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Abstract Rough set theory is an effective mathematical

tool to deal with uncertain information. With the arrival of

the information age, we need to handle not only single-

source data sets, but also multi-source data sets. In real life;

most of the data we face are fuzzy multi-source data sets.

However, the rough set model has not been found for

multi-source fuzzy information systems. This paper aims to

study how to use the rough set model in multi-source fuzzy

environment. Firstly, we define a distance formula between

two objects in an information table and further propose a

tolerance relation through this formula. Secondly, the

supporting characteristic function is proposed by the

inclusion relation between tolerance classes and concept

set X. And then, from the perspective of multi-granulation,

each information source is regarded as a granularity. The

optimistic, pessimistic, generalized multi-granulation

rough set model and some important properties are dis-

cussed in multi-source fuzzy information systems. At the

same time, the uncertainty measurement are considered for

the different models. Finally, some experiments are carried

out to interpret and evaluate the validity and significance of

the approach.

Keywords Multi-source fuzzy information system �
Generalized multi-granulation � Optimistic multi-

granulation � Pessimistic multi-granulation � Uncertainty
measurement

1 Introduction

With the rapid development of computer sciences and

information technology, people’s ability to collect data has

been greatly enhanced. At the same time, information and

data in various fields have increased dramatically. But

these information and data are not accurate and complete,

most of the time the data we collected are fuzzy and

inaccurate data. How to deal with these fuzzy and inac-

curate data is a problem we need to overcome. In 1982,

Pawlak, a Polish mathematician, proposed rough set theory

[1]. Rough set theory is an effective tool to deal with

incomplete information, such as inaccurate, inconsistent

and incomplete data. The mathematical basis of rough set

theory is mature and does not require necessary prior

knowledge. In recent years, many scholars have also done a

lot of researches and theoretical promotion on rough set

theory [2–5]. Combining fuzzy set theory with rough set

theory mainly includes fuzzy rough set model, rough fuzzy

set model [6, 7] and vaguely quantified rough sets (VQRS)

model [8]. Rough set model is an important tool for

granular computing, in which each partition corresponds to

a basic granule, so the concept of extended partition can get

the granular-based extended rough set model. Zakowski [9]

extended partition to cover and gave a covering-based

rough set model. At present, granular-based rough set

model extension mainly combines covering and formal

concept analysis theory and Zhu [10] studied covering-

based rough set extension model from the perspective of
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topology. In the background of fuzzy datasets, Xu et al.

[11] proposed granular computing approach to two-way

learning based on formal concept analysis. Bonikowski

[12] combined formal concept analysis to study covering

rough set model. In addition, Wang and Feng et al. [13]

gave the granular computing method of incomplete infor-

mation system. In Refs. [14, 15], the Pawlak-based rough

set granular computing model is regarded as a single

granular model, and the multi-granulation rough set model

is extended. Since then, many scholars have begun to study

multi-granulation rough sets [16–18]. Xu et al. [19] pro-

posed two kinds of generalized multi-granulation double-

quantitative decision-theoretic rough set models. She et al.

[20] introduced the idea of three decision makings into the

multi-granulation rough set model and proposed the five-

valued semantics of the multi-granulation rough set model.

Li et al. [21] proposed a decision theory rough set (DTRS)

method of multi-granulation for fc-decision information

system.

Now, we no longer face a single-source information

system, but a multi-source information system in our real

life. Most of the data we need to deal with are fuzzy multi-

source information systems. At present, the main way to

deal with multi-source information system is through

information fusion [22–24]. Specially, in the background of

multi-source decision system, Sang et al. [25] proposed

three kinds of multi-source decision methods based on

considering the uncertainty of decision-making process.

Based on fuzzy multi-source incomplete information sys-

tem, Xu et al. [26] proposed information fusion approach

based on information entropy. From the perspective of

granular computing, Xu and Yu [27] completed the

selection of sources by internal and external confidence and

then fused multi-source information by triangular fuzzy

granules. Li and Zhang [28] proposed a method of infor-

mation fusion based on conditional entropy, which realized

the information fusion of incomplete multi-source infor-

mation system. In multi-source interval-valued data sets,

Huang and Li [29] proposed a method of information

fusion based on trapezoidal fuzzy granules and realized the

dynamic fusion method when the data source changes

dynamically. In application, document [30] combined

multi-sensor and information fusion to realize the predic-

tion of machine tool residual life. The literature [31] pro-

posed two new fusion methods to propose a new

framework for human behavior recognition. However, up

to now, no scholars have proposed a rough set model for

multi-source fuzzy information system (MsFIS). How to

give the rough set model of MsFIS directly is our moti-

vation to study this topic.

Uncertainty is a prominent feature of rough sets, so a lot

of uncertainty measurement [32–36] methods have been

proposed in the extension of rough sets. Teng and Fan et al.

