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Abstract This study investigated fault estimation and

diagnosis using a novel approach based on an integrated

fault estimator and state estimator for generalized linear

discrete-time systems. The proposed scheme uses a self-

constructing fuzzy unscented Kalman filter (UKF) system

to simultaneously estimate the system state and approxi-

mate the fault information. To achieve this, a generalized

linear discrete-time system without faults was first trans-

formed into an equivalent standard state-space system with

faults. Then, the self-constructing fuzzy UKF system was

designed in order to obtain the fault information. Accord-

ing to fault information obtained using the proposed

scheme, fault detection experiments based on fuzzy clus-

tering were performed and the fault feature parameters

required for fault isolation were determined. Finally, the

scheme was applied to a direct current (DC) motor to

demonstrate the effectiveness of the proposed fault esti-

mation and diagnosis approach. Results of the simulation

illustrate the effectiveness of the proposed method.

Keywords Self-constructing fuzzy system � Unscented
Kalman filter (UKF) � State estimation � Fault information �
Generalized linear discrete-time system

1 Introduction

Generalized linear discrete-time systems are commonly

used in signal processing, electromechanical systems, and

the aerospace industry, as well as other applications. The

theory of generalized discrete-time systems, which was

first proposed in the 1970s, has gradually developed into an

independent branch of modern control theory. Research

ranges from linear to nonlinear systems, continuous to

discrete, and certainty to uncertainty. However, control

systems have become more complex, therefore, the relia-

bility of generalized linear discrete-time systems has been

hindered by several issues. Nonetheless, faults within

process control systems are inevitable, and can seriously

affect the precision and reliability of generalized linear

discrete-time systems. Thus, accurately estimating the

system state and approximating fault information can

improve the overall accuracy and reliability a system.

In recent years, fault-tolerant methods based on control

models have advanced [1–5]. However, to allow previously

proposed methods to provide fault tolerance, modern dis-

tributed storage systems must rely on specialized network

topologies and consensus protocols that create high over-

heads. Moreover, efficient data placement schemes that

take into account data locality are difficult to implement.

As such, numerous fault detection and isolation methods

have been proposed [6–10]. Typically, a filtering technique

is used to estimate the system state and based on the error

between the estimated system state and actual system state,

faults are detected and isolated. One disadvantage of the

filtering technique is that when a moving target is blocked

for a long period of time, the target may be lost during

tracking, which can seriously affect the precision of fault

detection. As yet, no advanced method exists for simulta-

neously estimating the system state and fault function.
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In [11], a neuro-fuzzy identification method based on

parity equations was proposed to detect uncertain faults of

a real nonlinear system—in this case, an industrial pilot

plant—and demonstrated relatively good performance. In

[12], an approach combining the Chi-squared test and

fuzzy RTMAP neural network mapping was described for

fault diagnosis of an integrated navigation system. With

this method, the whole state vector was first tested using

the Chi-squared test. Then, the pattern of the test results

was used to isolate and identify faults using two separate

Fuzzy-ARTMAP neural networks. Although faults can be

detected, identified, and isolated using the previously pro-

posed methods [11, 12], estimates of the system state are

not always optimal and the accuracy of the control system

is affected.

In [13], a linear descriptor stochastic system was

established and a robust strategy was proposed to estimate

the state and fault information of the above system. The

proposed method was based on a robust two-stage Kalman

filter and was applied to yield the optimal robust descriptor

state and fault estimation. A model-based approach for

fault detection of an electromagnetic actuator considering

an observer has also been presented [14]. First, a seg-

mented mathematical model was established based on

clustering identification, then a Luenberger observer was

created to simultaneously estimate the state of the seg-

mented model. Finally, fault isolation was achieved by

calculating the energy value of the estimated state.

Although the states and faults of control systems have

been estimated and isolated [13, 14], the accuracy of the

fault information was not considered. In practical engi-

neering, systems often contain many uncertainties owing to

faults that cannot be accurately described by mathematical

models. The fuzzy system can effectively approximate

these uncertainties, nonlinearities, and other complex

problems of various control systems [15–19]. Furthermore,

the approximation abilities of numerous proposed methods

have been studied for variable control systems [20–22].

Many researchers have used fuzzy theory to study the

fault information of control systems and numerous strate-

gies have been proposed. A fault detection approach for

unknown systems based on the fuzzy basis function net-

work was presented in [23]. The unknown system was

composed of a known part, unknown part, and fault

information. The unknown part, which includes the model

uncertainties and disturbances, was estimated using a fuzzy

basis function network; however, the fault information was

not obtained in the real sense. In [24], a fuzzy state

observer was designed and an observer-based fault detec-

tion approach for a nonlinear networked control system

was presented. The main idea behind the stagey was that

states of the nonlinear control system could be observed in

real time without changing the structure of the system. In

[25], the Takagi–Sugeno (TS) fuzzy observer for distur-

bance rejection based on the H1 optimization index was

designed. When designing the observer, the proportion of

unknown system variables owing to the perturbation resi-

due was considered to improve the robustness of the

observer and to reduce interference and sensitivity to fail-

ure. The fuzzy system was used to estimate the fault

information and to effectively deal with the uncertainty of

the control system [24, 25], but the structure of the fuzzy

system cannot be adjusted online and does not have self-

learning capabilities.

