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Abstract This paper presents a novel fuzzy distributed and

decentralized extended information filtering (FDDEIF)

method using broad learning system (BLS), called BLS-

FDDEIF, for indoor cooperative localization of a group of

heterogeneous omnidirectional mobile robots (HOMRs)

incorporated with their dynamic effects. A new pose ini-

tialization algorithm is proposed to estimate the robots’

initial poses. Once all the initial poses of the HOMRs have

been roughly determined, a novel BLS-FDDEIF method is

presented to fuse multisensory measurements for estimat-

ing more accurate poses of all the HOMRs. Comparative

simulations and experimental results are conducted to show

the effectiveness and superiority of the proposed method in

finding accurate pose estimation of three cooperative

HOMRs with unknown initial poses.

Keywords Broad learning system (BLS) � Cooperative
localization � Fuzzy distributed and decentralized extended

information filtering (FDDEIF) � Multi-robots �
Heterogeneous omnidirectional mobile robot (HOMR)

1 Introduction

Multi-robot systems have received much attention in

intelligent control and smart automation communities or

professional societies due to their many successful appli-

cations, such as industrial manufacturing, human servicing,

smart agriculture, cooperative material handling via multi-

robots, and so on. Such systems or robots have been mainly

employed to reduce human interventions in doing numer-

ous dangerous, repeated, boring, and difficult tasks. In

general, interactions among multi-robots can be classified

into five technical categories: collective, cooperative, col-

laborative, coordinative, and adversary [1]. Worthy of

mention is that, in the cooperative interaction, mobile

robots help each other and cooperate with each other to

achieve their common or shared goal. This cooperative

control method has been widely used in many applications,

such as Intel’s 500 Drones, artificial satellites, and service

robot in a team. Cooperative multi-robot systems have been

shown to perform tasks, which cannot be done by a single

mobile robot, or such task can be completed or accom-

plished more efficiently by exchanging information among

robots.

Recently, cooperative localization of a group of mobile

multi-robots has also attracted considerable attention in

control and robotics communities. This technology is

concerned with two technical issues: one is group pose

initialization which means to find initial poses of all multi-

robots in a team, and the other is group pose tracking which

is related to keep track of moving poses of all multi-robots.

The authors in [2] proposed a FDDEIF method with a

modified graph theory for cooperative localization of a

class of mobile wheeled multi-robots by addressing both

issues of group pose initialization and group pose tracking.

Furthermore, Tan [3] proposed a two cooperative global

localization methods using fuzzy decentralized extended

information filtering (FDEIF) and fuzzy decentralized

extended Kalman filtering (FDEKF) for global cooperative

positioning of a multi-ballbot system in the case of known

maps. Yang [4] addressed the group pose initialization and

tracking problems using fuzzy distributed and decentral-

ized extended information filtering (FDDEIF) for a team of
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omnidirectional mobile robots. Wang and de Silva [5]

presented decentralized Kalman filters to achieve cooper-

ative transportation of multiple robots for group pose

tracking. However, those methods in [1–5] for cooperative

localization of a class of mobile multi-robots has not

considered the dynamic effect of each mobile robot yet.

Neural networks have been widely used for nonlinear

system identification and control; for example, recurrent

fuzzy wavelet neural networks were exploited to achieve

trajectory tracking of a tilting quadrotor [6]. Recently,

broad learning system (BLS) has been proposed as an

original flat structure established based on the random

vector functional-link neural network (RVFLNN), which

inherits its major features [7]; this type of system can be

expanded in a wide sense [7]. Chen et al. [8] further dis-

cussed the general approximation capability and nonlinear

system of BLS and some variants with their mathematical

models. BLS is indeed different from some popular deep

neural networks, which have high computing cost and

suffer from a time consuming learning for excessive

parameters, thereby providing a much faster method with

high accuracy. In applying BLS, Feng and Chen [9] applied

BLS with an iterative gradient decent algorithm to propose

a BLS control method for a class of nonlinear dynamic

system, and Tsai et al. [10] combined BLS and fractional-

order nonsingular terminal siding-mode control to accom-

plish a nonlinear consensus formation control for a kind of

heterogeneous omnidirectional robots. Motivated by

[8–10], the BLS would be helpful in learning unknown

dynamic uncertainties in real time.

Omnidirectional mobile robots (OMRs) have been

widely used for our living life and industrial applications.

There are two kinds of Swedish or Mecanum wheels,

which are, respectively, 45� and 90� [11, 12]. Unlike

conventional differential driving, OMRs have the superior

flexibility to move towards any position and orientation.

Owing to both wheel structures, OMRs can be made using

different wheel configurations including three wheels, four

wheels, car-like four wheels, etc. In [13], the authors pro-

posed a consensus-based formation control method for

heterogeneous OMRs (HOMRs) which are OMRs with

different wheel configurations and distinct dynamics by

finding their unified dynamic models. Inspired by

[4, 8–10, 13], it would be theoretically and practically

interesting to combine FDDEIF and BLS to address the

group pose initialization, pose, and pose rate estimation

problems for a team of HOMRs incorporated with uncer-

tain dynamic effects.

Hence, the objective of this paper is to combine the

graph-based FDDEIF method and BLS for developing a

new BLS-FDDEIF method to address both group global

pose initialization and moving pose estimation problems

for a dynamic multi-HOMR system whose communication

network is not fully connected. By comparing to existing

methods, the presented contents are delineated in two

technical contributions. One is a novel BLS-FDDEIF pro-

posed for cooperative pose initialization and dynamic pose

tracking of a group of HOMRs, where the iterative learning

algorithms for each BLS have been proposed to online

learn an uncertain term in the dynamic model of each

HOMR incorporated with dynamic effects and uncertain-

ties. The other is numerical and experimental verification

of the proposed BLS-FDDEIF approach via computer

simulations and experimental results of a physical multi-

HOMR system.

