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Abstract Accurate forecasting and scientific analysis of

building electrical load can improve the level of building

energy management to meet the requirements of energy

saving. To further strengthen the forecasting accuracy, this

study presents a hybrid model for building electrical load

forecasting. The proposed method combines the fuzzy

inference system and the periodicity knowledge together to

generate accurate forecasting results. In this method, in

order to better reflect the actual characteristic of the elec-

trical load, the wavelet transform method is firstly utilized

to filter the original building electrical load data. Then, the

daily periodic pattern is extracted from such filtered elec-

trical load data, and the residual data are obtained through

removing the daily periodic pattern. Further, the residual

data-driven forecasting model is constructed by the func-

tionally weighted single-input-rule-modules connected

fuzzy inference system (FWSIRM-FIS). This FWSIRM-

FIS model is used to provide the compensation to the

periodic component. In other words, the daily periodic

component and the residual forecasting are combined to

achieve the final forecasting result. Specifically, in order to

assure the forecasting performance of the FWSIRM-FIS

model, the subtraction clustering method is employed to

construct the SIRMs while the least square estimation is

utilized to optimize the parameters in the functional

weights of the FWSIRM-FIS. Finally, in this paper, two

real-world experiments are made and detailed comparisons

with four traditional models are given. Experimental and

comparison results demonstrate that the proposed hybrid

model has the smallest forecasting errors and can achieve

the best performance.
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1 Introduction

Along with the development of China’s economy, its

electricity consumption gradually occupies an important

proportion of the energy consumption in the whole country.

The gradual increase of China’s electricity demand caused

a heavy burden of the power generation. As a result, it is an

urgent problem to reduce the electricity consumption,

especially the electricity consumption in buildings which

are the terminals of energy utilization [1, 2]. On the other

hand, the reasonable management and control of building

equipments is conducive to effectively reducing the elec-

tricity utilization. One important thing for efficient man-

agement and control of building equipments is to

accurately forecast the short-term building electrical load.

Building electrical load forecasting refers to explore the

internal relationship through analyzing the historical elec-

trical load data, so as to establish a forecasting model to

estimate the trend in the future. Based on the forecasting

results, the electrical worker can plan power management

and control scheme so as to improve the economic effi-

ciency of power system.
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Existing building electrical load forecasting models can

be divided into three categories: the engineering models,

the statistical models, and the artificial intelligence models.

In the engineering models, the physical principles are uti-

lized to calculate the energy consumption behaviors and

the thermal dynamics. Over the past 60 years, many soft-

ware tools have been given to assess energy efficiency,

such as the EnergyPlus [3], DOE-2 [4], BLAST, and ESP-r.

Such software tools have been popularly adopted to

improve building electrical load forecasting accuracy. In

[5], a report was given to provide up-to-date comparison of

the features and capabilities of twenty major building

energy simulation programs. In [6], Westphal and Lambert

analyzed the thermal loads of non-residential buildings

based on some weather variables. In addition to the

weather conditions, building characteristics are other

important factors that can determine the forecasting per-

formance. In [7], Yao and Steemers developed a simple

method for formulating load profile. This method has been

utilized to forecast the daily energy load distribution of

household appliances, domestic hot water, and space

heating. There is no clear boundary between the exact

model and the simplified model.

The statistical methods apply the historical electrical

load data to predict the future values and have been widely

used in building electrical load forecasting. Among the

statistical models, the AutoRegressive model with eXtra

inputs (ARX), AutoRegressive Integrated Moving Average

(ARIMA), AutoRegressive Integrated Moving Average

with eXtra inputs (ARIMAX), and Conditional Demand

Analysis (CDA) are very popular. In [8], a robust method

combining two separate time-indexed ARX models was

presented for hourly cooling-load forecasting. In [9], a new

hybrid model combining the ARIMA and support vector

regression was developed for electrical load forecasting. In

[10], an ARIMAX model was given to forecast the short-

term summer load. In [11], the CDA method was utilized to

estimate the electrical load of various appliances.

Compared with the engineering models and the statis-

tical models, artificial intelligence models are more popular

and more suitable for accurate forecasting in dynamic and

uncertain environments. Among the artificial intelligence

models, the most widely used one is the neural network

(NN). In [12], a cascaded NN-based hybrid forecasting

model was proposed for short-term load forecasting. In

[13], a new enhanced back propagation NN (BPNN) model

was given to effectively predict the electrical load. In [14],

Badran developed a modified forecasting model combining

NN with linear regression and applied it to the electrical

load demand forecasting. In [15], in order to improve the

accuracy of electrical load forecasting, Li et al. presented

an optimized forecasting model for building energy con-

sumption. In this method, an improved particle swarm

optimization algorithm was applied to adjust the weight

and threshold of the NN, and the forecasting results

demonstrated that the accuracy of this model is higher than

that of the traditional NN model. In [16], a generalized

regression NN (GRNN) forecasting model was established

by analyzing the load data and meteorological data to

forecast the region electrical load and the forecasting

accuracy of this proposed model is significantly improved

compared with the traditional neural network forecasting

model. Some other machine learning methods such as the

support vector machine (SVM), support vector regression

(SVR), and Extreme Learning Machine (ELM) are also

widely used in electricity load forecasting. In [17], the

forecasting results of the SVM and Random Forest

Regression (RFR) were compared for power load fore-

casting. Comparison results showed that both SVM and

RFR are excellent choices for electrical load forecasting. In

[18–21], SVR was successfully applied to building energy

consumption forecasting. In [22, 23], one ELM-based

novel method was developed to achieve an improvement in

building energy consumption forecasting accuracy.

