW
Þ�RðW0Þ. Therefore, the constraint conditionsPm
i¼1 wi ¼ 1 and

Pm
i¼1 wi � 1 are equivalent.

Theorem 4 The objective function of Model 3 is a con-

cave function. Moreover, Model 3 is equivalent to a convex

programming.

Proof According to Eq. (25), it is obvious that the sec-

ond-order mixed partial derivative of RðWÞ in Model 3 is
o2RðWÞ
owiowj

¼ a o2SHðWÞ
owiowj

� 1� að Þ o
2SGðWÞ
owiowj

. Since 0� a� 1, we can

derive from the proof of Theorem 3 that the Hessian matrix

of aSHðWÞ is a negative semi-definite matrix and the

Hessian matrix of 1� að ÞSGðWÞ is a positive semi-definite

matrix. Then, the Hessian matrix of RðWÞ in Model 3 is a

negative semi-definite matrix. Therefore, the objective

function of Model 3 is a concave function and �RðWÞ is a
convex function.

Note that Eq. (33) and Eq. (34) are equivalent.

min � RðWÞ ¼ ð1� aÞSGðWÞ � aSHðWÞ

s:t:

Xm

i¼1

wi ¼ 1

wi � 0; i ¼ 1; 2; . . .;m

8
>><

>>:

ð34Þ

Since the objective function is a convex function and the

constraint conditions are linear functions, Eq. (34) is a

convex programming. Therefore, Eq. (33) is equivalent to

a convex programming and has some good properties

similar to those of Eq. (34). For example, any local

optimum is a global optimum according to optimization

theory.

Property 1 Different values of a in Model 3 represent

investors’ different information preferences in terms of

returns.

(1) If 0:5\a� 1, investors pay more attention to

positive information;

(2) If 0� a\0:5, investors pay more attention to

negative information;

(3) If a ¼ 0:5, the importance degrees of positive and

negative information are equal, and Model 3 is

equivalent to Model 2;
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(4) If a ¼ 1, Model 3 will be similar to the hesitant

fuzzy portfolio selection model for general investors

proposed by Zhou and Xu [13].

5 Score-Deviation Dual Hesitant Fuzzy Portfolio
Selection Model with Information Preference
and Risk Appetite

In Sect. 4, we have proposed the Max-score portfolio

selection model with information preference (Model 3).

However, Model 1, Model 2 and Model 3 only focus on

maximizing the return, but ignore the risk in portfolio

selection. It is well known that investors also want to avoid

risks as much as they can in their pursuit of the maximum

returns. Therefore, we improve Model 3 by considering

both returns and risks.

5.1 Score-Deviation Dual Hesitant Fuzzy Portfolio

Selection Model with Information Preference

For convenience, we firstly develop a bi-objective portfolio

selection model with information preference, which is

described as Model 4.

Model 4

maxRðWÞ ¼ aSHðWÞ � ð1� aÞSGðWÞ
minVðWÞ ¼ bVHðWÞ þ ð1� bÞVGðWÞ

s:t:

Xm

i¼1

wi ¼ 1

wi � 0; i ¼ 1; 2; . . .;m

8
>><

>>:
;

ð35Þ

where 0� a� 1, 0� b� 1,

VHðWÞ ¼ 1

lH

XlH

u¼1

ðsuðWÞ � SHðWÞÞ2; ð36Þ

VGðWÞ ¼ 1

lG

XlG

e¼1

ðseðWÞ � SGðWÞÞ2; ð37Þ

and VðWÞ describes the portfolio risk. The parameter a is

the same as that in Model 3. Since investors’ information

preferences in terms of returns and risks may be different,

the parameter b is defined to describe the investor’s

information preference in terms of risks. The value of b is

determined by the investor.

Property 2 Different values of b in Model 4 represent

investors’ different information preferences in terms of

risks:

(1) If 0:5\b� 1, investors pay more attention to

positive information;

(2) If 0� b\0:5, investors pay more attention to

negative information;

(3) If b ¼ 0:5, the importance degrees of positive and

negative information are equal;

(4) If b ¼ 1 and a ¼ 1, Model 4 will be similar to the

hesitant fuzzy portfolio selection model for risk

investors proposed by Zhou and Xu [13].

5.2 Score-Deviation Dual Hesitant Fuzzy Portfolio

Selection Model with Information Preference

and Risk Appetite

It is obvious that returns and risks are of the same impor-

tance in Model 4, which is not consistent with the con-

sensus that investors usually have different risk appetites.

Therefore, Model 5 is constructed based on Model 4 to

incorporate investors’ risk appetites.