The rest of the paper is outlined as follows. Section 2

briefly recalls the measurement models of HOMRs. Sec-

tion 3 proposes the BLS identifier to learn the uncertain

dynamic part of each HOMR with dynamic effects and

uncertainties. Section 4 introduces the DDEIF method for

mobile multi-robot systems, and then describes the

FDDEIF algorithm with the fuzzy tuner. Section 5 pro-

poses the cooperative pose initialization algorithm to cor-

porately initialize the poses of all the HOMRS. Section 6

presents the proposed BLS-FDDEIF algorithm for dynamic

localization of the multi-HOMR system. Computer simu-

lations are performed in Section 7 to show the effective-

ness and superiority of the proposed BLS-FDDEIF

algorithm. Section 8 shows and discusses two experiment

results. Finally, Section 9 concludes this paper.

2 Measurement Models of HOMRS

This section is to recall the models of the RGB-D sensor

and laser scanner mounted on the three kinds of HOMRs,

which are, respectively, four-wheeled OMR (FOMR), car-

like OMR (COMR), and three-wheeled OMR (TOMR), as

shown in Fig. 1a–c, since each HOMR is equipped with

one RGB-D sensor, one laser scanner, and appropriate

numbers of encoders on its driving wheels. The basic dead-

reckoning or odometry of each HOMR, based on the cor-

responding encoders’ outputs and kinematic models, is

described in [13] and not mentioned here.

2.1 RGB-D Sensor Model

RGB-D sensor is equipped with one RGB camera and a

pair of depth sensors. The RGB-D sensor is mounted on

each HOMR at its designed height, where Fig. 1a–c show

the used Realsense D415 RGB-D sensor. In the measure-

ment update step, each HOMR detects landmarks around it

in order to estimate its pose. Via the RGB-D measurements

and the used landmark detection procedure in [2, 4], it is

easy to calculate the azimuth angle aij with respect to the

heading direction of the ith HOMR and the distance kij to
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the jth landmark Lj(xL, yL, zL) as shown in Fig. 1d at time

instant k. The value of the measurement function for the jth

landmark from HOMR i is expressed by

zRGBDij
ðkÞ¼hRGBDij

XðkÞ;Lið Þ¼
aij
kij

� �

¼
tan�1

yLj �yi kð Þ
xLj �xi kð Þ�hi kð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xLj �xi kð Þ
� �2þ yLj �yi kð Þ

� �2þ zLj � zi kð Þ
� �2q

2
664

3
775

þVRGBDij
ðkÞ

ð1Þ

where xi(k), yi(k), zi(k), hi(k) represents the pose coordinates
of the ith HOMR in the world frame; note that VRGBDij

ðkÞ is
the zero-mean measurement noise vector with zero mean

and diagonal covariance matrix RRGBDij
ðkÞ. Note that the

azimuth angle aij is negative in the clockwise direction.

2.2 Laser Scanner

In order to localize each HOMR by the laser scanner, UST-

10LX, from Hokuyo, we here adopt the well-known min-

imalistic environment model, which is composed of a set of

walls, mj i.e.,M ¼ mj; j ¼ 1; . . .;M
� �

. Figure 1e illustrates

the parameters which define the jth wall, where (xe, ye) and

(xs, ys) are the ending and starting points of the jth wall, lj is

the length of the jth wall, qj
m is the perpendicular distance

from the origin in the world frame to the jth wall, and bj
m

stands for the orientation of the jth wall. Distance mea-

surements can be obtained from the laser ranging data in

one whole scanning cycle. Therefore, the measurement

model of the laser scanner for HOMR i is expressed by

[2, 4]

zlaseriðkÞ ¼ �hlaseriðXiðkÞ; MÞ þ VliðkÞ ð2Þ

where �hlaserðXi; MÞ ¼ hlaseri1 Xi;m1ð Þ. . .hlaser
iM

Xi;mM

� �h iT
,

XiðkÞ ¼ ½xi yiðkÞ hiðkÞ�T, VðkÞ ¼ v1ðkÞ v2ðkÞ . . . vM
	

ðkÞ�T , and M denotes the number of the total walls. Note

that Vli(k) denote is the measurement noise vector with zero

mean and covariance matrix RliðkÞ ¼ diag d21; d
2
2; . . .; d

2
M

� �
:

Moreover, the measurement function hlaseriðXi;mjÞ is

described by

�hlaserij Xi;mj

� �
¼ qij

bij

� �
ð3Þ

where

qij¼qmj �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2i þy2i

q
cos amj �w

 �

¼qmj � xicosa
m
j þyi sina

m
j


 �

bij¼bmj �hi; j¼1;2;3;...;M:

3 BLS Identifier for Dynamic Model of Each
HOMR with Dynamic Effect and Uncertainties

This section will introduce the nonlinear discrete-time

stochastic system model of the multi-HOMR system with

one set of measurement models, and construct a BLS

identifier to online learn the dynamic term of each HOMR

with dynamic effects and uncertainties. The unified dynamic

model of HOMR proposed in [13] will be used. In particular,

the iterative learning algorithm of a BLS identifier will be

derived based on the well-known gradient descent method.

3.1 Modeling of Multi-HOMRs with Dynamic

Effects

Since the multi-HOMR system is composed of N HOMRs,

the dynamic behavior model of the ith HOMR with one

RGB-D sensor and one laser scanner is modeled by a

nonlinear discrete-time stochastic system model with one

measurement model expressed by [13]

xi k þ 1ð Þ
vi k þ 1ð Þ

� �
¼ xi kð Þ þ Tvi kð Þ

T � �gi kð Þ þ ni kð Þð Þ þ TuiðkÞ

� �
ð4Þ

or in a vector–matrix form

Xi k þ 1ð Þ ¼ fi XiðkÞ; uðkÞð Þ þ 0

Tni kð Þ

� �
ð5Þ

Zi kð Þ ¼ hi Xi kð Þ;L;M; kð Þ þ Vi kð Þ ð6Þ

where L denotes the set of all landmarks; xi(k) [ R3, vi(k)

[ R3; Xi(k ? 1) = [xi(k ? 1) vi(k ? 1)]T [ R6; hi(�) [ RP

Fig. 1 Three HOMRs and sensor models. a Four-wheeled OMR

(FOMR). b Car-like OMR (COMR). c Three-wheeled OMR

(TOMR). d Parameters defining the jth landmark. e Parameters

defining the jth wall
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are nonlinear, twice differentiable functions of the system

state; ui(k) [ R3 means the input of the ith HOMR.