All of these factors affect the accuracy in approximating

fault information and state estimation. Thus, to achieve

accurate fault information, not only the state estimation but

also the fault information estimation should be considered.

This paper presents an optimal state estimation and fault

information approximation method based on a self-con-

structing fuzzy unscented Kalman filter (UKF) for gener-

alized linear discrete systems.

In comparison to existing schemes, the main contribu-

tions of this paper can be summarized as follows:

I. Parameters of the control system can be adjusted in

real time according to change in the system state and

fault information.

II. Accurate fault information can be obtained while the

states of the control system with faults are simulta-

neously estimated.

III. Fault diagnosis can be performed according to the

fault information.

The rest of the paper is organized as follows: In Sect. 2,

a generalized linear discrete-time system without faults is

transformed into an equivalent standard state-space system

with faults; A novel approach based on a self-constructing

fuzzy UKF system is proposed in Sect. 3; Sect. 4 presents a

method of fault diagnosis and isolation-based fuzzy clus-

tering; Experimental results for a direct current (DC) motor

are given as a DC motor was taken as an example in Sect.

5; Finally, conclusions are presented in Sect. 6.

2 Problem Statement

Consider a generalized linear discrete-time system of the

following form:

xðk þ 1Þ ¼ AxðkÞ þ BuðkÞ þ wðkÞ ð1Þ
yðkÞ ¼ CxðkÞ þ vðkÞ; ð2Þ

where x kð Þ is the state vector,x kð Þ 2 Rn; uðkÞ is the known
control input, u kð Þ 2 Rn; A, B, and C are known time-

varying real matrices with appropriate dimensions; wðkÞ
and vðkÞ are white noise Gaussian sequences of
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uncorrelated random vectors with zero means and covari-

ance matrices Q and R, respectively; yðkÞ is the output

variable.

In the real world, if a control object fails in a control

system, the control algorithm will also be seriously affec-

ted. Supposing the failure happens in a generalized linear

discrete-time system, to accurately analyze the fault

information of the control system, the ith input of the

control system with the fault can be represented as

uiFðkÞ ¼ uðkÞð1� cikÞ; ð3Þ

where cik is the loss of control effectiveness, if cik ¼ 0, the

control input is fault-free; if cik ¼ 1, the control input is

outage. The matrix of the loss of the control effectiveness

can be defined as

ck ¼

c1k
c2k

� � �
..
.

cnk

2
666664

3
777775

ð4Þ

Based on Eq. (4), the input of the control system with a

fault can be further defined as

uFðkÞ ¼ uðkÞðI � ckÞ ð5Þ

Substituting Eq. (5) into Eq. (1), we obtain a general-

ized linear discrete-time system control model with faults,

which can be defined as

xðk þ 1Þ ¼ AxðkÞ þ BuðkÞðI � ckÞ þ wðkÞ ð6Þ

ydðkÞ ¼ CxðkÞ þ vðkÞ ð7Þ

Based on Eq. (6), we can derive

xðk þ 1Þ ¼ AxðkÞ þ BuðkÞ � BckuðkÞ þ wðkÞ ð8Þ

To facilitate the following discussion, ck can be defined

in relation to the fault function. Thus, assuming

f ðkÞ ¼ �BckuðkÞ, Eq. (8) can be rewritten as

xðk þ 1Þ ¼ AxðkÞ þ BuðkÞ þ f ðkÞ þ wðkÞ; ð9Þ

where f ðkÞ is the fault function of the uncertain generalized

discrete-time linear system and can be described by

f ðkÞ ¼ ½�b1c
1
k � b2c

2
k � b3c

3
k � � � � bnc

n
k � �

u1k
u2k

..

.

unk

2
6664

3
7775 ð10Þ

In the absence of the knowledge of wðkÞ, f ðkÞ can be

modeled as follows:

f ðk þ 1Þ ¼ f ðkÞ þ wðkÞ ð11Þ

A dedicated equivalent standard system with faults and

unknown inputs can be expressed as follows:

xðk þ 1Þ ¼ AxðkÞ þ BuðkÞ þ f ðkÞ þ wðkÞ ð12Þ
ydðkÞ ¼ CxðkÞ þ vðkÞ ð13Þ
f ðk þ 1Þ ¼ f ðkÞ þ wðkÞ ð14Þ

The aim of this paper is to present an optimal method for

simultaneously estimating the state xðkÞ with a failure and

the fault function f ðkÞ of the generalized discrete-time

linear system given by Eq. (12).

3 Design of Self-constructing Fuzzy UKF
Controller

Since the fault characteristics are unknown, the self-con-

structing controller should be designed to take into account

noise, interference, and dynamic performance changes. To

achieve this, the self-constructing fuzzy UKF system was

designed to control a system of unknown structure and

unknown disturbances.

The self-constructing fuzzy UKF controller undergoes

the following three phases:

1. During the first phase, consequences of the existing

rules are adapted based on the plant’s output error.

