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Abstract The use of fuzzy decision-making in datapath

selection extends the sensor network lifetime with a uni-

form distribution of routing load among network nodes.

Fuzzy-logic based routing protocols are mostly designed

for general wireless sensor networks (WSN). However,

such protocols are not compatible with a Wireless Body

Area Network (WBAN) comprised of biosensor nodes.

WBAN nodes carry inferior computational, communica-

tion and energy resources as compared to general WSN

nodes. A WBAN routing protocol needs to be designed as

per IEEE 802.15.6 WBAN standards to meet high-end QoS

requirements of medical applications. This paper presents a

fuzzy-logic-based clustering protocol for data routing in

WBANs. Nodes are grouped into clusters and cluster head

nodes are selected through a Fuzzy-Genetic Algorithm

termed as EB-fg-MADM. EB-fg-MADM makes an assess-

ment of dual attributes of each cluster node in terms of

node residual energy and CH selection cost. CH selection

cost of a node is the forecasted value of network energy

consumption if the node acts as a cluster head. EB-fg-

MADM utilizes a fuzzy-TOPSIS function which makes a

quantitative comparison of cluster nodes and selects the

cluster head node possessing the aforementioned attributes

closest to their ideally desired values. A Genetic Algo-

rithm-based optimization process adapts the attribute

weights for cluster head selection. EB-fg-MADM provides

enhanced network lifetime with a uniform distribution of

routing load. Protocol performance is obtained in terms of

network lifetime, throughput and latency. Results are

compared with existing WBAN routing protocols and are

found to be better.

Keywords Wireless Body Area Network � Fuzzy-
TOPSIS � Genetic algorithm � Routing protocol �
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1 Introduction

A Wireless Body Area Network (WBAN) is a cyber-

physical system which integrates the sensing and compu-

tational capabilities of distributed biosensor nodes with

wireless networking for real-time monitoring and control

of physiological parameters of the human body [1].

A WBAN system consists of multiple wireless bio-sensor

nodes. Bio-sensor nodes are designed to measure diverse

human body physiological parameters such as blood pres-

sure (BP), heart rate, body temperature, blood oxygen

saturation, respiration rate etc. Nodes are attached to

related body parts for physiological data sensing. Sensed

data is transmitted to a central sink node using on-body

wireless communication links [2]. Sink node processes the

node data and uploads it to an internet cloud network for

remote examination by a medical professional. WBANs

find their potential use in telemedicine, sports, and military

sectors [3, 4]. Figure 1 shows a pictorial representation of a

WBAN system.
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As per IEEE 802.15.6 WBAN communication stan-

dards, a WBAN system needs to deliver high QoS per-

formance to meet medical application norms. For example,

successful data packet delivery rates (network throughput)

should be more than 90%. An end to end delay (network

latency) above 125 ms is unacceptable. WBAN commu-

nication links should deliver 1 Kbps to 10 Mbps data

transmission rates. Maximum transmitted power from a

WBAN node transceiver module is limited to - 10 dBm

[5–11].

A wearable biosensor node needs to be compact for the

better compatibility with the patient’s body. The foremost

constraint of a tiny biosensor node is its miniature power

source [2, 5]. Sensor nodes consume a considerable amount

of assigned node energy for transmitting data to other

nodes [12]. The requirement of high QoS performance with

the constraint of limited node power demands an energy-

efficient data routing protocol for WBAN systems.

Figure 2 demonstrates three basic data routing schemes

for WBAN: (i) single hop, (ii) Multihop and (iii) cluster-

ing-based data routing.

In a single hop transmission scheme, data loss rates

remain high for distant boundary nodes (up to 80%) as low

power signals get blocked by lossy transmission medium of

the human body. Multihop routing protocols utilize

intermediate nodes as relay nodes [13]. It helps in reducing

packet loss rates of boundary nodes. At the same time, it

results in larger network latency.

Clustering approach-based routing protocols are appro-

priate for WBAN systems. Based on a predefined grouping

criterion, nodes are clubbed into different clusters. A

suitable cluster member node is selected as a cluster head

(CH node). Thus, the cluster member nodes are considered

as candidates for the job of CH node. CH node collects data

packets from the cluster node in a single hop manner,

aggregates them into a single datum packet and transmits

the datum to the sink node. Overall, two hop data trans-

mission provides affordable data packet loss rates for

boundary nodes with an acceptable end to end delay. Data

aggregation compresses the transmitted data. It saves node

transmission energy [14–17].

Due to additional responsibilities like data aggregation,

CH node consumes more power as compared to child

sensor nodes. Hence, the CH nodes are dynamically

selected for every transmission round. Dynamic cluster

head selection distributes the load of cluster head job

among network nodes and equalizes the node energy

consumption across the network. Equalized node energy

consumption results in an enhanced network lifetime

[18, 19].

Multi-Attribute Decision-Making (MADM) algorithms

are widely used for dynamic cluster head selection

[15, 17, 18]. MADM approach quantitatively compares the

candidate cluster member nodes and ranks them for their

appropriateness for cluster head selection. Node ranking is

done on the basis of multiple node attributes such as node

residual energy level, node distance from the sink etc.

Node possessing the most desired attribute values gets

selected as cluster head [20]. Section 2 discusses various

MADM approaches.

Conventional MADM approaches require precise values

of node attributes. Precise evaluation of each node attribute

value is a tedious task in a real-time environment [18].

Fuzzy logic-based MADM techniques perform effi-

ciently in case of insufficient, missing or vague attribute

information [21]. Fuzzy MADM approach transforms the

node attribute values into fuzzy linguistic grades such as

low, medium or high. Fuzzy mapping rules are used to

provide node rankings on the basis of desirability criteria of

fuzzy attribute grades [22]. Fuzzy-MADM approaches

offer a substantial increase in network lifetime with con-

sistent distribution of routing load among network nodes as

compared to conventional MADM techniques [23].

Existing fuzzy logic-based routing protocols are mostly

designed for general wireless sensor networks [18, 24, 25].

However, such protocols cannot efficiently be applied to

WBANs.

Fig. 1 WBAN system for telemedicine healthcare applications

Fig. 2 Different routing schemes for WBANs
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WBANs are different from common WSNs in terms of

network architecture and node count. WBAN nodes pos-

sess inferior computation power, memory and energy as

compared to a general WSN node [13].

Hence, a WBAN routing protocol should be designed

using fuzzy logic and needs to be optimized for IEEE

802.15.6 WBAN communication standards to meet high-

QoS requirements of medical applications [6].

Present research work proposes a Fuzzy Genetic Algo-

rithm (FGA)-based clustering protocol for data routing in

WBAN systems.

The Proposed protocol incorporates a hybrid Fuzzy-

Genetic MADM algorithm for dynamic cluster head

selection. It is called as ‘‘Energy Budget-based Fuzzy-Ge-

netic Multiple Attributes Decision-Making Algorithm (EB-

fg-MADM)’’.

To select an appropriate cluster head node, EB-fg-

MADM assesses two attributes of every candidate cluster

member node- (i) ‘‘CH selection cost’’ of the node & (ii)

‘‘Current residual energy level’’ of the node.

The first attribute, CH selection cost of a particular node

is calculated by assuming the node as next cluster head and

forecasting the value of network energy loss if it is used for

executing the clustering-based data routing operation as

cluster head. EB-fg-MADM estimates the CH selection cost

values of each candidate cluster member node using the

first-order radio model for node transmission energy con-

sumption [19]. Here, it is to be noted that the model-based

estimations generally result into approximates values [18].

For an optimum cluster head node, its CH selection cost

needs to be minimized while the value of Residual energy

attribute is desired to be maximized.

After having an assessment of node attribute values, EB-

fg-MADM decides the relative importance of two node

attributes for cluster head selection. A genetic algorithm

(GA)-based iterative global search optimization process is

used to decide the weights of two node attributes for each

round of cluster head selection.

EB-fg-MADM applies the node attribute values and

attribute weights to a fuzzy logic-based TOPSIS function

for cluster head selection. TOPSIS is an abbreviation for

the Technique for Order Preference by Similarity to Ideal

Solution.

Besides the advantage of fuzzy logic to adequately deal

with the vagueness of selection process, fuzzy-TOPSIS

provides a consistent assignment of node ratings through

simple & rational mathematical operations [26, 27].