Model 5

maxRðWÞ ¼ aSHðWÞ � ð1� aÞSGðWÞ

s:t

VðWÞ� f

Xm

i¼1

wi ¼ 1

wi � 0; i ¼ 1; 2; . . .;m

8
>>>>><

>>>>>:

;
ð38Þ

where VðWÞ ¼ bVHðWÞ þ ð1� bÞVGðWÞ, 0� a� 1,

0� b� 1, f describes the investor’s risk appetite, and

f 2 ½Vmin;Vmax�. When the value of b is given according to

the investor’s information preference, we have

Vmax ¼ maxVðWÞ

s:t

Xm

i¼1

wi ¼ 1

wi � 0; i ¼ 1; 2; . . .;m

8
>><

>>:
;

ð39Þ

and

Vmin ¼ minVðWÞ

s:t:

Xm

i¼1

wi ¼ 1

wi � 0; i ¼ 1; 2; � � � ;m

8
>><

>>:

; ð40Þ

where Vmax and Vmin are the maximum risk value and the

minimum risk value of the portfolio, respectively.

Theorem 5 Model 5 has a globally optimal solution.

Proof Let T ¼ W ¼ ðw1; . . .;w2; . . .;wmÞT VðWÞ ¼j
	

bVHþ ð1� bÞVG � f:g, where the value of f is given by

the investor, and Dw ¼ W ¼ ðw1; . . .;w2; . . .;f wmÞT j
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Pm
i¼1 wi ¼ 1 ; wi � 0g. It is obvious that T \ Dw is boun-

ded. Next, we will prove that T \ Dw is closed.

Let Wk ¼ ðwk
1
; . . .;wk

2
; . . .;wk

m
ÞT

n o
be an arbitrarily

convergent sequence of elements in T such that

limk!1 Wk ¼ W . Since suðWÞ ¼ 1�
Qm

i¼1 ð1� ciÞwi and

seðWÞ ¼
Qm

i¼1 g
wi

i are continuous when 0� ci; gi � 1, we

can derive from Eq. (36) and Eq. (37) that VðWÞ is

continuous. By mathematical analysis, it is easily verified

that VðWÞ ¼ limW!W VðWÞ ¼ limk!1 VðWkÞ� f. That is

to say, W 2 T and T is a closed set. Since Dw is closed,

T \ Dw is closed. In addition, we can derive from the proof

of Theorem 2 that the function being maximized in Model

5 is continuous on T \ Dw, so Model 5 is well defined and

has a globally optimal solution according to Lemma 1.

Property 3 Different values of f in Model 5 represent

investors’ different risk appetites. By trisecting the range

½Vmin;Vmax�, we can obtain that:

(1) if Vmin � f�Vmin þ 1
3
Vmax � Vminð Þ, investors are

risk-averse;

(2) if Vmin þ 1
3
ðVmax � VminÞ\f�Vmin þ 2

3
ðVmax �

VminÞ , investors are risk-neutral;

(3) if Vmin þ 2
3
ðVmax � VminÞ\f�Vmax, investors are

risk-seeking;

(4) if f ¼ Vmax, Model 5 will be the same as Model 3.

So far, we have proposed the Max-score dual hesitant

fuzzy portfolio selection model with information prefer-

ence and the score-deviation dual hesitant fuzzy portfolio

selection model with information preference and risk

appetite. In the next section, we summarize the portfolio

selection process under dual hesitant fuzzy environment.

6 Portfolio Selection Process Under Dual Hesitant
Fuzzy Environment

Assume that there are m new stocks fa1; a2; . . .ai; . . .; amg
and n criteria fC1;C2; . . .Cj; . . .;Cng. An investor wants to

put a fund on these stocks, but cannot get enough quanti-

tative data. Thus, the investor has to collect qualitative data

from some experts, who evaluate the stocks based on the

DHFS. The evaluation information of the stocks is repre-

sented by a dual hesitant fuzzy matrix M ¼ ½dij�m�n, where

dij ¼ hij; gij
��
ði ¼ 1; 2; . . .;m; j ¼ 1; 2; � � � ; nÞ is a DHFE

describing the dual hesitant fuzzy information of the stock

ai with respect to the criterion Cj. To help the investor find

the optimal investment proportions, a suitable portfolio

selection process based on the DHFS is needed. Generally,

portfolio selection process can be divided into two cate-

gories: Process I for investors focusing on returns

regardless of risks and Process II for investors considering

both returns and risks. Next, the details of the two pro-

cesses under dual hesitant fuzzy environment are

explained.

Process I According to the discussion above, it is obvious

that Models 1-3 are suitable for Process I. However, it has

been verified that (1) Model 1 is equivalent to Model 2 by

Theorem 1. (2) Model 3 considers information preference,

which is not considered in the other two models. (3)

According to Property 1, Model 3 is equivalent to Model 2

when a ¼ 0:5. Therefore, Model 3 is a good improvement

of the other two models and is the most suitable for Process

I. The steps of Process I are as follows:

Step 1. Calculate the objective weight values kjðj ¼
1; 2; � � � ; nÞ of the criteria based on the method men-

tioned in Sect. 3.

