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Abstract In this paper, a novel adaptive fuzzy controller is

developed for the uncertain fractional-order switched

nonlinear systems whose output is quantized by a class of

sector-bounded quantizers. Since the states are not com-

pletely measurable, an observer with quantized output

signal is designed to estimate the unknown system states.

Meanwhile, based on the fractional Lyapunov stability

criterion, the Lyapunov function with sum functions and

the virtual control function with hyperbolic tangent func-

tions are designed. Besides, in order to improve the

approximation accuracy of the unknown nonlinear func-

tions generated by fractional differential, the prediction

errors and auxiliary variables of series-parallel estimation

model are introduced in backstepping procedures. The

simulation results show that the control scheme ensures

that all the signals of the considered system remain semi-

globally uniformly ultimately bounded, and the tracking

error converges to a small neighborhood of the origin

regardless of arbitrary switching.

Keywords Adaptive fuzzy control � Output quantization �
Fractional-order switched nonlinear systems � Fuzzy logic

systems (FLSs)

1 Introduction

Since the end of the twentieth century, fractional calculus

is no longer a strange mathematical theory. With the

deepening of people’s understanding of nonlinear systems

and genetic effect, the limitation of traditional mathemat-

ical model based on integral calculus is increasingly

obvious. Taking the actual power system as an example,

there are often many diffusion phenomena in the motor and

transformer, such as skin effect, eddy current loss, heat

loss, etc. For these systems, the modeling method of inte-

ger-order systems often ignores these slow diffusion

effects. Therefore, the fractional system model is more

suitable to describe these real physical systems with

genetic and long memory effects. There are many resear-

ches on fractional-order systems [1–3]. At the same time,

hybrid systems can describe various problems in the real

world more accurately and reasonably. Switched system is

one of the most important hybrid systems, which consists

of several subsystems and one switching rule. Because of

its broad representativeness, it has become one of the focus

of control workers. At present, there are a lot of research

results on switched system [4–7]. Meanwhile, adaptive

control [8] has been widely studied. An adaptive neural

network feedback control scheme for nonlinear switched

pulse systems with a permissible switched strategy was

proposed in [9].
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Quantization can be regarded as the mapping of con-

tinuous signals to discrete finite sets [10–12]. It has

important theoretical and practical significance in modern

engineering and has attracted extensive attention in recent

years. For the system with information quantization, its

continuous control input, state variable and control output

are quantized by quantizer, which leads to

inevitable quantization error. Therefore, the effect of

quantization error on the performance of the closed-loop

system, especially on the stability of the system, needs to

be studied carefully and clearly. [13] developed a hys-

teresis quantizer for the first time, which avoids the oscil-

lation caused by the logarithmic quantizer and extends the

conclusions from uncertain linear systems to uncertain

nonlinear systems. The problem of adaptive quantization

feedback control of SISO strict-feedback uncertain non-

linear systems with hysteresis quantization input was

studied in [14].

Aiming at the uncertainty of nonlinear system, intelli-

gent control [15–17] based on fuzzy logic systems (FLSs)

and neural network (NN) has been widely studied. The

universal approximation property of fuzzy logic can pro-

vide theoretical basis for modeling nonlinear systems and

analyzing the unknown properties of complex systems. In

the cause of approximating the unknown dynamics of the

system, an adaptive control scheme was proposed in [18],

which directly adjusts the ideal weight vector estimation of

the switch. When the backstepping method is applied to

nonlinear system, the derivative process of virtual control

will cause the expansion of item number, so the dynamic

surface control (DSC) method is adopted, which cannot

only eliminate the expansion of differential terms, make

the controller and parameter design simple, but also reduce

the number of input variables of neural network and fuzzy

system. [19] used DSC method, the disturbance observer

adaptive control of nonlinear transport model with external

disturbance was proposed.

It is well known that backstepping design has become a

major controller construction method for nonlinear system

control [20–23]. Many advantages of backstepping design

have been widely recognized, such as adaptive controller

design, global stabilization controller design and robust-

ness. At present, most of the results of the backstepping

design method are aimed at the traditional integer-order

nonlinear system, and there are few applications in the

fractional-order nonlinear system control [24–26]. There-

fore, how to design an adaptive backstepping controller for

triangular fractional-order nonlinear system based on

fractional-order Lyapunov stability criterion is still a

problem to be solved. It is worth noting that, because the

fractional derivative of quadratic function is very complex,

most existing backstepping control methods of integer-

order nonlinear system cannot be directly extended to

fractional-order nonlinear system. In [27], for the uncertain

fractional-order nonlinear systems with triangular struc-

ture, an adaptive backstepping controller based on a certain

transformation and integral-order Lyapunov method was

designed. For a class of fractional-order nonlinear systems,

[28] constructed a class of adaptive backstepping con-

troller. However, for fractional-order nonlinear switched

systems with unknown state variables, there is no control

scheme can solve the system stability problem with mea-

surement signal error caused by output quantization.

Hence, on the basis of the existing results, it is urgent to

design a new controller to make the fractional-order non-

linear switching system with output quantization stable and

have good tracking performance.

