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Abstract Decisions are based on information, and the

reliability of information affects the quality of decision-

making. Z-number, produced by Zadeh, considers the fuzzy

restriction and the reliability restriction of decision infor-

mation simultaneously. Many scholars have conducted in-

depth research on Z-number, and the concept has great

application potential in the field of economic management.

However, certain problems with the basic operations of Z-

number still exist. Entropy is a measure of information

uncertainty, and research on entropy and Z-number con-

tinues to be rare. This study initially defines the cross

entropy of fuzzy restriction and that of the reliability of Z-

numbers. On this basis, a comprehensive weighted cross

entropy is constructed, which is used to compare two dis-

crete Z-numbers from the perspective of information

entropy. Furthermore, one extended Technique for Order

Preference by Similarity to Ideal Solution approach is

developed to solve a multi-criteria decision-making prob-

lem under discrete Z-context. An example of the ranking of

job candidates for human resource management is then

presented to illustrate the availability of the proposed

method along with the sensitivity and comparative analyses

for verifying the validity and applicability of the proposed

method.

Keywords Z-number � Cross entropy � Maximum entropy

method � TOPSIS � Performance evaluation

1 Introduction

Decision-making is one of the most basic attributes of

human social behaviour [1, 2]; however, it is often uncer-

tain for issues related to the economy and society [3, 4].

Zadeh proposed the concept of fuzzy sets in 1965 to handle

fuzzy information [5]. Atanassov developed the concept of

intuitionistic fuzzy sets [6]. Smarandache extended the

intuitionistic fuzzy set to propose the concept of neutro-

sophic sets [7, 8]. Furthermore, hesitant fuzzy sets and

picture fuzzy sets have been created [9, 10]. Nearly all of

the proposed methods have used one or more numerical

functions, such as membership function, to describe the

ambiguity of information. These previous studies are based

on fully reliable decision information [11]. However, the

decision information in the real world is often partially

reliable [12, 13], and the effect of information reliability on

decision-making must be considered [14, 15]. In 2011,

Zadeh constructed Z-number by [16] to describe the fuzzy

and reliability restrictions of information simultaneously.

Moreover, Z-numbers are usually combined with natural

language in practical applications; such a combination is in

line with people’s decision-making habits [16].

A Z-number, marked as Z ¼ A;Bð Þ, is a complex con-

cept where the fuzzy component A is the fuzzy restriction

of the value on a certain random variable X, and the reli-

ability component B plays a role in the fuzzy restriction of

the probability measure of A. For example, a decision
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maker (DM) decides, ‘It likely takes about 5 h to take a

high-speed train from Beijing to Shanghai’. This evaluation

can be formalised as Z ¼ about 5 h, likelyð Þ. Many schol-

ars have conducted in-depth research on Z-number since it

was proposed by Zadeh.

Although stating the problem described by Z-number is

relatively easy, the calculation principle of Z-number is

complicated [16]. Yager [17] discussed some specific

underlying probability distributions of some particular

decision-making situations to understand and fully utilise

the Z-number. Aliev et al. [18] investigated the approxi-

mate reasoning of Z-number on the basis of if–then rules.

Shen et al. [19] used the smallest enclosing circle method

to investigate the multi-criteria decision-making (MCDM)

problem under Z-numbers. Furthermore, Aliev et al.

[11, 14] discussed the arithmetic operations of discrete and

continuous Z-numbers. Aliev et al. [20] proposed t-norm

and t-conorm aggregation operators of Z-numbers. Some

related theoretical research has been recently conducted

[13, 21–24]. The common feature of these studies is that

they follow the original meaning of Z-number and discuss

the arithmetic operations of Z-numbers in depth. These

methods follow the classical fuzzy theory and probability

theory, which often result in high complexity of the oper-

ation process.

Some scholars have attempted to simplify the operation

of Z-numbers via certain conversion operations. Kang et al.

[25] regarded Z-number as a pair of classical fuzzy num-

bers. Jiang et al. [26] proposed a score function of Z-

number, which deeply considered its fuzzy restriction.

Kang et al. [27] converted Z-number into a real number to

compare two Z-numbers. A common flaw in these studies

is that they all split the two components of Z-numbers and

ignored the intrinsic link between the two, thereby causing

serious information loss and distortion. Kang et al. [28]

proposed a method of converting Z-number into one clas-

sical fuzzy number. On the basis of this conversion

method, many studies have been completed in recent years

[29, 30]. Kang et al. [31] recently implemented the

stable strategies analysis in evolutionary games based on

the utility of Z-number. Although the conversion method of

Z-number in [28] has achieved remarkable results in

reducing computational complexity, such a conversion

method may cause serious information loss during the

information fusion to a certain extent, given that the

underlying probability distribution is neglected.

The distance measure and the outranking relation of Z-

numbers are also important research fields. Aliyev [32]

proposed a distance measure by regarding Z-number as a

pair of fuzzy numbers; however, he did not consider the

underlying probability distributions of Z-numbers. Shen

and Wang [13] developed a comprehensive weighted dis-

tance measure of Z-numbers; however, they did not

consider the difference of the fuzzy restriction components

of Z-numbers. Yang and Wang [33] presented a stochastic

multi-criteria decision-aiding model where the underlying

probability distribution is acquired by constructing a

mathematical model with the minimum variance. However,

this method is unsuitable because Zadeh did not indicate

that the variance of the underlying probability distribution

should be minimised when introducing a Z-number. Yang

and Wang’s approach added information that cannot be

obtained on the basis of existing knowledge, which is

contrary to Jaynes’s principle of maximum entropy [34].

Entropy is a measure of information uncertainty. Shan-

non initially proposed the use of information entropy based

on probability theory to measure information uncertainty

[35]. Zadeh proposed the concept of fuzzy entropy to

measure the uncertainty of the fuzzy event [5, 36]. Shang

and Jiang [37] proposed a fuzzy cross-entropy measure

between discrete fuzzy numbers. Wei [38] introduced the

picture fuzzy cross entropy and applied it to MCDM

problems. Although fuzzy entropy can be used effectively

to measure the uncertainty of fuzzy information [38–40],

these previous studies have ignored information reliability.

Recently, Kang et al. [41] developed a method for mea-

suring the uncertainty of Z-numbers; however, they did not

consider the underlying probability distributions of Z-

numbers. Z-numbers describe the ambiguity and reliability

of information, which also contains the underlying proba-

bility distributions. Therefore, using fuzzy and probability

entropy for measuring the information uncertainty con-

tained in Z-numbers is appropriate and meaningful. How-

ever, research on the combination of entropy theory and Z-

numbers is thus far limited.

To fill the gap of the previous studies, the present work

proposes a Z-number comparison method based on cross

entropy under the guidance of entropy theory and maxi-

mum entropy principle and applies the proposed method to

an MCDM problem. Briefly, the motivation for this study

includes the following points.

(1) Shang and Jiang proposed the cross entropy for

discrete fuzzy numbers [37]. The present study

extends their definition define a novel fuzzy cross

entropy for the fuzzy restriction of discrete Z-

numbers to compare the fuzzy restriction of Z-

numbers effectively.

