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Abstract This paper proposes two methods for training

Takagi–Sugeno (T-S) fuzzy systems using batch least

squares (BLS) and particle swarm optimization (PSO). The

T-S system is considered with triangular and Gaussian

membership functions in the antecedents and higher-order

polynomials in the consequents of fuzzy rules. In the first

method, the BLS determines the polynomials in a system in

which the fuzzy sets are known. In the second method, the

PSO algorithm determines the fuzzy sets, whereas the BLS

determines the polynomials. In this paper, the ridge

regression is used to stabilize the solution when the prob-

lem is close to the singularity. Thanks to this, the proposed

methods can be applied when the number of observations is

less than the number of predictors. Moreover, the leave-

one-out cross-validation is used to avoid overfitting and

this way to choose the structure of a fuzzy model. A

method of obtaining piecewise linear regression by means

of the zero-order T-S system is also presented.

Keywords Fuzzy systems � Least squares approximation �
Particle swarm optimization

1 Introduction

One of the most commonly used models in artificial

intelligence is the Takagi–Sugeno (T-S) [25] fuzzy system.

Building T-S systems consists of two main tasks: structure

identification and parameter estimation. The structure

identification is mainly related with determining the num-

ber of fuzzy rules. The parameter estimation is related with

determining the parameters of fuzzy sets and the coeffi-

cients of regression functions in the consequence part.

These tasks can be achieved by various optimization

techniques such as least squares [24, 26, 32], evolutionary

algorithms [5, 8, 32] or particle swarm optimization. Par-

ticle swarm optimization (PSO) is a stochastic optimization

method that was developed by Kennedy and Eberhart

[9, 12]. The PSO is mainly inspired by the social behavior

of organisms that live and interact within large groups, for

example, swarms of bees or flocks of birds. The usefulness

of the PSO in solving a wide range of optimization prob-

lems has been repeatedly confirmed [1, 13, 14, 22].

A group of papers concerns the algorithms in which the

number of rules is constant. In [19], a multi-swarm coop-

erative PSO was proposed, where the population consists

of one master swarm and several slave swarms. The

algorithm was used to automatically design the fuzzy

identifier and fuzzy controller in dynamical systems. The

Takagi-Sugeno fuzzy systems with Gaussian membership

functions in the antecedents and linear functions in the

consequents of fuzzy rules were used. The approach

described in [14] uses a hybrid-learning method for T-S

fuzzy systems. This method combines the PSO and recur-

sive least squares (RLSE) to obtain fuzzy approximation.

The PSO is used to train the antecedent part of the T-S

system (the parameters of Gaussian membership func-

tions), and the consequent part (the coefficients of the
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linearly parameterized functions) is trained by the RLSE

method. The paper [15] presents a self-learning complex

neuro-fuzzy system that uses Gaussian complex fuzzy sets.

The knowledge base of this system consists of the T-S

fuzzy rules with complex fuzzy sets in the antecedent part

and linear models in the consequent part. The PSO algo-

rithm is used to train the antecedent parameters, and the

recursive least squares method is used to train the conse-

quent parameters. The paper [7] proposes a heterogeneous

multi-swarm PSO to identify the first-order T-S fuzzy

system. The T-S model uses linear regression models in

several subspaces to describe a nonlinear system. The

antecedent parameters and the consequent parameters of

T-S models are encoded as particles, and they are obtained

simultaneously in the training process. In [6], a model that

replaces the function of inputs in the conclusion part of the

TSK system with a wavelet neural network is proposed.

The parameters of the model are obtained by a hybrid-

learning method based on an improved PSO and gradient

descent algorithm. An immune coevolution PSO with

multi-strategy is proposed for T-S fuzzy systems in [17]. In

the described method, the population consists of one elite

subswarm and several normal subswarms. The parameters

identified by the algorithm included the centers and widths

of the membership functions (the antecedent parameters)

and the coefficients of local models (the consequent

parameters).

Another approach assumes the use of clustering algo-

rithms to determine the structure of fuzzy systems. A two-

phase swarm intelligence algorithm for zero-order Takagi–

Sugeno–Kang (TSK) fuzzy systems was developed in [11].

In the first phase, the algorithm learns the fuzzy system

structure and parameters by clustering-aided ant colony

optimization. This phase is used to locate a good initial

fuzzy rule base for further learning. The aim of the second

phase is to optimize all of the free parameters in the fuzzy

system using PSO. The paper [16] presents a learning

method for TSK-type neuro-fuzzy networks that uses the

self-clustering algorithm to partition the input space to

create fuzzy rules. The method is based on the symbiotic

evolution scheme in an immune algorithm and PSO to

improve the mutation mechanism. The parameters of fuzzy

sets and the parameters of the consequent part are opti-

mized by this method. In [30], an approach for building a

type-2 neural-fuzzy system from a set of input-output data

was proposed. A fuzzy clustering method is used for par-

titioning the dataset into clusters. Then, a type-2 fuzzy TSK

rule is derived from each cluster. A fuzzy neural network is

constructed accordingly, and the parameters are refined

using PSO and least-squares estimation. An approach for

function approximation using robust fuzzy regression

clustering algorithm and PSO was described in [31]. At

first, the fuzzy regression is used to construct a first-order

TSK fuzzy model. Next, PSO is applied for tuning the

parameters of the obtained fuzzy model. An algorithm for

fuzzy c-regression model clustering was presented in [21].