Another popular artificial intelligence method is the

fuzzy inference system (FIS), especially the fuzzy neural

network (FNN) which combines the NN with FIS to

aggregate their merits and overcome their shortcomings. In

[24], Li et al. developed a new method named the hybrid

genetic algorithm-hierarchical adaptive network-based

fuzzy inference system (GA-HANFIS) to estimate the

building energy consumption. In [25], a novel type-2 fuzzy

set-based methodology—T2SDSA-FNN (Type-2 self-de-

veloping and self-adaptive FNN) was proposed to model

the data uncertainty for electrical load forecasting. In [26],

Li et al. developed a novel short-term cooling-load fore-

casting approach by conjunctive use of fuzzy C-mean

clustering algorithm and fuzzy SVMs. In [27], a modified

fuzzy logic relation-based approach was presented for

future electricity demand forecasting using the dataset

collected from the Central Electricity Authority in India.

According to reviewed literatures, most of the artificial

intelligence-based building electrical load forecasting

models are data-driven. When the number of input vari-

ables becomes large [28–30], the model will become more

complicated and the structure will be very difficult to

construct, especially for the fuzzy methods, which always

face the curse of dimensionality [31–33]. In order to

decrease the number of rules and reduce the system design

difficulty, in [34, 35], Yi et al. firstly proposed the single-

input-rule-modules (SIRMs)-based fuzzy inference system

(FIS) to simplify the design of traditional FIS. The SIRMs

connected FIS (SIRM-FIS) firstly constructs one SIRM for

each input variable, and finally aggregates the outputs of all

SIRMs by multiplying their weights to generate the final

reasoning output [36, 37]. In order to enhance the
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performance of traditional SIRM-FISs, many scholars have

extended the SIRM-FIS. In [38], Seki and Nakashima

proposed the SIRMs Connected Fuzzy Inference Model

with Functional Weights (SIRM-FW), which replaces the

constant weights of the traditional SIRM-FIS with one-

variable function. In order to further improve the perfor-

mance of the SIRMs method, a new kind of SIRM-FIS

named the functionally weighted SIRM-FIS (FWSIRM-

FIS) was proposed by Li et al. in [39]. The weights of all

SIRMs in FWSIRM-FIS were replaced by the multi-vari-

able function [39]. Thus, the importance of the corre-

sponding SIRMs can be dynamically reflected by the

values of the multiple input variables. Simulation results in

[39] has proved that the FWSIRM-FIS has better perfor-

mance for modeling and forecasting problems compared

with the traditional SIRM-FIS.

On the other hand, building electrical load data often

demonstrate obvious periodic patterns [40–43]. For exam-

ple, different buildings have different monthly, daily, and

hourly patterns of the electrical loads. Through considering

such periodic features in the building electrical load data,

not only better insights can be gained into the data, but also

the forecasting accuracy can be strengthened. Despite the

periodic features have great importance, to the authors’

knowledge, there are few studies considering how to

ensemble the periodic features into the building electrical

load forecasting application. In [44], Ghaderi attempted to

decompose the pattern by clustering the data for each

specified period, and then to simplify and analyze the

complexity of the pattern of consumption. In [45], in order

to decline the periodic variable’s affect and simplify the

pattern of electricity consumption, Keyno decomposed the

complicated pattern to a set of simple patterns by clustering

the primary data and eliminating the periodic variance.

However, how to utilize the periodicity knowledge to

enhance the forecasting performance still needs further

studies.

In order to further improve the forecasting accuracy, this

study presents a hybrid model and applies it to the building

electrical load forecasting. The main contributions and

novelties are listed as follows:

– A hybrid model is proposed for the electrical load

forecasting. In this hybrid model, the periodic pattern is

extracted and the residual data obtained through

removing the periodic pattern from the building

electrical load data are utilized to construct the residual

forecasting model. In other words, the final predicted

values of this hybrid model are obtained by aggregating

the periodic component and the predicted results from

the residual data-driven forecasting model.

– The wavelet transform method is adopted to decom-

pose and reconstruct the observed building electrical

load data so as to eliminate data noise and to extract the

periodic pattern as accurate as possible.

– The residual forecasting model is realized by the

FWSIRM-FIS which can reduce the number of fuzzy

rules and has more powerful ability for forecasting and

identification problems. In this study, the subtraction

clustering method is employed to construct the SIRMs

for the FWSIRM-FIS, while the least square method is

given to learn the parameters of the FWSIRM-FIS.

– The proposed hybrid method is applied to two real-

world buildings, and detailed comparisons are also

given. Experimental results have verified the effective-

ness of the proposed method on building electrical load

forecasting. And, comparison results have demon-

strated that the proposed hybrid model has the smallest

forecasting errors and can achieve the best

performance.

The rest of this paper is organized as follows: The wavelet

transform method and the FWSIRM-FIS will be introduced

in Sect. 2. The proposed hybrid model will be presented in

Sect. 3. Two experiments will be done, and comparisons

will be made in Sect. 4. Finally, the conclusions will be

given in Sect. 5.

2 Methodologies

In this section, the wavelet transform method and the

FWSIRM-FIS will be introduced.

2.1 Wavelet Transform

Fourier transform shows excellent performance in pro-

cessing smooth and stationary signals, but it is not good for

processing sudden changes and non-stationary signals.