The stochastic process vectors, ni kð Þ * N(0, Qi(k)) and

Vi(k) * N(0, Ri(k)) are the process noise and the mea-

surement noise, respectively. Note that hi (Xi(k), L,M, k) is

the combination of the measurement models of the RGB-D

camera and laser scanner. Since the nonlinear term, gi(k), is

unknown, the BLS will be used to online learn the non-

linear term, gi(k), based on the gradient descent method in

the coming subsection.

3.2 BLS Approximation

This subsection will propose iterative learning algorithms

for BLS to learn online and approximate the nonlinear

term, giðkÞ, in (4). The proposed iterative learning algo-

rithms are based on the gradient descent method; the

algorithms first find the gradients of all the updating

parameters in the used BLS as shown in Fig. 2, and then

use the deepest descent approach to obtaining the iterative

parameter learning rules or algorithms. In doing so, sup-

pose that there are n mapping groups with Ki feature nodes

in the ith group, and there are one group of m enhancement

nodes, the input vector is denoted Xl, l = 1, …, M, and the

BLS output vector is denoted as ŷ.

ŷ ¼
Xn
i¼1

XKi

k¼1

wi
kF

i
k þ

Xm
j¼1

wjnj
Xn
i¼1

XKi

k¼1

wi
jkF

i
k þ bj

 !
ð7Þ

where Fi
k ¼ /i

k

PM
l¼1 wi

fkl
Xl þ bifk


 �
 �
denotes the output

of the kth feature node in the ith mapping group, /i
kð�Þ and

njð�Þ is the activation function. We denote Wfi ¼
½wi

fkl�M�Ki
, bfi ¼ ½bifk�1�Ki

, We ¼ ½wi
jk� K1þK2þ���þKnð Þ�m, be ¼

½bj�1�m, where wi
fkl
is the weight connecting the lth input xl

to the kth feature node in the ith mapping group, bifk is the

bias term associated to the kth feature node in the ith

mapping group, wi
jk is the weight connecting the kth feature

node of the ith mapping group to the jth enhancement node,

and bj is the bias term associated to the jth enhancement

node. We define the weight matrix connecting the outputs

of feature nodes and enhancement nodes to the output

neuron as W ¼ w1
1
; . . .w1

K1
; . . .;wn

n
; . . .wn

Kn
;w1; . . .;wm

h iT
where wi

k is the weight connecting the kth feature node in

the ith mapping group to the output neuron, and wj is the

weight connecting the jth enhancement node to the output

neuron.

Next, derive the learning laws for the six types of

parameters,wi
fkl
, bifk , w

i
jk, bj, w

i
k, wj, according to the gradient

descent method in the following six steps. First, the

learning law for wi
fkl
is

wi
fklðk þ 1Þ ¼ wi

fklðkÞ � g
oEðkÞ
owi

fkl

¼ wi
fklðkÞ þ g yðkÞ � ŷðkÞð Þ oŷðkÞ

owi
fkl

ð8Þ

where EðkÞ ¼ yðkÞ � ŷðkÞð Þ2=2,

ŷ ¼
Xn
i¼1

XKi

k¼1

wi
kF

i
k þ

Xm
j¼1

wjnj
Xn
i¼1

XKi

k¼1

wi
jkF

i
k þ bj

 !
;

and

oŷðkÞ
owi

fkl

¼ o
Pn

i¼1

PKi

k¼1 w
i
kF

i
k

oFi
kðkÞ

oFi
kðkÞ

o
PKi

l¼1 w
i
fklxl þ bifk


 �

o
PKi

l¼1 w
i
fklxl þ bifk


 �
owi

fkl

þ
Xm
j¼1

wj

onjðkÞ
o
Pn

i¼1

PKi

k¼1 w
i
jkF

i
k þ bj


 �

o
Pn

i¼1

PKi

k¼1 w
i
jkF

i
k þ bj


 �
oFi

kðkÞ
oFi

kðkÞ
o
PKi

l¼1 w
i
fklxl þ bifk


 �

o
PKi

l¼1 w
i
fklxl þ bifk


 �
owi

fkl

¼ wi
k
_/i
kxl þ

Xm
j¼1

wj
_njw

i
jk
_/i
kxl

¼ wi
k þ

Xm
j¼1

wj
_njw

i
jk

 !
_/i
kxl

Second, the learning law for bifk is

bifkðk þ 1Þ ¼ bifkðkÞ � g
oEðkÞ
obifk

¼ wi
kðkÞ þ g yðkÞ � ŷðkÞð Þ oŷðkÞ

obifk
ð9Þ

1x Mx

1K1 nK1 n
...

m1

ŷ

1
11w
1

1mw 1

1
1Kw

1
mKw

11
nw

1
n
mw

1
n
Kw n

mKw

1
1w

1

1
Kw 1

nw n

n
Kw

1w
mw

Mapped feature

Enhancement 
nodes

Fig. 2 Structure of the BLS
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where