(2) On the basis of Jaynes’s theory, the existing research

is unreasonable for solving the underlying probabil-

ity distributions of Z-numbers. We only need to

select the underlying probability distributions that

meet the restriction of Z-number and have the largest

information entropy. Therefore, this study constructs

a mathematical model to solve the underlying

probability distributions of discrete Z-numbers.
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(3) Zadeh stated that the reliability component was the

fuzzy restriction on the probability measure. Hence,

the cross entropy of the reliability restriction should

consider the underlying probability distributions and

the corresponding fuzzy restriction. On this basis,

this study defines the cross entropy of the reliability.

(4) The uncertainty of Z-numbers is the sum of fuzzy

and reliability restrictions. Therefore, one compre-

hensive weighted cross-entropy measure is presented

in this study. On the basis of this formula, an

extended Technique for Order Preference by Simi-

larity to Ideal Solution (TOPSIS) under discrete Z-

valuation is developed in presenting an example of

human resource management (HRM) to show the

validity of the proposed method.

The remainder of this paper is organised as follows. In

Sect. 2, some basic concepts, including discrete fuzzy

number, discrete Z-number, entropy and cross entropy, are

briefly reviewed. Section 3 defines the cross entropy of

fuzziness and reliability restrictions, such that one com-

prehensive weighted cross entropy of discrete Z-numbers is

constructed. Section 4 develops a TOPSIS approach in the

context of discrete Z-number for solving MCDM problems.

Section 5 presents one illustrative example, and sensitivity

and comparative analyses are implemented simultaneously

on the proposed approach and other existing methods.

Finally, conclusions are summarised and certain future

research points are outlined in Sect. 6.

2 Preliminaries

This section reviews some basic concepts and definitions

that are related to discrete fuzzy number, discrete Z-num-

ber, entropy and cross entropy, which will be the basis in

the later analysis.

2.1 Discrete Fuzzy Number

Definition 1 [11, 42–45] A fuzzy set A whose member-

ship function is a mapping lA : R ! 0; 1½ � is a discrete

fuzzy number if it has a finite support supp Að Þ ¼
xij1� i� n; n 2 N�f g, where x1\x2\ � � �\xn is satis-

fied, and two indices s and t 1� s� t� nð Þ exist, such that

(1) lA xið Þ ¼ 1; 8xi 2 xijx1 � xi � xn; s� i� tf g;
(2) lA xið Þ� lA xj

� �
; 8xi; xj 2 xijx1 � xi � xn; 1� i�f

j� sg;
(3) lA xið Þ� lA xj

� �
; 8xi; xj 2 xijx1 � xi � xn; t� i� jf

� ng.

2.2 Discrete Z-number

Definition 2 [11] A discrete Z-number is an ordered pair

Z ¼ A;Bð Þ, where certain conditions must be satisfied as

follows:

(1) A is a discrete fuzzy number whose membership

function is the mapping lA : xi 2 Rj1� i� n;f
n 2 N�g ! 0; 1½ �;

(2) B is a discrete fuzzy number whose membership

function is the mapping lB : bi 2 0; 1½ �j1� i� n;f
n 2 N�g ! 0; 1½ �.

2.3 Entropy and Cross Entropy

Definition 3 [35] Given the probability distribution P ¼
pijpi � 0; 1� i� n; n 2 N�f g of discrete random variable X

and
Pn

i¼1 pi ¼ 1, the information entropy of P is

H Pð Þ ¼ �C
Xn

i¼1

pi ln pi; ð1Þ

where C is a positive constant that merely amounts to the

choice of a unit of measure. Therefore, the quantities of the

form H Pð Þ ¼ �
Pn

i¼1

pi ln pi play the central role in infor-

mation uncertainty [35].

On the basis of Shannon’s information entropy, the cross

entropy of discrete random variables and that of discrete

fuzzy numbers are introduced as follows. Firstly, the cross

entropy in Definition 4 describes the difference between

the probability distributions of two discrete random vari-

ables. Secondly, the cross entropy in Definition 5 describes

the difference between two discrete fuzzy numbers. In the

following discussion, the method of measuring the uncer-

tainty of Z-numbers will be explored on the basis of the two

definitions.

Definition 4 [40, 46, 47] Let P ¼ pijpi � 0; 1� i� n;f
n 2 N�g and Q ¼ qijqi � 0; 1� i� n; n 2 N�f g be the

given probability distributions of two discrete random

variables, where
Pn

i¼1 pi ¼ 1 and
Pn

i¼1 qi ¼ 1. Then, the

cross entropy of P and Q is defined as:

H P;Qð Þ ¼
Xn

i¼1

pi ln
1

qi
: ð2Þ

Definition 5 [37–39] Let A1 and A2 be the given discrete

fuzzy numbers whose membership functions are lA1
:

x1i 2 Rj1� i� n; n 2 N�f g ! 0; 1½ � and lA2
: x2i 2 Rj1�f

i� n; n 2 N�g ! 0; 1½ �, respectively. Then, the cross

entropy of A1 and A2 is defined as

1788 International Journal of Fuzzy Systems, Vol. 21, No. 6, September 2019

123



H A1;A2ð Þ ¼
Xn

i¼1 

lA1
x1ið Þ ln

lA1
x1ið Þ

1
2
lA1

x1ið Þ þ lA2
x2ið Þ

� �

þ 1� lA1
x1ið Þ

� �
ln

1� lA1
x1ið Þ

� �

1� 1
2
lA1

x1ið Þ þ lA2
x2ið Þ

� �

!

;

ð3Þ

which indicates the degree of discrimination of A1 from A2.

However, the aforementioned cross entropy is not

symmetric for H A1;A2ð Þ in terms of its arguments. Shang

and Jiang [37] developed a symmetric discrimination

information measure as follows:

I A1;A2ð Þ ¼ H A1;A2ð Þ þ H A2;A1ð Þ: ð4Þ

In addition, I A1;A2ð Þ� 0 and I A1;A2ð Þ ¼ 0 exist if and

only if A1 ¼ A2.

3 Cross Entropy of Discrete Z-numbers

Zadeh [16] introduced the concept of Z-number to describe

the uncertainty of the evaluation information, which char-

acterises fuzzy and reliability restrictions of information

simultaneously. In addition, Shannon [35] indicated that

information uncertainty could be summarised by entropy.

Consequently, certain concepts of cross entropy about

ambiguity and reliability are presented in this section to

describe the uncertainty of Z-numbers.

3.1 Cross Entropy of Fuzziness Restriction

The definition of cross entropy for fuzzy sets is indepen-

dent of the content of the information in [37], in which

their formula for computing the cross entropy between two

fuzzy sets is convenient regardless of the value interval

limit of X. However, some novel dilemmas still exist if the

same formula is now used to calculate the cross entropy of

fuzziness restriction in Z-numbers.

Remark 1 The membership functions of the fuzzy

restriction of two discrete Z-numbers Z1 ¼ A1;B1ð Þ and

Z2 ¼ A2;B2ð Þ are, respectively, as follows:
lA1

¼ 0=1þ 0:5=2þ 1=3þ 0:5=4þ 0=5;

lA2
¼ 0=6þ 0:5=7þ 1=8þ 0:5=9þ 0=10:

In view of Definition 5, the cross entropy of A1 and A2 is

H A1;A2ð Þ ¼ 0:

As presented above, this cross entropy is undesirable.

The value limit regarding the fuzzy restriction of Z-number

should be considered when describing the difference

between two Z-numbers. Consequently, the fuzzy restric-

tion measure of Z-numbers must be further discussed.