Wavelet transform which originates from Fourier transform

is a method developed in recent years to process time series

signals. Compared with the Fourier transform, the wavelet

transform has the characteristics of adaptiveness and

mathematical microscopy. It performs multi-scale refine-

ment of time series through scale transformation and

translation operation, and is especially suitable for pro-

cessing non-stationary and non-linear signals [46].

Wavelet transform replaces the infinite triangular func-

tion basis of Fourier transform with the finite attenuating

wavelet basis; in this way, not only the frequency can be

obtained, but also the time can be located. The formula of

wavelet transform is as follows [46]:

WTða; sÞ ¼ 1
ffiffiffi

a
p

Z 1

�1
f ðtÞ � w t� s

a

� �

dt ; ð1Þ
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where a is the scale used to control the scaling of the

wavelet function, and s is the translation amount used to

control the translation of the wavelet function.

It can be seen from this formula that, unlike Fourier

transform with only one frequency variable, wavelet

transform has two variables a and s. The scale a corre-

sponds to frequency, while the translation s corresponds to

time.

Because the wavelet transform can analyze signals

simultaneously in the same time-frequency domain, it can

distinguish mutation part and noise part effectively in the

high-frequency part on different decomposition levels, so

as to achieve the purpose of noise reduction. A time series

signal with noise can be expressed as follows:

S ¼ Aþ e � e ; ð2Þ

where S is the noisy signal, A is the useful signal, e is the

noise, and e is the standard deviation of the noise. Usually,

we assume that e is a white noise signal. Generally

speaking, the useful signal is shown in the low-frequency

part, while the noisy signal has the high frequency. The

decomposition of S can be computed by the wavelet

decomposition structure as shown in Fig. 1.

As shown in this figure, wavelet transform is used to

decompose the original noisy signal SðkÞ layer by layer.

Firstly, the first layer is decomposed into cA1 and cD1.

Then, continue to use wavelet decompose cA1 into cA2 and

cD2. As an analogy, cAn�1 was decomposed into cAn and

cDn. The amplitude of high-frequency coefficients is small,

but the number is large. Through the above steps, the multi-

scale decomposition of wavelet and the extraction of

wavelet coefficients are completed. After obtaining the

wavelet coefficients of each scale, the appropriate coeffi-

cients are selected and reconstructed by inverse wavelet

transform to get filtered signal.

2.2 FWSIRM-FIS

The FWSIRM-FIS was proposed in [39] to strengthen the

performance of the conventional SIRM-FIS [34, 35].

Compared with existing conventional SIRM-FISs, the

FWSIRM-FIS can not only compress the fuzzy rule base

efficiently, but also improve the approximation perfor-

mance greatly.

Suppose that the FWSIRM-FIS has n input variables x1,

x1, . . ., xn. Then, it will be composed of n SIRMs, each one

of which can be regarded as a special FIS with one input

and one output [34, 35, 39]. Being different from the tra-

ditional SIRMs methods with constant weights, the weights

of the FWSIRM-FIS are functions of the variables x1, x1,

. . ., xn expressed as wiðxÞ ¼ wiðx1; x2; . . .; xnÞ.
The SIRM for the input variable xi is as follows [39]

SIRM-i: fRji
i :xi ¼ eA

ji
i ! yi ¼ c

ji
i g

mi

ji¼1 ; ð3Þ

where A
ji
i s are fuzzy sets for xi, c

ji
i is the consequent

parameter of rule R
ji
i , and mi represents the number of

fuzzy rules in the SIRM for xi.

With the popular singleton fuzzifier and the COS

defuzzifier, we can compute the inference result of SIRM-i

as [39]

yiðxiÞ ¼

Pmi

ji¼1 l
eA

ji
i

ðxiÞcjii
Pmi

ji¼1 l
eA

ji
i

ðxiÞ
: ð4Þ

In the FWSIRM-FIS, we usually adopt the following

functional weight for SIRM-i

wiðxÞ ¼ w
ð0Þ
i þ w

ð1Þ
i x1 þ � � � þ w

ðnÞ
i xn; ð5Þ

where x ¼ ðx1; x2; . . .; xnÞ.
Then, we can calculate the ultimate output of FWSIRM-

FIS as

Fig. 1 Wavelet decomposition structure

C. Li et al.: A Hybrid Short-Term Building Electrical Load Forecasting Model... 159

123



yðxÞ ¼
X

n

i¼1

wiðxÞyiðxiÞ

¼
X

n

i¼1

ðwð0Þ
i þ w

ð1Þ
i x1 þ � � � þ w

ðnÞ
i xnÞ

�
Pmi

ji¼1 l
eA
ðxiÞcjii

Pmi

ji¼1 l
eA
ðxiÞ

: ð6Þ

For convenience, we give some notations for the previous

results. To begin, the vector of the parameters in the

functional weights is denoted as

w ¼ ½wð0Þ
1 ; . . .;w

ðnÞ
1 ; . . .;wð0Þ

n ; . . .;wðnÞ
n �T : ð7Þ

From (6), the mapping of the FWSIRM-FIS can be

expressed as [39]

yðxÞ ¼
X

n

i¼1

ðwð0Þ
i þ w

ð1Þ
i x1 þ � � � þ w

ðnÞ
i xnÞyiðxiÞ ¼ gðxÞTw ;

ð8Þ

where

gðxÞ ¼ ½y1ðx1Þ; x1y1ðx1Þ; . . .; xny1ðx1Þ; . . .; ynðxnÞ;
x1ynðxnÞ; . . .; xnynðxnÞ�T

: ð9Þ

3 The Proposed Method

In this section, the structure of the proposed method will be

presented firstly. Subsequently, how to obtain the period-

icity knowledge from the building electrical load data will

be discussed. Finally, the construction and learning of

FWSIRM-FIS which is used to predict the residual errors

will be described in detail.