[37] proposed a reasonable measurement method of

uncertainty based on attribute recognition ability. Chen and

Yu et al. [38] proposed uncertainty measurement methods

for real data sets, including neighborhood accuracy,

information quantity, neighborhood entropy and informa-

tion granularity. Hu and Zhang et al. [39] proposed a fuzzy

rough set model based on Gauss kernel approximation and

introduced information entropy to evaluate the uncertainty

of the core matrix and to calculate the approximation

operator. Wei et al. [40] proposed a new comprehensive

entropy measurement method to measure the uncertainty of

UHP hydrodynamics and UHP hydrodynamics by consid-

ering the uncertainty of fuzziness and hysteresis. Huang

and Guo et al. [41] discussed the hierarchical structure and

uncertainty measure of IF-approximation space. Intuition-

istic fuzzy granularity, intuitionistic fuzzy information

entropy, intuitionistic fuzzy rough entropy and intuition-

istic fuzzy information Shannon entropy are used to

describe the uncertainty of optimistic and pessimistic

multi-granulation intuitionistic fuzzy rough sets in multi-

granulation intuitionistic fuzzy approximation space. Xiao

et al. have systematically studied the uncertain database in

document [42–44]. In this paper, aiming at the multi-

granulation rough set models of MsFIS, we propose the

related uncertainty measurement methods.

The rest of this paper is structured as follows: In Sect. 2,

we mainly review the basic concepts related to multi-

granulation rough sets and multi-source information sys-

tems. In Sect. 3, we first define the distance between

objects in a single information system and then propose a

tolerance relationship. Through this relationship, the sup-

port characteristic function of MsFIS is defined, and fur-

ther, the multi-granulation rough set model and its related

properties of MsFIS are studied. In Sect. 4, we propose

different uncertainty measurement methods for the multi-

granulation rough set model of MsFIS. In Sect. 5, a series

of experiments are carried out to illustrate the relationship

among different models. The conclusion is given in Sect. 6.

2 Preliminaries

This section mainly reviews the basic concepts of Pawlak’s

rough set model, multi-granulation rough set model and

multi-source fuzzy information system. More detailed

descriptions can be found in the literature [1, 14, 15, 45].

2.1 Rough Set Model

For a given family of equivalence relations P, we obtain

the corresponding indistinguishable relations ind(P), which

can determine the corresponding basic knowledge. Fur-

thermore, general knowledge can be obtained by using
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basic knowledge to do union. Based on this understanding,

Polish mathematician Pawlak put forward the concept of

rough set in 1982 and thus established the rough set theory.

Let R be the equivalence relation on the universe U, and

call (U, R) an approximate space. For 8X � U, if X can be

expressed as a union of several R-basic knowledge, then

X is R-definable, or X is R-exact set; otherwise, X is R-

undefinable, or X is R-rough set. The exact set can be

expressed as the union of basic knowledge, so that it can be

described accurately. For rough sets, two exact sets can be

used to give approximate descriptions in the upper and

lower directions, respectively. This is called upper

approximation set and lower approximation set.

Let (U, R) be an approximate space. For 8 X � U, the

lower approximation set of X and the upper approximation

set of X are defined as follows:

RðXÞ ¼ x 2 U j ½x�R � X
� �

;

RðXÞ ¼ x 2 U j ½x�R \ X 6¼ ;
� �

:
ð1Þ

Through the upper approximation set and the lower

approximation set, we can divide the universe into three

regions: positive region ðPOSRðXÞ ¼ RðXÞÞ, negative

region ðNEGRðXÞ ¼ U � RðXÞÞ and boundary region

ðBnRðXÞ ¼ RðXÞ � RðXÞÞ.
Through the uncertainty analysis of the set X, we can

know that the larger the boundary region of the set, the

more inaccurate the set will be. Next, we use digital fea-

tures to measure the inaccuracy of the set, that is, to cal-

culate the approximate accuracy or roughness of the set to

represent the size of the boundary region.

Let (U, R) be an approximate space. For

X � U ðX 6¼ ;Þ, the approximate accuracy of X and the

roughness of X are defined as follows:

aRðXÞ ¼
��RðXÞ

��
��RðXÞ

�� ; qRðXÞ ¼ 1� aRðXÞ: ð2Þ

2.2 Multi-granulation Rough Set Model

As we all know, the classical rough set theory is a theory

formed on a single granularity space under an equivalence

relation. In order to apply rough sets to more complex

information systems, Qian et al. first proposed multi-

granulation rough sets. Multi-granulation rough set is a

rough set model based on multiple equivalence relations,

which uses partition induced by multiple equivalence

relations to carry out approximate characterization of

concepts.

The support characteristic function is defined by the

inclusion relation between the equivalence class and the

concept set. Given an information system

I ¼ ðU;AT ;V ;FÞ, Ai � AT; i ¼ 1; 2; . . .; s ðs� 2jAT jÞ. For

any X � U, the support characteristic function of x for X is

denoted as:

SAi

X ðxÞ ¼
1; ½x�Ai

� X

0; else

�
ði� 2jATjÞ: ð3Þ

Let I ¼ ðU;AT;V ;FÞ be an information system, Ai � AT ,

i ¼ 1; 2; . . .; s ðs� 2jAT jÞ, b 2 ð0:5; 1� (b as the information

level for
Ps

i¼1 Ai), for any X � U, SAi

X ðxÞ is the support

characteristic function of x for X. For any X � U, the lower

approximation and upper approximation of X for
Ps

i¼1 Ai

are defined as follows:

GMPs

i¼1
Ai
ðXÞb ¼ x 2 Uj

Ps
i¼1 S

Ai

X ðxÞ
s

� b

� �
;

GMPs

i¼1
Ai
ðXÞb ¼ x 2 Uj

Ps
i¼1ð1� SAi

XcðxÞÞ
s

[ 1� b

� �
:

ð4Þ

Generalized multi-granulation rough set is the generaliza-

tion of optimistic multi-granulation rough set and pes-

simistic multi-granulation rough set. Based on this, the

definition of pessimistic multi-granulation rough set is

given from the perspective of supporting eigenfunction.