The method combines the advantages of the clustering

algorithm and PSO algorithm. The fuzzy model used in this

method is the T-S fuzzy system with local linear models.

The orthogonal least squares method is applied to estimate

the consequent parameters of the fuzzy rules. The paper

[20] presents a learning algorithm based on a hierarchical

PSO (HPSO) to train the parameters of a T-S fuzzy model.

First, an unsupervised fuzzy clustering algorithm is applied

for partitioning the data and identifying the antecedent

parameters of the fuzzy system. Next, a self-adaptive

HPSO algorithm is used to obtain the consequent param-

eters of the fuzzy system. An identification method for the

Takagi–Sugeno fuzzy model was developed in [26]. First,

the fuzzy c-means clustering is used to determine the

optimal rule number. Next, the initial membership function

and the consequent parameters are obtained by the PSO

algorithm. A fuzzy c-regression model and orthogonal least

squares methods are applied to obtain the final parameters.

In part of the papers, the PSO algorithm is used to

determine the number of rules. An algorithm for auto-

matically extracting T-S fuzzy models from data using

PSO was described in [33]. The authors designed an

improved version of the original PSO called the coopera-

tive random learning PSO, where several subswarms

search the space and exchange information. In their

method, each fuzzy rule has a label which is used to decide

whether the rule is included in the inference process or not.

The antecedent parameters (the parameters of Gaussian

functions), the consequent parameters (the coefficients of

linear functions) and the rule labels are encoded in a par-

ticle. In [29], a self-constructing least-Wilcoxon general-

ized radial basis function neural-fuzzy system was

proposed. A PSO is used for generating the antecedent

parameters, and for the consequent parameters, instead of

the traditional least squares estimation, the least-Wilcoxon

norm is employed. A method that uses a hierarchical

cluster-based multi-species PSO for building the TSK

fuzzy system is presented in [18]. The method is used for a

spatial analysis problem, where the area under study is

divided into several subzones. For each subzone, the zero-

order or the first-order fuzzy system is extracted from the

set of patterns. In [4], a T-S model based on PSO and

kernel ridge regression was presented. The developed

method works in two main steps. In the first step, the

clustering based on the PSO algorithm separates the input

data into clusters and obtains the antecedent parameters. In

the second step, the consequent parameters are calculated

using a kernel ridge regression. The adaptive chaos PSO

algorithm (ACPSO) for identification of the T-S fuzzy

model parameters using weighted recursive least squares
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was proposed in [24]. This approach is a compromise

between the chaos and adaptive PSO algorithms. The

clustering criterion function was used as the objective

function of ACPSO. The ACPSO is used to optimize the

parameters of the model, then the obtained parameters are

used to initialize the fuzzy c-regression model.

From the reviewed papers, it can be seen that only zero-

or first-order systems are used with Gaussian functions. In

this article, we propose the use of higher-order polynomials

in the consequent part of rules, which can give greater

flexibility in the selection of system parameters, e.g. when

determining the number of rules. In addition to Gaussian

sets, triangular sets will also be used that do not require

determining the value of the exponential function but use

simple linear functions. It is also worth noting that in the

mentioned papers, the number of rules is fixed

[6, 7, 14, 15, 17, 19], which raises the question of its

selection, either selected by means of clustering

[11, 16, 20, 21, 26, 30, 31] or a PSO method

[4, 18, 24, 29, 33]. These methods require an additional

mechanism in the learning algorithm to enable their

selection. Hence, we suggest choosing the number of rules

using a cross-validation method that is simple in imple-

mentation. Moreover, in papers in which regressions are

used to determine system parameters, regularized regres-

sions are not applied [21, 24, 26, 29, 30] (except for the

work [4]). We propose here the use of ridge regression that

allows us to consider ill-defined problems, e.g. those in

which the number of observations is small.

Summarizing, the main contributions of this paper can

be stated as:

• the use of the batch least squares (BLS) and PSO

methods for high-order Takagi–Sugeno systems with

triangular and Gaussian membership functions,

• the use of the leave-one-out cross-validation error to

choose the structure (the number of rules) of fuzzy

models,

• the use of a regularization method in the form of the

ridge regression for ill-conditioned problems.

Moreover, in the article, it is shown how to realize a

piecewise linear regression applying the zero-order T-S

fuzzy system with triangular membership functions.

The structure of this article is as follows: Section 2

contains the description of the T-S fuzzy system with

higher-order polynomials in the consequent part of fuzzy

rules. Section 3 presents the training methods that use BLS

and PSO. In this section, we also show how to obtain a

piecewise linear regression using a zero-order T-S system.

Section 4 contains the procedure for fuzzy models design

with the BLS and PSO methods. The experimental results

are presented in Sect. 5. Finally, the conclusions are given

in Sect. 6.