oŷðkÞ
obifk

¼ o
Pn

i¼1

PKi

k¼1 w
i
kF

i
k

oFi
kðkÞ

oFi
kðkÞ

o
PKi

l¼1 w
i
fklxl þ bifk


 �

o
PKi

l¼1 w
i
fklxl þ bifk


 �
obifk

þ
Xm

j¼1
wj

onjðkÞ
o
Pn

i¼1

PKi

k¼1 w
i
jkF

i
k þ bj


 �

o
Pn

i¼1

PKi

k¼1 w
i
jkF

i
k þ bj


 �
oFi

kðkÞ
oFi

kðkÞ
o
PKi

l¼1 w
i
fklxl þ bifk


 �

o
PKi

l¼1 w
i
fklxl þ bifk


 �
obifk

¼ wi
k
_/i
k

þ
Xm

j¼1
wj

_njw
i
jk
_/i
k ¼ wi

k þ
Xm

j¼1
wj

_njw
i
jk


 �
_/i
k

Third, the learning law for wi
jk is

wi
jkðk þ 1Þ ¼ wi

jkðkÞ � g
oEðkÞ
owi

jk

¼ wi
jkðkÞ þ g yðkÞ � ŷðkÞð Þ oŷðkÞ

owi
jk

ð10Þ

where

oŷðkÞ
owi

jk

¼ oŷ

onj
�
onj
owi

jk

¼ wj
_nj
Xn
i¼1

XKi

k¼1

wi
jkF

i
k þ bj

 !
Fi
k

Fourth, the learning law for bj is

wi
kðk þ 1Þ ¼ wi

kðkÞ � g
oEðkÞ
owi

k

¼ wi
kðkÞ þ g yðkÞ � ŷðkÞð Þ oŷðkÞ

owi
k

ð11Þ

where

oŷðkÞ
owi

k

¼ Fi
k and

oEðkÞ
owi

k

¼ oE

oŷ
� oŷ

owi
k

¼ ðŷ� yÞFi
k

Finally, the learning law for wj is

wjðk þ 1Þ ¼ wjðkÞ � g
oEðkÞ
owj

¼ wjðkÞ þ g yðkÞ � ŷðkÞð Þ oŷðkÞ
owj

ð12Þ

where

oŷðkÞ
owj

¼ nj
Xn
i¼1

XKi

k¼1

wi
jkF

i
k þ bj

 !
:

Remark 1 Let njðxÞ ¼ tan h ðxÞ ¼ ex�e�x

exþe�x, which gives
_njðxÞ ¼ 1� n2j ðxÞ:

Remark 2 Let /i
kðxÞ ¼ x, which obtains _/i

kðxÞ ¼ 1:

In what follows, the Lyapunov function is proposed to

investigate the convergent condition of the BLS identifier.

Let gðkÞ be the learning rate at discrete time k for the BLS

parameters. The BLS identifier is asymptotically conver-

gent provided that g satisfies the following condition:

0\g\
2

max
k

oŷðkÞ
oPðkÞ


 ���� ���2
2

ð13Þ

where PðkÞ ¼ wi
fkl bifk wi

k wj wi
jk bj

	 
T
, and

oŷðkÞ
oPðkÞ


 ���� ���2
2
is given as below.

oŷðkÞ
oPðkÞ

� �����
����
2

2

¼
Xn
i¼1

XKi

k¼1

oŷðkÞ
owi

fkl

 !2

þ oŷðkÞ
obifk

 !2
0
@

1
A

þ
Xm
j¼1

oŷðkÞ
obj

� �2

þ oŷðkÞ
owj

� �2
 !

þ
Xn
i¼1

XKi

k¼1

oŷðkÞ
owi

k

� �2

þ oŷðkÞ
owi

jk

 !2
0
@

1
A

ð14Þ

Using the previous BLS learning algorithms, one obtains

DPðkÞ ¼ Pðk þ 1Þ � PðkÞ
¼ gðyðkÞ � ŷðkÞÞ

oŷðkÞ
owi

fklðkÞ
oŷðkÞ
obifkðkÞ

oŷðkÞ
owi

kðkÞ
oŷðkÞ
owjðkÞ

oŷðkÞ
owi

jkðkÞ
oŷðkÞ
objðkÞ

� �T

¼ geðkÞ oŷðkÞ
oPðkÞ

:

ð15Þ

Proof To prove the asymptotical convergence of the

proposed BLS identifier, we choose the following Lya-

punov function.

LðkÞ ¼ yðkÞ � ŷðkÞð Þ2¼ e2ðkÞ ð16Þ

Then the time difference of the Lyapunov function is

given by

DLMðkÞ ¼ LMðk þ 1Þ � LMðkÞ ¼ DeðkÞ � 2eðkÞ þ DeðkÞ½ �
ð17Þ
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where

DeðkÞ ¼ oeðkÞ
oPðkÞ

� �T

DPðkÞ ¼ g
oðyðkÞ � ŷðkÞÞ

oPðkÞ

� �T

yðkÞ � ŷðkÞð Þ oŷðkÞ
oPðkÞ

¼ �g
oŷðkÞ
oPðkÞ

T

eðkÞ oŷðkÞ
oPðkÞ ¼ �geðkÞ oŷðkÞ

oPðkÞ

T
oŷðkÞ
oPðkÞ

¼ �geðkÞ oŷðkÞ
oPðkÞ

����
����
2

2

ð18Þ

Thus,

DLMðkÞ ¼ �geðkÞ oŷðkÞ
oPðkÞ

����
����
2

2

� 2eðkÞ � geðkÞ oŷðkÞ
oPðkÞ

����
����
2

2

" #

¼ �ge2ðkÞ oŷðkÞ
oPðkÞ

����
����
2

2

� 2� g
oŷðkÞ
oPðkÞ

����
����
2

2

" #

ð19Þ

Obviously, DLMðkÞ\0 is negative-definite if and only if

the sufficient condition (13) is satisfied. This completes the

proof.

Moreover, the best learning rate can be found by con-

sidering at the time when max
k

oŷðkÞ
oPðkÞ

��� ���2
2
occurs. Therefore, it

follows that

DLMðkÞ ¼ �e2ðkÞmax
k

oŷðkÞ
oPðkÞ

����
����
2

2

� 2g� g2 max
k

oŷðkÞ
oPðkÞ

����
����
2

2

" #

ð20Þ

To find the best convergent rate, one finds

oDLMðkÞ
og

jg¼g� ¼ � e2ðkÞmax
k

oŷðkÞ
oPðkÞ

����
����
2

2

� 2� 2g� max
k

oŷðkÞ
oPðkÞ

����
����
2

2

" #
¼ 0

ð21Þ

The best convergent rate can be obtained from (21).

g� ¼ 1

max
k

oŷðkÞ
oPðkÞ

��� ���2
2

: ð22Þ

4 Fuzzy Distributed and Decentralized EIF
Algorithm for HOMR Multi-robots

This section will develop the novel algorithm of the fuzzy

distributed and decentralized extended information filtering

(FDDEIF) method for HOMRs whose communication

topology is not fully connected; this algorithm is different

from the previous algorithm introduced in [2] for mobile

multi-robot systems with a fully connected communication

topology. In doing so, this section starts with the system

model description of each mobile robot and graph-based

model of the multi-robot system, and derive the FDDEIF

algorithm.