Step 2. Aggregate the information of each stock. Let

fdij; j ¼ 1; 2; � � � ; ng be a set of DHFEs under the stock

ai. Aggregate fdij; j ¼ 1; 2; . . .ng and the criteria weights

kjðj ¼ 1; 2; . . .; nÞ based on di ¼ hi; gi
� �

¼ 	n
j¼1kjdij ¼

[cij2hijf1�
Qn

j¼1 ð1� cijÞkjg;[gij2gijf
Qn

j¼1 g
kj
ij g

D E
, where

diði ¼ 1; 2; . . .;mÞ is the aggregated DHFE of the stock

ai. Then, the dual hesitant fuzzy matrix M ¼ ½dij�m�n is

transformed into an aggregated decision matrix

M ¼ ½di�m�1.

Step 3. Determine the value of a according to Property 1

and the investor’s information preference in terms of

returns. If the investor pays more attention to positive

information, then 0:5\a� 1. If the investor pays more

attention to negative information, then 0� a\0:5. If

there is no information preference, then a ¼ 0:5.

Step 4. Construct Model 3 based on Eq. (33) and

calculate the optimal investment proportions

wiði ¼ 1; 2; . . .;mÞ.

Process II It is obvious that Model 4 and Model 5 are

suitable for Process II. However, Model 5 considers the

risk appetite, which is not considered in Model 4. More-

over, it is proved by Theorem 5 that Model 5 has a globally

optimal solution. Therefore, Model 5 is the most suit-

able for Process II. The steps of Process II are as follows:

Step 1, Step 2 and Step 3 are the same as those in

Process I.

Step 4. Determine the value of b according to Property 2

and the investor’s information preference in terms of

risks. If the investor pays more attention to positive

information, then 0:5\b� 1. If the investor pays more

attention to negative information, then 0� b\0:5. If

there is no information preference, then b ¼ 0:5.
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Step 5. Calculate the range of f. Since f describes the

risk appetite and the deviation function measures the risk

according to Sect. 2.3, we can calculate the range of

deviation of the portfolio by using Eqs. (39) and (40),

then obtain f 2 ½Vmin;Vmax�.
Step 6. Determine the value of f according to Property 3

and the investor’s risk appetite. If the investor is risk-

seeking, then Vmin þ 2
3
ðVmax � VminÞ\f�Vmax. If the

investor is risk-neutral, then Vmin þ 1
3
ðVmax � VminÞ

\f�Vmin þ 2
3
ðVmax � VminÞ. If the investor is risk-

averse, then Vmin � f�Vmin þ 1
3
ðVmax � VminÞ.

Step 7. Construct Model 5 based on Eq. (38) and

calculate the optimal investment proportions

wiði ¼ 1; 2; . . .;mÞ.

It can be derived from Property 3 that Process II can also

be used for the investor focusing on returns regardless of

risks when f ¼ Vmax in Step 6. However, to complete

Process II, the investor has to determine the value of b in

Step 4 and calculate the range of f in Step 5, which is

unnecessary because the focus of the investor is not the

risk. If the investor chooses Process I, he will not need to

follow these unnecessary steps. Moreover, Model 3 is

equivalent to a convex programming according to Theo-

rem 4. Therefore, Process I is more convenient for the

investors merely focusing on returns and their further

analysis on the portfolio. In conclusion, Process I and

Process II are well defined in this section. The flowchart of

the two processes is shown in Fig. 1.

7 Case Study

In this section, we give an example of dual hesitant fuzzy

portfolio selection to illustrate the availability of Model 3

and Model 5. Furthermore, a sensitivity analysis, an effi-

cient frontier analysis and a comparison analysis are con-

ducted to discuss the results.

7.1 Case and Calculation

The New Tertiary Board is a stock market in China, in

which most of the stocks are newly listed. An investor

wants to put a fund on four new stocks fai; i ¼ 1; 2; 3; 4g in
this market. Since it is difficult to find sufficiently precise

data of these new stocks, the DHFS is used to describe the

information of the stocks. The settings of some parameters

are described as follows:

(1) To make sure that each stock is invested, the investor

determines that wi � 0:05; i ¼ 1; 2; 3; 4.

(2) If the investor is risk-seeking, then f ¼ fs ¼ Vminþ
3
4
ðVmax � VminÞ; if the investor is risk-neutral, then

f ¼ fn ¼ Vmin þ 1
2
ðVmax � VminÞ; if the investor is

risk-averse, then f ¼ fa ¼ Vmin þ 1
4
ðVmax � VminÞ.

Three qualitative criteria are used to evaluate the stocks

(see Table 1).

The stocks are evaluated by three experienced experts

and the evaluation information is represented by DHFEs

fdij; i ¼ 1; 2; 3; 4; j ¼ 1; 2; 3g, where dij denotes the per-

formance of the stock ai under the criterion Cj. The higher

the membership degrees, the more profitable the stock. The

higher the non-membership degrees, the less profitable the

stock. The dual hesitant fuzzy decision matrix M ¼ ½dij�4�3

is presented in Table 2.

Step 1. Calculate the weight values of criteria based on

the method mentioned in Sect. 3, and the results are

shown in Table 3.