Definition 6 Given two discrete fuzzy numbers A1 and A2

with their respective membership functions lA1
: x1i 2f

Rj1� i� n; n 2 N�g ! 0; 1½ � and lA2
: x2i 2 Rj1� i� n; nf

2 N�g ! 0; 1½ �, the cross-entropy core E of A1 and A2 is

defined as follows:

E ¼ eij
� �

n�n
; ð5Þ

that is a n� n-dimensional matrix, of which each element

is pure cross entropy independent of the content of infor-

mation (i.e. the value of X) and eij is equal to

eij ¼ lA1
x1ið Þ ln

lA1
x1ið Þ

1
2
lA1

x1ið Þ þ lA2
x2j
� �� �

þ 1� lA1
x1ið Þ

� �
ln

1� lA1
x1ið Þ

� �

1� 1
2
lA1

x1ið Þ þ lA2
x2j
� �� � : ð6Þ

Definition 7 Let X be the universe of discourse and A be

the given discrete fuzzy number with its membership

function lA : xi 2 Rj1� i� n; n 2 N�f g ! 0; 1½ �. The

value strategy vector SA of A is defined as follows:

SA ¼ si½ �1�n; ð7Þ

where si ¼ xi �min Xð Þð Þ= max Xð Þ �min Xð Þð Þ
(xi 2 supp Að Þ ¼ xij1� i� n; n 2 N�f g) is the value strat-

egy of A.

Definition 8 Given two discrete fuzzy numbers A1 and A2

with their respective membership functions lA1
:

x1i 2 Rj1� i� n; n 2 N�f g ! 0; 1½ � and lA2
: x2i 2 Rj1�f

i� n; n 2 N�g ! 0; 1½ �, the cross entropy of A1 and A2 is

defined as follows:

Hf A1;A2ð Þ ¼ S1ES
T
2 ; ð8Þ

where S1 and S2 are the value strategy vectors of A1 and A2,

respectively; and E is the cross-entropy core of A1 and A2.

However, this cross entropy is not symmetric for

Hf A1;A2ð Þ in terms of its arguments. Thus, we develop a

symmetric discrimination information measure as follows:

HF A1;A2ð Þ ¼ Hf A1;A2ð Þ � Hf A1;A1ð Þ
�� ��

þ Hf A2;A1ð Þ � Hf A2;A2ð Þ
�� ��: ð9Þ

Then, HF A1;A2ð Þ� 0 and HF A1;A2ð Þ ¼ 0 exist if and

only if A1 ¼ A2. The proof process is simple and therefore

omitted.
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Example 1 Let Z1 ¼ A1;B1ð Þ and Z2 ¼ A2;B2ð Þ be two

discrete Z-numbers whose membership functions of fuzzy

restriction are, respectively, as follows:

lA1
¼ 0=1þ 0:5=2þ 1=3þ 0:5=4þ 0=5;

lA2
¼ 0=6þ 0:5=7þ 1=8þ 0:5=9þ 0=10;

with their value strategy vectors, respectively, as follows:

S1 ¼ 0:1; 0:2; 0:3; 0:4; 0:5½ �;
S2 ¼ 0:6; 0:7; 0:8; 0:9; 1½ �

and cross-entropy core of

E ¼

0 0:2876 0:6930 0:2876 0

0:1438 0 0:1438 0 0:1438
0:6930 0:2876 0 0:2876 0:6930
0:1438 0 0:1438 0 0:1438

0 0:2876 0:6930 0:2876 0

2

66664

3

77775
:

In view of Definition 8, the cross entropy of the fuzzy

restriction of Z1 and Z2 can be calculated as

Hf A1;A2ð Þ ¼ S1ES
T
2 ¼ 1:2866:

Furthermore, we have

HF A1;A2ð Þ ¼ 2:9484:

Thus, the value limit interval of X plays a role in the

calculation of the cross entropy of the fuzzy restriction

between Z-numbers. The outcome is consistent with our

aim, which aids us overcome the dilemma stressed in

Remark 1.

3.2 Cross Entropy of Reliability Restriction

Zadeh believed that an underlying probability distribution

in Z-number exists [16]. On this basis, Yager [17] dis-

cussed some special probability distributions in some

specific decision scenarios. However, Aliev et al. [11]

constructed one goal linear programming for acquiring the

underlying probability distributions. The construction of a

suitable method for solving the underlying probability

distributions in Z-number is essential for Z-number oper-

ations. Consequently, this subsection initially proposes a

nonlinear programming model based on Jaynes’s maxi-

mum entropy theory to solve the underlying probability

distributions. Thereafter, the cross entropy of the reliability

restriction between Z-numbers is discussed.

For a given discrete Z-number Z ¼ A;Bð Þ associated

with a real-valued random variable X, the first component

A is a fuzzy restriction of X. The second component B is a

reliability restriction of the probability measure of X. Their

membership functions are as follows:

lA : xi 2 Rj1� i� n; n 2 N�f g ! 0; 1½ �;
lB : bi 2 0; 1½ �j1� i� n; n 2 N�f g ! 0; 1½ �;

According to Zadeh, we assume that the underlying

probability distribution is

PX ¼ pijpi � 0; 1� i� n; n 2 N�f g:

Then, the given discrete Z-number Z ¼ A;Bð Þ will sat-
isfy certain conditions as follows:

(1)
Pn

i¼1

pi ¼ 1, and pi � 0; 8pi 2 PX;

(2)
Pn

i¼1

xipi ¼
Pn

i¼1

xilA xið Þ=
Pn

i¼1

lA xið Þ (where ‘/’ denotes

division);

(3)
Pn

i¼1

lA xið Þpi ¼ bj; bj 2 supp Bð Þ ¼ bi 2 0; 1½ �j1� if

� n; n 2 N�g.

Two points exist with regard to Jaynes’s maximum

entropy theory [34]. Firstly, only the probability distribu-

tion, which meets the constraint conditions and has the

largest entropy value, should be selected when only partial

constraint information is obtained. Secondly, any other

choices about the probability distribution will constantly

indicate that certain conditions or constraints have been

added that we cannot derive on the basis of the information

we have. For example, as stated in the Introduction, Yang

and Wang’s study [33] subjectively added the constraint

condition of minimum variance. Therefore, we select the

underlying probability distribution of the Z-number with

the largest entropy based on the preceding two conditions.