2. In the second phase, a new membership function (MF)

is added to controller inputs with faults, and as a result,

new fuzzy rules are created. Then, consequences of all

the rules must be adapted again.

3. For the third phase, the fault function and fault state

are simultaneously estimated.

In this paper, the triangle membership function is

introduced into the fuzzy inference system (FIS). Each

fuzzy set contains three fuzzy subsets: fault, outage, and

fault-free.

According to Eq. (11), since f kð Þ is a nonlinear function
of arbitrary accuracy, the real matrix h kð Þ exists [26] and

can be defined as

f ðkÞ ¼ hTðkÞnðkÞ þ e; ð15Þ

where h kð Þ is the consequence parameter matrix of the

fuzzy rules; e represents a nonnegative constant, 1[ e[ 0;

n kð Þ is the fuzzy basis function.

Suppose the ith fuzzy rule is given as follows:

if x1ðkÞ is Ai
1 and x2ðkÞ is Ai

2 and. . . and xnðkÞ is Ai
n

then f̂ ðkÞ ¼ ai1ðkÞ
;

ð16Þ

where n is the number of inputs and Ai
1 is the fuzzy set. In

the FIS, multiplication reasoning and the weighted mean

method can be used for fuzzy reasoning. Then, the output

of the fuzzy system can be expressed as
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f̂ ðkÞ ¼
Pr

j¼1 a
i
1ðkÞ

Qn
i¼1 lAi

j
ðxjðkÞÞPr

j¼1

Qn
i¼1 lAi

j
ðxjðkÞÞ

; ð17Þ

where r is the number of fuzzy rules and lA j
i
represents the

membership function of the input variable.

According to Eqs. (15) and (17), the consequence

parameter of fuzzy rule h kð Þ can be expressed as

hiðkÞ ¼ ½a1i ðkÞ; a2i ðkÞ; . . .; ari ðkÞ�
T ð18Þ

The fuzzy basis function n kð Þ can be expressed as

niðkÞ ¼
Qn

i¼1 lAj
i
ðxiðkÞÞPr

j¼1

Qn
i¼1 lAj

i
ðxiðkÞÞ

ð19Þ

To improve the approximation accuracy of the self-

constructing fuzzy system, the error between the output the

control system with and without failure is considered as

eðkÞ ¼ yðkÞ � ydðkÞ; ð20Þ

where e kð Þ is the error of the output state. According to

Eq. (20) and supposing u is the threshold of e, u ¼ 10�5, if

e[u, a new membership function will be added or not.

Assuming the number of the membership function is n

in the self-constructing fuzzy system, in the case of e[u,
a membership function of input variable xv is added and the

number of the membership functions will be nþ 1. Then,

the number of fuzzy rules is added together, defined as

XN
j¼1

ni; j 6¼ i ð21Þ

According to Eq. (16), the sum of the fuzzy rules can be

expressed as

if x1ðkÞ is Ai1
1 and x2ðkÞ is Ai2

2 and . . . and xvðkÞ is Aiv
v

and. . .and xnðkÞ is Ain
n then f̂ ðkÞ ¼ ai1i2...iN

ð22Þ

When a new fuzzy rule is added, the fuzzy consequence

parameters should also be defined and initialized.

Assuming l fuzzy rules at time t1, the fuzzy output can

be expressed as

f ðtÞ ¼
Xl

i¼1

aini ð23Þ

At time t2, h fuzzy rules are added to the FIS, then the

fuzzy output can be defined as

f ðt1 þ t2Þ ¼ anew
Xlþh

i¼lþ1

ni þ f ðtÞ; ð24Þ

where anew is the new fuzzy consequence parameter.

Based on Eq. (23), the fuzzy output at time t1 þ t2 can

be expressed as

f ðt1 þ t2Þ ¼
Xlþh

i¼1

aini ð25Þ

Substituting Eq. (25) into Eq. (24), we obtain

Xlþh

i¼1

aini ¼ anew
Xlþh

i¼lþ1

ni þ f ðtÞ ð26Þ

Rearranging Eq. (26), we obtain

anew ¼ f ðtÞ �
Plþh

i¼1 ainiPlþh
i¼lþ1 ni

ð27Þ

From Eq. (27), the consequence parameters of the fuzzy

rules can be obtained. Since the self-constructing fuzzy

system updates the fuzzy parameters in real time, a control

law for the consequence parameters must be given. Fur-

thermore, the control law of the consequence parameters

can be defined as

a
:

i
¼

reTnk ðuL\ai\uUÞ or ðai ¼ uU and reTnj [ 0Þ
or ðai ¼ uL and reTnj\0Þ

0 others

8<
: ;

ð28Þ

where uL and uU are the lower and upper of self-con-

structing fuzzy system inputs, respectively; r is the control

law parameter. Then, based on Eq. (12), (17), (22), and

(23), the fuzzy output of the self-constructing system can

be further expressed as

f̂ ðkÞ ¼
PR

j¼1 a
i
1ðkÞ

Qn
i¼1 lAi

j
ðxjðkÞÞPr

j¼1

Qn
i¼1 lAi

j
ðxjðkÞÞ

¼
PR1

j1¼1

PR2

j2¼1
� � �

PRN

jN¼1 ai1i2...iN �
QN

m¼1 lAim
j
ðxjðkÞÞ

PR1

i1¼1

PR2

i2¼1
� � �

PRN

iN¼1

QN
m¼1 lAim

j
ðxjðkÞÞ

;

ð29Þ

where R is the total number of fuzzy rules, lAj
i
represents

the membership functions of the input variables, and N is

the number of the fuzzy input variables.