2 High-Order Takagi–Sugeno Fuzzy System

We consider a Takagi–Sugeno fuzzy system [25] with one

input x and one output y. The T-S system is described by r

fuzzy inference rules with polynomial functions in the

consequent part given by

Rj: IF x 2 AjðxÞ THEN y ¼ wmjx
m þ � � � þ w1jxþ w0j

ð1Þ

where AjðxÞ denotes a fuzzy set, j ¼ 1; 2; . . .; r, m� 0 is the

polynomial degree, wkj 2 R, and k ¼ 0; 1; . . .;m. The fol-

lowing definition extends the concept of the T-S system in

which zero or first-order polynomials are used.

Definition 1 The T-S fuzzy system with rules (1) is

called:

– zero-order if the consequent functions are crisp

constants, i.e., y ¼ w0j [25],

– first-order if the consequent functions are linear, i.e.,

y ¼ w1jxþ w0j [25],

– high-order if the consequent functions are nonlinear,

that occurs for m� 2.

In this paper, we apply triangular membership functions

with the peaks placed on points pj (as shown in Fig. 1)

defined as

AjðxÞ ¼ triangðx; pj�1; pj; pjþ1Þ

¼ max 0;min
x� pj�1

pj � pj�1

;
pjþ1 � x

pjþ1 � pj

� �� � ð2Þ

where x is the argument of the function, pj�1, pj, pjþ1 are

the parameters, and pj�1\pj\pjþ1. In (2), for the set A1ðxÞ
we take pj�1 ¼ p1 � �, and for the set ArðxÞ we take

pjþ1 ¼ pr þ �, where �[ 0. The peaks pj are written as the

vector p ¼ ½pj� ¼ ½p1; . . .; pr�. The fuzzy sets Aj can be

unevenly spaced in the interval X ¼ ½p1; pr�, but it is

Fig. 1 Triangular (above) and Gaussian (below) membership

functions
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assumed that the sum of the membership grades for any

argument x is equal to unity. We also consider Gaussian

membership functions (as shown in Fig. 1) given by

AjðxÞ ¼ gaussðx; pj; rjÞ

¼ exp � 1

2

x� pj

rj

� �2
 !

ð3Þ

where pj is the peak of the function and rj [ 0 is its width.

The widths rj are written as the vector

r ¼ ½rj� ¼ ½r1; . . .; rr�.
The output of the T-S system is calculated from all rules

outputs as

y ¼
Pr

j¼1 AjðxÞ wmjx
m þ � � � þ w1jxþ w0j

� �
Pr

j¼1 AjðxÞ
ð4Þ

Introducing the notion of a fuzzy basis function, the

formula (4) can be written in a compact form.

Definition 2 [27] The fuzzy basis function (FBF) for the

jth rule is the function njðxÞ given by

njðxÞ ¼
AjðxÞPr
j¼1 AjðxÞ

ð5Þ

Taking into account the definition of the FBF, the output

of the system can be written as

y ¼
Xr
j¼1

njðxÞ wmjx
m þ � � � þ w1jxþ w0j

� �

¼
Xr
j¼1

wmjnjðxÞxm þ � � � þ w1jnjðxÞxþ w0jnjðxÞ
ð6Þ

Because in (6) the FBFs are multiplied by xk, we define a

modified fuzzy basis function.

Definition 3 The modified FBF (MFBF) for the jth rule is

the function hkjðxÞ given by

hkjðxÞ ¼ njðxÞxk ð7Þ

where k ¼ 0; 1; . . .;m.

Applying the definition of the MFBF, we obtain a lin-

early parameterized function

y ¼
Xr
j¼1

wmjhmjðxÞ þ � � � þ w1jh1jðxÞ þ w0jh0jðxÞ ð8Þ

Introducing vectors hjðxÞ and wj defined by

hjðxÞ ¼ ½hmjðxÞ; . . .; h1jðxÞ; h0jðxÞ� ð9Þ

wj ¼ ½wmj; . . .;w1j;w0j�T ð10Þ

where dimðhjÞ ¼ dimðwjÞ ¼ mþ 1, the output of the T-S

system can be written as

y ¼ ½h1ðxÞ; . . .; hrðxÞ�

w1

..

.

wr

2
6664

3
7775 ¼ hðxÞw ð11Þ

where

hðxÞ ¼ ½h1ðxÞ; . . .; hrðxÞ� ð12Þ

w ¼ ½w1; . . .;wr�T ð13Þ

In (11), the MFBFs are the elements of the vector hðxÞ, and

w is the vector of the model parameters with the dimension

equal to rðmþ 1Þ.

3 Training Methods for Takagi–Sugeno Systems

In this section, we propose two methods for training high-

order T-S systems based on the observed data. In the

training process, two techniques of machine learning are

used:

– BLS for obtaining polynomial coefficients in the

consequent part of the rules,

– PSO for obtaining parameters of fuzzy sets in the

antecedent part of the rules.