4.1 Distributed and Decentralized Extended

Information Filtering Algorithm Using

a Modified Graph Theory

To cope with the cooperative localization problem of the

nonlinear estimation problem from the multi-HOMR sys-

tem whose communication topology is not fully connected,

this subsection introduces the DDEIF algorithm with

modified graph theory. Like the DEIF algorithm, the

DDEIF linearizes the system state and measurement

models in (4), (6) using Taylor’s series expansion. In

principle, the DDEIF filter takes the advantages of low

computational load and ease of initialization procedure.

The modified graph-based DDEIF algorithm is described as

below. Suppose that interconnection topology of n HOMRs

is a directed graph G, and n HOMRs can be regarded as

n nodes. The relevant modified adjacency matrix is denoted

as A = [aij], aij C 0, Vi, j [ {1,2 ,…, n}. Moreover we

assume aii = 1, namely that the ith HOMR receives the

localization information from its own sensors.

The modified graph-based DDEIF algorithm of the ith

mobile robot is summarized as below:

(i) One-step-ahead prediction:

ŷiðkjk � 1Þ ¼ Yiðkjk � 1Þfi X̂iðk � 1jk � 1Þ;
�

uiðk � 1Þ; ðk � 1ÞÞ ð23Þ

Yiðkjk � 1Þ ¼ rfXi
ðk � 1ÞY�1

i ðk � 1jk � 1Þ
	
rf TXi

ðk � 1Þ þ Qiðk � 1Þ
i�1

ð24Þ

where Yiðkjk � 1Þ and ŷiðkjk � 1Þ are, respectively,
the information matrix and information state vector

of the ith mobile robot.

(ii) Estimation (measurement update):

At time k, the ith HOMR not only has its own

measurements, but also receives the measurements

of other HOMRs via the communication architec-

ture. Hence, the measurement updates of the ith

mobile robot are given by

ŷiðkjkÞ ¼ ŷiðkjk � 1Þ þ
XN
j¼1

aijijðkÞ ð25Þ

YiðkjkÞ ¼ Yiðkjk � 1Þ þ
XN
j¼1

aijIjðkÞ ð26Þ

where Ij(k) is the measurement covariance and ij(k)

is the measurement vector.
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ijðkÞ ¼ rhTXj
ðkÞR�1

j ðkÞ rjðkÞ þ rhXj
ðkÞX̂ðkjk � 1Þ

	 

ð27Þ

IjðkÞ ¼ rhTXj
ðkÞR�1

j ðkÞrhXj
ðkÞ ð28Þ

Notice that rfxj(k - 1) is the Jacobian matrix of fj

evaluated at Xj ¼ X̂jðkjk � 1Þ, rhxj(k) is the Jaco-

bian matrix of the output hj evaluated at Xj, and the

innovation rj(k) is given by

rjðkÞ ¼ ZjðkÞ � hj X̂jðkjk � 1Þ
� �

ð29Þ

The rfXj
ðk � 1Þ and rhXj

ðkÞ denote by

rfXj
ðk � 1Þ ¼ ofj

oX

����
X¼X̂jðk�1jk�1Þ

ð30Þ

rhXj
ðkÞ ¼ ohj

oX

����
X¼X̂jðkjk�1Þ

: ð31Þ

Remark 1 If the communication topology is fully con-

nected, then all the elements of aij are unity. For this case,

modified graph-based DDEIF algorithm is reduced to the

DDEIF algorithm.

4.2 Fuzzy DDEIF (FDDEIF)

The essential part of the FDDEIF is that this filter consists

of N fuzzy tuners to automatically adjust its exponential

weights for the measurement noise covariance matrices.

Given the state Eq. (5) and measurement Eq. (6), we

assume that the measurement noise covariance matrices are

described by

RjðkÞ ¼ Rj � c�jðkþ1Þ
j ; j ¼ 1; . . .;N ð32Þ

where cj and j are, respectively, the weighting factor and the

variation of exponential function of the ith measurement

model. Note that j is set by 2 in the paper, and cj is near one,
and the constant matrices Rj are constant values of right

dimensions. Given an initial state estimate X̂ið0=0Þ and an

initial information matrix Yi(0/0), the proposed FDDEIF

whose prediction and estimation equations are modified

from the exponential weighted EIF augmented with fuzzy

logics in [14], which can be easily described as follows:

(i) One-step prediction:

ŷiðkjk � 1Þ ¼ Yiðkjk � 1Þ � fi X̂iðk � 1jk � 1Þ;Uiðk � 1Þ; ðk � 1Þ
� �

ð33Þ

Yiðkjk � 1Þ ¼
cji rfXi

ðk � 1ÞY�1
i ðk � 1jk � 1Þ � rf TXi

ðk � 1Þ
þ Qiðk � 1Þ

" #�1

ð34Þ

(ii) Estimation (measurement update):

ŷiðkjkÞ ¼ ŷiðkjk � 1Þ

þ
XN
j¼1

aijrhTXj
kð Þ Rj

cjj

 !�1

�
rj kð Þ

þ rhXj
kð ÞX̂ kjk þ 1ð Þ

" #

ð35Þ

YiðkjkÞ ¼ Yiðkjk � 1Þ

þ
XN
j¼1

aijrhTXj
kð Þ Rj

.
cjj

� ��1

�rhXj
kð Þ

ð36Þ

Note that if cj ¼ 1; j ¼ 1; . . .;N, and then this FDDEIF

becomes a regular DDEIF.

4.3 Fuzzy Tuner

Each fuzzy tuner for cj is employed to monitor the inno-

vation to avoid divergence of the FDDEIF and to tune the

value of each cj in (34)–(36). There are three inputs and

one output for the jth fuzzy tuner. The mean value, the

covariance, and covariance slew rate of the innovation of

the jth fuzzy tuner are considered as the inputs to monitor

the degree of filter divergence. Similar to the fuzzy tuner in

[14], the three inputs of the fuzzy tuner are given as

follows:

1. Statistical mean of the innovation:

�ri ffi
Xl
k¼1

riðkÞ=l ð37Þ

2. Statistical second-order moment of the innovation

r2ri ffi
Xl
k¼1

r2i ðkÞ=l ð38Þ

3. The variation of the innovation second-order moment

Slew rate ¼ r2riðkÞ � r2riðk � k1Þ: ð39Þ

where the parameter k1 is positive and can be chosen

by designers. Throughout the paper, we set k1 = 50 and

l = 500.