As seen from Eq. (29), the output of the self-con-

structing system depends not only on the fuzzy system

parameters but also on the system inputs. From Eqs. (10),

(11), and (12), it is clear that the fault function f ðkÞ can

only be estimated using one-step delayed estimation. More

precisely, the estimation problem presented in this paper

must focus on acquiring the state estimate x̂kjk.

True values of the states can be estimated by applying

the UKF, which is a nonlinear transformation-unscented

transformation (UT) [27]. A set of weighted sigma points is

chosen deterministically such that the sample mean and

sample covariance of the points match those of the a priori

distribution. The nonlinear function is applied to each point

in turn to yield the transformed samples, and the predicted
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mean and covariance are calculated from the transformed

samples.

Next, the procedure to estimate the state xk using the

UKF is described. According to Eq. (12), in the case of

k ¼ 0, the mathematical expectation and the covariance of

the system state x0 can be given, respectively, as follows:

x̂0 ¼ E½x0� ð30Þ

p0 ¼ E½ðx0 � x̂0Þ � ðx0 � x̂0ÞT �; ð31Þ

where E½ � is the mathematical expectation of the state at

time k and P0 is the covariance.

When k[ 0, sigma points are generated at time k as

follows:

xk�1 ¼ ½x̂k�1 x̂k�1 þ d
ffiffiffiffiffiffiffiffiffi
pk�1

p
x̂k�1 � d

ffiffiffiffiffiffiffiffiffi
pk�1

p � ð32Þ

d ¼
ffiffiffiffiffiffiffiffiffiffiffi
nþ k

p
ð33Þ

k ¼ a2ðnþ bÞ � n; ð34Þ

where d and k are proportional factors, n represents the

dimension of the control system state, a is the distribution

of sigma points around x̂, 0� a� 1, and b[ 0.

The time update equations of the states, denoted by

subscript tðk þ 1jkÞ, are used to obtain an a priori estimate

by moving the state and error covariance one step forward

in the time domain. According to Eqs. (12) and (13), the

state estimator can be defined as

xkþ1jk ¼ Axkjk þ Buk þ fkjk þ wk ð35Þ

x̂�k ¼
X2L
i¼0

W ðiÞ
m x

ðiÞ
kþ1jk ð36Þ

P�
k ¼

X2L
i¼0

W ðiÞ
c ½xðiÞ

kþ1jk � x̂�k �½x
ðiÞ
kþ1jk � x̂�k �

T þ Rw ð37Þ

ðydÞkþ1jk ¼ Cxkþ1jk þ vk ð38Þ

ðŷdÞ�k ¼
X2L
i¼0

W ðiÞ
m ðydÞðiÞkþ1jk ð39Þ

W ð0Þ
m ¼ k

nþ k
ð40Þ

W ð0Þ
c ¼ k

nþ k
þ 1� a2 þ b ð41Þ

W ðiÞ
c ¼ 1

2ðnþ kÞ ð42Þ

W ðiÞ
m ¼ 1

2ðnþ kÞ ; ð43Þ

where W
ðiÞ
c is the weight corresponding to each sigma

point.

The measurement update equations of the states, deno-

ted by subscript ðk þ 1jk þ 1Þ, are used to obtain the a

posteriori estimates based on feedback measurements into

the a priori estimates.

The sigma points around state x̂�k and the covariance P�
k ,

Pyd Pxyd at time k are updated using the following

equations:

x̂ðiÞm ¼ x̂�m þ d
ffiffiffiffiffiffi
P�
k

p
ð44Þ

x̂ðiþLÞ
m ¼ x̂�m � d

ffiffiffiffiffiffi
P�
k

p
ð45Þ

Pyd ¼
X2L
i¼0

W ðiÞ
c ½ðŷdÞ

ðiÞ
k � ðŷdÞk�½ðŷdÞ

ðiÞ
k � ðŷdÞk�

T þ Rv ð46Þ

Pxyd ¼
X2L
i¼0

Wi
c½x̂

ðiÞ
k � x̂�

k
�½ðŷdÞ

ðiÞ
k � ðŷdÞk�

T þ Rv; ð47Þ

where 1\i\L.

The state estimation and error covariance estimation can

be defined, respectively, as

x̂k ¼ x̂�k þ GkððydÞk � ðŷdÞ
�
k
Þ ð48Þ

Pk ¼ P�
k � GkPydG

T
k ; ð49Þ

where Gk is the Kalman gain matrix and Gk ¼ PxydP
�
yd
.

Based on this, the whole prediction–correction process

is used to estimate the states as close as possible to their

real values.