3.1 The Structure of the Proposed Method

As we previously discussed, the building electrical load

data have the periodic characteristic. Based on the peri-

odicity knowledge, we can compensate the uncertainties in

the building electrical load data and strengthen the fore-

casting performance of the model. In this study, one novel

hybrid method as shown in Fig. 2 is proposed to obtain

more accurate forecasting performance for the building

electrical load.

More specifically, the forecasting processes in this study

are listed below:

– Step 1: Utilize the wavelet transform method to filter

the observed building electrical load data. Then, extract

the periodic pattern from the filtered building electrical

load data.

– Step 2: Generate the residual data through eliminating

the periodic component. Then, construct the FWSIRM-

FIS model using the residual data to realize the

compensation for the periodic pattern. In this step, the

clustering method and least square estimation are

adopted to generate fuzzy rules and optimize the

parameters in the proposed model, respectively.

– Step 3: Combine the daily periodic component and the

predicted residual value to obtain the final building

electrical load forecasting results.

Below, we will discuss the first and second steps in detail.

3.2 Periodic Pattern Extraction

Under the complex architectural environment, there are

many systematic and random errors in the measurement

process that cause measured electrical load data with high

levels of noise. In order to extract the periodic pattern as

accurate as possible, it is an important step to eliminate the

noise from such building electrical load data. In this study,

we utilize the wavelet transform method to realize this

objective. Then, we will extract the periodic pattern from

the filtered electrical load data.

3.2.1 Preprocessing of the Building Electrical Load Data

by the Wavelet Transform Method

It is assumed that the building electrical load data have

been collected for N days, and the number of sampling

times is T per day. Then, the collected time series of

Fig. 2 The structure of the proposed hybrid method
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building electrical load can be written as one-dimensional

vectors as

S ¼ fS1; S2; . . .; SNg ð10Þ

in which Sk is a vector of the sampling electrical load data

in the kth day, and can be expressed as

Sk ¼ ½skð1Þ; skð2Þ; . . .; skðTÞ� ; ð11Þ

where skðjÞ is the electrical load data at time j on day k, and

j ¼ 1; 2; . . .; T .

For the collected original electrical load time series S, in

this study, the wavelet transform is used to remove the

noise in the sequence according to the following steps.

Using the wavelet transform, it can return the wavelet

decomposition of the electrical load time series S at level n.

The output decomposition structure consists of the wavelet

decomposition vector C and the bookkeeping vector L.

According to Fig. 1, the vector form of C can be expressed

as

C ¼ ½cAn; cDn; cDn�1; . . .; cD1� ; ð12Þ

where A and D are line vectors. A is a low-frequency

coefficient and also called approximation coefficient, D is a

high-frequency coefficient, also known as detail

coefficient.

After extracting the wavelet coefficients through the

above steps, we need to reconstruct the extracted wavelet

coefficients by using the reconstruction function; then, the

reconstructed electrical load time series A(n) and D(n) of

each decomposition coefficient are obtained.

In the decomposition process, it is found that the length

of low-frequency coefficients decreases by half with the

increase of scale. It can be seen that the variation of low-

frequency coefficients in each layer is similar to that of the

original electrical load time series, which shows that the

low-frequency coefficients reflect the contour or basic

information of the time series, and that the reconstructed

low-frequency time series A(n) is close to the original

electrical load time series S. And, D(n) belongs to noise

time series.

In order to protect the integrity of building electrical

load data while reducing the impact of noise on forecasting

results, some noise can be removed while low-frequency

time series A(n) is kept. Consequently, the reconstructed

electrical load time series Z can be obtained as

Z ¼ AðnÞ ; ð13Þ

where n is the level of decomposition, and A(n) is the

reconstructed low-frequency building electrical load time

series.

3.2.2 Extraction of the Periodic Pattern

According to the original electrical load time series

S ¼ fS1; S2; . . .; SNg, the reconstructed electrical load time

series A can be expressed as

Z ¼ fZ1; Z2; . . .; ZNg ð14Þ

in which Zk is a vector of the reconstructed electrical load

data in the kth day, and can be expressed as

Zk ¼ ½zkð1Þ; zkð2Þ; . . .; zkðTÞ� ; ð15Þ

where zkðjÞ is the reconstructed electrical load at time j on

day k, and j ¼ 1; 2; . . .; T .
Through analyzing the original building electrical load

data, we can observe that this time series has a daily pat-

tern. Thus, in this study, the building electrical load time

series is divided into the periodic component and the

residual part, which can be expressed as

Z ¼ M þ Zr ; ð16Þ

where Z is the reconstructed daily building electrical load

time series, M is the periodic component, and Zr is the

daily residual part after removing the periodic component.