Step 2. Construct the aggregated decision matrix M ¼
½di�m�1 based on Eq. (14). The result is presented in

Table 4,

where 0:4291 ¼ 1� fð1� 0:2Þ0:3126 � ð1� 0:6Þ0:3444 �
ð1� 0:4Þ3430g and 0:2098 ¼ 0:50:3126 � 0:10:3444 � 0:23430
are the membership degree and non-membership degree

in the aggregated DHFE of the stock a1, respectively.

Step 3. Determine the value of a. Suppose the investor

pays more attention to positive information in terms of

returns and set a ¼ 0:6.

If the investor focuses on returns regardless of risks,

according to Process I:

Step 4. Construct Model 3 and calculate the optimal

investment proportions wiði ¼ 1; 2; 3; 4Þ, then we obtain

w1 ¼ 0:5230, w2 ¼ 0:3770, w3 ¼ 0:05, w4 ¼ 0:05.

If the investor considers both returns and risks,

according to Process II:

Step 4. Determine the value of b. Suppose the investor

pays more attention to negative information in terms of

risks and set b ¼ 0:2.

Step 5. Calculate the range of deviation based on

Eqs. (39) and (40), then we obtain ½Vmin;Vmax� ¼
½3:3794� 10�4; 0:0021�, fa ¼ 0:0008, fn ¼ 0:0012 and

fs ¼ 0:0016.

Step 6. Determine the value of f. Suppose the investor is
risk-seeking and set f ¼ fs ¼ 0:0016.

Step 7. Construct Model 5 and calculate the optimal

investment proportions wiði ¼ 1; 2; 3; 4Þ, then we obtain

w1 ¼ 0:5230, w2 ¼ 0:3770, w3 ¼ 0:05, w4 ¼ 0:05.

In the next several sections, we mainly analyze the

results of Model 5 to show the validity of the proposed

models, because Model 5 is an improvement of Model 3

according to Property 3.
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7.2 Sensitivity Analysis

According to Model 5 and Process II, different results can

be obtained when the parameters are set to different values.

To better analyze the impacts of the parameters, we con-

duct a sensitivity analysis. Firstly, the impacts of the three

parameters on returns and risks are discussed. Secondly,

the changes of investment proportions are analyzed.

7.2.1 Impacts of the Parameters a, b and f on Returns

and Risks

As mentioned in Property 3, under a given value of b,
different values of f represent investors’ different risk

appetites. Let R be the maximum portfolio return in Model

5. In Table 5, there are values of R under different risk

Fig. 1 The flowchart of the two portfolio selection processes

Table 1 Details of criteria Criteria Details

C1 Ability of sustainable development, such as capability of sustainable profit making

C2 Innovation capability, such as development of new technology

C3 Reputation, such as the government support

Table 2 Dual hesitant fuzzy

matrix M
Stocks C1 C2 C3

a1 ð0:2; 0:3; 0:4Þ; ð0:5; 0:6Þh i ð0:6; 0:7; 0:8Þ; ð0:1Þh i ð0:4; 0:5; 0:7Þ; ð0:2; 0:3Þh i
a2 ð0:4; 0:7Þ; ð0:2; 0:3Þh i ð0:7; 0:8Þ; ð0:1Þh i ð0:5; 0:6Þ; ð0:2; 0:3Þh i
a3 ð0:5; 0:6Þ; ð0:2; 0:4Þh i ð0:3; 0:5; 0:6Þ; ð0:2; 0:3; 0:4Þh i ð0:4Þ; ð0:1Þh i
a4 ð0:2; 0:3Þ; ð0:5; 0:6Þh i ð0:4; 0:5; 0:6Þ; ð0:2; 0:3Þh i ð0:6Þ; ð0:1; 0:2Þh i
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appetites and different values of a when b ¼ 0:5. The result

is discussed as follows:

(1) When the values of a and b are fixed, the higher the

value of f in Model 5, the higher the value of R. It is

reasonable that investors have to bear more loss if

they want to make more profits.

(2) The value of R increases when the value of a
increases under all kinds of risk appetites. That is

because investors determining higher values of a
generally prefer positive information which is

related to a stock’s ability to bring benefits. There-

fore, higher values of a are more applicable for risk-

seeking investors, which is reasonable because risk-

seeking investors rely more on information about

profits.

In Table 6, there are values of f under different risk

appetites and different values of b when a ¼ 0:5. The result

is discussed as follows:

(1) The value of f decreases when the value of b
decreases under all kinds of risk appetites. That is

because investors determining lower values of b
generally prefer negative information that is related

to a stock’s potential to cause loss. Therefore, lower

values of b are more applicable for risk-averse

investors, which is reasonable because risk-averse

investors rely more on information about loss.

(2) Combining the results in Tables 5 and 6, we can find

that relatively higher values of a and lower values of

b can help risk-neutral investors make more profits

and avoid risks to some degree.

In conclusion, the parameters a and b capture investors’

information preferences and the parameter f captures

investors’ risk appetites. In the next two subsections, we

explore the impacts of the parameters a and b on invest-

ment proportions.