Motivated by the above observations, in this paper, an

adaptive fuzzy controller is developed for the uncertain

fractional-order switched nonlinear systems with quantized

output, where the quantizers contain the hysteresis, loga-

rithmic and uniform quantizer. The unmeasured state is

obtained by using the switched fuzzy state observer. By

introducing the delta function, one can use the previous

estimated values as original value of the parameters at the

switching instants. The contributions of this paper can be

summarized as follows: (1) For uncertain fractional-order

nonlinear systems, an adaptive fuzzy backstepping recur-

sive algorithm is proposed. The convergence of the algo-

rithm is analyzed by fractional Lyapunov method. (2) By

constructing the prediction errors and auxiliary variables

based on the serial-parallel estimation model, a compound

learning method is proposed to update fuzzy membership

functions and improve approximate accuracy, which can

dynamically show the working process of intelligent

approximation. (3) Based on different subsystems and

switched adaptive laws, switched filters are designed to

reduce the conservativeness of the adaptive controllers, and

all the signals are bounded under arbitrary switching.

The content of this paper is as follows: Sect. 2 puts

forward some preliminary ideas and briefly describes the

existing problems. A fuzzy switched observer is designed

in Sect. 3. In Sect. 4, the adaptive control scheme is pro-

posed. Section 5 gives the stability analysis of the design

scheme. The simulation results in Sect. 6 represent the

effectiveness of the scheme, followed by conclusions in

Sect. 7.

2 Preliminaries and Problem Formulation

2.1 Preliminaries

Consider the following SISO fractional-order nonlinear

switched system:
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Da
t xi ¼ xiþ1 þ fi;dðtÞðxiÞ þ di;dðtÞðtÞ; 1� i\n

Da
t xn ¼ udðtÞ þ fn;dðtÞðxnÞ þ dn;dðtÞðtÞ;

y ¼ x1

8
>>><

>>>:

ð1Þ

where a 2 ð0; 1� and xi ¼ ½x1; x2; :::; xi�T; i ¼ 1; 2; :::; n is

the state vector, y 2 R is the output of the system. dðtÞ !
N ¼ f1; 2; :::rg is the switching signal. dðtÞ ¼ k 2 N

indicates the kth subsystem in the implementation.

fi;dðtÞðx1; :::; xiÞ is an unknown smooth function representing

the uncertainty of the system. uk denotes the switched input

signal.

2.2 Fuzzy Logic Systems

Because of the uncertainty of the considered system, the

fuzzy logic system is introduced. Construct a fuzzy logic

system (FLS) in the form of If-Then rules:

Rq: If x1 is F
q
1 and x2 is F

q
2 and ...and xn is Fq

n , then y is

Bq; q ¼ 1; 2; . . .; i, where x ¼ ½x1; . . .; xn�T is the fuzzy

logic system input, y is the fuzzy logic system output, fuzzy

sets F
q
i and Bq, associated with the fuzzy functions lFq

i
ðxiÞ

and lBqðyÞ, respectively. i is the rules number. Through

singleton function, the FLS can be formulated as

yðxðtÞÞ ¼
Pi

q¼1 yq
Qq

i¼1 lFq
i
ðxiÞ

Pi
q¼1ð

Qn
i¼1 lFq

i
ðxiÞÞ

; ð2Þ

where yq ¼ maxy2R lBqðyÞ.

Let uq ¼
Qn

i¼1
l
F
q
i
ðxiÞ

Pi

q¼1
ð
Qn

i¼1
l
F
q
i
ðxiÞÞ

, and denote h ¼

½y1; y2; � � � ; yi�
T ¼ ½h1; h2; � � � ; hi�T and

uTðxÞ ¼ ½u1ðxÞ; :::;uiðxÞ�, then FLS can be rewritten as

yðxÞ ¼ hTuðxÞ:

Lemma 1 [29] Let f(x) be a continuous function defined

on a compact set X. Then for any constant m, there exists an

FLS such as

sup
x2X

jf ðxÞ � hTuðxÞj � m ð3Þ

By Lemma 1, FLSs are general approximators, which

can approximate any smooth function on a compact set, so

the nonlinear terms can be approximated as

fiðxiÞ ¼ h�Ti/iðxiÞ þ mi; 1� i� n ð4Þ

To facilitate the further analysis, the system (1) is rewritten

as

Da
t xi ¼ xiþ1 þ h�Ti;dðtÞ/i;dðtÞðx̂iÞ þ Dfi;dðtÞ þ ei;dðtÞ

Da
t xn ¼ udðtÞ þ h�Tn;dðtÞ/i;dðtÞðx̂iÞ þ Dfn;dðtÞ þ en;dðtÞðtÞ

8
<

:

ð5Þ

where ei;dðtÞ ¼ mi;dðtÞ þ di;dðtÞðtÞ; i ¼ 1; 2; . . .; n� 1, Dfi;dðtÞ
¼ fi;dðtÞðxiÞ � fi;dðtÞðx̂iÞ, x̂i stands for the estimate of xi and

x̂i ¼ ðx̂1; x̂2; . . .; x̂iÞT. mi;dðtÞ ¼ fi;dðtÞðx̂iÞ � h�Ti;dðtÞ/i;dðtÞðx̂iÞ
satisfies that jmi;dðtÞj � m�i;dðtÞ, and for given dðtÞ ¼ k, m�i;dðtÞ is

an unknown positive constant.

Assumption 1 di;dðtÞ satisfies that jdi;dðtÞj � d�i;dðtÞ, and for

given dðtÞ ¼ k, d�i;dðtÞ is an unknown positive constant.

Assumption 2 Assume that the unknown function fið�Þ
satisfies the global Lipschitz condition. That is, there exist

some known constants mi such that jfiðxiÞ � fiðx̂iÞj
�mikxi � x̂ik, where i ¼ 1; 2; :::; n. k � k represents the

2-norm of a vector.