In this study, we utilize the mean value method to

extract the daily electrical load pattern. Consequently, the

daily periodic component of the electrical load can be

computed as follows:

M ¼ 1

N

X

N

k¼1

zkð1Þ;
1

N

X

N

k¼1

zkð2Þ; . . .;
1

N

X

N

k¼1

zkðTÞ
" #

: ð17Þ

Furthermore, through removing this daily periodic

component, the residual part of the electrical load data can

be obtained as

Zr ¼ fZ1 �M; Z2 �M; . . .; ZN �Mg: ð18Þ

For simplicity, this residual part of the building elec-

trical load data can be re-expressed as

Zr ¼ fzrð1Þ; zrð2Þ; . . .; zrðNTÞg ; ð19Þ

where zrðjÞ is the jth data points in the residual electrical

load time series of the N days, and j ¼ 1; 2; . . .;NT .

3.3 Construction and Learning of the FWSIRM-FIS

Model for the Residual Data

In the building electrical load forecasting model, we usu-

ally suppose that the building electrical load of the next

sampling time can be affected by the building electrical

load of the previous n sampling times. In other words, the

proposed model constructed by the residual data has n

inputs and one output and can be abstractly expressed as
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y ¼ bzrðlþ 1Þ ¼ f ðxðlÞÞ ¼ f ðzrðlÞ; zrðlþ 1Þ; . . .; zrðlþ n� 1ÞÞ;
ð20Þ

where f(.) represents the input–output mapping of the

forecasting model constructed by the residual data, and we

denote x ¼ ½x1; x2; . . .; xn�, y ¼ bzrðlþ 1Þ.
To construct the residual forecasting model, from the

residual time series, we generate the input–output training

data pairs as

fxðlÞ; yðlÞg ¼ f½zrðlÞ; zrðlþ 1Þ; . . .; zrðlþ n� 1Þ�; zrðlþ nÞg ;
ð21Þ

where l ¼ 1; 2; . . .; L, and L is the number of the training

data pairs.

In order to obtain satisfactory performance, the structure

of the FWSIRM-FIS should be determined and its param-

eters need to be optimized. In this study, the subtraction

clustering method is adopted to determine the structure of

the FWSIRM-FIS, and the least square estimation method

is utilized to learn the parameters in the functional weights

of the FWSIRM-FIS model. Detailed description about the

construction and learning of this fuzzy system will be given

in the following subsections.

3.3.1 Construction of the SIRMs Using the Subtraction

Clustering Method

In this paper, we determine the structure of the FWSIRM-

FIS by the subtraction clustering method [47]. The sub-

traction clustering method is a fast one-time algorithm for

estimating the number of clusters and the location of

cluster centers from a group of data [47]. For each SIRM of

the FWSIRM-FIS, the subtraction clustering method is

used to achieve the fuzzy partition of the antecedent part of

the SIRM and the centers of its consequent part.

The detailed steps for constructing one specified SIRM-

i are given as follows [47]:

– According to the training dataset fðxð1Þ; yð1ÞÞgLl¼1,

generate the training dataset fuð1Þi ¼ ðxð1Þi ; yð1ÞÞTgLl¼1

for the SIRM-i, where i ¼ 1; 2; . . .; n.

– Each two-dimensional data point u
ð1Þ
i can be regarded

as a candidate for clustering center, and the density

index at the data point u
ðtÞ
i is defined as

DðuðtÞi Þ ¼
X

L

l¼1

e�a u
ðtÞ
i
�u

ðlÞ
ik k2

; ð22Þ

where t ¼ 1; 2; . . .; L, a ¼ 4
r2a
, ra is a positive number

which defines a neighborhood of point u
ðtÞ
i . The other

data points excluding ra have less influence on the

density index of this point.

– Then, the data with the largest density index are found

as the first clustering center, and delete all data points

near the selected center determined by the parameter ra.

– After the k � 1th cluster center has been determined,

recalculate the density index for each data point

according to the following formula:

DkðuðtÞi Þ ¼ Dk�1ðuðtÞi Þ � D�
k�1e

�b u
ðtÞ
i
�u�i

ðk�1Þk k2

; ð23Þ

where u�i
ðk�1Þ is the location of the k � 1th cluster

center and D�
k�1 is its potential value; k means the

iteration step. In order to avoid clustering centers with

close distances. b ¼ 4
r2
b

, rb � 1:25ra is usually taken.

– Find the maximum density index and use this data point

as the clustering center. Repeat the above steps until the

density of the remaining data points is less than a

threshold; then, the clustering process is over.

After finding the clustering centers of data points by

clustering method, the number of fuzzy rules and mem-

bership functions of the SIRMs can be determined

according to the clustering centers [47].

Suppose that mi clusters have been obtained as

u�i
ðkÞ ¼ ðx�i ðkÞ; y�ðkÞÞ

T
n omi

k¼1
; then, the generated fuzzy rules

for SIRM-i are as follows:

SIRM-i: Rk
i :xi ¼ eAk

i ! yi ¼ y�ðkÞ
n omi

k¼1
ð24Þ

in which

l
eAk

i

ðxiÞ ¼ e�aðxi�x�i
ðkÞÞ2 : ð25Þ

3.3.2 Optimizing the Functional Weights in the FWSIRM-

FIS Model

For the FWSIRM-FIS, its SIRMs have already been gen-

erated by subtraction clustering method. However, its

functional weights still need to be determined. So in this

part, we will optimize the parameters of the functional

weights by the learning algorithms. Below, the least square

method [48] will be utilized to learn such parameters.