Definition 9 Let Z ¼ A;Bð Þ be the given discrete Z-

number about real-valued random variable X, and its

membership functions of fuzzy and reliability restrictions

are lA : xi 2 Rj1� i� n; n 2 N�f g ! 0; 1½ � and lB : bi 2f
0; 1½ �j1� i� n; n 2 N�g ! 0; 1½ �, respectively. The under-

lying probability distribution on X of the Z-number is

PX ¼ pijpi � 0; 1� i� n; n 2 N�f g. Thus, the nonlinear

programming model MZ is constructed as follows:

max�
Xn

i¼1

pi ln pi

s:t:

Pn

i¼1

lA xið Þpi ¼ bj; bj 2 supp Bð Þ ¼ bi 2 0; 1½ �j1� i� n; n 2 N�f g

Pn

i¼1

xipi ¼
Pn

i¼1

xilA xið Þ=
Pn

i¼1

lA xið Þ

Pn

i¼1

pi ¼ 1

pi � 0; 8pi 2 PX

8
>>>>>>>>><

>>>>>>>>>:

:

ð10Þ

Example 2 Given the discrete Z-number Z ¼ A;Bð Þ, its
membership functions are as follows:
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lA ¼ 0=1þ 0:5=2þ 1=3þ 0:5=4þ 0=5;

lB ¼ 0=0:2þ 0:5=0:35þ 1=0:5þ 0:5=0:65þ 0=0:8:

According to Definition 9,

max
Xn

i¼1

pi ln pi

s:t:

0� p1 þ 0:5� p2 þ 1� p3 þ 0:5� p4 þ 0� p5 ¼ bj; bj 2 0:2; 0:35; 0:5; 0:65; 0:8f g
0� p1 þ 0:5� p2 þ 1� p3 þ 0:5� p4 þ 0� p5 ¼ 3

Pn

i¼1

pi ¼ 1

pi � 0; 8pi 2 PX

8
>>>>><

>>>>>:

:

By solving this mathematical model, the underlying

probability distributions are shown in Table 1.

Table 1 indicates the following information.

Firstly, the different values of bj can result in different

underlying probability distributions. Here, we use ‘result

in’ instead of ‘generate’ because the value of bj yields

inferential information on the basis of the principle of

maximum entropy.

Secondly, the difference lB bj
� �

on bj indicates the DM’s

confidence level for the corresponding PX . Thus, we should

consider the underlying probability distributions and the

corresponding membership values when calculating the

cross entropy of the reliability restriction of Z-numbers.

Definition 10 Given two discrete Z-numbers Z1 ¼
A1;B1ð Þ and Z2 ¼ A2;B2ð Þ whose membership functions

are lA1
: x1k 2 Rj1� k� n; n 2 N�f g ! 0; 1½ � and lA2

:

x2k 2 Rj1� k� n; n 2 N�f g ! 0; 1½ � and lB1
: b1i 2f

0; 1½ �j1� i� n; n 2 N�g ! 0; 1½ � and lB2
: b2i 2 0; 1½ �j1�f

i� n; n 2 N�g ! 0; 1½ �, respectively, the cross-entropy

core Ep of B1 and B2 is defined as follows:

Ep ¼ eij
� �

n�n
; ð11Þ

which is an n� n-dimensional matrix, of which each ele-

ment is pure cross entropy independent of the content of

information (i.e. the value of X), and eij is equal to

eij ¼ H P1i;P2j

� �
� H P1i;P1j

� �
¼
Xn

k¼1

p1ik ln
p1ik

p2jk
; ð12Þ

where p1ik ¼ P1i xkð Þ, p2jk ¼ P2j xkð Þ, P1i is the underlying

probability distribution corresponding to the probability

measure b1i of Z1 ¼ A1;B1ð Þ, and P2j is the underlying

probability distribution corresponding to probability mea-

sure b2i of Z2 ¼ A2;B2ð Þ.

Definition 11 Let Z ¼ A;Bð Þ be the given discrete Z-

number, and the membership function of B is lB : bif
2 0; 1½ �j1� i� n; n 2 N�g ! 0; 1½ �. The fuzzy strategy

vector MB of B is defined as follows:

MB ¼ mi½ �1�n; ð13Þ

where mi ¼ lB bið Þ(bi 2 supp Bð Þ ¼ bij1� i� n; n 2 N�f g)
is the fuzzy strategy of B.

Definition 12 Given two discrete Z-numbers Z1 ¼
A1;B1ð Þ and Z2 ¼ A2;B2ð Þ whose membership functions

are lA1
: x1k 2 Rj1� k� n; n 2 N�f g ! 0; 1½ � and lA2

:

x2k 2 Rj1� k� n; n 2 N�f g ! 0; 1½ � and lB1
: b1i 2f

0; 1½ �j1� i� n; n 2 N�g ! 0; 1½ � and lB2
: b2i 2 0; 1½ �j1f

� i� n; n 2 N�g ! 0; 1½ �, respectively, the cross entropy

of the reliability restriction of Z1 ¼ A1;B1ð Þ and Z2 ¼
A2;B2ð Þ is defined as follows:

Hr Z1; Z2ð Þ ¼ M1EpM
T
2 ; ð14Þ

where M1 and M2 are the fuzzy strategy vectors of Z1 ¼
A1;B1ð Þ and Z2 ¼ A2;B2ð Þ, and Ep is the cross-entropy core

of the reliability restriction of Z1 ¼ A1;B1ð Þ and

Z2 ¼ A2;B2ð Þ.

However, the aforementioned identity is not symmetric

for Hr Z1; Z2ð Þ in terms of its arguments. Thus, we develop

a symmetric discrimination information measure as

follows:

HR Z1; Z2ð Þ ¼ Hr Z1; Z2ð Þ � Hr Z1; Z1ð Þj j
þ Hr Z2; Z1ð Þ � Hr Z2; Z2ð Þj j: ð15Þ

Then, HR Z1; Z2ð Þ� 0 and HR Z1; Z2ð Þ ¼ 0 exist if and

only if Z1 ¼ Z2.

Example 3 Suppose that the human resource department

of ABC Corporation evaluates the performance of two

employees as ‘likely good’ and ‘certainly good’, and both

of them are discrete Z-numbers whose membership func-

tions are as follows:

lA1
¼ 0=1þ 0:5=2þ 1=3þ 0:5=4þ 0=5;

lB1
¼ 0=0:2þ 0:5=0:35þ 1=0:5þ 0:5=0:65þ 0=0:8;

lA2
¼ 0=1þ 0:5=2þ 1=3þ 0:5=4þ 0=5;

lB2
¼ 0=0:1þ 0:5=0:2þ 1=0:3þ 0:5=0:4þ 0=0:5:

The two employee’s fuzzy strategy vectors are

M1 ¼ ½0; 0:5; 1; 0:5; 0�;
M2 ¼ ½0; 0:5; 1; 0:5; 0�:

Table 1 Underlying probability distributions of Z ¼ A;Bð Þ

bj p1 p2 p3 p4 p5 H PXð Þ lB bj
� �

0.2 0.3298 0.1403 0.0597 0.1403 0.3298 1.4510 0

0.35 0.2295 0.1910 0.1590 0.1910 0.2295 1.6004 0.5

0.5 0.1464 0.2071 0.2929 0.2071 0.1464 1.5745 1

0.65 0.0795 0.1910 0.4590 0.1910 0.0795 1.3924 0.5

0.8 0.0298 0.1403 0.6597 0.1403 0.0298 1.0352 0
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The two employee’s cross-entropy core of reliability

restriction is:

Ep ¼

0:0813 0 0:0450 0:1584 0:3314
0:4097 0:1071 0:0100 0:0091 0:0781
0:9132 0:3894 0:1501 0:0349 0

1:5731 0:8279 0:4466 0:2170 0:0781
2:4081 1:4416 0:9181 0:5743 0:3314

2

66664

3

77775
:

In view of Definition 12, the cross entropy of the reli-

ability restriction of Z1 and Z2 can be calculated as follows:

Hr Z1; Z2ð Þ ¼ M1EpM
T
2 ¼ 0:8808:

Furthermore, we have

HR Z1; Z2ð Þ ¼ 1:2012:

3.3 Comprehensive Weighted Cross Entropy of Z-

numbers

We have separately discussed the cross entropy of the

fuzzy and reliability restrictions of discrete Z-numbers

according to Zadeh [16]. The cross entropy of fuzzy

restriction considers the possibility distribution and the

value limit interval of the associated random variable

simultaneously; thus, Shang and Jiang’s fuzzy cross

entropy [37] can be used for discrete Z-numbers. Further-

more, the cross-entropy definition of reliability restriction

considers the influence of the possibility distribution of

reliability restriction on the underlying probability distri-

butions, which reflects the definition of B component well.