Given an information system I ¼ ðU;AT ;V ;FÞ,
Ai � AT ; i ¼ 1; 2; . . .; s ðs� 2jAT jÞ. For any X � U, the

pessimistic lower approximation and pessimistic upper

approximation of X for
Ps

i¼1 Ai are defined as follows:

PMPs

i¼1
Ai
ðXÞ ¼ x 2 U

�� ^s
i¼1 ð½x�Ai

� XÞ
n o

¼ x 2 U
���
Ps

i¼1 S
Ai

X ðxÞ
s

� 1g;
ð5Þ

PMPs

i¼1
Ai
ðXÞ ¼ x 2 U

�� _s
i¼1 ð½x�Ai

\ X 6¼ øÞ
n o

¼ x 2 Uj
Ps

i¼1ð1� SAi

XcðxÞÞ
s

[ 0

� �
:

ð6Þ

where ‘‘_’’and ‘‘^’’denote ‘‘or’’ and ‘‘and’’, respectively.

Similarly, the definition of optimistic multi-granulation

rough set is given from the perspective of supporting

characteristic function.

Given an information system I ¼ ðU;AT ;V ;FÞ,
Ai � AT , i ¼ 1; 2; . . .; s ðs� 2jAT jÞ. For any X � U, the
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optimistic lower approximation and optimistic upper

approximation of X for
Ps

i¼1 Ai are defined as follows:

OMPs

i¼1
Ai
ðXÞ ¼ x 2 U

�� _s
i¼1 ð½x�Ai

� XÞ
n o

¼ x 2 U
���
Ps

i¼1 S
Ai

X ðxÞ
s

� 0g;
ð7Þ

OMPs

i¼1
Ai
ðXÞ ¼ x 2 U

�� ^s
i¼1 ð½x�Ai

\ X 6¼ øÞ
n o

¼ x 2 U
���
Ps

i¼1ð1� SAi

XcðxÞÞ
s

[ 1g:
ð8Þ

where ‘‘_’’and ‘‘^’’denote ‘‘or’’ and ‘‘and’’, respectively.

2.3 Multi-source Fuzzy Information Systems

As the name implies, a multi-source information system is

to obtain information tables from different sources. The

structure of the information table obtained may be the same

or different. This paper mainly discusses the case of the

same structure, that is, the same object, attributes and the

value of the object’s attributes have the same digital

characteristics under different information sources.

Let MsIS ¼ fIS1; IS2; . . .; ISqg be an isomorphic multi-

source information system, where ISi ¼ ðU;AT ;Vi;FiÞ,
U represents the entirety of the object we are studying, AT

represents the set of features or attributes of the research

object, Vi represents the range of values of the attribute

under source i, and Fi represents the corresponding relation

between the object and the feature under the information

source i. Similarly, the isomorphic multi-source fuzzy

information system (MsFIS) is also composed of a plurality

of quads in the form of FISi ¼ ðU;AT ;Vi;FiÞ. Different
from MsIS, the range of Vi in MsFIS is between 0 and 1.

A MsFIS is shown in Fig. 1.

3 Multi-granulation Rough Set Model for Multi-
source Fuzzy Information System

In this section, we propose a multi-granulation rough set

model for multi-source fuzzy data sets. They are the gen-

eralized multi-granulation rough set model of MsFIS and

two special multi-granulation rough set models: the opti-

mistic multi-granulation rough set model of MsFIS and the

pessimistic multi-granulation rough set model of MsFIS.

As we all know, classical rough set theory can help us to

do knowledge discovery and data mining from inaccurate

and incomplete data. But when rough set is applied to

fuzzy data sets, the original equivalence relation is no

longer applicable. Therefore, many scholars extend the

rough set model by defining different relations in order to

solve different problems. In this paper, we propose a tol-

erance relation through Formula (9) so that study the rough

set model for multi-source fuzzy data sets. That is to say,

when the distance between two objects is less than a

threshold, we say that there is a certain relation between the

two objects.

Definition 3.1 Let FIS ¼ fU; ~A;V ;Fg be a fuzzy infor-

mation system, where U ¼ fx1; x2; . . .; xng,
A ¼ fa1; a2; . . .; apg. For any xi; xj 2 U, we define the

distance between two objects in a fuzzy information system

as follows:

dis ~Aðxi; xjÞ ¼
1

j~Aj
Xj ~Aj

k¼1

���akðxiÞ � akðxjÞ
���: ð9Þ

Definition 3.2 Let FIS ¼ fU; ~A;V ;Fg be a fuzzy infor-

mation system. We define a binary tolerance relation in a

fuzzy information system as follows:

TRð~AÞ ¼ fðx; yÞ j dis ~Aðx; yÞ� dg: ð10Þ

where d is a threshold. Obviously, this binary tolerance

relation satisfies reflexivity and symmetry. The tolerance

class ½x�TRð ~AÞ induced by the tolerance TRð~AÞ is denoted as:

½x�TRð ~AÞ ¼ fy j ðx; yÞ 2 TRð~AÞg.