2.3 Quantizer

With the application and development of network control

system, quantitative control has become an effective way

to solve control system problems. The commonly used

quantizer include logarithmic quantizer, uniform quantizer

and hysteresis quantizer. They are defined as follows

2.3.1 Uniform Quantizer

The form of uniform quantizer is as follows

qðuÞ ¼
uisignðuÞ; ui �

l

2
\juj � ui þ

l

2

0; juj � u0

8
><

>:
ð6Þ

where u0 [ 0 and u1 ¼ u0 þ l
2
, ui ¼ ui�1 þ l, l stands for

quantization interval.

2.3.2 Logarithmic Quantizer

The form of logarithmic quantizer is as follows

qðuÞ ¼
uisignðuÞ;

ui

1 þ r
\juj � ui

1 � r

0; juj � g
1 þ r

8
>><

>>:

ð7Þ

where ui ¼ q1�ig and q ¼ 1�r
1þr and qðuÞ 2 U ¼ f0;�uig.
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2.3.3 Hysteresis Quantizer

The form of hysteresis quantizer is as follows

qðuÞ ¼

uisignðuÞ;
ui

1 þ r
\juj � ui; _u\0;

or; ui\juj � ui

1 � r
; _u[ 0

uið1 þ rÞsignðuÞ; ui\juj � ui

1 � r
; _u\0;

or;
ui

1 þ r
\juj � ui; _u[ 0

0; 0\juj � g
1 þ r

; _u\0;

or;
g

1 þ r
� u� g; _u[ 0

qðuðt�ÞÞ; _u ¼ 0

8
>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>:

ð8Þ

where ui ¼ q1�ig and q ¼ 1�r
1þr and qðuÞ 2 U ¼ f0;�ui;

�uið1 þ rÞg.

2.3.4 Quantization Error

For the practical system, the quantization error will affect

the stability of the system. So quantification is important

but challenging. The difference between the quantized

result and the value before quantification is called quanti-

zation error. The quantization error satisfies

jqðuÞ � uj � rjuj þ ð1 � rÞd ¼ rjuj þ g ð9Þ

where 0\r\1 and d are known parameters of quantizer.

Therefore, the output quantification error considered in this

paper is in the following form: jqðyÞ � yj � rjyjþ
ð1 � rÞd ¼ rjyj þ g.

Remark 1 Different from uniform quantizer, there are

unequal quantization levels in hysteresis and logarithmic

quantizers, which are easy to implement and also reduce

the average rate. Having different quantized values but the

same coarseness, two logarithmic quantizers can compose

a hysteresis quantizer. Besides, chattering by the additional

quantization levels can be avoided by employing hysteresis

quantizer [30].

2.4 Fractional Calculus and Related Lemmas

This section introduces several important lemmas of frac-

tional calculus.

The form of fractional-order integration is as follows:

I a
t f ðtÞ ¼

1

CðaÞ

Z t

t0

ðt � sÞa�1
f ðsÞds ð10Þ

where CðaÞ ¼
R1

0
sa�1e�sds is the gamma function. The

form of the ath Caputo fractional derivative is as follows

Da
t f ðtÞ ¼

1

Cðn� aÞ

Z t

t0

ðt � sÞn�a�1
f ðnÞðsÞds ð11Þ

where n� 1\a� n. The Mittag-Leffler function with two

parameters a and c is defined as

Ea;cðtÞ ¼
X1

i¼0

ti

Cðiaþ cÞ ; a[ 0; E1ðtÞ ¼ et ð12Þ

Its Laplace transform can be written as

Lftc�1Ea;cð�ataÞg ¼ sa�c

sa þ a
ð13Þ

Lemma 2 [31] Let xðtÞ 2 Rn be a vector of differentiable

function. Then, Da
t ðxTðtÞxðtÞÞ� 2xTðtÞDa

t ðxðtÞÞ holds for

any time instant t� t0 and a 2 ð0; 1�.

Lemma 3 [32] Let xðtÞ 2 Rn be a vector of differentiable

function. Then, the following relationship Da
t ðxTðtÞP

xðtÞÞ� 2xTðtÞPDa
t ðxðtÞÞ holds for any time instant t� t0

and a 2 ð0; 1�, where P is a constant, square, symmetric,

and positive-definite matrix.

Lemma 4 [33] For a real number a satisfying 0\a\2, a

real number p satisfying pa
2
\p\minfp; pag and a com-

plex number q, the following formula applies to all integers

n� 1

Ea;qðtÞ ¼ �
Xn

j¼1

1

Cðq� ajÞtj þ o
1

jtjnþ1

 !

ð14Þ

when jtj ! 1, p� j argðtÞj� p.

Lemma 5 [33] For a real number a satisfying 0\a\2

and an arbitrary real number q, if there exists a positive

constant p and pa
2
\p� minfp; pag, then one has

jEa;qðtÞj�
C

1 þ jtj ð15Þ

where C[ 0, p� j argðtÞj � p and jtj � 0.

3 Adaptive State Observer Design

Noting that all states x1; . . .; xn in system (1) are not

completely measurable for feedback design. Therefore, a

state observer should be established to estimate the states.