7.2.2 Impact of the Parameter a on Investment

Proportions

As discussed in Sect. 7.2.1, higher values of a are more

applicable for risk-seeking investors, so we compare the

investment proportions for risk-seeking investors (f ¼ fs)
under different values of a when b ¼ 0:5 (see Fig. 2). In

addition, we calculate the returns of stocks under different

values of a by using Eq. (41) (see Fig. 3).

Ri
s ¼ aS

hi
� ð1� aÞSgi ; ð41Þ

where di ¼ hi; gi
� �

; i ¼ 1; 2; 3; 4, and Ri
s is the return of the

stock ai. For convenience, let Rs be the return of each

stock. The result of Fig. 2 is discussed as follows:

(1) w4 is the lowest and unchanged under different

values of a, which is due to the lowest return of the

stock a4 (see Fig. 3). It is reasonable that stocks with

lower returns are not preferred by investors.

(2) w3 is higher than w1 when 0:1� a� 0:2; w1 begins

to increase when a[ 0:2 and it is higher than w3

when a� 0:3. The reason for this change can be

found from Fig. 3, where the return of the stock a3 is

higher than that of the stock a1 when 0:1� a� 0:2,

whereas it is lower than that of the stock a1 when

a� 0:3.

(3) w2 is higher than w1 when 0:1� a� 0:5, which is

due to the higher return of the stock a2 when

0:1� a� 0:5 (see Fig. 3). Moreover, Table 7 shows

that the mean of non-membership degrees of the

Table 3 Weight values of criteria

Criteria C1 C2 C3

Weight values 0.3126 0.3444 0.3430

Table 4 The aggregated

decision matrix M
Stocks Aggregated DHFEs

a1
*

ð0:4291; 0:4637; 0:4524; 0:4782; 0:4830; 0:4856; 0:5041; 0:5098;
0:5143; 0:5274; 0:5342; 0:5499; 0:5504; 0:5561; 0:5683; 0:5687;

0:5776; 0:5886; 0:5890; 0:5924; 0:5949; 0:6090; 0:6139; 0:6274;

0:6455; 0:6600; 0:6760Þ ; ð0:2098; 0:2221; 0:2411; 0:2552Þ

+

a2 ð0:3279; 0:3775; 0:4589; 0:4987; 0:5561; 0:5888; 0:6426; 0:6689Þ;
ð0:1575; 0:1788; 0:1810; 0:2055Þ

* +

a3 ð0:4023; 0:4426; 0:4677; 0:5036; 0:5071; 0:5403Þ;
ð0:1577; 0:1958; 0:1813; 0:2002; 0:2252; 0:2486Þ

* +

a4 ð0:4288; 0:4521; 0:4635; 0:4855; 0:5032; 0:5235Þ;
ð0:2100; 0:2223; 0:2414; 0:2556; 0:2663; 0:2820; 0:3062; 0:3242Þ

* +
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stock a2 is lower than that of the stock a1. As

mentioned above, negative information has more

impact on portfolios when 0:1� a� 0:5, so the stock

a2 is preferred in portfolio selection when

0:1� a� 0:5.

(4) w1 increases while w2 decreases substantially when

a� 0:5. The reason for these changes is that positive

information has more impact on portfolio returns

when a� 0:5. Table 7 shows that the mean of

membership degrees of the stock a1 is higher than

that of the stock a2, so w1 increases when a� 0:5.

Furthermore, w1 is higher than w2 when a� 0:6. As

discussed in Sect. 7.2.1, the models with higher

values of a tend to choose the portfolios with higher

returns. The return of the stock a1 is higher than that

of the stock a2 when a� 0:6 (see Fig. 3), so the stock

a1 is preferred when a� 0:6. These results are

consistent with the fact that risk-seeking investors

rely more on positive information and prefer the

stocks with higher returns.

In conclusion, the parameter a can capture investors’

information preferences in terms of returns. When inves-

tors determine higher values of a, the stocks with higher

mean values of membership degrees are preferred; when

investors determine lower values of a, the stocks with

lower mean values of non-membership degrees are pre-

ferred. Moreover, the impact of a on investment propor-

tions is consistent with investors’ preferences that the

stocks with higher returns usually have higher investment

proportions.

7.2.3 Impact of the Parameter b on Investment

Proportions

As discussed in Sect. 7.2.1, lower values of b are more

applicable for risk-averse investors. Therefore, we compare

the investment proportions for risk-averse investors

(f ¼ fa) under difference values of b when a ¼ 0:5 in this

section (see Fig. 4). In addition, we calculate the risks of

stocks under different values of b by using Eq. (42) (see

Fig. 5).

Vi
s ¼ bV

hi
þ ð1� bÞVgi ; ð42Þ

where di ¼ hi; gi
� �

; i ¼ 1; 2; 3; 4, and Vi
s is the risk of the

stock ai. For convenience, let Vs be the risk of each stock.