Fuzzy-TOPSIS function transforms the numerical node

attribute values to fuzzy linguistic grades such as Very low,

Low, Medium, High or Very high. Weighted fuzzy grades

create a fuzzy Multi-Criteria Decision Matrix (MCDM).

Fuzzy Positive and Negative ideal solutions (FPIS & FNIS)

are identified involving the set of best and worst

performance attribute values, respectively. Candidate node

possessing attributes closest to positive ideal solution and

farthest from negative ideal solution is selected as the

optimum cluster head node.

EB-fg-MADM distributes cluster head job among

WBAN nodes in a uniform manner. It leads to elongated

network lifetime.

Proposed protocol utilizes a Loss-less data compression-

based intra-network data transmission scheme. Utilized

transmission scheme removes redundant data from the

transmission and saves node transmission energy.

Proposed protocol is simulated and the performance

results are obtained in terms of network lifetime, packet

success rate and end to end network latency. Results are

compared with existing WBAN routing protocols and are

found to be better. This protocol fulfills the technical

requirements of an energy-efficient and high-QoS WBAN

system.

The given paper is organized as follows: Section 2

presents a brief literature review of existing routing pro-

tocols along with research motivation and our contribution.

Section 3 defines the various system model and assump-

tions. Section 4 describes the proposed protocol and the

results are given in Sect. 5. Section 6 concludes the paper

along with the future scope.

2 Literature Survey and Motivation

This section presents an introduction to different MADM

techniques followed by a brief survey of related works

from the literature. Section ends by highlighting the

motivation, contribution and research impact of the present

work.

2.1 MADM Approaches for Cluster Head Selection

A cluster head selection process completes in three steps:

Alternative qualification, attribute formulation and node

ranking for final selection. The first step determines the

alternatives. Cluster nodes possessing the residual energy

above a predefined threshold usually qualify as alterna-

tives. The next step devises the required node attributes for

the consideration in selection process. The consideration of

suitable node attributes helps in achieving the desired

objectives of selection process like energy-efficient data

routing, improved network throughput and latency etc. The

final step utilizes a Multi-Attribute Decision Making

(MADM) algorithm for the final selection of optimum

cluster head node [23, 26].

A MADM algorithm processes the attributes of candi-

date cluster member nodes and rates them for their suit-

ability for being the cluster head. Node possessing the set
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of most desired attribute values is selected as cluster head

[20].

A decision matrix forms the foundation for an MADM

approach-based cluster head selection process [20]. It is

composed of alternatives as Si; i = 1, 2… N, node attributes

as Aj; j = 1, 2… M, attribute weights as Wj; j = 1, 2… M,

and attribute values as mij; i = 1, 2… N, j = 1, 2…
M. Table 1 shows a multi-attribute decision matrix.

The classical MADM approach like Simple Additive

Weighting (SAW) assigns the node ratings in form of

composite performance scores (Cost function) [28]. Com-

posite performance score Ci of a particular candidate

cluster member node-i is computed as follows:

Ci ¼
XM

j¼1

Wj � ðmijÞNormalized: ð1Þ

Here (mij)Normalized denotes the normalized value of

attribute-Aj of node-i. If Aj is a beneficial attribute that is

desired to be high, then it is normalized as mij/max (Aj)

where max (Aj) is the maximum of the set of the values of

attribute-Aj of all alternatives. Normalization of a non-

beneficial attribute is done as max (Aj)/mij. Node obtaining

the highest performance score is selected as cluster head.

WPM [29] and PDW [15, 17] methods assign composite

performance scores according to Eqs. 2 and 3, respectively.

Node obtaining the highest score becomes the cluster head.

Ci ¼
YM

j¼1

ðmijÞNormalized

� �Wj ð2Þ

Ci ¼
Product of beneficial attributes of node�i

Product of non-beneficial attributes of node-i
ð3Þ

Performance score-based MADM approaches provide

the ease of computation. But such techniques show

inconsistency in node ratings and the selected cluster heads

do not always posses the attributes closest to their ideally

desired values [27].

The classical TOPSIS approach identifies the cluster

head node possessing the attributes closest to ideally

desired values and farthest from ideally undesired values.

TOPSIS multiplies the decision matrix to the attribute

weight matrix and creates the weighted multi-criteria

decision matrix. Positive and Negative ideal solutions (PIS

& NIS) are identified involving the set of best and worst

performance attribute values, respectively. Candidate node

possessing attributes closest to PIS and farthest from NIS is

selected as the optimum cluster head node [26, 27, 30].

The TOPSIS fulfills the characteristics of an effective

and efficient MADM approach. Following are the advan-

tages of TOPSIS approach.

i. TOPSIS provides the flexibility to consider unlim-

ited numbers of alternatives and attributes.

ii. Number of steps remains same regardless of the

number alternatives and attributes.

iii. TOPSIS provides a consistent assignment of node

ratings through simple & rational mathematical

operations.

iv. TOPSIS offers a reliable & fast decision making.

The TOPSIS and other classical MADM need precise

values of node attributes. Precise evaluation of attribute

values is a tedious task in a real-time environment [18].

The fuzzy logic based MADM approaches adequately

deals with the estimated or vague attribute information

[23, 31, 32]. They transform the node attribute values into

linguistic fuzzy grades like very low, low, medium, high or

very high. The alternatives are qualitatively compared and

ranked for the selection on the basis of the desirability

criteria of fuzzy attribute grades. The node possessing the

fuzzy attributes closest to ideally desired grades gets the

CH job.

The literature reports several fuzzy-MADM approaches

like Mamdani Fuzzy Controllers [23], Fuzzy Inference

Relation [24], Fuzzy TOPSIS [26] and Fuzzy-AHP [32]

etc.

Fuzzy-TOPSIS approach offers the advantages of clas-

sical TOPSIS technique along with its ability to deal with

the vagueness of cluster head selection process [18, 26].

Fuzzy-TOPSIS MADM approach proceeds in following

steps.

i. Transform the normalized node attribute values mij;

i = 1, 2… N, j = 1, 2… M and attribute weights as

Wj; j = 1, 2… M into fuzzy linguistic grades ~mij and

~Wj such as Very low, Low, Medium, High and Very

high. As depicted by Table 6, a fuzzy linguistic

grade is characterized by an associated triplet fuzzy

number (TFN).

ii. Create a fuzzy decision matrix ( ~D) and fuzzy weight

matrix ( ~W). Fuzzy decision matrix includes the

fuzzy attribute grades ( ~mij; i = 1, 2… N, j = 1, 2…
M). Fuzzy weight matrix includes fuzzy weights ( ~Wj;

j = 1, 2… M) Eq. 4 and 5 show ~D and ~W matrices

Table 1 Decision matrix

Alternatives (cluster

nodes)

Attributes

A1 (W1) A2 (W2) .. AM (WM)

S1 m11 m12 .. m1M

S2 m21 m22 .. m2M

: : : : :

SN mN1 mN2 .. mNM
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respectively.

~D ¼
~m11 . . . ~m1M

..

. . .
. ..

.

~mN1 . . . ~mNM

2
64

3
75

N�M

ð4Þ

~W ¼ ~W1 ~W2 � � � ~WM

� �
ð5Þ

iii. Obtain the weighted fuzzy decision matrix ( ~V) by

multiplying the fuzzy decision matrix ( ~D) by the

fuzzy weight matrix ( ~W). Equation 6 shows the ~V
matrix.

~V ¼
~m11 � ~W1 . . . ~m1M � ~WM

..

. . .
. ..

.

~mN1 � ~W1 . . . ~mNM � ~WM

2

64

3

75 ¼ ~vij

� �
N�M

ð6Þ

iv. Obtain fuzzy positive and negative ideal solutions

(FPIS & FNIS), according to Eqs. 7 and 8 respec-

tively. Where ~vþj and ~v�j are the best and worst

performance attribute values of jth attribute, respec-

tively.

FPIS ¼ ~v1
þ; ~v2

þ; . . .; ~vM
þ½ � ð7Þ

FNIS ¼ ~v1
�; ~v2

�; . . .; ~vM
�½ � ð8Þ

v. Compute the separation indexes, dist ið Þþ and

dist ið Þ� for each candidate cluster member node

from ~vj
þ and ~vj

� respectively. They are computed as

follows.

dist ið Þþ¼
XM

j¼1

Df ~vij; ~vj
þ� �

ð9Þ

dist ið Þ�¼
XM

j¼1

Df ~vij; ~vj
�� �

ð10Þ

Note: The term Df ~x; ~yð Þ represents the Euclidean

distance in between two triangular fuzzy numbers ~x
and ~y.

vi. Compute the TOPSIS ranks SCi i = 1, 2… N of each

candidate cluster member node, according to the

Eq. 11.