Definition 3.3 Given a multi-source fuzzy information

system MsFIS ¼ fFIS1;FIS2; . . .;FISqg, where FISi ¼
ðU; ~Ai;Vi;FiÞ (i� q). For any X � U, denoted:

F ~Ai

X ðxÞ ¼
1; ½x�TR ~Ai

� X

0; else:
ði� qÞ:

8
<

:
ð11Þ

The function F ~Ai

X ðxÞ is called the support characteristic

function of x for X under the information source i, which is

used to describe the inclusion relation between tolerance

maja2a1a
1x
2x

ix

nx

1

2

FI

FI

FI

FI
l

Fig. 1 A multi-source fuzzy information system
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class ½x�TR ~Ai

and concept X , which indicates whether object

x accurately supports X by ~Ai.

For convenience, we abbreviate the tolerance class

½x�TRð ~AiÞ of x to ½x� ~Ai
under the information source i. There-

fore, in the subsequent analysis, the support characteristic

function is expressed as follows:

F ~Ai

X ðxÞ ¼
1; ½x� ~Ai

� X

0; else:
ði� qÞ:

(

ð12Þ

3.1 Generalized Multi-granulation Rough Set Model

for Multi-source Fuzzy Information Systems

Definition 3.4 Let MsFIS ¼ fFIS1;FIS2; . . .;FISqg be a

multi-source fuzzy information system, where FISi ¼
ðU; ~Ai;Vi;FiÞ (i� q). b is a threshold which satisfied

b 2 ð0:5; 1�. X � U, F ~Ai

X ðxÞ is the support characteristic

function of x for X. For any X � U, the lower approximate

set and the upper approximate set of MsFIS are defined as

follows:

MsFPq

i¼1
~Ai
ðXÞb ¼ x 2 U

���
Pq

i¼1 F
~Ai

X ðxÞ
q

� bg;

MsFPq

i¼1
~Ai
ðXÞb ¼ x 2 U

��
Pq

i¼1ð1� F ~Ai

XcðxÞÞ
q

[ 1� b

)

:

(

ð13Þ

The order pair hMsFPq

i¼1
~Ai
ðXÞb;MsFPq

i¼1
~Ai
ðXÞbi is

called generalized multi-granulation rough set model for

MsFIS. And

POS
bPq

i¼1
~Ai

¼MsFPq

i¼1
~Ai
ðXÞb; NEG

bPq

i¼1
~Ai

¼ U �MsFPq

i¼1
~Ai
ðXÞb;

Bn
bPq

i¼1
~Ai

¼MsFPq

i¼1
~Ai
ðXÞb �MsFPq

i¼1
~Ai
ðXÞb:

ð14Þ

Theorem 3.1 Let MsFIS ¼ fFIS1;FIS2; . . .;FISqg be a

multi-source fuzzy information system, where FISi ¼
ðU; ~Ai;Vi;FiÞ (i� q). b is a threshold which satisfied

b 2 ð0:5; 1�. For any X; Y � U, the following properties of

the upper and lower approximation operators are true.

(1) MsFPq

i¼1
~Ai
ð�XÞb ¼ �MsFPq

i¼1
~Ai
ðXÞb;

MsFPq

i¼1
~Ai
ð�XÞb ¼ �MsFPq

i¼1
~Ai
ðXÞb:

(2) MsFPq

i¼1
~Ai
ðXÞb � X � MsFPq

i¼1
~Ai
ðXÞb:

(3) MsFPq

i¼1
~Ai
ð;Þb ¼ MsFPq

i¼1
~Ai
ð;Þb ¼ ;:

(4) MsFPq

i¼1
~Ai
ðUÞb ¼ MsFPq

i¼1
~Ai
ðUÞb ¼ U:

(5) X � Y ) MsFPq

i¼1
~Ai
ðXÞb � MsFPq

i¼1
~Ai
ðYÞb;

MsFPq

i¼1
~Ai
ðXÞb � MsFPq

i¼1
~Ai
ðYÞb:

(6) MsFPq

i¼1
~Ai
ðX \ YÞb � MsFPq

i¼1
~Ai
ðXÞb \MsFPq

i¼1

~AiðYÞb; MsFPq

i¼1
~Ai
ðX \ YÞb

� MsFPq

i¼1
~Ai
ðXÞb \MsFPq

i¼1
~Ai
ðYÞb:

(7) MsFPq

i¼1
~Ai
ðX [ YÞb 	 MsFPq

i¼1
~Ai
ðXÞb [MsFPq

i¼1

~AiðYÞb; MsFPq

i¼1
~Ai
ðX [ YÞb 	 MsFPq

i¼1
~Ai
ðXÞb

[MsFPq

i¼1
~Ai
ðYÞb:

Proof

(1) Because of x 2 MsFPq

i¼1
~Ai
ðXÞb ,

Pq

i¼1
ð1�F

~Ai
Xc
ðxÞÞ

q
[ 1� b,

we can have x 2 �MsFPq

i¼1
~Ai
ðXÞb ,

Pq

i¼1
ð1�F

~Ai
Xc
ðxÞÞ

q
� 1� b ,

Pq

i¼1
F

~Ai
Xc
ðxÞ

q
�

b , x 2 MsFPq

i¼1
~Ai
ð�XÞb: Because of

x 2 MsFPq

i¼1
~Ai
ðXÞb ,

Pq

i¼1
F

~Ai
X
ðxÞ

q
� b, we can have

x 2 �MsFPq

i¼1
~Ai
ðXÞb ,

Pq

i¼1
F

~Ai
X
ðxÞ

q
\b ,

1�
Pq

i¼1
F

~Ai
X
ðxÞ

q
[ 1� b ,

Pq

i¼1
ð1�F

~Ai
X
ðxÞÞ

q
¼

Pq

i¼1
ð1�F

~Ai
ðXcÞc ðxÞÞ

q
[

1� b , x 2 MsFPq

i¼1
~Ai
ð�XÞb:

(2) For any x 2 MsFPq

i¼1
~Ai
ðXÞb, we can know

Pq

i¼1
F

~Ai
X
ðxÞ

q
� b. And b 2 ð0; 1�, so 9 i� q, s.t

½x� ~Ai
� X, so x 2 X. Known by the arbitrariness

of x, MsFPq

i¼1
~Ai
ðXÞb � X. Because of

MsFPq

i¼1
~Ai
ð�XÞb ¼ �MsFPq

i¼1
~Ai
ðXÞb � �X,

we can obtain X � MsFPq

i¼1
~Ai
ðXÞb. Therefore,

the property (2) has been proved.

(3) Because of F ~Ai

; ðxÞ ¼ 0, we can obtain

MsFPq

i¼1
~Ai
ð;Þb ¼ x 2 Uj

Pq

i¼1
F

~Ai
; ðxÞ

q
¼

Pq

i¼1
0

q
¼

�

0� bg ¼ ;;
and MsFPq

i¼1
~Ai
ð;Þb ¼

x 2 Uj
Pq

i¼1
F

~Ai
; ðxÞ

q
¼

Pq

i¼1
0

q
¼ 0[ 1� b

� �
¼ ;:
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(4) Because of F ~Ai

U ðxÞ ¼ 1, we can have

MsFPq

i¼1
~Ai
ðUÞb ¼ x 2 Uj

Pq

i¼1
F

~Ai
U
ðxÞ

q
¼

Pq

i¼1
1

q
¼

�

1� b

�
¼ U;

and MsFPq

i¼1
~Ai
ðUÞb ¼ x 2 Uj

Pq

i¼1
F

~Ai
U
ðxÞ

q
¼

�

Pq

i¼1
1

q
¼ 1[ 1� b

�
¼ U:

(5) For any x 2 MsFPq

i¼1
~Ai
ðXÞb, we can know

Pq

i¼1
F

~Ai
X
ðxÞ

q
� b. And because of X � Y , F ~Ai

X ðxÞ

�F ~Ai

Y ðxÞ. So we can obtain

Pq

i¼1
F

~Ai
Y
ðxÞ

q
�

Pq

i¼1
F

~Ai
X
ðxÞ

q

� b. Therefore, x 2 MsFPq

i¼1
~Ai
ðYÞb:

For any x 2 MsFPq

i¼1
~Ai
ðXÞb, we can

know

Pq

i¼1
ð1�F

~Ai
Xc
ðxÞÞ

q
[ 1� b. And because

of X � Y , Yc � Xc F ~Ai

YcðxÞ�F ~Ai

XcðxÞ. So

we can obtain

Pq

i¼1
ð1�F

~Ai
Yc
ðxÞÞ

q
�

Pq

i¼1
ð1�F

~Ai
Xc
ðxÞÞ

q
[

1� b. Therefore, x 2 MsFPq

i¼1
~Ai
ðYÞb:

(6) For any x 2 MsFPq

i¼1
~Ai
ðX \ YÞb, we can know

Pq

i¼1
F

~Ai
X\Y ðxÞ

q
¼

Pq

i¼1
ðF

~Ai
X
ðxÞÞ^ðF

~Ai
Y
ðxÞÞ

q
� b.

Thus,

Pq

i¼1
F

~Ai
X
ðxÞ^

Pq

i¼1
F

~Ai
Y
ðxÞ

q
�

Pq

i¼1
ðF

~Ai
X
ðxÞ^F

~Ai
Y
ðxÞÞ

q

� b. So
Pq

i¼1
F

~Ai
X
ðxÞ

q
� b and

Pq

i¼1
F

~Ai
Y
ðxÞ

q

� b, i.e., x 2 MsFPq

i¼1
~Ai
ðXÞb and x 2

MsFPq

i¼1
~Ai
ðYÞb. Therefore,

x 2 MsFPq

i¼1
~Ai
ðXÞb \MsFPq

i¼1
~Ai
ðYÞb: For

any x 2 MsFPq

i¼1
~Ai
ðX \ YÞb, we can know

Pq

i¼1
ð1�F

~Ai
ðX\YÞc ðxÞÞ

q
[ 1� b ,

Pq

i¼1
F

~Ai
ðX\YÞc ðxÞ
q

\b ,
Pq

i¼1
F

~Ai
ðXc[YcÞðxÞ
q

\b. Thus,
Pq

i¼1
F

~Ai
Xc
ðxÞ_

Pq

i¼1
F

~Ai
Yc
ðxÞ

q

�
Pq

i¼1
ðF

~Ai
Xc
ðxÞ_F

~Ai
Yc
ðxÞÞ

q
�

Pq

i¼1
F

~Ai
ðXc[YcÞðxÞ
q

\b.