To more accurately estimate the fault information f kð Þ
of the control system as Eq. (12), the fuzzy inputs of the

membership function can be defined based on the error

between the state estimation, using UKF x̂k and ~xk, as

follows:

xeðkÞ ¼ ~xðkÞ � x̂ðkÞ ð50Þ

Substituting Eq. (50) into Eq. (29), we obtain the most

accurate estimate of the fault function f kð Þ, which can be

further defined as follows:

f̂ ðkÞ ¼
Pr1

j1¼1

Pr2
j2¼1

. . .
PrN

jN¼1 fi1i2���iN �
QN

m¼1 lAim
j
ðxðjÞe ðkÞÞ

Pr1
i1¼1

Pr2
i2¼1

. . .
PrN

iN¼1

QN
m¼1 lAim

j
ðxðjÞe ðkÞÞ

;

ð51Þ

where f̂ ðkÞ 2 Rn.

Thus, the fault function f ðkÞ can be obtained as close as

possible to its real values by using Eq. (51). Substituting

Eq. (51) into Eq. (12), the generalized linear discrete-time

system control model with faults and unknown inputs can

be expressed as follows:

~xðk þ 1Þ ¼ A~xðkÞ þ BuðkÞ þ f̂ ðkÞ þ wðkÞ ð52Þ
~ydðkÞ ¼ C~xðkÞ þ vðkÞ ð53Þ

f̂ ðk þ 1Þ ¼ f̂ ðkÞ þ wðkÞ: ð54Þ
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4 Fault Diagnosis Based on Fuzzy Clustering

In this section, the fault diagnosis is described in the case

of the fault states of the self-constructing UKF control

system.

Suppose set S can be defined as

S ¼ ff̂ik; f̂ikjf̂ik 2 f̂ ðkÞÞg; ð55Þ

where i ¼ 1; 2; 3; . . .;m; m is the dimension of the system

state. Elements of set S are the fault information obtained

in Sect. 3. The main purpose of fuzzy clustering is to

divide similar data into groups. The optimization objective

function can be defined as

J ¼
Pm

i¼1

Pn
k¼1 uðfikÞjjf̂ik � cijj2Pn

j¼1 lðf̂ikÞ
; ð56Þ

where ci is a cluster center, and can be defined as

ci ¼
Pn

k¼1 ðf̂ikuðf̂ikÞÞPn
k¼1 uðf̂ikÞ

; ð57Þ

where 0\uðf̂ijÞ\1, and can be defined as

uðf̂ijÞ ¼
1

Pm
i¼1

jjf̂kj�ckjjj2

jjf̂ij�cijjj2

� � ð58Þ

The sum of the degrees of affiliation of a system state set

is always equal to 1:

Xm
i¼1

lðf̂ikÞ ¼ 1; ð59Þ

where k ¼ 1; 2; . . .; n.
Based on the above equations, fault diagnosis can be

seen as a conditional minimization problem, given as

find Fij ¼ ff̂i1; f̂i2; . . .; f̂ijg ð60Þ

min J ¼
Xm
i¼1

Xn
j¼1

uij f̂ij � ci
�� ��2 ð61Þ

S:T:
Xm
i¼1

lðfijÞ ¼ 1; ð62Þ

where f̂ij is the real constant or vector and m is the

dimension of the system state.

With these improvements, faults can be divided into

three regions. According to the three regions, thresholds

can be obtained, which are the parameters to diagnosis the

faults. In the next section, a DC motor will be taken as an

example to illustrate the usefulness of the self-constructing

fuzzy UKF method.

5 Application of State Estimation and Fault
Diagnosis to DC Motor

In this section, a DC motor was taken as an example to

demonstrate the efficiency of the method.

5.1 Continuous-Time Model of DC Motor

with Faults

The continuous-time model of a DC motor can be descri-

bed by

J
dxðtÞ
dt

¼ �bxðtÞ þ kiiðtÞ ð63Þ

dhðtÞ
dt

¼ xðtÞ ð64Þ

diðtÞ
dt

¼ �Ra

la
iðtÞ � kb

la
xðtÞ þ uðtÞ

la
ð65Þ

The constraint equation is given by

RaiðtÞ þ kexðtÞ ¼ auðtÞ ð66Þ

Variables in the above equations are defined as follows:

la is the motor armature inductance, i is the current in the

motor, u is the input voltage of the DC motor, h is the

angular position, x is the motor speed, Ra is the motor

armature resistance, b is the coefficient of viscous friction,

J is the moment of inertia of the motor shaft, Ke is the back

electromotive force constant, Ki is the back torque con-

stant, a is the amplification constant.

Parameters of the DC motor used in the simulations are

listed in Table 1.

In the simulations, disturbances from Ra; a; b were

ignored and the armature inductance was assumed to be

zero.