Assume that the training dataset is ðxðlÞ; yðlÞÞ
� �L

l¼1
, in

which xðlÞ ¼ ½zrðlÞ; . . .; zrðlþ n� 1Þ�. Generally, we select

the following squared-error function as the learning

criteria:

EðwÞ ¼
X

L

l¼1

ðyðxðlÞ;wÞ � yðlÞÞ2 ; ð26Þ

where yðxðlÞ;wÞ is the forecasted result from the FWSIRM-

FIS.

According to (8) and (23), the following equation can be

obtained
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EðwÞ ¼
X

L

l¼1

ðgðxðlÞÞTw� yðlÞÞ2 ¼ Uw� yk k22 ð27Þ

in which

U ¼ ½gðxð1ÞÞ; gðxð2ÞÞ; . . .; gðxðLÞÞ�T ;
y ¼ ½yð1Þ; yð2Þ; . . .; yðLÞ�T

ð28Þ

in which y is a L� 1 vector, and U is a matrix with the

dimension L� nðnþ 1Þ.
Hence, the parameters in the FWSIRM-FIS’s functional

weights could be calculated by solving the optimization

problem below

min
w

EðwÞ ¼ Uw� yk k22 : ð29Þ

This optimization problem can be solved by the least

square method, and the best values of w can be estimated as

bw ¼ ½U�þy; ð30Þ

where ½U�þ is the generalized Moore–Penrose inverses of

the matrix U.
As well known in the matrix computations [49, 50], a

matrix with arbitrary rows, columns, and rank has the

Moore–Penrose generalized inverse. Several ways can be

used to calculate the Moore–Penrose generalized inverse of

a matrix, such as the modified Gram–Schmidt method, the

Householder and Givens QR methods, and the singular

value decomposition (SVD) method. Among all such

methods, SVD is the most widely used one.

4 Experiments and Comparisons

In this section, we will present the evaluation indices and

the comparative methods firstly. Then, detailed experi-

ments and comparisons will be given. Moreover, compre-

hensive analysis and discussion will also be made.

4.1 Evaluation Indices and Comparative Methods

To show the superiorities of the proposed model, tradi-

tional models such as FWSIRM-FIS, ANFIS, BPNN, and

MLR are selected as the comparative methods. Since the

traditional FWSIRM-FIS has been introduced in detail in

the previous section, the ANFIS, BPNN, and MLR will be

introduced briefly here.

Adaptive neuro-fuzzy inference system (ANFIS) is an

efficient FIS which combines fuzzy logic and neural net-

work together [51, 52]. It combines them organically and

not only gives full play to their advantages, but also makes

up for their shortcomings. ANFIS has found lots of

applications in the research domain of modeling, fore-

casting, and control [51, 52].

Back Propagation Neural Network (BPNN) [53, 54] is

the most basic neural network and it can be used to

approximate any non-linear continuous function. Generally

speaking, the more complex a network is, the more com-

plex features it can learn and the more complex problems it

can solve, but too many parameters will lead to the over-

fitting phenomenon.

Multiple Linear Regression (MLR) [55] is a statistical

method for analyzing the linear relationship of multiple

variables. In addition to validating the correlation and

causality of the variables, MLR models are mostly used for

forecasting.

In this paper, to test the forecasting performance of

different models, three performance measures including the

mean absolute error (MAE), the root mean squared error

(RMSE), and the coefficient of determination R2 are

adopted. The equations for calculating MAE, RMSE, and

R2 are shown as follows:

MAE ¼ 1

K

X

K

l¼1

byðlÞ � yðlÞ
�

�

�

� ð31Þ

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PK
l¼1ðbyðlÞ � yðlÞÞ2

K

s

ð32Þ

R2 ¼

XK

l¼1
ðbyðlÞ � byAveÞðyðlÞ � yAveÞ

h i2

XK

l¼1
ðbyðlÞ � byAveÞ

X

K

l¼1

ðyðlÞ � yAveÞ
ð33Þ

in which K represents the number of training or testing

data, byðlÞ and yðlÞ represent the forecasted and real values,

respectively, byAve and yAve represent the means of the

forecasted and real values, respectively.

For the first two indices, the smaller the values of the

indicators are, the better the performance of the forecasting

model will have. For the index R2 which ranges from 0 to

1, the bigger its values is, the better the accuracy of the

forecasting model will be.

4.2 Experiment 1

4.2.1 Applied Dataset

In this case, the building electrical load data were collected

every 15 minutes in the Oak Ridge National Laboratory.

The Oak Ridge National Laboratory is an Integration

Center of the Campbell Creek Research House, and it is a

research center for building technologies. In this experi-

ment, we select the building electrical load data collected

from March 11, 2014 to July 18, 2014 (totally 94 days) for
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training and testing. The time series of building electrical

load in this experiment is shown in Fig. 3. From the figure,

we can clearly see that this laboratory in different days has

similar electricity consumption pattern, that is to say, these

electrical load data have periodicity property.

4.2.2 Data Preprocessing and Experimental Setting

In the process of de-noising the building electrical load

time series by the wavelet transform method, both the

choices of the wavelet basis and the decomposition level

are the key factors that affect the final de-noising

performance.

Because the wavelet basis function has its own charac-

teristics in signal processing, no wavelet basis function can

achieve the best de-noising effect for all types of signals.

Considering factors such as support length, vanishing

moment, symmetry, regularity, and similarity, in this

experiments, Sym8, a special symlets wavelet basis func-

tion, is selected because of its good symmetry performance

and the ability of reducing the phase distortion in signal

analysis and reconstruction.