SCi ¼
dist ið Þ�

dist ið Þ�þdist ið Þþ
ð11Þ

vii. Select the candidate node obtaining the highest

TOPSIS rank as the cluster head node. It possesses

the attributes closest to FPIS and farthest from FNIS.

2.2 Related Works

This sub-section presents a review of existing multihop and

clustering-based routing protocols. The reviewed protocols

are classified into following categories on the basis of their

MADM approach for route selection.

i. Classical MADM approaches

ii. Fuzzy MADM approaches

iii. Bio-inspired MADM approaches

Following is the category wise review of existing

protocols.

i. Classical MADM approaches

Kaur et al. proposed a multihop data routing protocol for

WBAN applications termed as Optimized Cost Effective

and Energy-Efficient Routing (OCER) [13]. Protocol

assigns a cost function value to each intermediate node

which is a function of node residual energy, link reliability

and link path loss. Node obtaining the minimum cost

function value is selected as the forwarder node. Load

distribution is fairly uniform across the high throughput

network.

Nadeem et al. proposed iM-SIMPLE protocol for mul-

tihop data routing in WBANs [33]. Composite performance

score based MADM technique is used for route selection in

between source nodes and sink node. Each intermediate

node gets a cost function value which is equal to the ratio

of node residual energy to its proximity to sink. Highest

cost function value node gets selected as the forwarder.

The consideration of node energy and proximity to sink

attributes in route selection leads to uniform load distri-

bution and high network throughput. Protocol takes

account of different body postures and body movements in

route selection.

The LAEEBA protocol from Ahmed et al. computes the

node cost function values as the ratio of the square root of

node residual energy to its distance from sink [34].

Ahmed et al. proposed CO-LAEEBA protocol which is

a modified version of LAEEBA protocol [35]. CO-

LAEEBA utilizes cooperative routing. Single hop routing

paths are used for emergency data. While the multihop

paths are used for normal data. The desired criteria for path

selection include minimum hop count and the highest
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energy intermediate forwarder nodes. CO-LAEEBA shows

improved energy efficiency and network throughput.

Javaid et al. presented M-ATTEMPT, a multihop rout-

ing scheme for WBAN [36]. Minimum hop routing paths

are elected and dynamically changed whenever the tem-

perature of intermediate forwarder nodes rises beyond the

threshold level. Node residual energies are not considered

for path selection. It results in non-uniform load

distribution.

Javaid et al. proposed a relay-based routing strategy for

the WBANs incorporating in-body sensors [37]. The min-

imum required transmission range is used for in-body

sensors. Relay nodes are placed on the body. Relay

selection criteria is the minimum distance from the trans-

mitting in-body sensor. Proposed scheme minimizes the

energy consumption of in-body sensors with an accept-

able end to end delay.

The Tripe-EEC protocol of Ullah et al. adapts its mul-

tihop route selection criteria based on the type of the data

[38]. A data path for normal data includes the minimum

number of relay nodes with minimum rise in temperature.

Critical or on-demand data is routed through priority-based

minimum delay paths.

In the case of hotspot discovery, multihop routing pro-

tocols change the current path to a usually longer new

routing path [36]. It results in a larger end to end delay.

Clustering-based routing protocols offer the benefits of

both single hop and multihop type of communication [15].

Ali et al. proposed the EERP Protocol for the clustering

based data routing in WBANs. It uses product and division

weighting (PDW) method for dynamic CH node selection

[15]. A cost function is assigned to each candidate cluster

member node as a ratio of node residual energy to its

distance from the sink. Node obtaining the maximum cost

function value gets selected as the cluster head.

Similarly, the SIMPLE protocol from Nadeem et al.

selects the CH node having the highest residual energy and

closest proximity to sink [16]. Cluster head distribution is

fairly uniform across the network.

The DSCB protocol from Zahid et al. uses a dual sink

approach for clustering-based routing in WBANs [17].

Protocol calculates a cost function for each node. Cost

function of a particular node is equal to the ratio of node

residual energy to the product of sink distance and the

minimum node transmission power. The node possessing

the highest cost function value becomes the CH. Dual sink

approach handles the single sink failure condition. How-

ever, dual sink increases the cost overhead.

Fouad et al. proposed an adaptive multihop routing

protocol (AMRP) for wireless sensor networks with mul-

tiple constraints [39]. Analytic Hierarchy Process (AHP) is

used to adapt the node weights and the classical TOPSIS

approach is used for forwarder node selection. The desired

criteria for relay selection include minimum hop count,

maximum node centrality and bridging centrality. TOPSIS

provides the flexibility to consider unlimited numbers of

alternatives and attributes.

ii. Fuzzy logic based MADM approaches

The fuzzy logic based MADM approaches transform the

attribute values into fuzzy linguistic grades and adequately

deals with the vagueness of cluster head selection process

[21].

For example, Lee et al. proposed LEACH-ERE protocol

which uses a Fuzzy Inference Relation-based cluster head

selection mechanism [24]. The protocol makes an assess-

ment of two node attributes (node residual energy and

expected node residual energy) of each candidate node.

Expected node residual energy is the remaining energy of

the node if it acts as the cluster head. Attribute values are

transformed to fuzzy linguistic grades as High, Medium

and Low. Fuzzy mapping rule sets the highest CH selection

priority for node possessing the both attributes as ‘‘High’’.

LEACH-ERE provides consistent distribution of routing

load among network nodes and achieves elongated network

lifetime. LEACH-ERE is designed for general WSNs only.

Ayati et al. proposed SCHFTL protocol which utilizes

three levels of Mamdani fuzzy inference based MADM

approach [23]. The first level MADM performs alternative

qualification. The second level MADM selects the cluster

heads. The third level MADM selects a super cluster head

of cluster heads. The provision of super cluster head

reduces the packet loss rate. Thus, the packet retransmis-

sions are less required and result is the elongated lifetime.

SCHFTL is designed for general WSNs.

Pawan et al. proposed the FBECS protocol for cluster-

ing-based data routing in general WSNs [25]. A fuzzy

inference system considers the node residual energy, node

distance to sink and neighbor node density attributes of

each alternative. Fuzzy mapping rules set the highest CH

selection priority for node possessing the three attributes

residual energy as High, distance as Far and neighbour

density as Dense. FBECS provides improved node lifetime

with a balanced load distribution.

Balaji et al. demonstrated the use of fuzzy inference

control using type-1 fuzzy sets for CH selection [22].

Selection criteria included high trust factor and minimum

distance to sink. Proposed technique achieves lifetime

maximization and network overhead reduction.

Sonam et al. proposed a fuzzy logic-based hybrid WSN

routing protocol (FHRP) for precision agriculture applica-

tion [31]. Critical nodes directly transmit their data to sink.

Normal nodes report through a cluster-based data routing

network. A fuzzy inference MADM approach is used for

CH node selection. Node transmissions occur only when

the data exceeds a predefined threshold. The reduced

A. Choudhary et al.: A Hybrid Fuzzy-Genetic Algorithm for Performance Optimization… 553

123



number of data transmissions leads to an elongated net-

work lifetime.

The FEEC-IIR protocol from Preeth et al. performs the

cluster head selection using a hybrid fuzzy-AHP and

TOPSIS MADM approach [32]. The considered attributes

are node energy, QoS impact and node location. Protocol

achieves an improved QoS performance along with an

extended network lifetime.

A Fuzzy-TOPSIS approach is used for cluster head

selection by Puneet et al. [18]. Selection criteria include

node residual energy, number of immediate neighbors, and

the sink distance.

Fuzzy-TOPSIS approach provides the flexibility to

consider unlimited numbers of alternatives and attributes.

Bilal et al. considered five node attributes (node energy,

node energy expenditure rate, neighbor density, average

distance from neighbor nodes, and sink distance) for the

fuzzy-TOPSIS-based CH node selection [40].

iii. Bio-inspired MADM approaches

Recently published works show the use of Genetic Algo-

rithm (GA), Particle Swarm Optimization (PSO) & Ant

Colony Optimization (ACO)-based routing mechanisms.