According to Eqs. (63)–(65), the continuous-time con-

trol model of the DC motor can be described as

Table 1 DC motor parameters

Symbols Value used in simulations

J 0.01 kg m2

b 0.05 N m s

Ke 0.25 V/rad s-1

Ki 0.25 N m/A

Ra 2 X

a 20

la 2 H

x 0.176 rad s-1
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1 0 0

0 J 0

0 0 1

2
4

3
5

_i
_x
_h

2
4

3
5 ¼

�Ra

la

ke

la
0

ki �b 0

0 0 1

2
64

3
75

i

x
h

2
4

3
5

þ
1

la
0

0

2
64

3
75uð0Þ ð67Þ

The output current of the DC motor changes when there

is a fault. Consequently, the motor’s fault information can

be obtained via the output current. The output equation of

the control system can be defined as

y ¼ ½1 0 0�
i

x
h

2
4

3
5 ð68Þ

By using the forward Euler method, the continuous-time

DC motor model described by Eq. (67) can be simplified to

yield a discrete-time descriptor system as follows:

1

T
0 0

0
J

T
0

0 0
1

T

2
666664

3
777775

iðk þ 1Þ
xðk þ 1Þ
hðk þ 1Þ

2
64

3
75 ¼

1

T
� Ra

la

ke

la
0

ki
1

T
� b 0

0 0
1

T

2
6666664

3
7777775

iðkÞ
xðkÞ
hðkÞ

2
64

3
75

þ

1

la
0

0

2
664

3
775uð0Þ

ð69Þ

yðkÞ ¼ ½1 0 0�
iðkÞ
xðkÞ
hðkÞ

2
4

3
5; ð70Þ

where T ¼ 1 is the sampling time.

Here,

E ¼

1

T
0 0

0
J

T
0

0 0
1

T

2
66664

3
77775

A ¼

1

T
� Ra

la

ke

la
0

ki
1

T
� b 0

0 0
1

T

2
666664

3
777775

B ¼
1

la
0

0

2
64

3
75 C ¼ ½1 0 0�

xðkÞ ¼ ½iðkÞxðkÞ hðkÞ�T

Then, the continuous-time DC motor model can be

rewritten as

Exðk þ 1Þ ¼ AxðkÞ þ BuðkÞ ð71Þ
yðkÞ ¼ CxðkÞ ð72Þ

Since E is a full rank matrix, by multiplying both sides

of Eq. (71) by E�1, the equation can be further simplified

as

xðk þ 1Þ ¼ E�1AxðkÞ þ E�1BuðkÞ ð73Þ

To monitor the fault, we assume the input is affected by

additive faults. Based on Eq. (30), we can obtain the

continuous-time model of a DC motor with fault as

follows:

xðk þ 1Þ ¼ E�1AxðkÞ þ E�1BuðkÞ þ f ðkÞ; ð74Þ

where f ðkÞ ¼ �E�1BuðkÞck; 0� ck � 1.

5.2 Simulation Verification

According to Table 1, the system matrices of the DC motor

model can be given as

E ¼
1 0 0

0 0:01 0

0 0 1

2
4

3
5 A ¼

0 0:125 0

0:25 0:95 0

0 0 1

2
4

3
5

B ¼
0:5
0

0

2
4

3
5 uð0Þ ¼ 220

Covariance matrices Q and R can be given as

Q ¼
1:440 0 0

0 1:440 0

0 0 1:440

2
4

3
5 R ¼ 0:25

Parameters of the UKF can be given as

a ¼ 0:0001; b ¼ 2:

The input of the system can be given as

xð0Þ ¼ ½9:432 � 0:176� 1:240� ð75Þ

Substituting Eq. (75) into Eq. (16), the output of the

self-constructing fuzzy system f ð1Þ can be obtained. Then,

based on Eqs. (30)–(32), the system state with fault ~xð1Þ
and the output of control system ~ydð1Þ can be obtained.

Meanwhile, based on Eqs. (35)–(52), the state estimation

x̂ð1Þ can also be obtained. Then, the error in estimated state

xeð1Þ can be further obtained based on Eq. (53).

According to the principle of self-constructing fuzzy

systems, xeð1Þ will be the next input state. After repeating

the fuzzy approach several times, the fault formation of

current can be obtained according to the curve shown in

Fig. 1.

As seen in Fig. 1, since faults are caused by many fac-

tors, the fault curve obtained using the proposed method is

not a smooth curve but is irregular. At 180 steps, the fault

curve shows excessive overshooting of the system, which

suggests the state at step 180 is critical failure. Based on
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these results, the fault information of the system states can

be obtained with high precision by adapting the self-con-

structing fuzzy UKF method, as illustrated in Fig. 1.

The current error of the system state is the error between

the state estimation using UKF and the state estimated by

the self-constructing method, presented in Fig. 2.

As shown in Fig. 2, large errors are present before 180

steps; however, after 180 steps, the error tends towards

zero and is kept to within ± 0.02. The results suggest that

the self-constructing fuzzy UKF method can be used to

accurately estimate the system state. In the self-construct-

ing fuzzy UKF system, the number of fuzzy rules changes

along the curve is shown in Fig. 3.

Figure 3 shows automatic changes in fuzzy rules within

the fuzzy system. This suggests the structure of the self-

constructing fuzzy UKF system is adaptively adjusted

according to the fault information. As shown in Fig. 3,

there are two fuzzy rules in the self-constructing fuzzy

system before 360 step in the control system. When the

system is stable, the number of the fuzzy rules is only 10.

5.3 Fault Diagnosis

According to the fault information presented in Fig. 1 and

Eqs. (60)–(62), the fault information can be diagnosed, as

presented in Fig. 4.