Furthermore, we combine the two cross-entropy methods

into one comprehensive weighted cross entropy of Z-

numbers, denoted as follows:

Hx Z1; Z2ð Þ ¼ xHF A1;A2ð Þ þ 1� xð ÞHR Z1; Z2ð Þ; ð16Þ

where x 2 xj0�x� 1;x 2 Rf g reflects the DM’s pref-

erence about information fusion. The reliability restriction

of Z-number will be considered increasingly important

when 0\x\0:5. However, the fuzzy restriction of Z-

number may be remarkable for decision evaluation to pay

substantial attention to the influence of fuzzy restriction

when 0:5\x\1. In addition, both of them will receive

equal attention if x ¼ 0:5. Particularly, when x ¼ 0 or

x ¼ 1, the aforementioned formula will degenerate into a

simpler form.

According to Definitions 8 and 12, Eq. (16) satisfies the

following properties:

(1) Hx Z1; Z2ð Þ� 0;

(2) Hx Z1; Z2ð Þ ¼ 0 if and only if Z1 ¼ Z2;

(3) Hx Z1; Z2ð Þ ¼ Hx Z2; Z1ð Þ:

Example 4 Let Z1 ¼ A1;B1ð Þ and Z2 ¼ A2;B2ð Þ be two

discrete Z-numbers, and their membership functions are as

follows:

lA1
¼ 0=1þ 0:5=2þ 1=3þ 0:5=4þ 0=5;

lB1
¼ 0=0:2þ 0:5=0:35þ 1=0:5þ 0:5=0:65þ 0=0:8;

lA2
¼ 0=6þ 0:5=7þ 1=8þ 0:5=9þ 0=10;

lB2
¼ 0=0:1þ 0:5=0:2þ 1=0:3þ 0:5=0:4þ 0=0:5:

Firstly, their cross entropy of fuzzy restriction is

HF A1;A2ð Þ ¼ 2:9484:

Secondly, their cross entropy of reliability restriction is

HR Z1; Z2ð Þ ¼ 1:2012:

Therefore, the comprehensive weighted cross entropy is

H0:5 Z1; Z2ð Þ ¼ 0:5� HF A1;A2ð Þ þ 1� 0:5ð Þ � HR Z1; Z2ð Þ
¼ 2:0748:

4 TOPSIS Approach Based on Cross Entropy
of Discrete Z-numbers

The TOPSIS method, produced by Hwang and Yoon [48],

has become a classic MCDM approach [39, 49–51]. Sim-

ilar to the VlseKriterijum-ska Optimizacija I Kompromisno

Resenje (VIKOR) method [13], TOPSIS evaluates the

priority of alternatives in view of the position of the

alternative between the positive and negative ideal solu-

tions. However, different from VIKOR, the TOPSIS

method is effective and simpler. In this section, a type of

extended TOPSIS method is used in the MCDM frame-

work where the alternatives are evaluated by discrete Z-

numbers.

For a MCDM problem, let A ¼ aij1� i�m; i 2 N�f g be
the set of all the provided alternatives and C ¼
cjj1� j� n; j 2 N�� �

be the collection of criteria for

evaluating the alternatives. The weight vector of criteria is

W ¼ wjj1� j� n; j 2 N�� �
, where wj ¼ W cj

� �
¼ zj ¼

Aj;Bj

� �
indicates the extent of the importance of the cri-

terion. D ¼ zij
� �

m�n
¼ Aij;Bij

� �� �
m�n

is the evaluation

matrix of the DM, where zij ¼ Aij;Bij

� �
is the discrete Z-

number as the DM’s evaluation about alternative ai over

criterion cj.

Step 1 Normalise the evaluation matrix.

Two types of criterions, namely benefits and costs, are

common. The information transformation regarding the

fuzzy restriction of the Z-number is necessary. For exam-

ple, the fuzzy restriction of zij ¼ Aij;Bij

� �
with regard to

the alternative ai under cj is one discrete fuzzy number with

its membership lAij
: xijk 2 Rj1� k� n; n 2 N�� �

! 0; 1½ �.
Thus, the following can exist:
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x0ijk ¼

xijk �min
ijk

xijk
� �

max
ijk

xijk
� �

�min
ijk

xijk
� � j 2 B

max
ijk

xijk
� �

� xijk

max
ijk

xijk
� �

�min
ijk

xijk
� � j 2 C

8
>>>>>>><

>>>>>>>:

; ð17Þ

where B is the set of benefit criteria, and C is the collection

of cost criteria. Moreover, lAij
x0ijk

	 

¼ lAij

xijk
� �

is satis-

fied. Therefore, the normalised evaluation information can

be marked as DN ¼ zNij

h i

m�n
¼ AN

ij ;Bij

	 
h i

m�n
.

Step 2 Acquire the weight vector of criteria.

When the DM states the importance of criteria by

combining Z-numbers and natural language terms, it is

necessary to acquire the weight vector of criteria to com-

plete the process of information fusion. In this step, a

method based on the information entropy of Z-number is

developed to solve the weight vector.

Definition 13 Let Z ¼ A;Bð Þ be a Z-number. Then, the

information entropy of Z ¼ A;Bð Þ is defined as

Hx Zð Þ ¼ xHf A;Að Þ þ 1� xð ÞHr Z; Zð Þ; ð18Þ

where Hx Zð Þ is the comprehensive weighted cross entropy

of Z ¼ A;Bð Þ, as depicted in Sect. 3.3.

Firstly, we calculate the information entropy for each

criterion as follows.

The Z-entropy Hx zj
� �

of the criteria cj is calculated

using Eq. (18).

Then, the criteria weights are calculated as follows:

nj ¼
Hx zj
� �

Pn

j¼1

Hx zj
� � ; ð19Þ

where nj � 0, and
Pn

j¼1

nj ¼ 1.

Therefore, the weight vector N ¼ njj1� i� n; i 2 N�� �

is completed.

Step 3 Obtain the positive and negative ideal solutions

under each criterion.

zþj ¼ max
i

zNij ¼ AN
imax;Bimax

� �
; ð20Þ

z�j ¼ min
i

zNij ¼ AN
imin;Bimin

� �
; ð21Þ

where zþj and z�j are the positive and negative ideal solu-

tions under criterion cj, respectively.

Step 4 Calculate the cross entropy of each alternative

and the positive and negative ideal solutions.

H ai; a
þð Þ ¼

Xn

j¼1

njH
x zNij ; z

þ
j

	 

; ð22Þ

H ai; a
�ð Þ ¼

Xn

j¼1

njH
x zNij ; z

�
j

	 

; ð23Þ

where H ai; a
þð Þ and H ai; a

�ð Þ are the cross entropy of the

alternative ai and the positive/negative ideal alternative,

respectively.