So

Pq

i¼1
F

~Ai
Xc
ðxÞ

q
\b and

Pq

i¼1
F

~Ai
Yc
ðxÞ

q
\b, 1�

Pq

i¼1
F

~Ai
Xc
ðxÞ

q

[ 1� b and 1�
Pq

i¼1
F

~Ai
Yc
ðxÞ

q
[ 1� b. i.e.,

x 2 MsFPq

i¼1
~Ai
ðXÞb and x 2 MsFPq

i¼1
~Ai
ðYÞb.

Therefore, x 2 MsFPq

i¼1
~Ai
ðXÞb \MsFPq

i¼1
~Ai
ðYÞb:

(7) For any x 2 MsFPq

i¼1
~Ai
ðXÞb [MsFPq

i¼1
~Ai
ðYÞb,

i.e., x 2 MsFPq

i¼1
~Ai
ðXÞb or x 2 MsFPq

i¼1
~Ai
ðYÞb.

We can know

Pq

i¼1
F

~Ai
X
ðxÞ

q
� b or

Pq

i¼1
F

~Ai
Y
ðxÞ

q
� b.

Thus,

Pq

i¼1
F

~Ai
X[Y ðxÞ

q
�

Pq

i¼1
ðF

~Ai
X
ðxÞ_F

~Ai
Y
ðxÞÞ

q
�

Pq

i¼1
F

~Ai
X
ðxÞ^

Pq

i¼1
F

~Ai
Y
ðxÞ

q
� b. So x 2 MsFPq

i¼1
~Ai

ðX [ YÞb. For any x 2 MsFPq

i¼1
~Ai
ðXÞb [MsF

Pq
i¼1

~AiðYÞb, i.e., x 2 MsFPq

i¼1
~Ai
ðXÞb or x 2 MsF

Pq
i¼1

~AiðYÞb. We can know

Pq

i¼1
ð1�F

~Ai
Xc
ðxÞÞ

q
[

1� b or

Pq

i¼1
ð1�F

~Ai
Yc
ðxÞÞ

q
[ 1� b. Thus,

Pq

i¼1
F

~Ai
Xc
ðxÞ

q

\b or

Pq

i¼1
F

~Ai
Yc
ðxÞ

q
\b, and

Pq

i¼1
F

~Ai
ðX[YÞc ðxÞ
q

¼
Pq

i¼1
F

~Ai
ðXc\YcÞðxÞ
q

¼
Pq

i¼1
ðF

~Ai
Xc
ðxÞ^F

~Ai
Yc
ðxÞÞ

q
�

Pq

i¼1
F

~Ai
Xc
ðxÞ^

Pq

i¼1
F

~Ai
Yc
ðxÞ

q
\b. So

Pq

i¼1
ð1�F

~Ai
ðX[YÞc ðxÞÞ

q
[

1� b, i.e., x 2 MsFPq

i¼1
~Ai
ðX [ YÞb.

h

Theorem 3.2 Let MsFIS ¼ fFIS1;FIS2; . . .;FISqg be a

multi-source decision information system, where DISi ¼
ðU; ~Ai;Vi;FiÞ (i� q). b is a threshold which satisfied

b 2 ð0:5; 1�. X � U, for different levels of information

(a� b), the following properties are established.

(1) MsFPq

i¼1
~Ai
ðXÞb � MsFPq

i¼1
~Ai
ðXÞa.

(2) MsFPq

i¼1
~Ai
ðXÞa � MsFPq

i¼1
~Ai
ðXÞb.

Proof

(1) For 8x 2 MsFPq

i¼1
~Ai
ðXÞb, we know

Pq

i¼1
F

~Ai
X
ðxÞ

q
� b.

And a� b, so
Pq

i¼1
F

~Ai
X
ðxÞ

q
� a, x 2 MsFPq

i¼1
~Ai
ðXÞa.

Known by the arbitrariness of x,

MsFPq

i¼1
~Ai
ðXÞb � MsFPq

i¼1
~Ai
ðXÞa:

(2)
For 8x 2 MsFPq

i¼1
~Ai
ðXÞa, we know

Pq

i¼1
ð1�F

~Ai
Xc
ðxÞÞ

q
[

1� a. And a� b, so 1� a� 1� b,
Pq

i¼1
ð1�F

~Ai
Xc
ðxÞÞ

q
[

1� b, x 2 MsFPq

i¼1
~Ai
ðXÞb. Known by the

arbitrariness of x,MsFPq

i¼1
~Ai
ðXÞa � MsFPq

i¼1
~Ai
ðXÞb:

h
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3.2 Optimistic Multi-granulation Rough Set Model

for Multi-source Fuzzy Information Systems

Definition 3.5 Let MsFIS ¼ fFIS1;FIS2; . . .;FISqg be a

multi-source fuzzy information system, where FISi ¼
ðU; ~Ai;Vi;FiÞ (i� q). X � U, F ~Ai

X ðxÞ is the support char-

acteristic function of x for X. For any X � U, the optimistic

lower approximate set and the optimistic upper approxi-

mate set of MsFIS are defined as follows:

OMsFPq

i¼1
~Ai
ðXÞ ¼ x 2 U

�� _q
i¼1 ð½x� ~Ai

� XÞ
n o

¼ x 2 Uj
Pq

i¼1 F
~Ai

X ðxÞ
q

[ 0

( )

;
ð15Þ

OMsFPq

i¼1
~Ai
ðXÞ ¼ x 2 U

�� ^q
i¼1 ð½x� ~Ai

\ X 6¼ øÞ
n o

¼ x 2 Uj
Pq

i¼1ð1� F ~Ai

XcðxÞÞ
q

¼ 1

( )

:

ð16Þ

The order pair hOMsFPq

i¼1
~Ai
ðXÞ;OMsFPq

i¼1
~Ai
ðXÞi is

called optimistic multi-granulation rough set model for

MsFIS. And

POSOPq

i¼1
~Ai
¼ OMsFPq

i¼1
~Ai
ðXÞ; NEGOPq

i¼1
~Ai

¼ U � OMsFPq

i¼1
~Ai
ðXÞ; BnOPq

i¼1
~Ai

¼ OMsFPq

i¼1
~Ai
ðXÞ � OMsFPq

i¼1
~Ai
ðXÞ:

ð17Þ

Theorem 3.3 Let MsFIS ¼ fFIS1;FIS2; . . .;FISqg be a

multi-source fuzzy information system, where FISi ¼
ðU; ~Ai;Vi;FiÞ (i� q). For any X; Y � U, the following

properties of the optimistic upper and lower approximation

operators are true.

(1) OMsFPq

i¼1
~Ai
ð�XÞ ¼ �OMsFPq

i¼1
~Ai
ðXÞ;

OMsFPq

i¼1
~Ai
ð�XÞ ¼ �OMsFPq

i¼1
~Ai
ðXÞ:

(2) OMsFPq

i¼1
~Ai
ðXÞ � X � OMsFPq

i¼1
~Ai
ðXÞ:

(3) OMsFPq

i¼1
~Ai
ð;Þ ¼ OMsFPq

i¼1
~Ai
ð;Þ ¼ ;:

(4) OMsFPq

i¼1
~Ai
ðUÞ ¼ OMsFPq

i¼1
~Ai
ðUÞ ¼ U:

(5) X � Y ) OMsFPq

i¼1
~Ai
ðXÞ � OMsFPq

i¼1
~Ai
ðYÞ;

OMsFPq

i¼1
~Ai
ðXÞ � OMsFPq

i¼1
~Ai
ðYÞ:

(6) OMsFPq

i¼1
~Ai
ðX \ YÞ �

OMsFPq

i¼1
~Ai
ðXÞ \ OMsFPq

i¼1
~Ai
ðYÞ;

OMsFPq

i¼1
~Ai
ðX \ YÞ � OMsFPq

i¼1
~Ai

ðXÞ \ OMsFPq

i¼1
~Ai
ðYÞ:

(7) OMsFPq

i¼1
~Ai
ðX [ YÞ 	 OMsFPq

i¼1
~Ai
ðXÞ[

OMsFPq

i¼1
~Ai
ðYÞ; OMsFPq

i¼1
~Ai
ðX [ YÞ

	 OMsFPq

i¼1
~Ai
ðXÞ[ OMsFPq

i¼1
~Ai
ðYÞ:

Proof It is similarly to Theorem 3.1. h

3.3 Pessimistic Multi-granulation Rough Set Model

for Multi-source Fuzzy Information Systems

Definition 3.6 Let MsFIS ¼ fFIS1;FIS2; . . .;FISqg be a

multi-source fuzzy information system, where FISi ¼
ðU; ~Ai;Vi;FiÞ (i� q). X � U, F ~Ai

X ðxÞ is the support char-

acteristic function of x for X. For any X � U, the pes-

simistic lower approximate set and the pessimistic upper

approximate set of MsFIS are defined as follows:

PMsFPq

i¼1
~Ai
ðXÞ ¼ x 2 U

�� ^q
i¼1 ð½x� ~Ai

� XÞ
n o

¼ x 2 U
���
Pq

i¼1 F
~Ai

X ðxÞ
q

¼ 1g;
ð18Þ

PMsFPq

i¼1
~Ai
ðXÞ ¼ x 2 U

�� _q
i¼1 ð½x� ~Ai

\ X 6¼ øÞ
n o

¼ x 2 U
���
Pq

i¼1ð1�F ~Ai

XcðxÞÞ
q

[ 0g:

ð19Þ

The order pair hPMsFPq

i¼1
~Ai
ðXÞ;PMsFPq

i¼1
~Ai
ðXÞi is

called pessimistic multi-granulation rough set model for

MsFIS. And

POSPPq

i¼1
~Ai
¼PMsFPq

i¼1
~Ai
ðXÞ; NEGPPq

i¼1
~Ai
¼ U � PMsFPq

i¼1
~Ai
ðXÞ;

BnPPq

i¼1
~Ai
¼PMsFPq

i¼1
~Ai
ðXÞ � PMsFPq

i¼1
~Ai
ðXÞ:

ð20Þ

Theorem 3.4 Let MsFIS ¼ fFIS1;FIS2; . . .;FISqg be a

multi-source fuzzy information system, where FISi ¼
ðU; ~Ai;Vi;FiÞ (i� q). For any X; Y � U, the following

properties of the optimistic upper and lower approximation

operators are true.