The jth fuzzy tuner uses trapezoidal membership func-

tions for the three input variables and the output variable,

and also employs five and three linguistic sets, respec-

tively, for the statistical mean and variance of each inno-

vation process, but adopts three linguistic sets for the

output. The slew rate of the innovation variance is divided

into three cases: positive, zero, and negative. Hence, 45

fuzzy rules in [14] are used for each sensor model.
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5 Cooperative Pose Initialization

5.1 Landmark-Based Pose Initialization

This subsection presents a map-based initialization

approach for global pose localization of one HOMR, i.e.,

the ith HOMR in the team using the measurements from

the RGB-D sensor and laser scanner. For pose initializa-

tion, all the HOMRs are initially assumed to get lost in

their working space, namely that all their postures of these

HOMRs are unknown from the outset. To start up with the

initialization procedure, all the HOMRs use their laser

scanner and RGB-D sensor to accomplish collision and

obstacle avoidance, and randomly navigate around the

working space until any one feature or artificial landmark

embedded in the environment is found by any one of the

HOMRs, i.e., the ith HOMR. Note that the position of the

feature or artificial landmark is known at a prespecified

location. Once the feature or artificial landmark has been

detected and then recognized by the ith HOMR, the posi-

tion measurement, ðxmi; ymi; zmiÞ, of the feature or landmark

with respect to the RGB-D sensor mounted on the ith

HOMR are expressed by

xmi ¼ xL � xi þ v1i; ymi ¼ yL � yi þ v2i;
zmi ¼ zL � zi þ v3i

ð40Þ

where (xL, yL, zL)
T denotes the true position of the land-

mark; (xi, yi, zi)
T represents the current position of the ith

HOMR at the sampling instant k; v1i, v2i, and v3i are three

independent, Gaussian measurement noise processes with

zero means . In order to solve the unknown position

(k - 1|k - 1) and orientation of the HOMR, it is easy to

measure the relative positions of the feature or landmark

using the RGB-D sensor and obtain three sets of n mea-

sured data for each feature or landmark, i.e., xmi(k), ymi(k),

zmi(k), k = 1 ,…, l. Thus, the current position of the HOMR

can be estimated by the following simple averaging

method.

xi ¼ xL �
1

l

Xn
k¼1

xmi kð Þ; yi ¼ yL �
1

l

Xn
k¼1

ymi kð Þ;

zi ¼ zL �
1

l

Xn
k¼1

zmi kð Þ
: ð41Þ

5.2 Cooperative Pose Initialization

This subsection is aimed at finding the initial poses of other

n - 1 HOMRs if the ith HOMR is self-localized by rec-

ognizing and measuring a RGB-D-based feature, landmark,

and its surrounding environment model. In the cooperative

localization scenario, if the jth HOMR is detected by the

laser scanner in the ith HOMR, then it is easy to find that

the distance between both HOMRs is dij, and the angle

between the line-of-sight and the heading of the ith HOMR

is /ij (positive in the counterclockwise (CCW) direction

and negative in the clockwise (CW) direction. Therefore,

then the position of the jth HOMR is calculated by the

following equations:

xj ¼ xi þ dij cosð/ij þ hiÞ; yj ¼ yi þ dij sinð/ij þ hiÞ ð42Þ

Once the position of the jth HOMR has been deter-

mined, then the heading of the jth HOMR can be found by

using the following cases:

Case 1 If the jth HOMR can observe and identify the L

neighboring walls using its own laser scanner and map,

then orientation of the jth HOMR is averagely computed by

hj ¼
XL
k¼1

bmk � bk=L

 !
ð43Þ

Case 2 If a RGB-D-based landmark can be found by the

jth HOMR, then its orientation is easily calculated by

hj ¼ tan2�1 yL � yj

xL � xj
� aj ð44Þ

where aj ¼ tan 2�1ðyj=xjÞ is the azimuth angle between the

detected landmark and RGB-D sensor.

Remark 2 Assume that the communication network is

connected. The proposed cooperative initialization method

based on the two cases is shown effective in finding all the

initial pose estimations of all the robots.

6 BLS-FDDEIF for Dynamic Localization

This section is devoted to describing the main ideas of the

proposed cooperative BLS-FDDEIF localization method

for the moving multi-HOMR system. By considering the

directed communication network among these multi-

robots, this section will apply the BLS-FDDEIF algorithm

to the multi-HOMR system including three kinds of

omnidirectional wheeled mobile robots. By including the

previous cooperative pose initialization algorithm, this

section will develop a discrete-time BLS-FDDEIF dynamic

pose estimation method to obtain the best pose estimate of

each HOMR when the multiple HOMRs navigate around

their indoor working environments and some of embedded

landmarks can be observed by HOMRs. Figure 3 depicts

the block diagram of the BLS-FDDEIF algorithm for each

HOMR. The discrete-time BLS-FDDEIF dynamic pose

estimation is described in the following six steps.

Step 1: Measure the relative position of one landmark

using the RGB-D sensor and obtain one set of n

measured data for each landmark, i.e.,

xmiðlÞ; ymiðlÞ; zmiðlÞ; l ¼ 1; . . .; n.
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Step 2: Use (41) and cooperative pose initialization

method to solve for the start-up position xiðkÞ;ð
yiðkÞ; ziðkÞÞT and initial orientation hiðkÞ of the ith

HOMR.

Step 3: Select the initial values of each information state

ŷið0j0Þ and information matrix Yið0j0Þ at time k k ¼ 0

for each HOMR.

Step 4: Do the one-step prediction by setting each

optimal information state estimate and the information

matrix at time k � 1 to be ŷiðk � 1jk � 1Þ and Yiðk �
1jk � 1Þ using (32, 33) and use each BLS to learn each gi
in real time.