The state observer is designed as follows
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Da
t x̂i ¼ x̂iþ1 þ hTi;dðtÞ/i;dðtÞðx̂iÞ þ li;dðtÞðqðyÞ � x̂1Þ

Da
t x̂n ¼ udðtÞ þ hTn;dðtÞ/i;dðtÞðx̂iÞ þ ln;dðtÞðqðyÞ � x̂1Þ

8
<

:

ð16Þ

Construct observer error as e ¼ x� x̂. Then, from (1), (5)

and (16), the observer error equation is expressed as

Da
t e ¼ AdðtÞeþ DFdðtÞ þ

Xn

i¼1

Bi
ehTi;dðtÞ/i;dðtÞðx̂iÞ

þ LdðtÞðx1 � qðyÞÞ þ edðtÞ

ð17Þ

where ehTi;dðtÞ ¼ h�Ti;dðtÞ � hTi;dðtÞ, and

DFdðtÞ ¼ ðDf1;dðtÞ;Df2;dðtÞ; . . .;Dfn;dðtÞÞT,

Bi ¼ ð0; . . .; 0; 1; 0; . . .; 0ÞT,

Ad ¼

�l1;dðtÞ 1 0 � � � 0

�l2;dðtÞ 0 1 � � � 0

..

. ..
. ..

. . .
. ..

.

�ln�1;dðtÞ 0 0 � � � 1

�ln;dðtÞ 0 0 � � � 0

0

B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
A

; Ld ¼

�l1;dðtÞ

�l2;dðtÞ

..

.

�ln�1;dðtÞ

�ln;dðtÞ

0

B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
A

:

The coefficient li;dðtÞ is chosen such that for any given

QTdðtÞ ¼ QdðtÞ [ 0, there exists a common positive-definite

matrix P, such that

ATdðtÞPþ PAdðtÞ ¼ �QdðtÞ ð18Þ

On the basis of the fuzzy state observer (16), a series-

parallel estimation model similar to [34] is designed

Da
t
^̂xi ¼ x̂iþ1 þ hTi;dðtÞ/i;dðtÞðx̂iÞ þ Ki;dðtÞðqðyÞ � x̂1Þ

Da
t
^̂xn ¼ udðtÞ þ hTn;dðtÞ/i;dðtÞðx̂iÞ þ Kn;dðtÞðqðyÞ � x̂1Þ

8
<

:

ð19Þ

where Ki;dðtÞ; i ¼ 1; 2; . . .n� 1 is a designed constants. The

prediction error fi is defined as fi ¼ x̂i � ^̂xi, then, one can

obtain

Da
t fi ¼ Li;dðtÞðqðyÞ � x̂1Þ � Kn;dðtÞðqðyÞ � x̂1Þ ð20Þ

which will be used later.

Choose the common Lyapunov candidate V0 as

V0 ¼ eTPe ð21Þ

For the kth activated subsystem, the time derivative of V0 is

computed by using (17) and Lemma 3 as

Da
t V0 � � eTQkeþ 2eTP½DFk þ

Xn

i¼1

Bi
ehTi;k/i;kðx̂iÞ

þ Lkðx1 � qðyÞÞ þ ek�
ð22Þ

By Youngs inequality and 0\/Ti;kð�Þ/i;kð�Þ � 1, it follows

that

2eTP
Xn

i¼1

Bi
ehTi;k/i;kðx̂iÞ� nkek2 þ kPk2

Xn

i¼1

ehTi;k
ehi;k

ð23Þ

2eTP½DFk þ ek� � 2 þ kPk2
Xn

i¼1

m2
i;k

 !

kek2

þ kPk2ke�kk
2

ð24Þ

2eTPLkðx1 � qðyÞÞ� kPk2kLk2 þ ð2kPkkLkkrþ r2x̂1

þ kPk2kLkk2Þkek2 þ g2

ð25Þ

where e�k ¼ ðe�1;k; e�2;k; . . .; e�n;kÞ
T

and e�i;k ¼ m�i;k þ d�i;k is an

unknown constant.

Then, the time derivative of V0 along the solution of

(23)–(25) is computed as

Da
t V0 � � k0kek2 þ kPk2

Xn

i¼1

ehTi;k
ehi;k þM0 ð26Þ

where k0 ¼ kminðQÞ � n� 2 � kPk2Pn
i¼1 m

2
i;k �

2kPkkLkkrþ r2x̂1 � kPk2 þ kLkk2
and

M0 ¼ kPk2ke�kk
2 þ g2 þ kPk2kLkk2

.

4 Switched Adaptive Output Feedback Controller
Design

To overcome the explosion of complex problems caused by

repeated differentiation of the virtual control, the following

changes of coordinates are designed as

z1 ¼ x̂1; zi ¼ x̂i � x̂ic; i ¼ 2; 3; . . .; n ð27Þ

where x̂ic can be obtained by the virtual control x̂id through

the filter with a switched positive constant xi;k, as follows

xi;kDax̂ic þ x̂ic ¼ x̂id ð28Þ

x̂icðt0Þ ¼ x̂idðt0Þ ð29Þ

Let the definition of vi be the compensated tracking error

vi ¼ zi � vi; i ¼ 1; 2; . . .; n ð30Þ

where vi are the subsidiary variables to be designed. Then,

the design process of the controller is as follows
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Step 1: According to (16), the Caputo fractional