In the first method (BLS), the fuzzy sets parameters are

chosen manually, whereas in the second method (PSO-

BLS), they are obtained using a PSO algorithm.

3.1 BLS Regression

We assume that we have a set of training data containing n

observations in the form of pairs ðxi; yiÞ, where i ¼ 1; . . .; n.

These observations are written as vectors x ¼ ½xi�T ¼
½x1; . . .; xn�T and y ¼ ½yi�T ¼ ½y1; . . .; yn�T . To build a

regression model, we introduce the regression matrix

X
n�rðmþ1Þ

¼

h1ðx1Þ; . . .; hrðx1Þ
h1ðx2Þ; . . .; hrðx2Þ

..

.

h1ðxnÞ; . . .; hrðxnÞ

2
66664

3
77775 ð14Þ

where hjðxiÞ is given by (9). The cost function to be min-

imized is the sum of squared errors (SSE) defined by

SSE ¼
Xn
i¼1

�
yi � ŷi

�2 ¼
Xn
i¼1

�
yi � hðxiÞw

�2 ð15Þ
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where ŷi ¼ hðxiÞw is the estimated output of the system

(see (11)) for the i th observation. The vector w contains

the system parameters to be determined. The number of

these parameters is equal to p ¼ dimðwÞ ¼ rðmþ 1Þ.
The optimal solution for the regression problem is given

by [3]

w ¼
�
XTX

��1
XTy ð16Þ

where y ¼ ½y1; . . .; yn�T . This is a BLS because we compute

the model parameters directly from all data contained in X

and y.

In the case of an ill-conditioned problem, that is when

the matrix XTX is close to singular, we propose to use ridge

regression [10]:

w ¼
�
XTX þ kI

��1
XTy ð17Þ

where k[ 0 is a regularization parameter, and I is the

identity matrix. In this case, the cost function has the form

of the penalized sum of squared errors (PSSE):

PSSE ¼
Xn
i¼1

�
yi � hðxiÞw

�2 þ kwTw ð18Þ

The BLS is a one-pass regression method, and therefore it

is very fast.

3.2 Zero-Order T-S System as a Piecewise Linear

Regression

In [28], it was shown that the zero-order T-S fuzzy system

with triangular membership functions defined as in Sec-

tion 2 realizes a piecewise linear function in the interval

½p1; pr�. This fact can be used in our problem to build a

piecewise linear or segmented regression. The graph of this

regression passes through the points ðp1;w01Þ; ðp2;w02Þ;
. . .; ðpr; p0rÞ, and the breakpoints are in p2; . . .; pr�1.

In particular, using the BLS regression for the T-S

system with two rules (r ¼ 2), we obtain a linear regression

in the form of y ¼ axþ b.

In the interval ½p1; p2� we define two fuzzy sets with the

peaks in p1, p2:

A1ðxÞ ¼ triangðx; p1 � �; p1; p2Þ

A2ðxÞ ¼ triangðx; p1; p2; p2 þ �Þ
ð19Þ

where �[ 0. The fuzzy inference rules for a zero-order T-S

system have the form

R1:IF x 2 A1 THEN y ¼ w01

R2:IF x 2 A2 THEN y ¼ w02

ð20Þ

where w01 and w02 are real numbers. For this system, the

regression matrix (14) is of the form

X
n�2

¼

A1ðx1Þ;A2ðx1Þ
A1ðx2Þ;A2ðx2Þ

..

.

A1ðxnÞ;A2ðxnÞ

2
66664

3
77775 ð21Þ

where

A1ðxÞ ¼
p2 � x

p2 � p1

; A2ðxÞ ¼
x� p1

p2 � p1
ð22Þ

In this case, the solution (16) has the form w ¼ ½w01;w02�T .

This way, we obtain a linear function y ¼ axþ b, where

a ¼ w02 � w01

p2 � p1

; b ¼ p2w01 � p1w02

p2 � p1
ð23Þ

The regression line passes through the points ðp1;w01Þ and

ðp2;w02Þ.

3.3 PSO Algorithm

The particle swarm model consists of a group of particles

that are dispersed in the d-dimensional search space.

During the optimization process, the particles explore this

space and exchange information to find the optimal solu-

tion. Each kth particle has its position xk, velocity vk, and

best local position pbestk. Moreover, each particle has

access to the best global position gbest found by the

swarm. Selection of the best global position and the best

position for kth particle is based on the objective function.

In this paper, we use a PSO algorithm [9], where the

velocity and position of particles are computed from the

equations

vlþ1
k ¼v½vlk þ c1r1ðpbestlk � xlkÞ þ c2r2ðgbestl � xlkÞ�

ð24Þ

xlþ1
k ¼xlk þ vlþ1

k ð25Þ

where r1, r2 are vectors with uniformly distributed random

numbers in the interval [0, 1] and l is the current iteration

number. The parameters c1, c2 are positive constants equal

to 2.05 and v is equal to 0.7298.

In (24), three components can be distinguished—inertia,

cognitive, and social. The first component models the

particle’s tendency to continue moving in the same direc-

tion. The second component attracts particles towards their

personal best positions. The third component moves par-

ticles towards the best position found earlier by any

particle.