Step 5: Obtain the updating estimate ŷiðkjkÞ and the

information matrix YiðkjkÞ at time k using (35, 36) where

the fuzzy tuner is used and each HOMR reads the N-

pairs measurement data ZjðkÞ, j ¼ 1; . . .;N.

Step 6: Repeat Steps 4 and 5.

7 Simulations and Discussion

In this section, three simulations are performed to examine

the performance and merits of the proposed cooperative

pose initialization and BLS-FDDEIF dynamic pose track-

ing method for the multi-HOMR system in [13]. Each

HOMR is equipped with encoders amounted on the driving

wheels, one laser scanner and one RGB-D sensor. The first

simulation verifies the proposed cooperative pose initial-

ization algorithm, and the second simulation aims to

accomplish the BLS-FDDEIF algorithm for dynamic pose

tracking. The third simulation is employed to compare the

superiority of the BLS-FDDEIF by comparing to BLS-

DDEIF. Three simulations are done by using MATLAB/

Simulink under the case in which the three HOMRs navi-

gate in a flat terrain in structured environments where all

the landmarks are well recognized. In three simulations,

both two landmarks in the surrounding space are, respec-

tively, installed at (xL1, yL1, zL1) = (5 m, 2 m, 2 m) and

(xL2, yL2, zL2) = (5 m, 3 m, 2 m); the parameters of the

walls are given by (q1
m = 0, b1

m = 90�), (q2m = 5, b2
m = 0�),

(q3
m = 5, b3

m = 90�).
In the first simulation, the true poses of the three

HOMRs are, respectively, set (2 m, 1.5 m, 1 m, 0�), (3 m,

2.5 m, 1 m, 0�), (3.5 m, 3.5 m, 1 m, 0�). Figure 4 depicts

the simulation results where the black circles are the true

positions and the green circles denote the estimated posi-

tion. The results in Fig. 4a reveal that the initial posture

estimates are very close to their true values. In the first

simulations, we assume that the first HOMR can recognize

two landmarks, the three walls, and use FDDEIF to fuse

these data to obtain the estimated pose. The second

HOMR cannot detect one of the landmarks, so the first

HOMR can transmit that information for the second

HOMRs. The third HOMR is localized by the second

HOMR using the laser scanner to measure the distance and

angle between the two HOMRs. Figure 4b shows that when

high noise occurs during the measurements of each

HOMR, BLS-FDDEIF can avoid the divergence of pose

estimation of each HOMRs. Table 1 displays the root

mean-square errors (RMSEs) of the initial posture esti-

mates of the three HOMRs for the high noise case, where

the performance index, RMSE, is defined by RMSE =ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i ðx2ei þ y2ei þ h2eiÞ

�
n

s
.

The second simulation aims to investigate the effec-

tiveness of the proposed BLS-FDDEIF method for

dynamic pose tracking of the three HOMRs where they are

moving 1 m along the x-axis and the simulation environ-

ment is identical to Simulation 1, as shown in Fig. 4a. The

red HOMR uses the car-like omnidirectional dynamic

iL

Odometer

Valldation
gate

Least
Squares

Line fitting

ˆˆ ˆ( , , )x y θ

Environment
model

Landmark  

ˆˆ( , )i iρ β

ˆˆ( , )i iα λ

Wall extraction

Landmark 
detection

iM

BLS-FDDEIF

Laser and Landmark
information  

from other HOMRs
iL
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Valldation
gate
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Squares
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ˆˆ ˆ( , , )x y θ
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Landmark  

ˆˆ( , )i iρ β

ˆˆ( , )i iα λ

Wall extraction

Landmark 
detection

iM

BLS-FDDEIF

Laser and Landmark
information  

from other HOMRs

Fig. 3 Block diagram of the BLS-FDDEIF algorithm for each HOMR
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model, the blue HOMR adopts the three-wheeled omnidi-

rectional dynamic model, and the pink HOMR exploits the

four-wheeled omnidirectional dynamic model. All the three

HOMRs are moving 1 m along the x-axis. Figure 5 depicts

the simulation results of the three HOMRS when the

measurement data are corrupted with little noise, thereby

showing the effectiveness of the proposed BLS-FDDEIF

localization method. Table 2 compares the RMSEs of

estimated poses of the two algorithms, BLS-FDDEIF and

FDDEIF, for dynamic pose tracking in the second

simulation.

The results in Table 2 indicate that the BLS-FDDEIF is

superior to the FDDEIF in terms of RMSEs. Table 3

compares the RMSEs of the estimated velocities from the

two algorithms, BLS-FDDEIF and FDDEIF, in the second

simulation, Table 3 reveals that the BLS-FDDEIF is still

superior to FDDEIF in terms of RMSEs of estimated

velocities of the three HOMRs.

The third simulation is used to compare the BLS-DDEIF

and BLS-FDDEIF methods in estimated position accuracy

of the three HOMRs where they are moving 0.5 m along

the x-axis and the big measurement noise as shown in

Fig. 6. The same color lines display the estimated positions

using the BLS-DDEIF algorithm, while the green lines

illustrate the estimated positions using BLS-FDDEIF.

Tables 4 and 5 present the comparative RMSEs of the pose

tracking and velocity tracking errors using the two algo-

rithms in the third simulation for the high noise case.

Fig. 4 Environment settings and results of the first simulation for

high noise case: a little measurement noise; b big measurement noise

Fig. 5 Dynamic pose tracking simulation of the cooperative BLS-

FDDEIF localization algorithm

Table 2 List of the RMSES of pose tracking in second simulation

HOMR Controller

BLS-FDDEIF FDDEIF Improvement (%)

COMR 0.0725 0.1122 54.76

TOMR 0.0303 0.0441 46.51

FOMR 0.0549 0.0592 7.83

Table 3 List of the RMSES of the estimated velocities of the three

HOMRS in the second simulation

HOMR Controller

BLS-FDDEIF FDDEIF Improvement (%)

COMR 0.0118 0.0126 6.78

TOMR 0.0122 0.0129 5.74

FOMR 0.0125 0.0132 5.6

Table 1 List of the root mean-

square errors (RMSES) of the

initial posture estimates of the

three HOMRS for high noise

case

HOMR Index

RMSE

COMR 0.0534

TOMR 0.0649

FOMR 0.0712
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Obviously, the results reveal that BLS-FDDEIF signifi-

cantly outperforms BLS-DDEIF in terms of improvement

percentages.