The results of Fig. 4 are discussed as follows:

(1) The stocks a1 and a2 occupy much larger investment

proportions than the stocks a3 and a4 under different

values of b. However, in Fig. 5, the risk of the stock

a2 is the highest under different values of b, and the

risk of the stock a1 is higher than those of the stocks

a3 and a4 when b� 0:3. The reason for this strange

result is that the objective of Model 5 is to maximize

the portfolio return and the returns of the stocks a1
and a2 are much higher those of the stocks a3 and a4
(see Table 8).

(2) w1 is lower than w2 when b� 0:2, which is due to the

lower return of the stock a1(see Table 8). Moreover,

Table 5 Values of R under

different risk appetites and

different values of a when

b ¼ 0:5

a Values of R

Risk-averse (fa ¼ 0:0016) Risk-neutral (fn ¼ 0:0027) Risk-seeking (fs ¼ 0:0038)

0.10 - 0.1260 - 0.1218 - 0.1191

0.20 - 0.0562 - 0.0518 - 0.0489

0.30 0.0151 0.0193 0.0219

0.40 0.0885 0.0918 0.0931

0.50 0.1631 0.1643 0.1644

0.60 0.2377 0.2377 0.2377

0.70 0.3136 0.3136 0.3136

0.80 0.3908 0.3910 0.3910

0.90 0.4680 0.4685 0.4685

Table 6 Values of f under different risk appetites and different

values of b when a ¼ 0:5

b Values of f

Risk-averse (fa) Risk-neutral (fn) Risk-seeking (fs)

0.10 0.0005 0.0007 0.0009

0.20 0.0008 0.0012 0.0016

0.30 0.0011 0.0017 0.0023

0.40 0.0013 0.0022 0.0031

0.50 0.0016 0.0027 0.0038

0.60 0.0018 0.0031 0.0045

0.70 0.0021 0.0036 0.0051

0.80 0.0023 0.0041 0.0058

0.90 0.0025 0.0045 0.0065
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b� 0:2 means that investors rely more on negative

information. The deviation of non-membership

degrees of the stock a2 is lower than that of the

stock a1(see Table 8), so w2 is higher.

(3) w1 increases while w2 decreases when b� 0:2. That

is because the risk of the stock a2 begins to increase

and becomes much larger than that of the stock a1
when b� 0:2 (see Fig. 5). It is reasonable that risk-

averse investors will not invest most of their money

into the stocks with too high risks. However, w2

doesn’t drop dramatically when b� 0:5. That is

because the objective of Model 5 is to maximize the

portfolio return, and the return of the stock a2 is

higher than that of the stock a1(see Table 8).

(4) w1 is still higher than w2 and becomes larger than 0.5

when b� 0:5. That is because investors rely more on

positive information when b� 0:5 and the deviation

of membership degrees of the stock a1 is lower than

that of the stock a2(see Table 8).

In conclusion, the parameter b can capture investors’

preferences for stocks, but its impact on investment pro-

portions depends on the returns of stocks because the

objective of Model 5 is to maximize the portfolio return.

7.3 Efficient Frontier Analysis

In this section, we mainly analyze the efficient frontier of

Model 5 when b ¼ 0:5 and a ¼ 0:5. When b ¼ 0:5, we

have ½Vmin;Vmax� ¼ ½4:647� 10�4; 0:0048� by using

Eqs. (39) and (40). Based on Property 3, if the investor is

risk-averse, then 4:647� 10�4 � f� 0:0019; if the investor

is risk-neutral, then 0:0019\f� 0:0034; if the investor is

risk-seeking, then 0:0034\f� 0:0048. To compare the

returns under different risk levels, we calculate the value of

R when the value of f changes from Vmin to Vmax and obtain

the following conclusions from Fig. 6.

(1) The returns of risk-seeking investors are higher than

those of risk-neutral investors and risk-averse

investors, which is reasonable because risk-seeking

investors aim to make more profits.

(2) When 4:647� 10�4 � f� 0:0019, the value of R

increases substantially, which is similar to that the

investment proportions change substantially when

4:647� 10�4 � f� 0:0019 (see Fig. 7). From the

result in Fig. 5, we can find that the stocks with

lower risks have higher investment proportions, such

as the stock a1. It is reasonable that the investment

proportions of risk-averse investors are more sus-

ceptible to risks and risk-averse investors prefer the

stocks with lower risks.

(3) When f[ 0:0034, the value of R in Fig. 6 and the

investment proportions in Fig. 7 are unchanged.

According to Property 3, Model 5 will be the same as

Model 3 if f ¼ Vmax. Therefore, the investment

proportions of Model 3 are the same as those of

Model 5 for risk-seeking investors.