3.4 PSO-BLS Algorithm

In the proposed hybrid method (as shown in Fig. 2), the

PSO algorithm is used to construct fuzzy sets for the input

26 International Journal of Fuzzy Systems, Vol. 22, No. 1, February 2020
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of the model. Each particle in the swarm contains hypo-

thetical parameters of these sets for which the consequents

of fuzzy rules are determined by the BLS method. In

subsequent iterations of the PSO algorithm, particles move

in the search space generating a new set of candidate

solutions. The best solution is obtained by minimizing the

objective function defined as the root of the mean square

error [14, 23]:

RMSET ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i¼1

yi � ŷið Þ2

s
ð26Þ

where yi � ŷi is an error between the observation and the

output of the fuzzy model.

In the case of triangular fuzzy sets (2), a particle con-

tains the peaks of membership functions and has the fol-

lowing structure:

p2 | p3 | . . . | pr−2 | pr−1 ð27Þ

In our proposition, we assume that the peaks p1 and pr are

known and not optimized by the PSO; hence the number of

parameters is equal to r � 2.

In the case of Gaussian fuzzy sets (3), a particle contains

the peaks as in (27), and additionally the widths of all

membership functions:

p2 | p3 | . . . | pr−2 | pr−1 | σ1 | σ2 | . . . | σr−2 | σr

ð28Þ

The number of parameters to be optimized is equal to

2r � 2.

3.5 The Criterion of Model Quality

In this paper, the best T-S model is chosen using the leave-

one-out cross-validation (LOOCV) method [2], in which

the number of tests is equal to the number of observations,

and one pair creates a testing dataset. The LOOCV method

is used because in our case, the dataset is small. For larger

datasets, the k-fold cross-validation may be used.

The quality of a model in the LOOCV method is eval-

uated by the root of the mean square error defined as

RMSECV ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i¼1

yi � ŷ�ið Þ2

s
ð29Þ

where ŷ�i denotes the output of the model obtained in the

ith step of the validation process. The subscript ’�i’ means

that in the ith step the pair ðxi; yiÞ is removed from the

training data. In each step of the cross-validation loop, the

polynomial coefficients in the THEN-part of fuzzy rules

are determined using the BLS method based on training

data without the pair ðxi; yiÞ.
Cross-validation is a model validation method, which

allows us to assess how the model makes predictions on

unknown data. The main purpose of cross-validation is to

avoid overfitting, which may occur when the model is to

complex.

4 Procedure for Designing Fuzzy Models Using
the BLS and PSO-BLS Methods

The design procedures with the use of the BLS and PSO-

BLS methods are given below.

4.1 Design with the BLS Method

We assume that the T-S system is described by r fuzzy

rules (1) where the polynomial degree is equal to m.

Step 1. Based on the observations xi, determine the

universal set X ¼ ½a; b�, where

a ¼ min
i
ðxiÞ; b ¼ max

i
ðxiÞ ð30Þ

and a\b, i ¼ 1; 2; . . .; n.

Fig. 2 The idea of the PSO-BLS method
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Step 2. Define r triangular (2) or Gaussian (3) fuzzy sets

where the number of sets is at least two. These

sets can be chosen manually or distributed evenly

using the formula

pj ¼ aþ ðj� 1Þd ð31Þ

where j ¼ 1; 2; . . .; r and d ¼ ðb� aÞ=ðr � 1Þ.
The widths rj of Gaussian sets can be chosen in

such a way that the cross-point of two adjacent

sets is equal to 0.5. Based on (3), the widths rj
can be expressed as

rj ¼ d=
�
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 lnð0:5Þ

p �
ð32Þ

Step 3. From (12) determine for all xi the vectors hðxiÞ
containing the modified fuzzy basis functions (7).

Step 4. Construct the regression matrix X given by (14).

Step 5. Determine polynomial coefficients in the fuzzy

rules from (16). If the matrix XTX is close to

singular, take k[ 0 and apply the ridge regres-

sion (17).

4.2 Design with the PSO-BLS Method

Before starting the PSO algorithm, the number of particles

and the number of iterations itermax have to be chosen.

Step 1. Initialize all swarm particles where each of them

represents the parameters of triangular (27) or

Gaussian fuzzy sets (28). For triangular and

Gaussian sets, determine the initial position of

the peaks (pj) from (31). Change p2; . . .; pr�1

according to the formula

pj :¼ maxðminðpj þ dp � rand � dp=2; prÞ; p1Þ
ð33Þ

where rand is a random number in the interval

[0, 1] and dp is the width of initialization range

for the peaks. For Gaussian sets, initialize the

widths rj using the formula

rj :¼ maxðminðdr � rand; rmaxÞ;rminÞ ð34Þ

where j 2 1; . . .; r, dr is the width of initialization

range for rj and 0\rmin\rmax.

Step 2. For each particle, determine the value of the

objective function. To do this, follow Step 3 to

Step 5 from Sect. 4.1 and calculate the error (26).