Step 5 Calculate the comprehensive evaluation index of

each alternative.

ri ¼
H ai; a

�ð Þ
H ai; a�ð Þ þ H ai; aþð Þ ; i ¼ 1; 2; . . .;m; ð24Þ

where ri is the comprehensive evaluation index of the

alternative ai.

Step 6 Rank the alternatives.

The larger the value of ri, the higher the priority of the

alternative ai.

5 Illustrative Example

Intense market competition forces companies to strengthen

their internal management, and HRM is an important part

of modern corporate governance [52, 53]. As a key link in

HRM, employee performance evaluation plays a consid-

erable role in business management. In addition to certain

quantitative assessment indicators, people are still accus-

tomed to use certain qualitative indicators in HRM. In

some cases, company managers prefer to use natural lan-

guage to assess the performance of their subordinates in

key areas. The process of performance appraisal can be

regarded as a decision-making activity. According to

Zadeh, the information from which the decision is based on

must be reliable to a certain extent [16]. Therefore, when

combined with natural language terms, a Z-number, which

is related to the issue of reliability restriction of informa-

tion, is appropriate as a tool for expressing assessment

information in HRM. In this section, an illustrative exam-

ple about the performance evaluation of HRM is presented

with the aid of the algorithm in Sect. 4.

A vacancy exists in a middle management position at

ABC Corporation. Therefore, the company’s top manage-

ment needs to select one of the best candidates to serve in

this position. The company’s HRM department has

undertaken this task and is assisting the company’s top

management to evaluate the performance of relevant can-

didates. The HRM department forms a temporary group,

including psychologists, domain experts and sociologists,

to determine the assessment indicators that need attention
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and to perform information fusion. The following criteria

are considered: leadership c1, planning and organisational

skills c2, judgment and decision ability c3 and adaptability

c4. The company’s top management has identified several

candidates ahead of time and has secretly determined the

importance of each evaluation criterion in natural language

terms. After interviews, questionnaires and certain small-

scale panel discussions, the ad hoc panel fills out the

assessment form for the candidates without any guidelines

of weights information. Furthermore, the information on

the importance of criteria will be made public to assist the

panel in the final decision-making information fusion. The

final evaluation information is presented in Table 5. The

codebooks of linguistic terms S and S0 are illustrated as

Figs. 2 and 3, respectively (Tables 2, 3, 4).

5.1 Application of the Proposed Approach

In this subsection, we use the proposed algorithm in Sect. 4

to aggregate information on decision evaluation texts.

Note The parameter x in Eq. (16) represents the DM’s

risk preference for information reliability. Therefore, we

assume that x is equal to 0.5 without loss of generality.

That is to say, only the situation in which the DM is risk

neutral is discussed in this section. x can be set to any

value in 0; 1½ � if necessary.
Step 1 Normalise the evaluation matrix.

Firstly, the linguistic terms in Z-number contexts are

converted into discrete fuzzy numbers on the basis of their

codebooks. Then, converting the evaluation values

according to Eq. (17) is unnecessary because all the criteria

are benefit ones.

Step 2 Acquire the weight vector of criteria.

According to the method of (18) and (19) in Sect. 4, the

Z-entropy of criteria and the weight vector are presented in

Tables 5 and 6, respectively.

Step 3 Obtain the positive and negative ideal solutions

under each criterion (Table 7).

Step 4 Calculate the cross entropy of each alternative

and the positive/negative ideal solution (Tables 8, 9, 10).

Step 5 Compute the comprehensive evaluation index of

each candidate according to Eq. (24) (Table 11).

Step 6 Rank the candidates.

Table 2 Evaluation matrix for candidates

c1 c2 c3 c4

a1 s4; s
0
4

� �
s5; s

0
2

� �
s6; s

0
2

� �
s5; s

0
3

� �

a2 s5; s
0
3

� �
s4; s

0
3

� �
s4; s

0
4

� �
s4; s

0
3

� �

a3 s4; s
0
2

� �
s3; s

0
4

� �
s5; s

0
3

� �
s6; s

0
2

� �

a4 s6; s
0
3

� �
s4; s

0
4

� �
s4; s

0
2

� �
s3; s

0
4

� �

Table 3 Codebook of linguistic terms for fuzzy restriction

Linguistic term in S Discrete fuzzy number

s0 : very poor 0=0þ 0:5=0:5þ 1=1þ 0:5=1:5þ 0=2

s1 : poor 0=1þ 0:5=1:5þ 1=2þ 0:5=2:5þ 0=3

s2 : slightly poor 0=2þ 0:5=2:5þ 1=3þ 0:5=3:5þ 0=4

s3 : fair 0=3þ 0:5=3:5þ 1=4þ 0:5=4:5þ 0=5

s4 : slightly good 0=4þ 0:5=4:5þ 1=5þ 0:5=5:5þ 0=6

s5 : good 0=5þ 0:5=5:5þ 1=6þ 0:5=6:5þ 0=7

s6 : very good 0=6þ 0:5=6:5þ 1=7þ 0:5=7:5þ 0=8

Table 4 Codebook of linguistic terms for reliability restriction

Linguistic term in S Discrete fuzzy number

s00 : very uncertain 0=0þ 0:5=0:05þ 1=0:1þ 0:5=0:2þ 0=0:3

s01 : uncertain 0=0:1þ 0:5=0:2þ 1=0:3þ 0:5=0:4þ 0=0:5

s02 : neutral 0=0:3þ 0:5=0:4þ 1=0:5þ 0:5=0:6þ 0=0:7

s03 : certain 0=0:5þ 0:5=0:6þ 1=0:7þ 0:5=0:8þ 0=0:9

s03 : very certain 0=0:7þ 0:5=0:8þ 1=0:9þ 0:5=0:95þ 0=1

Table 5 Z-entropy of criteria

c1 c2 c3 c4

Hx zj
� �

1.5932 1.1163 2.1376 1.6163

Table 6 Weight vector N of

criteria
Weight value n

c1 0.2465

c2 0.1727

c3 0.3307

c4 0.2501

Table 7 Linguistic term pairs of the positive/negative solutions

c1 c2 c3 c4

zþj s6; s
0
4

� �
s5; s

0
4

� �
s6; s

0
4

� �
s6; s

0
4

� �

z�j s4; s
0
2

� �
s3; s

0
2

� �
s4; s

0
2

� �
s3; s

0
2

� �

Table 8 Cross entropy of each candidate and the positive ideal

solution

H ai; a
þð Þ c1 c2 c3 c4

a1 1.0051 2.9930 2.9930 1.4296

a2 1.4296 1.3458 1.0051 1.8903

a3 3.9981 0.8376 1.4296 2.9930

a4 0.8852 0.4607 3.9981 1.3821
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In view of the comprehensive evaluation indices, the

priority of the candidates is as follows:

a2 	 a4 	 a1 	 a3: ð25Þ

Therefore, a2 and a3 are the highest and lowest rated

candidates, respectively.

5.2 Sensitivity Analysis

This subsection aims to perform the sensitivity analysis of

the proposed algorithm where the ranking result of alter-

natives may be affected by parameter x. As stated in

Sect. 3.3, parameter x reflects the DM’s distinct preference

about fuzzy and reliability restrictions when information

fusion occurs. Therefore, sensitivity analysis is necessary

for the present study. The value of parameter x will lie in

the set of xjx ¼ 0:1k; 0� k� 10; k 2 Nf g. The different

priorities of candidates under different values of x are

presented in Tables 12 and 13.