derivative of z1 is

Da
t z1 ¼ x̂2 þ hT1;k/1;kðx̂1Þ þ l1;kðqðyÞ � x̂1Þ ð31Þ

Consider the Lyapunov function candidate as

V1 ¼ V0 þ
1

2
v2

1 þ
1

2
f2

1 þ
Xr

l¼1

1

2-1

ehT1;l
eh1;l ð32Þ

where -1 is a positive constant. From (20), (30), (31) and

Lemma 2, it follows that

Da
t V1 ¼ Da

t V0 þ v1½Da
t z1 �Da

t v1� þ f1Da
t f1

�
Xr

l¼1

1

-1

ehT1;lDa
t h1;l

¼ v1½x̂2 þ hT1;k/1;kðx̂1Þ þ l1;kðqðyÞ � x̂1Þ � Da
t v1�

þ Da
t V0 þ f1Da

t f1 �
Xr

l¼1

1

-1

ehT1;lDa
t h1;l

¼ v1½z2 þ x̂2c � x̂2d þ hT1;k/1;kðx̂1Þ þ l1;ke1

þ l1;kðqðyÞ � x1Þ � Da
t v1 � ehT1;l/1;lðx̂1Þ þ x̂2d�

þ Da
t V0 þ f1½l1;kðqðyÞ � x1Þ � l1;ke1 � K1;kf1�

�
Xr

l¼1

1

-1

ehT1;lDa
t h1;l þ v1

ehT1;k/1;kðx̂1Þ

ð33Þ

By using Youngs inequality, the fact 0\/Ti;k/i;k\1 and

the fact jxj � x tanhðx=.Þ þ b. with b ¼ 0:2785 and . is a

positive constant, one has

v1hT1;k/1;kðx̂1Þ�
Xr

k¼1

jv1hT1;k/1;kðx̂1Þj

� v1

Xr

k¼1

hT1;k/1;kðx̂1Þ tanh
v1hT1;k/1;kðx̂1Þ

s1;k

� �

þ
Xr

k¼1

bs1;k

ð34Þ

v1l1;ke1 �
Xr

k¼1

jv1l1;ke1j

� v1

Xr

k¼1

l1;ke1 tanh
v1l1;ke1

m1;k

� �

þ
Xr

k¼1

bm1;k

ð35Þ

v1l1;kðqðyÞ � x1Þ� jv1l1;kjðre1 þ rx̂1 þ gÞ

� 3

2
v2

1 þ
1

2
r2l21;kkek

2 þ 1

2
l21;kr

2x̂2
1 þ

1

2
g2l21;k

ð36Þ

f1l1;kðqðyÞ � x1Þ

� 3

2
f2

1 þ
1

2
r2l21;kkek

2 þ 1

2
l21;kr

2x̂2
1 þ

1

2
g2l21;k

ð37Þ

f1l1;ke1 �
f2

1

2
þ 1

2
l21;kkek

2 ð38Þ

v1
ehT1;k/1;kðx̂1Þ�

1

2
v2

1 þ
1

2
ehT1;k

eh1;k ð39Þ

where s1;k and m1;k are positive constants.

The virtual control x̂2d, the time fractional derivative of

v1 and the corresponding update law are as follows

x̂2d ¼ �
Xr

k¼1

hT1;k/1;kðx̂1Þ tanh
v1hT1;k/1;kðx̂1Þ

sl;k

� �

� c1z1 �
Xr

k¼1

l1;ke1 tanh
v1l1;ke1

ml;k

� � ð40Þ

Da
t v1 ¼ �c1v1 þ v2 þ x̂2c � x̂2d ð41Þ

Da
t h1;l ¼ n1;l½v1-1/1;lðx̂1Þ � l1h1;l� ð42Þ

where n1;l is a delta function defined as

n1;l ¼
1; k ¼ l

0; k 6¼ l

8
<

:
ð43Þ

Substituting (40)–(43) into (33) results in

Da
t V1 � � k1kek2 � ðc1 � 2Þv2

1 þ v1v2

þ 1

2
ehT1;k

eh1;k þ
1

2
� K1;k

� �

f2

þ kPk2
Xn

i¼1

ehTi;k
ehi;k þ

l1

-1

ehT1;kh1;k þM1

ð44Þ

where k1 ¼ k0 � r2l21;k � 1
2
l21;k and M1 ¼ M0 þ l21;kr

2x̂2
1 þ

g2l21;kþ
Pr

k¼1 bs1;k þ
Pr

k¼1 bm1;k.

Step i: According to (27), one can obtain zi ¼ x̂i � x̂ic.