For particles that have repeated peaks apply a

penalty by assigning them a very high value of

the objective function.

Step 3. Update pbestk and gbest based on the objective

function determined in the previous step.

Step 4. Update the velocity vk and the position xk of the

particles according to (24) and (25), respectively.

Limit the peaks pj to the interval ½p1; pr� and the

widths rj of Gaussian sets to the interval

½rmin; rmax�.
Step 5. If the maximum number of iterations itermax is

not reached, go to Step 2.

Step 6. Stop, return gbest as the solution.

4.3 Choosing the Best Model

In both methods, the best model can be chosen using the

fitness error RMSET (26) or the cross-validation error

RMSECV (29). In the case of cross-validation, which is the

main criterion in our method, the fuzzy sets proposed by

the user or by the PSO algorithm are used by the BLS

regression while constructing fuzzy models in the valida-

tion loop. In the BLS method, one proposition is analyzed.

In the PSO-BLS method, 10 propositions are generated,

then the validation error for each proposition is determined,

and finally, a proposition with the smallest error is chosen.

5 Experimental Results

To verify the developed method, experiments were carried

out involving the construction of a fuzzy approximator for

selected nonlinear functions. The functions from the paper

[14] were used because the methods presented there have

parameters similar to our method. Thanks to this, it was

possible to compare the results. In Experiment 1, a

benchmark function proposed by the authors in [14] was

used. In Experiment 2, a function was used, which can be

found, for example, in [14, 23, 29]. The experiments were

carried out on a mobile computer equipped with

Intel(R) Core(TM) i7-3740QM and 32GB RAM.

5.1 Experiment 1

We consider the following nonlinear function [14]

y ¼ 0:08
�
1:2ðx� 1Þ

�
cosð3xÞ þ

�
x� ðx� 1Þ cosð3xÞ

�
sinðxÞ
ð35Þ

where x 2 X ¼ ½3; 7�. According to (35), n ¼ 25 data

points ðxi; yiÞ are equally spaced in the interval X. The

fuzzy models are considered with the number of rules r 2
f2; 3; . . .; 30g and the polynomial degree m 2 f0; 1; 2g. All

models are determined using the ridge regression (17) with

k = 1e-8.
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5.1.1 Design with the BLS Method

The fitness and cross-validation errors are given in Table 1.

For triangular functions, the smallest fitness error, equal to

6.102e-10, was obtained for r ¼ 23 and m ¼ 2. For

Gaussian functions, the smallest fitness error, equal to

6.405e-10, was obtained for r ¼ 24 and m ¼ 2. The

smallest validation error (RMSECV = 1.661e-02) for tri-

angular functions was obtained with r ¼ 22 and m ¼ 0 (as

shown in Fig. 3). The smallest validation error

(RMSECV = 8.119e-02) for Gaussian functions was

obtained with r ¼ 4 and m ¼ 2. The calculation time of

training high-order T-S fuzzy systems was about 0.03 s.

5.1.2 Zero-Order T-S System as a Linear Regression

For the considered example, we can construct in the

interval [3, 7] a linear model using the zero-order T-S

system (see Sect. 3.2). Taking triangular fuzzy sets (19) in

the form of

A1ðxÞ ¼ triangðx; 2; 3; 7Þ

A2ðxÞ ¼ triangðx; 3; 7; 8Þ
ð36Þ

and using the BLS method (16) we obtain the following

fuzzy rules:

R1: IF x 2 A1ðxÞ THEN y ¼ w01 ¼ �3:288

R2: IF x 2 A2ðxÞ THEN y ¼ w02 ¼ �0:306
ð37Þ

Based on (23), the regression function has the form

y ¼ axþ b, where a ¼ 0:7456 and b ¼ �5:525.

5.1.3 Design with the PSO-BLS Method

The PSO-BLS models were determined using the PSO

algorithm with the number of particles equal to 60 and the

maximum number of iterations itermax ¼ 500. The

remaining parameters were as follows: dp ¼ 3, dr ¼ 5:0,

rmin ¼ 0:1, and rmax ¼ 5:0.

The fitness and cross-validation errors are given in

Table 1. For triangular functions, the smallest fitness error,

equal to 4.332e-11, was obtained for r ¼ 16 and m ¼ 2.

For Gaussian functions, the smallest fitness error, equal to

1.103e-09, was obtained for r ¼ 25 and m ¼ 2. The

smallest cross-validation error for triangular functions is

equal to 4.255e-07, and it was obtained for the zero-order

model with 16 rules (as shown in Fig. 3). For Gaussian

functions, this error is equal to 1.761e-04, and it was

obtained for the second-order model with nine rules. The

model with the smallest RMSECV error was selected as the

final solution, the parameters of which are presented in

Table 2. The time consumed to train T-S fuzzy systems

was about 10 s.

Examples of function approximation by the BLS and

PSO-BLS models are shown in Fig. 4.