For example, Elhoseny et al. proposed GAHN protocol

which uses a GA-based clustering method for heteroge-

neous WSNs [41].Chromosomes of the initial population

are the random sets of nodes (0 for Child and 1 for CH). In

the iterative steps of fitness evaluation, selection, cross-

over, & mutation, GA applies the minor changes to the

population and minimizes the objective function of total

communication distance. Over successive iterations, the

population evolves towards optimized cluster formation.

GAHN achieves a significant increase in network lifetime.

Lin et al. proposed particle swarm optimization-based

relay selection (PSO-LSMR) for low-SAR multihop rout-

ing for WBAN [8]. Selection criteria include relay SAR

value and relay transmission power. PSO performs the

particle initialization (possible relay position) and the

iterations of particle fitness evaluation, local & global best

updates and particle position & velocity updates. After

certain number of iterations, PSO finds the optimum relay

node with the minimized objective function of relay SAR

and transmission power. The major drawback with a static

relay node is that it consumes its limited power soon due to

heavy relaying load.

Xie et al. proposed CRT2FLACO protocol which uti-

lized Ant colony optimization in conjunction with type-2

Mamdani fuzzy inference-based MADM approach for CH

node selection [42]. Selection criteria include node energy,

neighbor node density and sink distance. Protocol uni-

formly balances the load and enhances the network

lifetime.

Fuzzy-MADM and bio-inspired approaches offer a

uniform load distribution and a substantial increase in

network lifetime as compared to classical approaches.

Table 2 shows the details of the surveyed protocols.

2.3 Motivation and Contribution

The proposed EB-fg-MADM algorithm performs model-

based estimation of node CH selection cost attribute value.

Model-based estimation generally result in approximate

values [18].

The fuzzy logic-based MADM approaches perform

efficiently in case of estimated or imprecise attribute

information [26]. Moreover, the fuzzy-MADM-based

cluster head selection mechanisms offer a uniform distri-

bution of cluster head load among network nodes resulting

in a substantial increase in network lifetime as compared to

conventional MADM approaches [23].

Existing fuzzy-based routing protocols are mostly

designed for general wireless sensor networks [18, 24, 25].

However, such protocols cannot efficiently be applied to

WBANs. WBANs are unlike to common WSNs in terms of

network-architecture and node count. WBAN nodes pos-

sess inferior computation power, memory and energy as

compared to a general WSN node [6, 13].

Hence, a WBAN routing protocol should be designed

using fuzzy logic and needs to be optimized for IEEE

802.15.6 WBAN communication standards to meet high-

QoS requirements of medical applications.

In the present work, we propose a new hybrid Fuzzy-

Genetic Algorithm (EB-fg-MADM)-based clustering pro-

tocol for data routing in WBANs.

Following are the contributions of the present research

work.

a. Fuzzy-TOPSIS approach based dynamic cluster head

selection.

b. Optimization of node attributes weights through an

iterative process of Genetic Algorithm (GA).

c. Utilization of a Loss-less data compression technique

for redundancy removal.

Fuzzy-TOPSIS approach is suitable for WBAN appli-

cations. It provides a consistent assignment of node ratings

through simple & rational mathematical operations [27].

The proposed protocol meets the technical requirements

of an energy-efficient and high-QoS WBAN system. An

efficient and wearable WBAN system constantly monitors

the patient’s health status, while he or she may remain at

home [3]. This is a great help for elderly patients because

frequent visits to a doctor’s clinic or hospital can be painful

for them.
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3 WBAN System Model

For the proposed research work, the WBAN system con-

sists of eight bio-sensor nodes and a single sink. Figure 3

shows the target WBAN system. Table 3 contains details

of bio-sensor nodes.

3.1 Heterogeneous WBAN Topology

Target WBAN adopts heterogeneous network topology.

Source bio-sensor nodes have limited energy resource.

Sink node is designed to have more power supply and

processing potential as compared to source nodes. Sink

performs energy-consuming tasks and coordinates cluster

head selection process.

Sensor nodes S4 and S5 (heart rate and body tempera-

ture) perform data sampling at low-sampling rates

(\ 50 Hz). These sensor nodes are allowed to transmit

their data packets directly to the sink using a single-hop

LOS communication channel.

Nodes S1, S2, S3, S6, S7, and S8 perform at higher sam-

pling rates. They are designed to work in a cluster and send

their data packets to the selected cluster head. Figure 4

shows the target WBAN topology.

Biological sensor nodes require 10 to 72 Kbps bit rates

for output data transfer [10]. Bluetooth wireless RF com-

munication module is suitable for target WBAN sensor

nodes as it provides data transfer rate up to 1 Mbps.

3.2 Energy Model

Proposed work adopts first-order radio model for the esti-

mation of node energy expended by a node in data trans-

mission [19, 35].

According to first-order radio model, node transmission

energy consumption for relaying a data packet (W number

of bits) to a distance ‘D’ can be estimated as follows:

ETx W ;Dð Þ ¼ ETX�elect � W þ EAmp � g� Dg � W ð12Þ

The same model also accounts for node energy con-

sumption in receiving a data packet of ‘W’ bits as follows:

ERX Wð Þ ¼ ERX�elect � W ð13Þ

Using the same model, node energy consumed in

aggregating ‘W’ number of bits can be accounted as

follows:

EDA Wð Þ ¼ EDA � W : ð14Þ

Here, ETx-elect, ERx-elect, and EAmp denote per bit node

energy consumption in running node transmitter, receiver,

and amplifier circuits, respectively. EDA denotes per bit

data aggregation energy consumption. The path loss index

g is used to represent additional path loss presented on

body communication channels.

In the proposed technique, node processing energy los-

ses are ignored as they are negligible as compared to data

transmission [12].

3.3 Propagation Path Loss Model

Present work assumes Line of Sight (LoS) on-body wire-

less transmission channels along with 2.4 GHz frequency

of operation in ISM narrow band range. As per IEEE

802.15.6 standards, Industrial, Scientific and Medical

(ISM) open-frequency band is quite useful for WBAN

system. It supports higher data rates at lower transmission

power. Furthermore, it offers reasonably stable channel

gain, less body attenuation and insignificant ISI [8]. Sim-

ulation of the proposed technique has been carried out

using an on-body communication path loss model as fol-

lows [13]:

PL D;Fð Þ in dB ¼ 10 � log 4pDof=cð Þ þ 10g log
D

Do

� 	

þ vr:

ð15Þ

Here, PL, F and D denote for propagation path loss

(dB), channel frequency (MHz) and the node distance (m),

respectively. Reference distance is denoted by Do. Addi-

tionally, the Gaussian random parameter vr carries zero

mean and r standard deviation. It accounts for the shad-

owing factor in dB. Table 4 summarizes different notations

used in the current paper.

Fig. 3 Biosensor positions on the patient body
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3.4 Inherent Redundancy in Sensed Data

A general WBAN encounters the problem of unnecessary

node transmission power consumption due to redundant

data. Table 5 shows various physiological data samples

extracted from previous research. These data samples are

experimentally measured using different biological sensors

in a real-time WBAN environment [5, 11]. It is evident

from green data fields, that the biosensors may measure

correlated similar values of physiological parameters in

consecutive data sensing cycles.

A node can save a considerable amount of energy if it

does not send consecutively sensed correlated packets to

sink. The sink can reuse such data packets from its own

memory.

Proposed protocol utilizes a loss-less data compression

based intra-network data transmission scheme. This

scheme removes consecutively sensed redundant data from

the node transmission and saves node energy.

4 Proposed WBAN Routing Protocol

For each transmission round, proposed algorithm performs

the following operations.