By using (16), the derivative of zi can be expressed as

Da
t zi ¼ Da

t x̂i �Da
t x̂ic ¼ x̂iþ1 þ hTi;k/i;kðx̂iÞ

þ li;kðqðyÞ � x̂1Þ � Da
t x̂ic

ð45Þ

Consider the Lyapunov function candidate as

Vi ¼ Vi�1 þ
1

2
v2
i þ

1

2
f2
i þ

Xr

l¼1

1

2-i

ehTi;l
ehi;l ð46Þ

where -i is a positive constant. From (20), (44) and

Lemma 2, it follows that

948 International Journal of Fuzzy Systems, Vol. 22, No. 3, April 2020

123



Da
t Vi ¼ Da

t Vi�1 þ vi½Da
t zi �Da

t vi� þ fiDa
t fi

�
Xr

l¼1

1

-i

ehTi;lDa
t hi;l

¼ Da
t Vi�1 þ vi½x̂iþ1 þ hTi;k/i;kðx̂iÞ þ li;kðqðyÞ � x̂1Þ

� Da
t x̂ic �Da

t vi� þ fiDa
t fi �

Xr

l¼1

1

-i

ehTi;lDa
t hi;l

¼ Da
t Vi�1 þ vi½ziþ1 þ x̂ðiþ1Þc � x̂ðiþ1Þd

þ hTi;k/i;kðx̂iÞ þ li;ke1 þ li;kðqðyÞ � x1Þ

� Da
t x̂ic �Da

t vi � ehTi;k/i;kðx̂iÞ þ x̂ðiþ1Þd�

þ fi½li;kðqðyÞ � x1Þ � li;ke1 � Ki;kfi�

�
Xr

l¼1

1

-i

ehTi;lDa
t hi;l þ viehTi;k/i;kðx̂iÞ

ð47Þ

Similar to (34)–(39), one has

vihTi;k/i;kðx̂iÞ�
Xr

k¼1

jvihTi;k/i;kðx̂iÞj

� vi
Xr

k¼1

hTi;k/i;kðx̂iÞ tanh
vihTi;k/i;kðx̂iÞ

si;k

� �

þ
Xr

k¼1

bsi;k

ð48Þ

vili;ke1 �
Xr

k¼1

jvili;ke1j

� vi
Xr

k¼1

li;ke1 tanh
vili;ke1

mi;k

� �

þ
Xr

k¼1

bmi;k

ð49Þ

ðvi þ fiÞli;kðqðyÞ � x1Þ

� 3

2
v2
i þ

3

2
f2
i þ r2l2i;kkek

2 þ l2i;kr
2x̂2

1 þ g2l2i;k

ð50Þ

fili;ke1 �
f2
i

2
þ 1

2
l2i;kkek

2 ð51Þ

viehTi;k/i;kðx̂1Þ�
1

2
v2
i þ

1

2
ehTi;k

ehi;k ð52Þ

where si;k and mi;k are positive constants.

The virtual control x̂ðiþ1Þd, the time fractional derivative

of vi and the corresponding update law are as follows

x̂ðiþ1Þd ¼ � cizi �
Xr

k¼1

hTi;k/i;kðx̂1Þ tanh
vihTi;k/1;kðx̂1Þ

si;k

� �

� zi�1 �
Xr

k¼1

li;ke1 tanh
vili;ke1

mi;k

� �

þDa
t x̂ic

ð53Þ

Da
t vi ¼ � civi � vi�1 þ viþ1 þ x̂ðiþ1Þc � x̂ðiþ1Þd ð54Þ

Da
t hi;l ¼ ni;l½vi-i/i;lðx̂iÞ � lihi;l� ð55Þ

where ni;l is a delta function defined as

ni;l ¼
1; k ¼ l

0; k 6¼ l

8
<

:
ð56Þ

Substituting (53)–(56) into (47) results in

Da
t Vi � � kikek2 �

Xi

j¼1

ðcj � 2Þv2
j þ viviþ1

þ
Xi

j¼1

1

2
� Kj;k

� �

f2
j þ

1

2

Xi

j¼1

ehTj;k
ehj;k

þ kPk2
Xn

i¼1

ehTi;k
ehi;k þ

Xi

j¼1

lj
-j

ehTj;khj;k þMi

ð57Þ

where ki ¼ ki�1 � r2l2i;k � 1
2
l2i;k and Mi ¼ Mi�1 þ l2i;kr

2x̂2
1þ

g2l2i;k þ
Pr

k¼1 bsi;k þ
Pr

k¼1 bmi;k.

Step n: According to (27), one can obtain zn ¼ x̂n � x̂nc.

By using (16), the derivative of zn can be expressed as

Da
t zn ¼ Da

t x̂n �Da
t x̂nc

¼ uk þ hTn;k/n;kðx̂nÞ þ ln;kðqðyÞ � x̂1Þ � Da
t x̂nc

ð58Þ

Consider the Lyapunov function candidate as

Vn ¼ Vn�1 þ
1

2
v2
n þ

1

2
f2
n þ

Xr

l¼1

1

2-n

ehTn;l
ehn;l ð59Þ

where -n is a positive constant. From (20), (58) and

Lemma 2, it follows that
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Da
t Vn ¼ Da

t Vn�1 þ vn½Da
t zn �Da

t vn� þ fnDa
t fn

�
Xr

l¼1

1

-n

ehTn;lDa
t hn;l

¼ Da
t Vn�1 þ vn½uk þ hTn;k/n;kðx̂nÞ þ ln;kðqðyÞ � x̂1Þ

� Da
t x̂nc �Da

t vn� þ fnDa
t fn �

Xr

l¼1

1

-1

ehT1;lDa
t h1;l

¼ Da
t Vn�1 þ vi½uk þ hTn;k/n;kðx̂nÞ þ ln;ke1

þ ln;kðqðyÞ � x1Þ � Da
t x̂nc �Da

t vn � ehTn;k/n;kðx̂nÞ�

þ fn½ln;kðqðyÞ � x1Þ � ln;ke1 � Kn;kfn�

�
Xr

k¼1

1

-n

ehTn;kDa
t hn;k þ vnehTn;k/n;kðx̂nÞ

ð60Þ

Similar to (50)–(52), one has

ðvn þ fnÞln;kðqðyÞ � x1Þ

� 3

2
v2
n þ

3

2
f2
n þ r2l2n;kkek

2 þ l2n;kr
2x̂2

1 þ g2l2n;k

ð61Þ

fnln;ke1 �
f2
n

2
þ 1

2
l2n;kkek

2 ð62Þ

vnehTn;k/n;kðx̂1Þ�
1

2
v2
n þ

1

2
ehTn;k

ehn;k ð63Þ

The control uk, the time Caputo fractional derivative of vn
and the corresponding update law are as follows