Table 1 Experiment 1: Fitness error, cross-validation error, number

of rules and the polynomial degree (n ¼ 25)

Algorithm RMSET r m RMSECV r m

BLS (triang) 6.102e-11 23 2 1.642e-02 22 0

BLS (gauss) 6.404e–11 24 2 8.699e-02 4 2

PSO-BLS (triang) 4.332e-11 16 2 4.255e207 16 0

PSO-BLS (gauss) 1.103e-09 25 2 1.761e-04 9 2

Bold indicates the best result in the column
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Fig. 3 Experiment 1: Fitness and cross-validation errors (in loga-

rithmic scale) for triangular membership functions and m ¼ 0

Table 2 Experiment 1: Param-

eters of the model with the

smallest cross-validation error

in Table 1

Rule p w0

R1 3.000 0.5056

R2 3.227 - 0.6451

R3 3.437 - 1.732

R4 3.714 - 1.851

R5 4.120 - 0.4552

R6 4.385 - 1.039

R7 4.567 - 2.820

R8 4.945 - 7.725

R9 5.151 - 8.751

R10 5.412 - 7.837

R11 5.534 - 5.872

R12 5.926 - 0.7716

R13 6.255 0.7111

R14 6.418 0.3960

R15 6.741 2.283

R16 7.000 6.443
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5.1.4 Comparison with the Work by Li, Wu [14]

To compare the developed algorithm, the fitness error was

determined for the BLS and PSO-BLS models with

parameters similar to those used in [14] for the PSO and

PSO-RLSE models. The number of observations was 100,

and the number of rules was nine.

For the BLS models, nine triangular and Gaussian

membership functions were defined with the peaks in

points pj ¼ 3:0; 3:5; . . .; 7:0. Using (32), the width of all

Gaussian sets was determined as rj ¼ 0:2123. The poly-

nomials in the THEN-part of the fuzzy rules was chosen as

second-order (m ¼ 2), and this way, the number of

parameters was p ¼ rðmþ 1Þ ¼ 27 (see Table 3). The fit-

ness errors for the BLS models are shown in Table 3.

The PSO-BLS models were obtained using 60 particles

and 2000 iterations. The number of parameters in the

antecedent part was equal to seven for triangular functions,

and 16 for Gaussian functions. The number of parameters

in the consequent part was the same as for BLS models and

equal to 27. The models were chosen as the best from 10

trials. The performance comparison is shown in Table 3, in

which the proposed training method (PSO-BLS) with

Gaussian membership functions has the smallest fitness

error RMSET = 3.136e-05, better than the fitness error of

[14]. The methods by [14] have the errors of

RMSET = 3.051e-02 and RMSET = 8.920e-04. The

parameters of this model are shown in Table 4, whereas the

function approximation is shown in Fig. 5.

5.2 Experiment 2

We consider the function [14, 23, 29]

y ¼ ðx� 2Þð2x� 1Þ
1 þ x2

ð38Þ

where x 2 X ¼ ½�8; 12�. The number of observations is

equal to 50, and they are equally spaced in the interval X.

The fuzzy models are considered with the number of rules

r 2 f0; 1; . . .; 50g and the polynomial degree
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Fig. 4 Experiment 1: Examples of function approximation by the BLS and PSO-BLS models with Gaussian membership functions

Table 3 Experiment 1: Fitness error comparison and the number of

parameters (n ¼ 100)

Algorithm RMSET Antecedent part Consequent part

PSO [14] 3.015e-02 12 27

PSO-RLSE [14] 8.920e-04 12 27

BLS (triang) 6.243e-03 – 27

BLS (gauss) 9.667e-03 – 27

PSO-BLS (triang) 2.835e-03 7 27

PSO-BLS (gauss) 3.136e205 16 27

Bold indicates the best result in the column
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m 2 f0; 1; 2; 3g. The models are determined with the reg-

ularization parameter k ¼ 1e�8.

5.2.1 Design with the BLS Method

The smallest fitness error equal to 5.765e-09 for triangular

sets was obtained for 45 rules and the third-order polyno-

mial (see Table 5). For Gaussian sets, this error was equal

to 5.581e-09, and it was obtained for the third-order

system with 38 rules. In turn, for triangular sets, the

smallest cross-validation error equal to 1.805e-02 was

obtained for 21 rules and the second-order polynomial.

This error for Gaussian sets was equal to 1.353e-02, and it

was obtained for the second-order system with 18 rules.

The calculation time of training T-S fuzzy systems was

about 0.03 s.

5.2.2 Design with the PSO-BLS Method

In the PSO-BLS method, the following parameters were

applied: the number of particles equal to 60, the number of

iterations equal to 500, dp ¼ 12, dr ¼ 8, rmin ¼ 0:5 and

rmax ¼ 10:0. For triangular functions, the smallest fitness

error equal to 3.559e-09 was obtained for r ¼ 44 and m ¼
2 (see Table 5). For Gaussian sets, this error was obtained

for r ¼ 48 and m ¼ 3, and it was equal to 2.093e-08. The

smallest validation error for triangular sets was equal to

3.774e-04, and it was obtained for 10 rules and the sec-

ond-order system. For Gaussian sets, this error was equal to

1.983e-05, and it was obtained for nine rules and the third-

order system. The parameters of the best model are shown

in Table 6. The time consumed to train T-S fuzzy systems

was about 36 s.