The other important step is to choose the decomposition

level. On one hand, the more layers that the signals are

decomposed, the better the separation of noise and signal

will be. However, on the contrary hand, the more layers

that the signals are decomposed, the more distorted the

reconstructed signal will be, and this will affect the final

forecasting accuracy. Therefore, we should pay more

attention to deal with the contradiction between the above

aspects and choose a suitable decomposition level. To

realize this objective, cross-validation experiment was

made and we found that different values of the decompo-

sition levels have different forecasting performances. Fig-

ure 4 demonstrates the indices’ values of the forecasting

results corresponding to different layer numbers n in this

experiment. The experimental results show that when the

decomposition level n is chosen to be 3, the values of

RMSE, MAE will be the smallest and the value of R2 will

be biggest, which means that the forecasting performance

achieves the best.

Consequently, the low-frequency building electrical

load time series A(3) is chosen to reconstruct the filtered

building electrical load time series. To show more details,

only the first 240 data points of the reconstructed building

electrical load time series are shown in Fig. 5b. Compared

with the original building electrical load time series as

shown in Fig. 5a, we can observe that the noise of time

series is almost entirely eliminated and the step features of

Fig. 3 The original building electrical load data in the first

experiment

Fig. 4 Parameter selection for the layers of the wavelet decompo-

sition in the first experiment

(a)

(b)

Fig. 5 The results of the wavelet decomposition in the first

experiment (data in 5 days)
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the original time series remain step in the reconstructed

time series.

After removing the noise, we aggregate the sampling

period of the time series to half an hour. Then, we use the

data collected from the first 75 days as the training dataset

while utilizing the data in the left days as the testing

dataset.

The daily periodic component is extracted by Eq. (17)

and shown in Fig. 6a. After removing the daily periodic

component, the residual data are given in Fig. 6b.

In addition, when determining the best clustering radius

ra, we kept the other parameters to be constant. The clus-

tering radius ra is adjusted by the combination of rough and

fine adjustments, the initial forecasting model is con-

structed, and the optimal radius parameter is determined

according to the forecasting model accuracy index. Based

on the above training and testing, clustering radius ra is

selected to be 0.25 in this forecasting model.

The parameters of the other four comparison models are

as follows: In the FWSIRM-FIS model, the numbers of

partitions and iterations are set to 3 and 10, respectively. In

the ANFIS model, the numbers of partitions and iterations

are set to 3 and 5, respectively. In the BPNN model, the

numbers of neurons and iterations are set to 10 and 1000,

respectively, while choosing the Logsig as the activation

function of neuron nodes. In the MLR model, the least

squares estimation is chosen to minimize the sum of

squared errors.

4.2.3 Experimental Results and Comparative Analysis

In this experiment, we utilized the residual data to tune the

proposed model, while other comparative models are

trained by the original building electrical load data. After

being tuned, the final forecasting results from the proposed

method are shown in Fig. 7. As demonstrated in this figure,

the proposed model has satisfactory forecasting perfor-

mance in this building electrical load forecasting

application.

Further, to highlight the improved performance of the

proposed model, the MAEs, RMSEs, and R2 of the five

forecasting models in the training and testing processes are

listed in Table 1. From this table, we can observe that the

proposed model has the smallest values of the indices MAE

and RMSE and the biggest value of R2, which imply that

the best forecasting performance can be provided by the

proposed model. Meanwhile, we also plot the forecasting

error distributions of the five models in Fig. 8. Compared

with other models, the mean of the forecasting errors of the

proposed model is much nearer to zero. This means that the

proposed model’s forecasting errors are much smaller.

From Fig. 8, we can also clearly observe that the normal

distribution curves of the other comparative models’ fore-

casting errors are wider and flatter than that of the proposed

model, which implies that the comparative models have

worse forecasting performances.

4.3 Experiment 2

4.3.1 Applied Dataset

The building electrical load dataset in the second experi-

ment were collected from a retail store in Fremont, Cali-

fornia, USA. The data sampling period was 15 minutes,

including 34848 samples from January 2, 2010 to

December 30, 2010. The electrical load time series in this

experiment (totally 363 days) is shown in Fig. 9. We can

clearly see that this building electrical load data in different

days also have similar electricity consumption pattern.

4.3.2 Data Preprocessing and Experimental Setting

In this building electrical load data, we found that there are

some missing values, which will affect the accuracy of

electrical load forecasting. In order to achieve high relia-

bility of forecasting, it is necessary to adopt scientific

methods to complete or adjust these data and ensure the

validity of the data. Consequently, the electrical load data

at the same moment of previous day were used to fill in the

missing values.

(a)

(b)

Fig. 6 The extracted daily periodicity and the residual data
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Again, the appropriate wavelet basis function and the

decomposition level should be selected before decompos-

ing electrical load data series. In this experiment, we still

choose Sym8 as the wavelet basis function. For the layers

of the wavelet decomposition, it is determined by cross-

validation experiment. In the second experiment, we tried

different values of the decomposition levels and found that

the forecasting results were significantly different too.