Table 3 Biological sensor details

Node no. Health parameter Sampling

rate [11] (Hz)

Output data

rate [5, 7, 10] (Kbps)

Range

S1 ECG (RA) 1024 72 P and T wave (0.5–10 Hz)

QRS complex (4–20 Hz)S2 ECG (LA)

S3 ECG (LL)

S4 Heart rate 50 10 60–80 BPM

S5 Body Temp. 50 10 97–100.4 �F
S6 Respiration rate 512 10 12–20 BPM

S7 Blood oxygen saturation sensor 128 32 95–100%

S8 GSR Galvanic skin response sensor 128 10 Skin conductance—2–20 lS
(according to stress level)

Fig. 4 Target WBAN topology

Table 4 Notations

Notation Meaning Notation Meaning

MADM Multi-attribute decision making Do Reference distance

CH Cluster HEAD vr Gaussian variable

GA Genetic Algorithm r Standard deviation

TOPSIS Technique for order preference by similarity to ideal solution Prsens Receiver sensitivity

FPIS/FNIS Fuzzy positive/negative ideal solution Ptk Min. required transmission power

ETx-elect Transmitter per bit energy consumption Prec./Ptrans Tx/Rx signal power

EAmp Amplifier per bit energy consumption EL/ER Node attributes

Rx-elect Receiver per bit energy consumption ERn/ELn Normalized node attributes

EDA Per bit aggregation energy ERf/ELf Fuzzy node attributes

g Path loss index ERw/ELw Weighted fuzzy attributes

D Node distance WL/WR Node attribute weights

PL Path loss SC TOPSIS rank

F Channel frequency CW Composite weight
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4.1 Localization

At the starting of each transmission phase, each bio-sensor

node measures its proximity to sink and other nodes. Dis-

tance data is estimated using the RSSI-based localization

method.

Each node including sink transmits a ‘‘HELLO’’ packet

with transmitting node ID. Each ‘‘HELLO’’ message car-

ries the same transmitted power Ptrans.

Assuming that node-i receives ‘‘HELLO’’ packet of

node-j with Prec.(i, j) as received power. The propagation

path loss in the received signal can be calculated as

follows:

PL dBð Þ ¼ Ptrans: dBmð Þ � Prec i; jð Þ dBmð Þ ð16Þ

The distance between node-i and node-j, represented by

D(i, j); i, j V i, j[U, can be computed by putting the value of

estimated path loss in Eq. 15. Here, U represents the set of

network nodes including sink.

In this manner, each node estimates its distance from

sink as well as other nodes and saves the estimated distance

values to its local onboard memory.

4.2 Cluster Head Selection

Nodes S1, S2, S3, S6, S7, and S8 create a cluster. A suit-

able cluster node becomes the cluster head (CH). Cluster

member nodes possessing the residual energy more than a

predefined energy threshold (ER[Ethr) are considered as

the candidate nodes for CH selection.

A novel EB-fg-MADM algorithm is proposed to perform

dynamic CH node selection. To select an appropriate CH

node, EB-fg-MADM assesses following attributes of each

candidate cluster member node:

i. CH selection cost of the node, EL(i); V i[N.

ii. Residual energy level of the node, ER(i); V i[N.

Here, N denotes the set of candidate cluster member

nodes.

The proposed algorithm works in the following steps.

Step-1: Estimation of CH selection cost of each node

Each candidate cluster member node estimates its CH

selection cost attribute value.

For CH selection cost estimation, a candidate cluster

node assumes itself as the cluster head. Then, it makes a

model-based prediction of network energy loss if it carries

out the data routing operation as a cluster head. This pre-

dicted value of network energy loss is the CH selection cost

of the node. Node CH selection cost attribute values are

calculated as follows:

i. Node-i; V i[N visualizes itself as the next CH node.

ii. Using First-order radio model, node-i forecasts the

energy losses of other cluster nodes in sending their

data packet to node-i. Denoting these losses as

ELoss_Child, Eq. 17 models ELoss_Child.

ELoss Child ið Þ ¼
X

8j2N;j6¼i

ETx�elec ERx�elec EDA EAmp

� �

�

1

0
0

gD i; jð Þg

2
6664

3
7775� W ; 8i 2 N

ð17Þ

iii. Now node-i forecasts its own energy loss in

performing the tasks of CH node like reception of

data packets from child nodes, data aggregation and

transmission of aggregated datum to sink. Denoting

such loss as ELoss_CH, Eq. 18 models ELoss_CH.

ELoss CH ið Þ ¼ ETx�elec ERx�elec EDA EAmp

� �

�

1

N � 1ð Þ
1

gD i; Sinkð Þg

2
6664

3
7775� W ; 8i 2 N

ð18Þ

Here, D(i, j) represents the distance between node-

i and node-j. Other abbreviations are the same as

used in the first-order radio model of Eqs. 12 to 14.

iv. CH selection cost for node-i is denoted by EL(i),

which is given by Eq. 19.

Table 5 Biological parameter data samples
Sa

m
pl

e 
N

o.
 

Sensor Type 
ECG     
CH-1 
(S1) 

ECG     
CH-2 
(S2) 

ECG     
CH-3 
(S3) 

Heart 
Rate 
(S4) 

Body 
Temp 
(S5) 

GSR 
(S8) 

mV mV mV BPM oF kΩ  
1 -0.065 -0.564 -1.499 69 96.2 1257.46 
2 -0.065 -0.563 -1.502 70 96.6 1257.46 
3 -0.064 -0.557 -1.491 73 96.8 1258.18 
4 -0.065 -0.563 -1.499 79 96.9 1257.46 
5 -0.066 -0.565 -1.492 72 97.0 1258.18 
6 -0.068 -0.563 -1.492 74 97.0 1257.46 
7 -0.069 -0.552 -1.492 81 97.0 1258.18 
8 -0.074 -0.556 -1.492 63 97.1 1258.17 
: : : : : : : 

100 -0.067 -0.534 -1.467 83 98.3 1259.62 
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EL ið Þ ¼ ELoss Child ið Þ þ ELoss CH ið Þ
; 8i 2 N

ð19Þ

Step 2: Energy packet transmissions to sink node

Cluster member nodes send an ‘‘ENERGY’’ packet to

sink. ‘‘ENERGY’’ Packet contains the current level of node

residual energy ER, node CH selection cost value EL and

the node ID.

Thus, sink gets the node attribute values (ER(i) and

EL(i) V i[N) from each candidate cluster member node.

Now sink determines the relative importance of node

attributes for cluster head selection.

Step 3: Genetic Algorithm (GA) based weight

optimization

In this step, the sinkdecides the relative importanceof three

node attributes for cluster head selection by assigning certain

weights to them such as WL for EL attribute and WCH for ER

attribute. More the weight of a node attribute, higher is the

importance given to that attribute for cluster head selection.

In a conventional MADM approach, node attribute weights

are decided on the basis of certain experiments and past expe-

riences of the target optimization problem. In the present work,

the sink uses an iterative optimization process of Genetic

Algorithm (GA) for determining the node attribute weights.

Genetic Algorithm optimizes the two node attribute

weights in such a manner so that the selected cluster head

needs minimum transmission power for communicating its

data to sink. The Genetic Algorithm functions as follows:

i. Initialization

Initially, a certain number d of random solutions are

assigned to two weight variables WL & WR. This set of

initial random solutions create an initial population WLi &

WRi; i = 1, 2…d. A solution in the population is termed as

a chromosome. For example, WLi & WRi represent the

chromosome-i. Individual weight values of a chromosome

are called genes. The constraint for initialization is that the

summation of WLi and WRi equals unity. Figure 5 shows

the initial population of Genetic Algorithm.

After initialization, GA works with iterative steps. Each

iteration carries out following function-fitness evaluations

for each chromosome of the current population, selection

of parent chromosomes for crossover, crossover of parent

chromosomes to generate new chromosomes (offspring)

and mutation of genes of new chromosomes.

ii. Fitness evaluation

For each chromosome value of current population, a fitness

function is calculated. Fitness of the first chromosome WL1

& WR1 is calculated as follows:

Sink calculates the composite indexes CW1,j; V j[N, for

each candidate cluster member node-j; V j[N (see Eq. 20).

CW1;j ¼ WL1 �
EL max � EL jð Þ

EL max













þ WR1 �
ER max

ER max � ER jð Þ











; 8j 2 N

ð20Þ

Here, EL(j) and ER(j) represent the node attributes of

candidate cluster member node-j. EL max and ER max are

maximum attribute values of the current node attribute set

of cluster member nodes.

Now GA finds the candidate cluster member node

obtaining the maximum composite weight index for the

first chromosome. Assuming that the kth candidate cluster

member node (node-k) obtains the maximum composite

weight index that is max (CW1,j; V j[N).

Now, the GA estimates the minimum transmission

power (Ptk) as required by node-k for communicating its

data to sink. Following equation is used for power

calculation.