8 Experimental Results and Discussion

This section conducts two experiments to verify the real

performance and applicability of the proposed cooperative

BLS-FDDEIF localization algorithm. Figure 7 illustrates

the three experimental HOMRs and the experimental

environment with one landmark was installed at (xL1, yL1,

zL1) = (2 m, 1.17 m, 0.25 m), and three walls were given

by (q1
m = 0, b1

m = 90�), (q2
m = 5, b2

m = 0�), (q3
m = 5,

b3
m = 90�), respectively. In the beginning, the first robot

was stopped at (1 m, 1.17 m), the second robot was ini-

tialized at (0.5 m, 1.67 m), and the third robot got started at

(0.5 m, 0.67 m). Note that all the three robots did not have

their initial true poses with respect to their surroundings.

Therefore, the Realsense RGB-D sensor was used to detect

the surrounding landmark, and the laser scanner was

exploited to measure the perpendicular distances and ori-

entations of the walls.

For landmark detection, one used color feature extrac-

tions to locate its center point. Figure 8 illustrates the color

and depth image from the RealSense RGB-D sensor, and

Fig. 9 displays the extracted blue blocks by removing other

colors by using the HSV color space. Moreover, Fig. 10

indicates the contour of the chosen biggest blue block.

In the first experiment when all the HOMRS were

stopped at their initial points, each HOMR used its onboard

RGB-D camera to detect the relative position between the

landmark and itself, and, meanwhile, utilized its onboard

laser scanner to measure the perpendicular distance qj and
orientation bj of each wall in the robot frame. By taking the

BLS-FDDEIF algorithm to fuse the readings from these

RGB-D sensors and laser scanners, the estimated positions

of the three HOMRS were, respectively, found by

(1.005 m, 1.1734 m), (0.4964 m, 1.6663 m), and

(0.4978 m, 0.6787 m). Moreover, the statistically esti-

mated errors of the three corresponding HOMRs were

given by (0.0005 m, 0.0034 m), (0.0036 m, 0.0037 m), and

(0.0022 m, 0.0087 m), respectively. These results indicate

that the proposed BLS-FDDEIF algorithm worked well for

this scenario.

Fig. 6 Comparative time evolutions of the true poses and BLS-

DDEIF and BLS-FDDEIF estimated positions of the three HOMRs

for high noise case

Fig. 7 Three experimental HOMRs and experimental environment

Table 4 List the RMSES of the pose tracking errors of the three

HOMRS in the third simulation for high noise case

HOMR Controller

BLS-FDDEIF BLS-DDEIF Improvement (%)

COMR 0.0546 0.1957 258.42

TOMR 0.0633 0.2211 249.29

FOMR 0.0707 0.2161 205.66

Table 5 Comparison of the RMSES of estimating velocities the three

HOMRS using the two algorithms, BLS-FDDEIF and BLS-DDEIF in

the third simulation

HOMR Controller

BLS-FDDEIF BLS-DDEIF Improvement (%)

COMR 0.017 0.0176 3.53

TOMR 0.0208 0.022 5.77

FOMR 0.0213 0.022 3.28

Fig. 8 The color and depth image from Realsense RGB-D sensor
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The second experiment is carried out to explore the real

performance of the proposed cooperative BLS-FDDEIF

dynamic localization method for the three HOMRs. The

experimental set-up was identical to the first experiment but

all the three HOMRs moved along a slant line. The BLS-

FDDEIF algorithm was coded by standard C programming

language. Figure 11 shows the experimental pictures during

the second experimental process in which all the three

HOMRs moved 0.4 m along the x-axis defined in the world

frame. Figure 12 demonstrates the experimental estimates of

dynamic poses of the three moving HOMRs. Moreover,

Table 6 displays their RMSEs, respectively. Through the

experiment results in Table 6, the proposed BLS-FDDEIF

algorithm has been shown applicable and practicable in

achieving cooperative localization of the multi-HOMR

system.

9 Conclusions and Future Work

This paper has presented a novel FDDEIF method aug-

mented by broad learning system (BLS), called BLS-

FDDEIF, for cooperative pose initialization and dynamic

pose tracking of a team of heterogeneous omnidirectional

mobile robots (HOMRs). Each BLS with its iterative

Fig. 9 Extracted blue blocks from the Realsense RGB-D sensor

Fig. 10 Illustration of the largest selected blue block from the

Realsense

Fig. 11 Experimental pictures of the cooperative dynamic localiza-

tion of the three moving HOMRs

Fig. 12 Experimental results of the cooperative dynamic pose

estimates of the three moving HOMRs

Table 6 List of the RMSES of

the dynamic pose estimates of

the three moving HOMRS

HOMR Index

RMSE

COMR 0.0271

TOMR 0.0395

FOMR 0.0361
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gradient decent algorithm has been proposed to approxi-

mate the dynamic effects and uncertainty vectors in the

dynamic model of each HOMR in real time. By fusing

measurement information taken from the encssoders,

RGB-D sensor, and laser scanner, the proposed static

global pose initialization and BLS-FDDEIF dynamic pose

estimation methods have been shown capable of obtaining

accurate pose and pose rate estimates of the HOMRs.

Comparative simulation results have demonstrated the

effectiveness and superiority of the proposed BLS-

FDDEIF method for a group of HOMRs. The practica-

bility of the proposed BLS-FDDEIF method has been well

demonstrated by conducting static and dynamic experi-

ments using the three cooperating HOMRs. An interesting

topic for future research would be to develop a fuzzy

distributed decentralized extended Kalman filtering

(FDDEKF) localization using BLS, abbreviated as BLS-

FDDEKF, for cooperative pose initialization and dynamic

pose tracking of the multi-HOMR system owing to direct

estimation of the physical state variables instead of

information state variables.
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