As shown in Fig. 4, the fault information could be

divided into three regions, corresponding to fault, outage,

and fault-free. The fault information can be expressed as

F ¼
F\F1 fault-free

F1 �F�F2 fault

F[F2 outage

8<
: ; ð76Þ

where F1 and F2 are the parameters of the fault diagnosis.

The parameters are positive constants when F1\F2. Based

on the simulation results, threshold values can be given as

F1 ¼ 0:3; F2 ¼ 1. Compared to the results presented in

[14], parameters of the fault diagnosis in the present case

were acquired by experiment and not expertise.

Fig. 1 The current fault curve

Fig. 2 Current estimate error

Fig. 3 Curve of fuzzy rule changes

Fig. 4 Fault regions

Z. Liu et al.: Fault Estimator and Diagnosis for Generalized Linear Discrete-Time System… 239

123



6 Conclusion

In this paper, a novel approach for integrated fault esti-

mation, diagnosis, and state estimation was proposed for

generalized linear discrete-time systems. First, parameters

of the self-constructing fuzzy system, including the number

of fuzzy rules and the fuzzy membership function, were

adjusted in real time according to changes in the system

state and fault information. Second, states with faults were

approximated using either the self-constructing fuzzy sys-

tem or UKF. Errors between the two estimated states were

then obtained and used as fuzzy inputs for the self-con-

structing fuzzy system. Thus, the accuracy of approxi-

mating the fault information and estimation state was

substantially improved substantially. Then, the fault

information based on the self-constructing fuzzy UKF

system was used to make the fault diagnosis. Finally, a DC

motor was taken as an example to demonstrate the effi-

ciency of the method. Compared to the preset work, the

fault function and fault state were simultaneously estimated

using the proposed method and the parameters of the fault

diagnosis were acquired by experiment and not expertise.

Time-varying parameter perturbations corresponding to

the nominal system matrices were not considered in this

paper. Future research will investigate a self-constructing

fuzzy system considering fault functions with parameter

perturbations.
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dation of China (Grant No. 51675398) and National Key Basic

Research Program of China (Grant No. 2015CB857100).

References

1. Gao, Z., Ding, S.X.: Fault estimation and fault-tolerant control

for descriptor systems via proportional, multiple-integral and

derivative observer design. IET Control Theory Appl. 1(5),
1208–1218 (2007)

2. Li, T., Zhang, Y.: Fault detection and diagnosis for stochastic

systems via output PDFs. J. Frankl. Inst. 348(6), 1140–1152

(2011)

3. Li, X.J., Yang, G.H.: Robust adaptive fault-tolerant control for

uncertain linear systems with actuator failures. IET Control

Theory Appl. 6(10), 1544–1551 (2012)

4. Berger, T.: Fault tolerant funnel control. PAMM 18(1), 1–2

(2018)

5. Schenk, K., Gulbitti, B., Lunze, J.: Cooperative fault-tolerant

control of networked control system. IFAC-Pap. OnLine 18(1),
571–577 (2018)

6. Ben Hmida, F., Khemiri, K., Ragot, J., et al.: Three-stage Kalman

filter for state and fault estimation of linear stochastic systems

with unknown input. J. Frankl. Inst. 349(7), 2369–2388 (2012)

7. Li, X.J., Yang, G.H.: Robust fault detection and isolation for a

class of uncertain single output non-linear systems. IET Control

Theory Appl. 8(7), 462–470 (2014)

8. Wang, Z., Rodrigues, M., Theilliol, D., et al.: Fault estimation

filter design for discrete-time descriptor systems. IET Control

Theory Appl. 9(10), 1587–1594 (2015)

9. Xiao, M.L., Zhang, Y.B., Fu, H.M.: Three-stage unscented Kal-

man filter for state and fault estimation of nonlinear system with

unknown input. J. Frankl. Inst. 354, 8421–8443 (2017)

10. Wan, Y.M., Keviczky, T., Verhaegen, M.: Fault estimation filter

design with guaranteed stability using Markov parameters. IEEE

Trans. Autom. Control 63(4), 1132–1139 (2018)

11. Blázquez, L.F., de Miguel, L.J., Aller, F., Perán, J.R.: Neuro-

fuzzy identification applied to fault detection in nonlinear sys-

tems. Int. J. Syst. Sci. 42(10), 1771–1787 (2011)

12. Zhang, H.Y., Chan, C.W., Cheung, K.C., Ye, Y.J.: Fuzzy artmap

neural network and its application to fault diagnosis of integrated

navigation systems. Automatic 37(7), 1065–1070 (2001)

13. Bessaoudi, T., Hmida, F.B., Hsieh, C.S.: Robust state and fault

estimation for linear descriptor stochastic systems with distur-

bances: a DC motor application. IET Control Theory Appl. 11(5),
601–610 (2017)

14. Forrai, A.: System identification and fault diagnosis of an elec-

tromagnetic actuator. IEEE Trans. Control Syst. Technol. 25(3),
1028–1035 (2017)

15. Chen, B., Liu, X.P., Ge, S.S., Lin, C.H.: Adaptive fuzzy control

of a class of nonlinear systems by fuzzy approximation approach.