Ptk in dBm ¼ PLk;sink in dBþ Prsens in dBm ð21Þ

Here, PLk, sink represents the signal path loss from node-

k to sink. Prsens is the receiver sensitivity.

Now fitness value of the first chromosome of the initial

population is computed as follows:

Fitness1 ¼
1

1þ Ptk

ð22Þ

Similarly, fitness values of remaining chromosomes of

the initial population are obtained. Figure 6 demonstrates

fitness evaluation steps.

iii. Parent selection

Now, the parent chromosome couples are selected for

crossover. The chromosomes with higher fitness function

(i.e. lower values of minimum transmit power) have a

higher probability of becoming a parent. Roulette Wheel

process is used for the selection. A predefined crossover

rate (qc) decides the number of parent couples for

crossover.

Fig. 5 Initial population
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iv. Crossover

Each selected couple of parent chromosomes carries out

crossover and generates a new chromosome called as off-

spring. The first gene of an offspring (WL) is the first gene

of the first parent and the second gene of an offspring

chromosome (WR) is the second gene of the second parent.

Each newly borne offspring replaces its first parent

chromosome from the current population and a new popu-

lation is formed. Figure 7 demonstrates the crossover step.

v. Mutation

Now, GA carries out the mutation function. In a mutation

process, the first or second gene of a randomly selected

chromosome of the new population is replaced with a

random value. A predefined mutation rate (qm) decides the
number of mutations to be carried out in the iteration.

Figure 8 demonstrates the mutation step.

After the mutation step, the fitness function is calculated

for each chromosome of the mutated population. Then, the

GA repeats the steps-ii to step-v.

Thus, the GA in each of its iteration applies minor

changes to chromosomes of the current population to

maximize objective fitness function. Over successive iter-

ations, the population evolves towards an optimized weight

value solution.

Step 4: Fuzzy-TOPSIS based quantitative comparison of

candidate nodes

Now, EB-fg-MADM lets the sink node to apply fuzzy

logic-based TOPSIS process on node attribute data and

node attribute weigths. TOPSIS ranks each candidate node

for their appropriateness for CH job.

At first, the numerical attribute values of each cluster

member node are transformed into fuzzy grades such as

Very low, Low, Medium, High, and Very high. Then a

multi-criteria decision matrix (MCDM) is created com-

prising of weighted fuzzy node attributes of each candidate

cluster member node. Fuzzy positive and negative ideal

solutions (FPIS & FNIS) are identified involving the set of

best performance attribute (highest ER & lowest EL) and

worst performance attribute values, respectively.

Candidate node possessing the attributes closest to FPIS

and farthest from FNIS is selected as the optimum cluster

head node. The steps involved in fuzzy-TOPSIS process

are as follows:

i. Normalization of node attribute values

Node attribute values (ER(i) and EL(i); V i[N) are nor-

malized to a range of [0, 1]. Equations 23 & 24 fulfill this

purpose.

ERn ið Þ ¼ ER ið Þ �min ERð Þ
max ERð Þ �min ERð Þ ð23Þ

ELn ið Þ ¼ EL ið Þ �min ELð Þ
max ELð Þ �min ELð Þ ð24Þ

Here, ERn(i) and ELn(i) represent attributes of node-i,

normalized to a range of [0, 1].

ii. Fuzzy transformation of numerical node attributes

Normalized node attributes are transformed into appropri-

ate fuzzy grades such as Very low, Low, Medium, High and

Very high.
Fig. 7 Crossover step

Fig. 8 Mutation step

Fig. 6 Fitness evaluation
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As depicted by Table 6, each of the five fuzzy grades are

characterized by an associated triplet fuzzy number Ef-

= {Ef min, Ef mode, Ef max}. Triplet fuzzy numbers are

overlapping in nature with a spread of 0.25 or 0.3. Such

characteristics of triplet numbers replicate the fuzziness of

transformed attribute data.

A normalized attribute value, ERn/ELn is mapped to a

corresponding fuzzy grade ERf/ELf with the help of fuzzy

membership function,lERf
ERnð Þ/lELf

ELnð Þ.
In general, Eq. 25 is used to evaluate fuzzy membership

function,lEf
Enð Þ of a particular fuzzy grade, Ef = {Ef min,

Ef mode, Ef max} extracted from the input attribute value, En.

lEf
Enð Þ ¼

En � Ef min

Ef mode � Ef min

if Ef min �En �Ef mode

Ef max � En

Ef max � Ef mode

if Ef mode �En �Ef max

else 0

8
>>><

>>>:

ð25Þ

For the given normalized attribute value ERn(i)/ELn(-

i) fuzzy membership function values of each of five fuzzy

grades are obtained. Fuzzy grade obtaining maximum

membership value for a given attribute value is assigned to

that attribute value and is termed as ERf(i)/ELf(i).

Transformed fuzzy grades of node attributes, ERn(i)/

ELn(i); V i[N, create the fuzzy sets, ERf(i)/ELf(i); V i[N.

Table 7 depicts the transformed triplet fuzzy attribute

grades of six cluster member nodes. This data is obtained

from the simulation of proposed algorithm for 100th

transmission round.

iii. Multi-criteria decision matrix (MCDM)

Optimized node attribute weight values (WR & WL) are also

transformed into triplet fuzzy numbers; {WR min, WR mode,

WR max} & {WL min, WL mode, WL max}, respectively.

During protocol simulations, for 100th transmission

round, the optimized node attribute weights (WR & WL)

were found to be High {0.55, 0.7, 0.85} & Low {0.15, 0.3,

0.45} respectively.

Transformed node attribute fuzzy grades, ERf(i) and

ELf(i); V i[N are multiplied to their respective fuzzy

weights to get weighted node attribute fuzzy grades, ERw(i)

and ELw(i); V i[N. Multiplication takes place as per Eq. 26.

ERw ið Þ ¼ ERf ið Þ � WR

¼ ERfmin ið Þ;ERfmode ið Þ;ERfmax ið Þf g
� WRmin;WRmode;WRmaxf g

¼ fERfmin ið Þ � WRmin;ERfmode ið Þ;�WRmode;ERfmax ið Þ;�WRmaxg
¼ ERwmin ið Þ;ERwmode ið Þ;ERwmax ið Þf g

ð26Þ

Weighted node attribute fuzzy grades, ERw(i) and

ELw(i); V i[N, form an N 9 2 Multi-Criteria Decision

Matrix (MCDM) which is expressed as follows:

MCDM ¼

ERw 1ð Þ ELw 1ð Þ
ERw 2ð Þ ELw 2ð Þ

..

.

ERw Nð Þ
..
.

ELw Nð Þ

2

6664

3

7775

N�2

ð27Þ

MCDM given below is obtained from the fuzzy grade

data of Table 7.

MCDM @100

Transmission

Round

¼

0; 0:0700; 0:2125f g 0:1125; 0:2700; 0:4500f g
0; 0:0700; 0:2125f g 0:0225; 0:0900; 0:2025f g

0:4125; 0:6300; 0:8500f g 0; 0:0300; 0:1125f g
0:4125; 0:6300; 0:8500f g 0; 0:0300; 0:1125f g
0:1925; 0:3500; 0:5525f g 0:0525; 0:1500; 0:2925f g
0:0825; 0:2100; 0:3825f g 0:0525; 0:1500; 0:2925f g

2

6666664

3

7777775

N¼6ð Þ�2

ð28Þ

iv. Fuzzy ideal solutions (FPIS & FNIS)

Now sink analyses MCDM and identifies Fuzzy Positive

and Negative ideal solutions (FPIS & FNIS). FPIS and

FNIS involve the set of best and worst performance attri-

bute values, respectively (see Eq. 29 & 30).

FPIS ¼ Eþ
R ;Eþ

L

� �

¼ max
i
fERw ið Þ; 8i 2 Ng;min

i
fELw ið Þ; 8i 2 Ng

� �

¼ ½ Eþ
Rmin;Eþ

Rmode;Eþ
Rmax

� �
;

Eþ
L min;Eþ

L mode;Eþ
L max

� �
�

ð29Þ

FNIS ¼ E�
R ;E�

L

� �

¼ min
i
fERw ið Þ; 8i 2 Ng;max

i
fELw ið Þ; 8i 2 Ng

� �

¼ ½ E�
R min;E�

R mode;E
�
R max

� �
; E�

L min;E�
L mode;E�

L max

� �
�

ð30Þ

Table 6 Fuzzy transformation

table
Fuzzy grade Associated triplet fuzzy number {Ef min, Ef mode, Ef max}

Very low (VL) {0, 0.1, 0.25}

Low (L) {0.15, 0.3, 0.45}

Medium (M) {0.35, 0.5, 0.65}

High (H) {0.55, 0.7, 0.85}

Very high (VH) {0.75, 0.9, 1}
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v. Separation Index

Sink computes the two separation indexes, dist ið Þþ and

dist ið Þ� for each cluster member node. These indexes,

dist ið Þþ and dist ið Þ� are the measure of closeness of node-

i’s attributes to ideal solutions FPIS & FNIS, respectively.