Table 7 Mean values of

membership degrees and non-

membership degrees of different

stocks

Stocks Mean of membership degrees Mean of non-membership degrees

a1 0.5537 0.2320

a2 0.5149 0.1807

a3 0.4773 0.2015

a4 0.4761 0.2635

Table 8 The returns and

deviations of stocks when

a ¼ 0:5

Stocks Returns Deviations of membership degrees Deviations of non-membership degrees

a1 0.1544 0.0042 0.0005

a2 0.1671 0.0149 0.0004

a3 0.1379 0.0025 0.0010

a4 0.1063 0.0012 0.0016

Table 9 Investment proportions under different risk appetites in

Model 5 and the HFPSM

Risk appetite Model w1 w2 w3 w4

Risk-averse HFPSM 0.6969 0.1789 0.0719 0.0523

Model 5 0.5139 0.3861 0.0500 0.0500

Risk-neutral HFPSM 0.8500 0.0500 0.0500 0.0500

Model 5 0.2827 0.6173 0.0500 0.0500

Risk-seeking HFPSM 0.8500 0.0500 0.0500 0.0500

Model 5 0.2029 0.6971 0.0500 0.0500

The black bold numbers are the maximum investment proportions in

the HFPSM, and the blue bold numbers are the maximum investment

proportions in Model 5
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(4) When the value of f increases, the values of R and

w2 both increase. Moreover, the investment propor-

tions are unchanged and the stock a2 makes up a

large proportion of investment when f[ 0:0034 (see

Fig. 7). That is because the return of the stock a2 is

the highest when a ¼ 0:5(see Table 8), and the risk

of the stock a2 is also the highest when b ¼ 0:5 (see

Fig. 5). It is well known that high-return stocks

usually have high risks. Risk-seeking investors are

less sensitive to risks, so it is reasonable for them to

choose the stocks with higher risks for higher

returns.

In conclusion, the efficient frontier of our proposed

Model 5 is reasonable. In the next section, we compare

Model 5 with other portfolio selection models to highlight

its superiority.

Fig. 2 Investment proportions for risk-seeking investors under dif-

ferent values of a when b ¼ 0:5

Fig. 3 The returns of stocks (Rs) under different values of a

Fig. 4 Investment proportions for risk-averse investors under differ-

ence values of b when a ¼ 0:5

Fig. 5 The risks of stocks (Vs) under different values of b

Fig. 6 The efficient frontier of Model 5 when b ¼ 0:5 and a ¼ 0:5
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7.4 Comparison Between Model 5 and the Hesitant

Fuzzy Portfolio Selection Model

As mentioned above, the DHFS is a good improvement of

the HFS. Therefore, Model 5 is compared with the hesitant

fuzzy portfolio selection model (HFPSM) proposed by

Zhou and Xu [13] to show the superiority of Model 5.

7.4.1 Theoretical Comparison Between Model 5

and the HFPSM

According to the mathematical symbol of the hesitant

fuzzy element (HFE) proposed by Xia and Xu [39], the set

H in DR ¼ H;Gh i in Eq. (21) can be seen as a HFE.

Moreover, based on the score function [39] of the HFE, the

score function of H is equivalent to SHðWÞ based on

Eq. (23). According to the deviation function [40] of the

HFE, the deviation function of H is

VHðWÞ ¼ 1

lH

XlH

u¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðsuðWÞ � SHðWÞÞ2

q
: ð43Þ

In the hesitant fuzzy portfolio selection model [13], the

score and deviation of the HFE are used to measure returns

and risks, respectively. Therefore, the HFPSM for risk

investors [13] is represented as follows.

HFPSM

maxFðWÞ ¼ SHðWÞ

s:t

VHðWÞ� f

Xm

i¼1

wi ¼ 1

wi � 0; i ¼ 1; 2; . . .;m

8
>>>>><

>>>>>:

;
ð44Þ

where FðWÞ describes the portfolio return and f describes

the investor’s risk appetite. f 2 ½Vmin;Vmax�, where

Vmax ¼ maxVHðWÞ

s:t

Xm

i¼1

wi ¼ 1

wi � 0; i ¼ 1; 2; . . .;m

8
>><

>>:

ð45Þ

and

Vmin ¼ minVHðWÞ

s:t:

Xm

i¼1

wi ¼ 1

wi � 0; i ¼ 1; 2; . . .;m

8
>><

>>:

: ð46Þ

According to Zhou and Xu [13]: if the investor is risk-

seeking, then f ¼ Vmax; if the investor is risk-neutral, then

f ¼ Vmin þ 2
3
ðVmax � VminÞ; if the investor is risk-averse,

then f ¼ Vmin þ 1
3
ðVmax � VminÞ. By comparing Model 5

and the HFPSM, we can obtain that:

(1) Model 5 and the HFPSM both consider returns and

risks, which are both applicable for investors with

different risk appetites. When b ¼ 1 and a ¼ 1,

Model 5 is similar to the HFPSM.

(2) Mode 5 considers information preference, which is

not considered in the HFPSM. That is because

Model 5 is constructed based on the DHFS, which

can describe positive and negative information more

comprehensively than the HFS. Therefore, Model 5

has a wider application than the HFPSM.

(3) In the HFPSM, there are only three values of f for

investors to choose. However, according to Property

3, the range ½Vmin;Vmax� in Model 5 is divided into

three intervals, which include all the values of f.
Investors usually determine different values of f
based on their risk appetites, so the setting of f in

Model 5 is more reasonable.