Figure 10 demonstrates the forecasting accuracy of the

hybrid model with different decomposition levels in this

experiment. Experimental results show that when the

decomposition level n is chosen to be 4, the values of

RMSE, MAE can achieve the minimum and the value of R2

can achieve the maximum, which means that this model

achieves the best performance under this parameter. Con-

sequently, the low-frequency building electrical load time

Fig. 7 Forecasting results of the proposed model in the first experiment

Fig. 8 Forecasting error distributions of the five predictors in the first

experiment

Fig. 9 The original building electrical load data in the second

experiment

Table 1 Comparisons of five

forecasting models in the first

experiment

Training accuracy Testing accuracy

RMSE MAE R2 RMSE MAE R2

The proposed method 4.6108 2.7345 0.9934 4.4781 2.4925 0.9937

FWSIRM-FIS 8.2048 4.7264 0.9790 7.6962 4.0684 0.9815

ANFIS 9.2603 5.6535 0.9732 8.9496 5.8372 0.9750

BPNN 10.1691 5.4690 0.9677 9.4869 5.2924 0.9719

MLR 12.0948 7.9936 0.9544 11.6278 7.4518 0.9578
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series A(4) is chosen to reconstruct the new building

electrical load time series. The newly reconstructed

building electrical load time series is shown in Fig. 11b. In

order to show the more details clearly, only the first 240

samples of this data series are shown. Compared with the

original building electrical load time series as shown in

Fig. 11a, we can see that the reconstructed building elec-

trical load time series can not only remove most of the

noise, but also maintain the characteristics of the original

time series.

In order to achieve better forecasting accuracy and

comparative effect, we select the first 240-day data as the

training data, while utilizing the data from the left days as

the testing data. In this experiment, the periodic pattern

extracted by Eq. (17) is shown in Fig. 12a, and the residual

time series data used for training and testing the FWSIRM-

FIS for residual forecasting are plotted in Fig. 12b.

In this experiment, the clustering radius ra is selected to

be 0.25 in the forecasting model too. The parameters of the

other four comparison methods are as follows: in the

FWSIRM-FIS model, the numbers of partitions and itera-

tions are selected as 11 and 5, respectively. In the ANFIS

model, the number of iterations is set to 10 and the clus-

tering radius ra is chosen to be 0.25. In the BPNN model,

the numbers of neurons and iterations are set to 25 and

2000, respectively, while choosing the Logsig as the acti-

vation function of neuron nodes. In the MLR model, the

least square estimation is also selected to minimize the sum

of squared errors.

4.3.3 Experimental Results and Comparative Analysis

In this application, Fig. 13 demonstrates the building

electrical load forecasting results of the proposed model.

To depict more details, only 8 days’ forecasting results are

drawn in Fig. 13. It can be seen that the forecasting results

of the building electrical load by the proposed hybrid

model can satisfactorily reflect the actual fluctuation of the

electrical load.

To verify the proposed model’s forecasting perfor-

mance, the comparisons of the five forecasting models are

listed in Table 2. For the indices MAE and RMSE, the

smaller their values are, the smaller the forecasting errors

will be, and the better performance the forecasting model

will have. For the indices R2, the bigger its value is, the

better the forecasting performance will be. We can observe

from this table that the proposed hybrid model can give the

best forecasting performance again.

The forecasting error distributions of the five models are

plotted in Fig. 14. This figure indicates that the normal

Fig. 10 Parameter selection for the layers of wavelet decomposition

in the second experiment

(a)

(b)

Fig. 11 The results of the wavelet decomposition in the second

experiment (data in 5 days)

(a)

(b)

Fig. 12 The extracted daily periodicity and the residual data in the

second experiment
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distribution curves of the proposed model’s forecasting

errors are taller and narrower than those of the other

comparative models. This again means that the best per-

formance can be achieved by the proposed model in this

application.

5 Conclusions

In this paper, a new hybrid model for the building electrical

load forecasting was developed. In order to strengthen the

forecasting accuracy, the proposed hybrid model has been

improved from two aspects. First of all, we adopted the

wavelet transform to eliminate the noise from the original

building electrical load data. Secondly, we extracted the

daily periodicity knowledge from the electrical load data to

obtain the electrical load trend, and then we utilized the

residual data to train one forecasting model as the com-

pensation to the periodic pattern. The residual data-driven

model was realized by the FWSIRM-FIS which has pow-

erful approximation ability. To assure the forecasting per-

formance of the FWSIRM-FIS for the residual data, the

subtraction clustering method was employed to construct

the SIRMs while the least square method was proposed to

optimize its parameters. We have applied the proposed

hybrid model to two building electrical load forecasting

experiments. Experimental and comparison results indi-

cated that the proposed model has the best performance.

In this paper, the model for the periodic pattern is data-

driven and data-sensitive. Although the noise in the elec-

trical load data has been removed in this study, the

robustness of the periodic pattern model still needs to be

improved through more robust methods. Hence, this will be

one of our future research directions. On the other hand,

more deep models may further improve the forecasting

accuracy. Therefore, in the future, we will explore the deep

Fig. 13 Forecasting results of the proposed hybrid model in the second experiment

Fig. 14 Forecasting error distributions of the five predictors in the

second experiment

Table 2 Comparisons of five

forecasting models in the

second experiment

Training accuracy Testing accuracy

RMSE MAE R2 RMSE MAE R2

The proposed model 22.0767 15.5763 0.9696 30.7655 25.2439 0.9426

FWSIRM-FIS 30.5690 20.6537 0.9417 34.3639 26.3386 0.9284

ANFIS 30.4540 21.2060 0.9383 35.4395 27.2805 0.9238

BPNN 31.1027 22.2340 0.9397 36.7028 28.5681 0.9183

MLR 32.6418 21.9402 0.9326 35.6343 27.3016 0.9230
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fuzzy model to achieve more accurate forecasting results

for the short-term building electrical load.
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