uk ¼ �cnzn � zn�1 � hT
n;k/n;kðx̂nÞ � ln;ke1 ð64Þ

Da
t vn ¼ �civn þ vn�1 ð65Þ

Da
t hn;k ¼ nn;k½vn-n/n;kðx̂nÞ � lnhn;k� ð66Þ

where nn;l is a delta function defined as

nn;l ¼
1; k ¼ l

0; k 6¼ l

8
<

:
ð67Þ

Substituting (64)–(67) into (60) results in

Da
t Vn � � knkek2 �

Xn

i¼1

ðci � 2Þv2
i þ

Xn

i¼1

1

2
� Ki;k

� �

f2
i

þ 1

2
� li
-i

þ kPk2

� �
Xn

i¼1

eh
T
i;k
ehi;k þMn

ð68Þ

where kn ¼ kn�1 � r2l2n;k � 1
2
l2n;k, Mn ¼ Mn�1 þ l2n;kr

2x̂2
1 þ

g2l2n;k þ 1
2

Pn
i¼1

li
-i
h�Ti;kh

�
i;k and inequality ehTi;khi;k � �

1
2
ehTi;k

ehi;k þ 1
2
eh�Ti;k

eh
�
i;k is used.

Define V ¼ Vn, a ¼ minkfkn=kmaxðPÞ; ci � 2; 1 � li
-i
þ

2kPk2; 1 � 2Ki;k; i ¼ 1; 2; . . .; ng, c ¼ maxkfkPk2ke�kk
2 þ

g2 þ kPk2kLkk2 þ
Pn

i¼1 r
2x̂2

1l
2
i;k þ

Pn
i¼1 g

2l2i;kþ 1
2

Pn
i¼1

li
-i

h�Ti;k h�i;k; i ¼ 1; 2; . . .; ng and Vk
h ¼ 1

2

P
l 6¼k2N

ehTi;l
ehi;l.

Then, (66) can be further written as

Da
t V � � aðV � Vk

hÞ þ c : ð69Þ

Remark 2 It is hard to design common Lyapunov func-

tions as well as common virtual control functions for the

existence of switched adaptive parameters. From (32), (46),

(59), (40) and (53) it can be observed that by using the sum

function and hyperbolic tangent function, the Lyapunov

function and common virtual control functions are suc-

cessfully designed and ensure their continuity.

Remark 3 Repeated differentiations of virtual control

functions can lead to complexity explosion, so the filters

are introduced to solve this problem. The filters with

switched parameters have been designed in this paper,

which can reduce the conversation of common control

scheme.

Remark 4 The backstepping control method of a class of

fractional-order nonlinear system is also proposed in paper

[35]. It applies the stability analysis of integer-order lya-

punov method to the known fractional-order system.

However, in this paper, the system model may be com-

pletely unknown. In addition, the fractional-order adaptive

law is proposed to analyze the stability by using the sta-

bility criterion.

5 Stability analysis

Theorem 1 Under Assumptions 1–2, considering the

fractional-order switched nonlinear system (1) with output

quantization. The filters (28), the control laws (64) and the

adaptive laws, (42), (55) and (66) are designed. By

adjusting the design parameters properly, the closed-loop

signals are uniformly and bounded, and all error variables

can be arbitrarily small.

Proof According to (69), it is obtained that

Da
t V þ mðtÞ ¼ �aVðtÞ þ c ð70Þ

where mðtÞ� 0. The Laplace transform of (70) is equal to

VðsÞ ¼ sa�1

sa þ c
Vð0Þ þ c

sðsa þ cÞ �
MðsÞ
sa þ c

ð71Þ

where V(s) and M(s) are the Laplace transforms of V(t) and

m(s), respectively. By formula (13), one gets

VðtÞ ¼ Vð0ÞEa;1ð�ataÞ þ ctaEa;1það�ataÞ

� mðtÞ � t�1Ea;0ð�ataÞ
ð72Þ

where � shows the location of the convolution operator.
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Noticing that m(t) and t�1Ea;0ð�ataÞ are nonnegative

functions, then one can obtain

jVðtÞj ¼ jVð0ÞjEa;1ð�ataÞ þ ataEa;1það�ataÞ ð73Þ

Noting that argð�ataÞ ¼ �p, j � ataj 6¼ 0 for all t 6¼ 0 and

a 2 ð0; 1� and Lemma 5, there’s a positive constant C such

that

jEa;1ð�ataÞj � C

1 þ ata
ð74Þ

Then, one gets

lim
t!1

jVð0ÞjEa;1ð�ataÞ ¼ 0 ð75Þ

Therefore, for each i, there exists a constant t1 [ 0 such

that t[ t1, which means that

jVð0ÞjEa;1ð�ataÞ\ i
3

ð76Þ

At the same time, through Lemma 4, it is obtained that

Ea;1það�ataÞ ¼ 1

Cð1Þata þ o
1

jataj1þ1

 !

ð77Þ

From (77), for each i[ 0, there is a positive constant t2,

which makes

ctaEa;1það�ataÞ� c

a
þ i

3
ð78Þ

For all t[ t2. One can adjust the parameters to satisfy
c
a
\ i

3
, therefore, one gets

jVðtÞj\i ð79Þ

Through (79), it is shown that xi, zi, vi, vi and hi; k are semi-

globally uniformly ultimately bounded and vi\
ffiffiffiffiffi
2i

p
.