7.4.2 Empirical Comparison Between Model 5

and the HFPSM

In this section, we compare Model 5 and the HFPSM based

on the information and settings of parameters in case study.

For convenience, we take the membership degrees of

DHFEs in Tables 2 and 4 as the membership degrees of

HFEs. Firstly, the investment proportions of the HFPSM

and Model 5 under different risk appetites when a ¼ 0:5

and b ¼ 0:5 are presented in Table 9. The following con-

clusions are obtained from Table 9.

(1) For risk-averse investors, w1 is the highest in the

HFPSM, because the mean of membership degrees

Fig. 7 Investment proportions under different values of f when b ¼
0:5 and a ¼ 0:5
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of the stock a1 is the highest (see Table 7). In Model

5, w1 is smaller than that in the HFPSM, while w2 is

larger than that in the HFPSM. The reason for this

difference is that Model 5 considers the negative

information of stocks. In Table 7, the mean of non-

membership degrees of the stock a1 is higher than

that of the stock a2, so w1 decreases while w2

increases.

(2) For risk-neutral investors and risk-seeking investors

in Model 5, w2 increases while w1 decreases, which

is similar to that in conclusion (1). Moreover, the

stock a2 makes up a large proportion of investment

for risk-seeking investors in Model 5, which can be

explained by the highest return of the stock a2 (see

Table 8).

(3) For risk-neutral investors and risk-seeking investors

in the HFPSM, the stock a1 makes up a main

proportion of investment, which is different from

that in conclusion (2). This is because the HFPSM

only considers membership degrees and the mean of

membership degrees of the stock a1 is the highest

(see Table 7). It is reasonable that investors who aim

to make more profits will prefer the stocks with

higher mean values of membership degrees in the

HFPSM.

In conclusion, Model 5 can help investors with different

information preferences find the optimal portfolios, which

cannot be achieved by the HFPSM. Therefore, our pro-

posed Model 5 is a good improvement of the HFPSM.

7.5 Utilities of the Proposed Models

According to the analyses above, the utilities of Model 3

and Model 5 are summarized as follows.

(1) The proposed models can help investors to find the

optimal portfolios when precise data are difficult to

obtain. Model 3 is applicable for investors focusing

on returns regardless of risks, whereas Model 5 is

applicable for investors considering both returns and

risks.

(2) The parameter a in Model 3 and Model 5 can reflect

investors’ information preferences in terms of

returns. Moreover, the change of a is consistent

with investors’ preferences for stocks, and higher

values of a are more applicable for risk-seeking

investors.

(3) The parameter b in Model 5 can reflect investors’

information preferences in terms of risks. In addi-

tion, lower values of b are more applicable for risk-

averse investors. However, the impact of b on

investment proportions depends on the return of each

stock because the objective of Model 5 is to

maximize the portfolio return.

(4) The parameter f in Model 5 can describe investors’

risk appetites. The higher the value of f, the higher

the corresponding portfolio return. Therefore, Model

5 is applicable for risk-averse investors, risk-neutral

investors and risk-seeking investors.

(5) Compared with the hesitant fuzzy portfolio selection

model, Model 5 can offer more options to the

investors with different information preferences.

8 Conclusions

DHFS can validly describe uncertain information.

Although there have been some decision-making models

based on the DHFS, most of the research merely focuses on

ranking the alternatives and choosing the best one. If the

investment information is described by DHFSs and inves-

tors hope to find the optimal portfolios, the existing models

are inapplicable. Therefore, we propose some novel port-

folio selection models under dual hesitant fuzzy environ-

ment to solve this problem. The main contributions of this

paper are concluded as follows.

(1) To make use of positive and negative information in

the DHFS, the parameter a is defined in Model 3 and

Model 5 to capture investors’ information prefer-

ences in terms of returns, and the parameter b is

defined in Model 5 to capture investors’ information

preferences in terms of risks.

(2) The Max-score dual hesitant fuzzy portfolio selec-

tion model with information preference (Model 3) is

proposed to help the investors focusing on returns

regardless of risks to find the optimal portfolios.

Moreover, it is proved that Model 3 is equivalent to a

convex programming.

(3) To consider the risks of portfolios, the score-

deviation dual hesitant fuzzy portfolio selection

model with information preference and risk appetite

(Model 5) is developed. In Model 5, another

parameter f is defined to capture investors’ risk

appetites.

(4) The sensitivity analysis, efficient frontier analysis

and comparison analysis with the hesitant fuzzy

portfolio selection model are conducted to highlight

the utilities of the proposed models and the impacts

of the parameters.

However, there are some limitations of the models. For

example, the relationship among the parameters in Model 5

may have influence on the investment proportions, but the

theoretical analysis on the relationship is not carried out in
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this paper because of the complexity. This is also one of the

topics in our future study. Research on portfolio selection

under dual hesitant fuzzy environment is still at an early

stage. There is a lot of work to do in the future and we will

keep on researching the portfolio selection in this area.
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