Examples of function approximation by the BLS and

PSO-BLS models are shown in Fig. 6.

5.2.3 Comparison with Other Methods

The proposed algorithms were compared with the methods

used in [14, 23, 29]. The number of observations was 50,

the number of rules was nine, and the polynomials were

second-order. The PSO-BLS models were obtained using

60 particles and 500 iterations. The comparison of the fit-

ness error for the considered models is given in Table 7. It

is seen that the proposed training method (PSO-BLS) with

Gaussian membership functions has the smallest fitness

error RMSET = 9.072e-06, better than the fitness error of

other methods [14, 23, 29]. The methods by [23] have the

errors of RMSET = 8.430e-02 and RMSET = 8.700-

e-03. The method by [14] has the error of

RMSET = 5.290e-04, while the method by [29] has the

error of RMSET = 3.320e-02. The parameters of the best

model are shown in Table 8.

Table 4 Experiment 1: Parameters of the model with the smallest

fitness error in Table 3

Rule p r w2 w1 w0

R1 3.000 3.910 6.676 - 7.798 - 5.645

R2 3.431 0.6768 2.204 - 6.281 - 4.437

R3 4.891 0.5978 4.904 - 19.11 - 7.087

R4 3.828 0.4976 0.7342 - 13.01 - 4.906

R5 6.045 0.9458 - 15.51 16.07 5.631

R6 6.021 3.220 - 3.027 0.3070 - 1.754

R7 6.056 0.6413 3.439 40.14 12.57

R8 4.341 0.4936 - 6.976 32.45 13.02

R9 7.000 0.6176 10.16 - 36.10 - 10.62

Table 5 Experiment 2: Fitness error, cross-validation error, number

of rules and polynomial degree

Algorithm RMSET r m RMSECV r m

BLS (triang) 5.765e-09 45 3 1.805e-02 21 2

BLS (gauss) 5.581e-09 38 3 1.353e-02 18 2

PSO-BLS (triang) 3.559e-09 44 2 3.774e-04 10 2

PSO-BLS (gauss) 2.093e-08 48 3 1.983e205 9 3

Bold indicates the best result in the column
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Fig. 5 Experiment 1: Function approximation and the error between

the target function y and the estimator ŷ for the PSO-BLS model in

Table 4
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Table 7 Experiment 2: Fitness

error comparison and number of

parameters

Algorithm RMSET Antecedent part Consequent part

LS-GRBFNFIS [23] 8.430e-02 – –

LW-GRBFNFIS [23] 8.700e-03 – –

PSO-RLSE [14] 5.290e-04 12 27

LW-GRBFNFS [29] 3.320e-02 – –

BLS (triang) 5.516e-02 – 27

BLS (gauss) 2.931e-02 – 27

PSO-BLS (triang) 1.098e-04 7 27

PSO-BLS (gauss) 9.072e206 16 27

Bold indicates the best result in the column
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Fig. 6 Experiment 2: Examples of function approximation by the BLS and PSO-BLS models with Gaussian membership functions

Table 6 Experiment 2:

Parameters of the model with

the smallest cross-validation

error in Table 5

Rule p r w3 w2 w1 w0

R1 - 8.000 2.976 0.007742 0.09625 - 0.09317 0.3063

R2 - 2.213 1.037 - 0.05236 - 0.5003 - 1.559 2.027

R3 - 7.209 4.096 - 0.01995 - 0.3618 - 1.634 1.815

R4 - 0.5277 0.5000 - 0.5533 - 1.111 0.03736 6.372

R5 0.5228 0.5941 - 0.7274 2.288 - 2.247 - 1.507

R6 0.4927 1.159 - 0.1921 1.393 - 3.400 2.343

R7 7.691 4.000 - 0.0006450 - 0.09154 0.06841 0.7992

R8 10.46 5.053 - 0.01265 0.2316 - 0.02034 0.5944

R9 12.00 2.238 - 0.003798 0.07565 - 0.3725 - 0.07597
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6 Conclusions

In this paper, two methods for training high-order Takagi–

Sugeno systems using BLS and PSO has been proposed.

The considered methods can be used for triangular or

Gaussian membership functions in the antecedents and

high-order polynomials in the consequents of fuzzy rules.

The fuzzy sets can be chosen manually or by a PSO

algorithm, whereas the polynomials are determined by the

least squares method. In the case where the system is close

to the singularity, we proposed to regularize the solution

using the ridge regression. To avoid overfitting, we used

the leave-one-out cross-validation method. Moreover, we

showed how to realize piecewise linear regression using

the zero-order Takagi–Sugeno system with triangular

functions. The proposed PSO-BLS fuzzy approach has

been successfully applied for two examples. From the

experimental results and performance comparison, the

approach has shown excellent performance in training

high-order Takagi–Sugeno fuzzy systems.

Future work will be devoted to the generalization of the

presented methods for systems with many input variables.
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