They are computed as follows:

dist ið Þþ¼ Df ERw ið Þ;Eþ
R

� �
þ Df ELw ið Þ;Eþ

L

� �
ð31Þ

dist ið Þ�¼ Df ERw ið Þ;E�
R

� �
þ Df ELw ið Þ;E�

L

� �
ð32Þ

The term Df ERw ið Þ;Eþ
Rð Þ of Eq. 20 represents the fuzzy

distance in between two fuzzy numbers: ERw(-

i) = {ERw min(i), ERw mode(i), ERw max(i)} and ER
?={ER

?
min,

ER
?

mode, ER
?

max}. It is given by Eq. 33.

Df ERw ið Þ;Eþ
R

� �
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ERwmin ið Þ � Eþ

Rmin

� �2þ ERwmode ið Þ � Eþ
Rmode

� �2

þ ERwmax ið Þ � Eþ
Rmax

� �2

" #vuut

ð33Þ

Similarly, other fuzzy distances of Eq. 31 and 32 can

also be calculated.

vi. TOPSIS Rank

Now, using Eq. 34, sink computes TOPSIS ranks SC(i); V
i[N of each candidate cluster member node for their suit-

ability for cluster head job.

SC ið Þ ¼ dist ið Þ�

dist ið Þ�þdist ið Þþ
Þ; 8i 2 N ð34Þ

Step-5 Selection of optimum cluster head

The candidate cluster member node with highest TOP-

SIS rank, SC(i), is chosen as the cluster head. Thus, a

cluster member node possessing the attributes closest to

positive ideal solution and farthest from negative ideal

solution is selected.

Sink node announces the selection by broadcasting a

‘‘CH_ANNOUNCE’’ message containing node ID of the

selected cluster head. Remaining cluster nodes act as the

subordinate child node of the selected cluster head.

4.3 Data Sensing Phase

Biosensor nodes sense the intended body parameter and

produce equivalent digital ‘‘DATA’’ packets using onboard

analog to digital converters. Each ‘‘DATA’’ packet carries

node IDs of sender node, receiver node and the sensed data.

4.4 Intra Cluster Data Transmission Phase

Subordinate cluster nodes communicate ‘‘DATA’’ packets

to the CH node. They report in TDMA based time slots.

This phase is carried out in the following two steps.

Step-1: Loss-less data compression technique for redun-

dancy removal

Proposed technique adopts a loss-less data compression

technique to remove consecutively sensed similar redun-

dant data of a node from the transmission. It works as

follows:

i. Nodes store current and previously sensed data

packets in memory.

Table 7 Transformed Fuzzy

Grades @ 100th transmission

round

Node attribute-1 (Node residual energy ER)

Node-i ER(i) (J) ERn(i) Fuzzy grade ERf(i) {ERf min(i), ERf mode(i), ERf max(i)}

Node-1 0.4910 0 Very low; {0, 0.1, 0.25}

Node-2 0.4910 0.0814 Very low; {0, 0.1, 0.25}

Node-3 0.4912 1 Very high; {0.75, 0.9, 1}

Node-4 0.4912 0.9787 Very high; {0.75, 0.9, 1}

Node-5 0.4911 0.5236 Medium; {0.35, 0.5, 0.65}

Node-6 0.4911 0.3423 Low; {0.15, 0.3, 0.45}

Node attribute-2 (CH selection cost EL)

Node-i EL(i) (lJ) ELn(i) Fuzzy grade ELf(i) {ELf min(i), ELf mode(i), ELf max(i)}

Node-1 1.1881 1 Very high; {0.75, 0.9, 1}

Node-2 1.1629 0.3436 Low; {0.15, 0.3, 0.45}

Node-3 1.1498 0 Very low; {0, 0.1, 0.25}

Node-4 1.1511 0.0342 Very low; {0, 0.1, 0.25}

Node-5 1.1688 0.4958 Medium; {0.35, 0.5, 0.65}

Node-6 1.1655 0.4092 Medium; {0.35, 0.5, 0.65}
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ii. A sensor node transmits its current ‘‘DATA’’ packet

if it detects a ‘‘sense and transmit event’’. Such event

is detected when the currently sensed ‘‘DATA’’

packet is not similar to the last ‘‘DATA’’ packet sent

by the node or the sensed parameter value goes

beyond the threshold. The probability of the detec-

tion of a ‘‘Sense and Transmit event’’ is denoted by

a.
iii. A sensor node stops the transmission of a ‘‘DATA’’

packet if the packet is found to have a close

correlation to its previously transmitted ‘‘DATA’’

packet. Instead, it broadcasts an ‘‘EMPTY’’ message

carrying its node ID.

iv. If sink receives the ‘‘EMPTY’’ message from a node,

then it reuses the last packet it got from the same

node.

v. In this manner, node energy is not consumed in

transmitting redundant data.

Step-2: Link aware cooperative data transmission

Cluster child nodes cooperate with the cluster head to

reduce its transmission burden. Link aware cooperative

intra-cluster data transmission is performed as follows:

i. If the sink node is found to be nearer to a child node

as compared to CH node, then the child node sends

its ‘‘DATA’’ packet to the sink node directly.

Furthermore, it broadcasts a ‘‘BYPASS’’ message

carrying its node ID. In Fig. 9, node-S1, instead of

transmitting its ‘‘DATA’’ packet to CH node, sends it

to sink directly. Selection of shorter path saves node

transmission energy.

ii. Else child nodes send their packets to the CH node.

4.5 Data Aggregation Phase

After receiving ‘‘DATA’’ packets from child nodes, CH

node piles them into a single datum packet. CH node

ignores the child nodes from which it receives either

‘‘EMPTY’’ or ‘‘BYPASS’’ messages.

4.6 Data Reporting to Sink Node

CH node communicates its datum packet to sink. Then the

node S4 and S5 send their packets to sink one by one.

4.7 Complexity of EB-fg-MADM Algorithm

The time-complexity assessment of the proposed EB-fg-

MADM algorithm is based on the number of arithmetic

operations required to execute the algorithm.

After receiving the node attribute values, sink performs

Fuzzy-TOPSIS based cluster head selection process and

Genetic Algorithm based attribute weight optimization

process.

Let the number of candidate cluster member node be n

and the number of node attribute be m. Fuzzy-Topsis

approach performs 3nm operations for attribute normal-

ization, 15(n ? 1)m operations for the fuzzy transforma-

tion of node attribute & attribute weights, 3nm operations

to compute multi-criteria decision matrix (MCDM), 14nm

operations to compute separation indexes dist(i)? &

dist(i)- and 2n operations to compute TOPSIS ranks of

candidate cluster member nodes. Thus, the computational

complexity of fuzzy-TOPSIS-based cluster head selection

stage is given by Eq. 35.

Tfuzzy�TOPSIS ¼ 3nm þ 15 n þ 1ð Þm þ 3nm þ 14nm þ 2n

¼ 35nm þ 15m þ 2n

ð35Þ

The time complexity of fuzzy-TOPSIS-based cluster

head selection stage is O(nm).

The sink performs the attribute weight optimization

through an iterative optimization process of Genetic

Algorithm (GA). GA is a stochastic process. The time

complexity of a GA is a function of GA parameters such as

population size, chromosome gene count and number of

iterations. GA complexity also depends on the methods

used for fitness evaluation, parent selection, crossover and

mutation. For Roulette Wheel selection of parents, one

point crossover and point mutation, GA complexity

becomes O(pqr) where p denotes population size; q denotes

the gene count and r denote the number of iterations.

Fig. 9 Link aware cooperative data transmission
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5 Simulation and Analysis of Proposed Protocol

Simulated biosensor node data samples are generated with

‘‘Sense and Transmit event’’ detection probability of

a = 0.6. These data samples are used for protocol simula-

tion. In this study, MATLAB tool is used for protocol

simulation.