IEEE Trans. Fuzzy Syst. 20(6), 1012–1021 (2012)

16. Zeng, K., Zhang, N.Y., Xu, W.L.: A comparative study on suf-

ficient conditions for Takagi-Sugeno fuzzy systems as universal

approximators. IEEE Trans. Fuzzy Syst. 8(6), 773–780 (2000)

17. Liu, J., Li, H.: Approximation of generalized fuzzy system to

function. Sci. China (Series E) 30(5), 413–423 (2000)

18. Ying, H., Ding, Y.S., Li, S.K., Shao, S.H.: Comparison of nec-

essary conditions for typical Takagi-Sugeno and Mamdani fuzzy

systems as universal approximatiors. IEEE Trans. Syst. Man

Cybern. Part A (S1083–4427) 29(5), 508–514 (1999)

19. Chen, P.C.: Fuzzy and neural network control schemes with

automatic structuring process for nonlinear dynamic systems.

Taiwan National Chiao Tung University, Hsinchu City (2008)

20. Wang, G.J., Li, X.P., Sui, X.L.: Universal approximation and its

realization of generalized Mamdani fuzzy system based on

K-integral norms. Acta Automatica Sinica. 40(1), 143–148

(2014)

21. Tao, Y.J., Wang, H.Z., Wand, G.J.: Approximation ability and its

realization of the generalized Mamdani fuzzy system in the sense

of Kp-integral norm. Acta Electronica Sinica 43(11), 2284–2291
(2015)

22. Wang, L., Peng, J.J., Wang, J.Q.: A multi-criteria decision-

making framework for risk ranking of energy performance con-

tracting project under picture fuzzy environment. J. Clean. Prod.

191(1), 105–118 (2018)

23. Song, H., Zhang, H.: Fuzzy basis function network based

approach for fault information detection in unknown systems.

J. Beijing Univ. Aeronaut. Astronaut. 29(7), 570–574 (2003)

24. Zhu, Z.Q., Jiao, X.C.: Fault detection for nonlinear networked

control system based on fuzzy observer. J. Syst. Eng. Electron.

23(1), 129–136 (2012)

25. Abid, M., Hussain, T., Khan, A.Q.: TS fuzzy approach for fault

detection in nonlinear systems with immeasurable state variables.

In: 2014 26th Chinese Control and Decision Conference (CCDC)

26. Liu, B., Tang, W.S.: Modern Control Theory, pp. 204–205. China

Machine Press, Beijing (2006)

27. Konatowski, S., Kaniewski, P.: Comparison of estimation accu-

racy of EKF, UKF and PF filters. Ann. Navig. 23, 69–87 (2016)

Zhiyong Liu is a doctoral candidate at the School of Mechanical and

Electrical Engineering, Xidian University. He completed his Bachelor

240 International Journal of Fuzzy Systems, Vol. 22, No. 1, February 2020

123



of Science from Shaanxi Normal University, Master of Science from

Xidian University. His current research focuses on the fault-tolerant

control method, fault detection, isolate, and the control method about

space large antenna reflector shape adjusting system.

Hong Bao is a professor at the School of Mechanical and Electrical

Engineering, Xidian University. He has received his BS degree in

mechanical engineering from Hangzhou Dianzi University in 1995,

and has received his MS and PhD degrees in mechanical engineering

from Xidian University in 2002 and 2005, respectively. He has

authored more than 90 SCI/EI journal papers. His current research

includes the antenna structural design and control, the fault-tolerant

control method, and the antenna structural health monitoring. He is a

member of IET.

Song Xue has done his Bachelor of Science from the Hefei University

of Technology in 2009, Master of Science from the Dalian University

of Technology, China in 2012 and 2016; PhD degree from the Curtin

University, Australia, in the area of gear dynamic modeling and

condition monitoring. Currently, he is working as a Lecturer in the

School of Mechano-Electronic Engineering, Xidian University, Xi’an,

Shaanxi, China.

Jingli Du is a professor at the School of Mechanical and Electrical

Engineering, Xidian University. He has received his BS, MS, and

PhD degrees in mechanical engineering from Xidian University in

2000, 2003, and 2006, respectively. From 2012 to 2013, he was a

visiting scholar at University of Delaware and Columbia Univer-

sity. He has authored more than 60 SCI/EI journal papers. He has

done the research and design of spatial flexible structure analysis for a

long time, involving multi-flexible body dynamics analysis and

deployment process control of large-scale spatial structures, static

structural statics and dynamics analysis after unlocking, and opti-

mization design of large-scale spatial structures.

Z. Liu et al.: Fault Estimator and Diagnosis for Generalized Linear Discrete-Time System… 241

123


	Fault Estimator and Diagnosis for Generalized Linear Discrete-Time System via Self-constructing Fuzzy UKF Method
	Abstract
	Introduction
	Problem Statement
	Design of Self-constructing Fuzzy UKF Controller
	Fault Diagnosis Based on Fuzzy Clustering
	Application of State Estimation and Fault Diagnosis to DC Motor
	Continuous-Time Model of DC Motor with Faults
	Simulation Verification
	Fault Diagnosis

	Conclusion
	Funding
	References