As shown in Tables 12 and 13, each candidate’s priority

is different as parameter x varies. Figure 1 shows a trend

chart of the changes of priorities.

As shown in Fig. 1, the decision preference parameter x
has a remarkable impact on candidates’ ranking by

affecting the relative importance of decision information

with respect to fuzzy and reliability restrictions. The pri-

orities of the candidates are consistent when x lies in

0:1; 0:5½ �. Furthermore, the ordering of candidates is con-

fusing when x belongs to 0:6; 1½ �. Moreover, the regulation

of x is seemingly disordered. However, certain trends

continue to be identifiable, such as the rise of the rankings

of candidates a1 and a3 are and the decline of those of

candidates a2 and a4.

Table 9 Cross entropy of each candidate and the negative ideal

solution

H ai; a
�ð Þ c1 c2 c3 c4

a1 2.9930 0.8376 1.0051 1.4382

a2 1.0613 0.9775 2.9930 0.9775

a3 0.0000 2.9930 1.0613 1.3821

a4 1.6057 3.3699 0.0000 2.9930

Table 10 Weighted cross

entropy of each candidate and

the positive/negative ideal

solution

H ai; a
þð Þ H ai; a

�ð Þ

a1 2.1120 1.5745

a2 1.3900 1.6647

a3 2.3514 1.2135

a4 1.9656 1.7263

Table 11 Comprehensive

evaluation index of each

candidate

Ranking index r

a1 0.4271

a2 0.5450

a3 0.3404

a4 0.4676

Table 12 Priority of candidates when 0�x\0:5

Priority 0 0.1 0.2 0.3 0.4

1 a2 a2 a2 a2 a2

2 a4 a4 a4 a4 a4

3 a1 a1 a1 a1 a1

4 a3 a3 a3 a3 a3

Table 13 Priority of candidates when 0:5\x� 1

Priority 0.6 0.7 0.8 0.9 1

1 a2 a1 a1 a1 a1

2 a1 a2 a3 a3 a3

3 a4 a4 a2 a4 a4

4 a3 a3 a4 a2 a2

0
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Fig. 2 Closeness trend of every candidate
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Fig. 1 Priority of candidates under different values of x
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To understand how the decision preference parameter x
affects the candidates’ ranking, every candidate’s closeness

trend and the weight trend of criteria are shown in Figs. 2

and 3.

As shown in Fig. 2, candidate a3 becomes better than a2
because their closeness has changed. Further details are

explained in the discussion that follows. Firstly, the weight

of c3 rapidly increases (Fig. 3). Therefore, z33 ¼ s5; s
0
3

� �

being superior to z23 ¼ s4; s
0
4

� �
will have an ever-increas-

ing contribution to a3 	 a2 (Table 2). Accordingly, z32 ¼
s3; s

0
4

� �

 z22 ¼ s4; s

0
3

� �
will have a gradual reduction in

the negative effect on a3 	 a2 as the weight of c2 decrea-

ses. Thus, the priority of a3 and a2 changes.

The change of the priority of candidates in Fig. 1 seems

chaotic. Here, such changes can be explained in conjunc-

tion with Figs. 2 and 3. Firstly, the weight of c3 increases

rapidly, whereas that of c2 decreases. Therefore, the

ranking of the candidates under criterion c3 becomes

increasingly important. Moreover, the priority of all the

candidates under c3 will be a1 	 a3 	 a2 	 a4 when x is

extremely close to one (Table 2). Consequently, the

closeness of a2 and a4 will gradually decrease, and that of

a1 and a3 will increase continuously (Fig. 2).

The preceding analysis reveals that the proposed algo-

rithm has a good performance on its decision preference

parameter. The result of the algorithm execution is con-

sistent with our expectation. Different values of parameter

can produce different rankings of candidates, which reflect

the different DMs’ preferences about information reliabil-

ity to a certain extent. Therefore, parameter x plays the

good role that we expect. Consequently, the preference

parameter x is necessary, and the comprehensive weighted

cross-entropy measure (16) of Z-numbers is reasonable.

5.3 Comparative Analysis

Comparative analysis is an important tool, through which a

decision-making approach can be examined in great depth.

This section uses comparative analysis to discuss the

feasibility and effectiveness of the proposed algorithm.

Three methods are used simultaneously to rank the candi-

dates for the middle management position presented in this

study. This analysis aids in proving the effectiveness and

applicability of our proposed method.

Aliyev [32] developed the distance measure of Z-num-

ber based on cut set as follows:

D Z1; Z2ð Þ ¼ 1

nþ 1

Xn

k¼1

aL1ak � aL2ak

�� ��þ aR1ak � aR2ak

�� ��
n o

þ 1

mþ 1

Xm

k¼1

bL1ak � bL2ak

�� ��þ bR1ak � bR2ak

�� ��
n o

:

ð26Þ

Thereafter, Eq. (26) is used to calculate the distance

between a certain alternative and the positive/negative

ideal solutions. Moreover, the ranking of alternatives can

be acquired on the basis of the priority indices.

Yaakob and Gegov [29] presented a new fuzzy TOPSIS

group decision-making (GDM) method based on Z-number

context. This approach is based on another method pro-

posed by Kang [28] for Z-number conversion. Assuming

one given Z-number Z ¼ A;Bð Þ, we have

a ¼
R
xlBdxR
ldx

; ð27Þ

where parameter a is the weight of the reliability restriction

B of Z ¼ A;Bð Þ. The middle parameter a is multiplied to

the fuzzy restriction A of Z ¼ A;Bð Þ. Therefore, the

weighted Z-number can be acquired. Consequently, the

decision-making problem where all the evaluation values

of alternatives are Z-numbers is converted to an ordinary

fuzzy MCDM where the evaluation values will be trian-

gular or trapezoidal fuzzy numbers.

Shen and Wang [13] presented a novel fuzzy VIKOR

decision-making method based on Z-number context. Their

Z-VIKOR approach is based on the comprehensive

weighted distance measure that they developed. Assuming

two given Z-numbers Z1 ¼ A1;B1ð Þ and Z2 ¼ A2;B2ð Þ, the
distance between them is

Dx Z1; Z2ð Þ ¼ xZRMD B1;B2ð Þ þ 1� xð ÞZHD pZ1 ; pZ2ð Þ;
ð28Þ

Table 14 Priorities produced by different methods

Method Priority

Aliyev’s method in [32] a1 	 a3 	 a2 	 a4

Yaakob’s method in [29] a1 	 a2 	 a3 	 a4

Shen’s method in [13] a1 	 a3 	 a4 	 a2

Proposed method (x ¼ 0:5) a2 	 a4 	 a1 	 a3

Proposed method (x ¼ 0:8) a1 	 a3 	 a2 	 a4
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where x is the weight parameter, ZRMD B1;B2ð Þ is the

distance measure of reliability restriction, and

ZHD pZ1 ; pZ2ð Þ is the distance measure of underlying

probability distributions. Therefore, the distance measure

between any two Z-numbers can be acquired. Conse-

quently, the decision-making problem where all the eval-

uation values of alternatives are Z-numbers can be solved

by using the extended Z-VIKOR MCDM method proposed

by Sheng and Wang.

Table 14 shows the priorities of the candidates produced

by different ranking algorithms.