Figure 10 shows the initial positions of WBAN

biosensor nodes in a 1.8 m 9 1 m network area. Table 8

contains different simulation parameters.

5.1 Network Lifetime and Stability Period

Network lifetime is defined as the total number of trans-

mission rounds until last network node dies out.

Network stability period can be defined as the time

period in which all network nodes remains fully functional

with all capabilities of data sensing, data processing and

data communication. The following section presents a

derived model for network stability period.

Suppose node-i of a WBAN dies first after Ns rounds.

Thus, Ns becomes the stability period of the network. Let

Eo be the initial energy of node-i, m be the total number of

nodes in the parent cluster of node-i.

Assuming uniform cluster head distribution, node-i re-

mains a cluster head once in each m-transmission rounds.

Thus, in Ns transmission rounds, node-i remains Ns/m times

as cluster head and Ns (1 - 1/m) times as child node.

Average energy consumed by node-i as a cluster head in

a single round is given by Eq. 36 (derived using first-order

radio model [19]).

ELoss CH ¼ ETx�elec ERx�elec EDA EAmp

� �
�

1

m � 1ð Þa
m � 1ð Þa
gD

g
toSink

2
664

3
775

�W

ð36Þ

Here, DtoSink represents the average distance between

the cluster head and the sink. W is the bit length of data

packets sent from sensor nodes to cluster head and aggre-

gated datum created by cluster head and sent to sink.

Average energy consumed by node-i as a child node in a

single round is given as Eq. 37 (derived using first-order

radio model [19]).

ELoss Child ¼ ETx�elec ERx�elec EDA EAmp

� �
�

1

0
0

gD
g
toCH

2
64

3
75

� aw

ð37Þ

Here DtoCH is the average distance between a child node

and its cluster head.

Total energy consumed by node-i in Ns stability period

is Eo (as it gets died in Ns period). Now Eo can be

approximated as follows.

Eo ¼ NS

m

� 	
ELoss CH þ NS 1� 1

m

� 	
ELoss Child ð38Þ

Fig. 10 WBAN biosensor nodes positions

Table 8 Simulation parameters Parameter Value Parameter Value

ETX-elect 16.7 nJ/bit Initial node energy Eo 0.6 J

ERX-elect 36.1 nJ/bit Threshold energy EThr 0.1 J

EAmp 1.97 nJ/bit Do 0.1 m

Data message 4000 bits a 0.6

Broad. message 200 bits Rx sensitivity in dBm 92 dBm

Energy message 20 bits Transmitted power Pt - 10 dBm

g 3.38 (LoS) Node wakeup time 1 ms

f (ISM band) 2.4 GHz Sleep to active transition 0.245 ms

Network area 1.5 9 0.5 m2 Active to sleep transition 0.25 ms

Node count 8
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Using Eq. 36, 37 and 38, network stability period (Ns)

gets formulated as follows.

NS ¼ Eo=W

ETx�elec ERx�elec EDA EAmp

� �
�

1

m
þ 1� 1

m

� 	
a

1� 1=mð Þa
1� 1=mð Þa

gD
g
toSink

m
þ gD

g
toCH 1� 1

m

� 	
a

2
6666664

3
7777775

ð39Þ

Figure 11 demonstrates network stability period and

network lifetime in terms of the dead node count verses

transmission round count.

Performance statistics for the network lifetime and sta-

bility period are shown in Table 9.

Simulated performance suggests a network stability

period of 8420 rounds for the proposed protocol (EB-fg-

MADM) while for DSCB, EERP, and M-ATTEMPT pro-

tocols stability periods are 7938, 5315 and 2551, respec-

tively. Similarly, proposed protocol offers an elongated

network lifetime around 14,410 transmission rounds as

compared to existing protocols.

Figure 12 depicts network residual energy plot verses

transmission rounds. It clearly indicates that the network

residual energy of EB-fg-MADM protocol becomes zero

after 14,410 transmission rounds.

The proposed protocol offers elongated network stabil-

ity lifetime periods as compared to existing protocols. It

proves that the proposed protocol uniformly distributes the

CH load across network nodes. All sensor nodes work for a

longer period with their full capacity. Hence, it results in a

longer network lifetime.

Proposed protocol (EB-fg-MADM) also adopts loss-less

data compression technique which removes node redundant

data from transmission. The omission of redundant data

from transmission saves a considerable amount of node

transmission energy. Figure 13 shows that omission of

redundant data from node data transmission process saves

0.8 J of network energy in the first 5000 rounds. The result

is the enhanced network lifetime of 14,410 rounds for

proposed protocol.

5.2 Throughput (Data Packet Success Rate)

Network throughput can be measured by the number of

effectively delivered data packets to the sink node. Fig-

ure 14 depicts the number of successfully delivered data

packets to sink for various protocols.

EB-fg-MADM protocol successfully delivers a sum of

5.6 9 104 packets from source to sink node in 15,000

transmission rounds. Proposed protocol provides better

packet success rate as compared to other protocols.
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Fig. 11 Number of dead nodes per round

Table 9 Network lifetime

statistics
No. of dead nodes Proposed DSCB [17] EERP [15] M-ATTEMPT [36]

Stability period 1 8420 7938 5315 2551

Network lifetime 8 14,410 13,690 8987 8968
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Fig. 13 Residual energy saving by loss-less data compression
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Better network throughput of the proposed protocol is

due to the implementation of the loss-less redundant data

compression scheme. In this scheme, a node does not

transmit its currently sensed data packet if it is same as the

previously sensed data packet. In this case, sink reuses the

previous data packet from the same node and the data

packet is virtually transmitted to sink without facing the

noisy communication channel. It results in reduced data

packet loss rates and better network throughput.

5.3 End to End Delay (Network Latency)

Network latency result is shown by Fig. 15. The proposed

protocol offers a maximum network latency of 23.7 ms

which is far below the IEEE 802.15.6 threshold level of

125 ms.

Figure 16 demonstrates a detailed view of network

latency for the first second of the network operation. Net-

work completes 59 transmission rounds in the first second

of its operation.

Table 10 summarizes the performance results of the

proposed and the existing routing protocols.

6 Conclusions and Future Work

An energy efficient data routing protocol is of paramount

importance for WBAN because bio-sensor nodes consume

a considerable amount of assigned node energy for trans-

mitting data to other nodes. A clustering-based protocol

provides an energy-efficient data routing scheme with

affordable data loss rates and network latency. This paper

proposed a novel clustering protocol for WBANs that uti-

lizes a hybrid Fuzzy-Genetic MADM algorithm (EB-fg-

MADM) for dynamic cluster head selection.

Simulation results verified that the EB-fg-MADM pro-

tocol offers an elongated network lifetime and stability

period of 14,410 and 8420 transmission rounds, respec-

tively, as compared to existing classical MADM-based

routing protocols. The proposed protocol offers a consis-

tent distribution of routing load among network nodes

which results in elongated stability period and network

lifetime.

EB-fg-MADM protocol utilizes a loss-less data com-

pression technique for intra-cluster data communication

which removes the node redundant data from the trans-

mission. According to the loss-less data compression

technique, a sensor node does not transmit a data packet if

it is similar to its previously transmitted data packet. In this

case, sink reuses the packet from its memory. Thus, the

packet is virtually transmitted to sink without facing the

noisy communication channel. It results in an increased

network throughput. The omission of redundant data from

transmission saves around 0.8 J of network energy in the

first 5000 transmission rounds. The proposed protocol

offers an end to end delay of 23.7 ms. Proposed protocol

provides an energy efficient & high QoS WBAN system to

meet medical application norms.

The current work assumes that there is a single isolated

WBAN system and the transmissions within the WBAN do

not face any radio frequency cross-channel interference

from other WBAN using similar spectrum. But in a mul-

tiple WBAN environment, there is a possibility of cross-

channel interference which leads to degraded QoS
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performance & reduced network reliability. The current

research work may be expanded to incorporate diverse

WBANs working in closer proximity with the objective of

mitigating cross-channel interference with higher reliabil-

ity and network stability.

Our future research directions are focused on designing

the WBAN routing protocol which overcomes the problem

of cross-channel interference and provides the desired QoS

performance in a multiple WBAN scenario.
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