Remark 5 In this paper, the integer-order non-strict sys-

tem is extended to fractional-order systems. By designing

fractional-order control and the related adaptive law, the

fractional-order stability criterion of the system is estab-

lished. The fractional-order stability criterion is

established.

Remark 6 Through (78) and (79), one knows that the final

limit of tracking error depends on a, c. It is clear that the

decrease of i can be achieved through decreasing c or

increasing a. Therefore, one can properly adjust the design

parameters to decrease the tracking error.

Remark 7 Neural network control [36, 37] and fuzzy logic

control [38] have many same characteristics. They can

control a process individually or in combination. Compared

with neural network control, the advantage of fuzzy logic

system design is fast and simple. Once people determine

the fuzzy variables and fuzzy sets according to experience,

the model of fuzzy logic control system can be completed

in a short time. Neural network scheme can be designed as

similar performance control, but it needs huge amount of

fast computing power. Because the fuzzy criteria depend

too much on the subjective factors of human beings, it is a

very worthy choice to combine them to form the fuzzy

neural network system, which is also the future work of this

paper.

6 Simulation Example

In this section, a fractional-order gyroscope is simulated to

prove the validity of our main results.

Da
t x1 ¼ x2

Da
t x2 ¼ �pdðtÞðtÞx1 � b1;dðtÞx1 � b2;dðtÞx

3
2

þ qdðtÞðtÞx3
1 þ udðtÞ þ dðtÞdðtÞ

8
>>>><

>>>>:

ð80Þ

where dðtÞ 2 f1; 2g, pdðtÞ ¼
m2

d
4
� fd sinðwtÞ,

qdðtÞ ¼
m2

d
12
� d

6
� fd sinðwtÞ

6
, m2

1 ¼ 100, m2
2 ¼ 50, d1 ¼ 1,

d2 ¼ 1, w ¼ 25, f1 ¼ 35:5, f2 ¼ 45:5. b1;1 ¼ 2 b1;2 ¼ 1,

b2;1 ¼ 2, b2;2 ¼ 1. The additive disturbance is d1ðtÞ ¼
0:05 sinð25tÞ and d2ðtÞ ¼ 0:03 cosð25tÞ.

Choosing fuzzy membership functions as

lFl
i;1
ðxiÞ ¼ exp �ðxi � 0:2 þ lÞ2

4

" #

; i ¼ 1; 2; l ¼ 1; 2; 3; 4; 5:

lFl
i;2
ðxiÞ ¼ exp �ðxi � 0:5 þ lÞ2

4

" #

; i ¼ 1; 2; l ¼ 1; 2; 3; 4; 5:

Defining fuzzy basis functions as

u1l;kðx1Þ ¼
lFl

1;k

R5
j¼1lFj

1;k

;

u2l;kðx2Þ ¼
lFl

i;k
:::lFl

i;k

R5
k¼1lFl

i;k
:::lFl

i;k

:

ð81Þ

where l ¼ 1; 2; 3; 4; 5 and k ¼ 1; 2.

The initial state of system is xð0Þ ¼ ½0:01; 0:01�T , and

the fractional order be a ¼ 0:9. The control gains for the

controller are selected as c1 ¼ c2 ¼ 5, -1 ¼ 10, -2 ¼ 5,

l1 ¼ l2 ¼ 1, g ¼ 0:0002 and r ¼ 0:5. By solving the LMI.

one can obtain L1 ¼ ½17:0116; 39:5777�T and

L2 ¼ ½16:9416; 41:2860�T. The simulation results are given

in Figs. 1, 2, 3, 4, 5, 6, 7. The trajectory of the state

variable x1, the observation value x̂1 and the quantization

output q(y) are shown in Fig. 1. The quantization error

varies with the fluctuation of the output signal and they are

positively correlated. However, when the output signal
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increases, the tracking error can still converge to the small

neighborhood of the origin, which means that the quanti-

zation error can be compensated successfully. Fig. 2

expresses the trajectories of x2 and x̂2. Fig. 3 shows the

error trajectories. As one can see, the tracking errors con-

verge on the small neighborhood of the origin. The tra-

jectories of the tracking errors zi and the auxiliary variables

vi are shown in Figs. 4 and 5. The control signal u is

plotted in Fig. 6. Figure 7 shows the demonstration of

switching signal. The simulation results show that the

control scheme has good tracking performance and high

reliability.
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Fig. 1 The trajectories of x1, x̂1 and q(y)
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Fig. 2 The trajectories of x2 and x̂2
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Fig. 3 Observation errors e1 and e2
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Fig. 4 The trajectories of z1 and z2
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Fig. 5 The trajectories of v1 and v2
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7 Conclusion

For a class of uncertain fractional-order nonlinear switched

systems, an observer-based adaptive output feedback

tracking control scheme has been proposed under the

framework of adaptive backstepping control technology.

At the same time, the output quantization of the system has

been also considered in the control scheme. In order to

obtain a good approximation of the system uncertainty, the

serial-parallel estimation model has been added to back-

stepping procedure. In addition, an effective switched

fractional-order filter has been designed by DSC technol-

ogy to overcome the problem of ‘‘explosion of complex-

ity’’. The simulation results show that the controller

designed in this paper ensures that all signals of the closed-

loop system are bounded when switching occurs, and the

tracking error converges to a small neighborhood of the

origin.
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