As shown in Table 14, the rankings of candidates pro-

duced by [29, 32] are consistent with that proposed in the

present study when x ¼ 0:8. In addition, the optimal

candidate generated by using Shen and Wang’s algorithm

[13] is the same as the optimal one proposed here when

x ¼ 0:8. Further details about the comparative analysis are

presented as follows.

Firstly, Aliyev’s order is completely consistent with our

proposed order when x ¼ 0:8 (Table 14). Therefore,

Aliyev’s sorting result is only a special case of the sorting

result of the algorithm presented in this study under a

certain decision preference. However the method produced

in [32] for calculating the distance between Z-numbers is

problematic. In Eq. (26), the fuzzy and reliability restric-

tions of Z-number information are considered equally,

which results in a serious misinterpretation of the original

definition of Zadeh’s Z-number. Generally, Z1 ¼ A;Bð Þ
will not be equal to Z2 ¼ B;Að Þ in most situations. This

method simply considers Z-number as a pair of values

composed of two discrete fuzzy numbers. Therefore, the

priority result recommended by this approach is not

convincing.

Secondly, the ordering of candidates recommended by

Yaakob’s sorting algorithm [29] is similar to the result of

our proposed method when x ¼ 0:8. The best candidate is

a1, and the worst one is a4. Furthermore, as shown in

Figs. 1 and 2, the priority of a2 is in a decreasing trend,

whereas that of a3 is in an increasing trend. The sorting

method has reached a certain coincidence with our pro-

posed approach (x ¼ 0:8). Yaakob’s approach places

minimal emphasis on information reliability and objec-

tively places more attention on the fuzzy restriction of Z-

numbers. The authors’ algorithm is based on rigorous

mathematical proofs and has good consistency with tradi-

tional fuzzy theory, which is meaningful for the explora-

tory study of Z-number. However, this method of

processing Z-number does not consider Zadeh’s initial

explanation of Z-number, which is unsatisfactory.

Thirdly, Shen and Wang [13] developed one compre-

hensive weighted Z-distance measure. On this basis, they

proposed a Z-VIKOR MCDM framework. The optimal

candidate generated by Z-VIKOR is consistent with our

proposed approach, that is, a1 (x ¼ 0:8; Table 14). Thus,

the sorting results are generally consistent when parameter

x takes certain values. The optimal candidate recom-

mended by the decision-making method in the present

study is a2 when x takes certain smaller values (Sect. 5.2).

This indicates that the weight of the fuzzy restriction of Z-

number can affect the ranking result. Thus, A1;Bð Þ 6¼
A2;Bð Þ may be different in many cases. However, the Z-

distance measure developed by Shen and Wang is lacking

at this point. Therefore, in comparison with their sorting

method, the decision method in the present study is more

flexible and effective.

The comparison of the proposed approach with other

methods shows that the former is feasible and initially

reveals certain additional advantages. Parameter x reflects

the DM’s preference for information reliability to a certain

extent and can arrange the candidates’ ranking accordingly.

From this analysis, the ordering of candidates, which

cannot be produced by other methods, can be derived by

adjusting the value of x. Nevertheless, these sorting sorts

are reasonable because they are generated considering the

different preferences of information reliability.

On the basis of the preceding comparative analysis,

certain features of the proposed method can be obtained as

follows.

(1) The cross-entropy measure of discrete Z-numbers

considers the fuzzy and reliability restrictions of Z-

numbers simultaneously. The proposed method for

comparing two discrete Z-numbers is consistent with

Zadeh’s statement about Z-numbers. In comparison

with other methods, ours pays more attention to the

close relationship between the two components of Z-

number.

(2) The relative importance of ambiguity and reliability

restrictions of information, which involves the DM’s

preference during information fusion, should be

considered. The parameter x of cross entropy of

two discrete Z-numbers can reflect the DM’s pref-

erence. The proposed approach can solve substan-

tially complex decision problems by adjusting the

value of x.
(3) In view of the cross-entropy concept in this study,

the extended TOPSIS under discrete Z-evaluation is

constructed to solve the complex MCDM problem

where the reliability of information must be consid-

ered. The extended TOPSIS method enhances the

capability of the fuzzy TOPSIS method and expands

its application scope.

Generally, the proposed method is an in-depth study of

previous approaches and has practical feasibility and

effectiveness.
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6 Conclusions

Z-number considers the fuzzy and reliability restrictions of

information. Since Zadeh produced Z-number, researchers

have conducted extensive research on it. To minimise the

loss of information during Z-information processing, this

study discusses the cross entropy of discrete Z-numbers on

the basis of the cross entropy of discrete fuzzy numbers and

the cross entropy of probability distributions. Firstly, the

cross entropy of fuzzy restriction between discrete Z-

numbers is defined on the basis of the cross entropy of

discrete fuzzy numbers. Secondly, the cross entropy of the

reliability component of discrete Z-numbers is defined.

Thirdly, this study constructs a comprehensive weighted

cross entropy of discrete Z-numbers by adopting a risk

preference parameter. Moreover, an extended TOPSIS

method for the MCDM problem is developed. Finally, one

illustrative example about the HRM issue is presented to

illustrate the effectiveness of the proposed method.

Certain interesting paths worthy of further research are

as follows.

(1) The cross entropy of discrete Z-numbers is defined

on the basis of the cross entropy of discrete fuzzy

numbers. A good research path is possibly to discuss

the cross entropy of continuous Z-numbers.

(2) DMs are assumed honest in this study. However,

certain DMs may be dishonest and use strategic

weight manipulation in an attempt to obtain their

desired ranking of alternatives [54, 55]. The weight

information based on discrete Z-numbers is partially

reliable information. In certain decision scenarios,

DMs may implement strategic weight manipulation

by changing the reliability restriction of weight

information. Therefore, an interesting path is to

study the weight setting of MCDM in the context of

dishonesty.

(3) GDM and consensus research are important research

areas [56, 57]. In this study, DM’s risk preference

parameter of the comprehensive weighted cross

entropy is briefly discussed through sensitivity

analysis. However, in the real-world consensus-

reaching process, DMs often present different indi-

vidual concerns on alternatives [58]. Therefore, how

to determine DMs’ risk preference parameters in the

GDM problem remains to be further studied.
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Appendix: Proof of the properties of Eq. (16)

Proof

(1) In accordance with Definitions 8 and 12,

HF A1;A2ð Þ� 0 and HR Z1; Z2ð Þ� 0 exist.

Therefore, Hx Z1; Z2ð Þ ¼ xHF A1;A2ð Þ þ 1� xð ÞHR

Z1; Z2ð Þ� 0 is satisfied.

(2) On the basis of Definitions 8 and 12, if Z1 ¼ Z2, then

HF A1;A2ð Þ ¼ 0 and HR Z1; Z2ð Þ ¼ 0 exist.

Therefore, Hx Z1; Z2ð Þ ¼ xHF A1;A2ð Þ þ 1� xð ÞHR

Z1; Z2ð Þ ¼ 0 is satisfied.

(3) According to Definitions 4, 5, 8 and 12, if Z1 ¼ Z2,

then HF A1;A2ð Þ ¼ HF A2;A1ð Þ and HR Z1; Z2ð Þ ¼
HR Z2; Z1ð Þ exist.

Therefore, Hx Z1; Z2ð Þ ¼ Hx Z2; Z1ð Þ is satisfied. h
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