(1) PMsFPq

i¼1
~Ai
ð�XÞ ¼ �PMsFPq

i¼1
~Ai
ðXÞ;

PMsFPq

i¼1
~Ai
ð�XÞ ¼ �PMsFPq

i¼1
~Ai
ðXÞ:

(2) PMsFPq

i¼1
~Ai
ðXÞ � X � PMsFPq

i¼1
~Ai
ðXÞ:

(3) PMsFPq

i¼1
~Ai
ð;Þ ¼ PMsFPq

i¼1
~Ai
ð;Þ ¼ ;:

(4) PMsFPq

i¼1
~Ai
ðUÞ ¼ PMsFPq

i¼1
~Ai
ðUÞ ¼ U:

(5) X � Y ) PMsFPq

i¼1
~Ai
ðXÞ � PMsFPq

i¼1
~Ai
ðYÞ;

PMsFPq

i¼1
~Ai
ðXÞ � PMsFPq

i¼1
~Ai
ðYÞ:
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(6) PMsFPq

i¼1
~Ai
ðX \ YÞ ¼ PMsFPq

i¼1
~Ai
ðXÞ\

PMsFPq

i¼1
~Ai
ðYÞ; PMsFPq

i¼1
~Ai
ðX \ YÞ

� PMsFPq

i¼1
~Ai
ðXÞ\ PMsFPq

i¼1
~Ai
ðYÞ:

(7) PMsFPq

i¼1
~Ai
ðX [ YÞ 	 PMsFPq

i¼1
~Ai
ðXÞ[

PMsFPq

i¼1
~Ai
ðYÞ; PMsFPq

i¼1
~Ai
ðX [ YÞ ¼

PMsFPq

i¼1
~Ai
ðXÞ [ PMsFPq

i¼1
~Ai
ðYÞ:

Proof It is similarly to Theorem 3.1. h

Theorem 3.5 Let MsFIS ¼ fFIS1;FIS2; . . .;FISqg be a

multi-source fuzzy information system, where FISi ¼
ðU; ~Ai;Vi;FiÞ (i� q). For any X � U, the following prop-

erties are established.

(1) PMsFPq

i¼1
~Ai
ðXÞ � MsFPq

i¼1
~Ai
ðXÞb

� OMsFPq

i¼1
~Ai
ðXÞ,

(2) OMsFPq

i¼1
~Ai
ðXÞ � MsFPq

i¼1
~Ai
ðXÞb

� PMsFPq

i¼1
~Ai
ðXÞ.

Proof It can be proved by Definitions 3.4–3.6 and The-

orem 3.2. h

Example 3.1 The multi-source fuzzy information system

shown in Table 1 is three information tables obtained by

six patients going to three hospitals for physical examina-

tion. ui represents patients, and ai represents symptoms. If

the patient has a certain symptom, it is represented by 1,

and if not, 0 is used. But it is often difficult for a doctor to

determine exactly whether a patient has a certain symptom.

In this case, use a number in [0,1] to indicate the severity of

the symptom.
According to Definition 3.1, we calculate the distance of

objects under three sources as shown in Tables 2, 3 and 4

and then calculate the tolerance classes of objects under

each source.

Tolerance classes under Source 1 when threshold

d = 0.06:

½u1� ~A1
¼ fu1; u2; u3g, ½u2� ~A1

¼ fu1; u2; u3g, ½u3� ~A1
¼

fu1; u2; u3g, ½u4� ~A1
¼ fu4; u5; u6g, ½u5� ~A1

¼ fu4; u5g,
½u6� ~A1

¼ fu4; u6g.
Tolerance classes under Source 2 when threshold

d = 0.06:

½u1� ~A2
¼ fu1; u2; u4; u5g, ½u2� ~A2

¼ fu1; u2; u4g, ½u3� ~A2
¼

fu3; u4; u5g, ½u4� ~A2
¼ fu1; u2; u3; u4; u5g, ½u5� ~A2

¼
fu1; u3; u4; u5g, ½u6� ~A2

¼ fu6g.
Tolerance classes under Source 3 when threshold

d = 0.06:

½u1� ~A3
¼ fu1; u2; u4g, ½u2� ~A3

¼ fu1; u2; u6g, ½u3� ~A3
¼

fu3g, ½u4� ~A3
¼ fu1; u4g, ½u5� ~A3

¼ fu5g, ½u6� ~A3
¼

fu1; u2; u6g.
Finally, given a concept set X ¼ fu1; u2; u4; u6g, sup-

pose the patients in set X were finally diagnosed as not ill.

the support characteristic function of X and the support

characteristic function of Xc under each source are

computed.

Table 1 A multi-source fuzzy information system

FIS1 FIS2 FIS3

a1 a2 a3 a4 a1 a2 a3 a4 a1 a2 a3 a4

u1 0.6912 0.6812 0.5209 0.7213 0.7513 0.6352 0.4894 0.6785 0.7403 0.6312 0.5342 0.6652

u2 0.7203 0.7813 0.4631 0.6809 0.8324 0.5963 0.5473 0.6853 0.8432 0.5905 0.5434 0.6890

u3 0.7018 0.7306 0.5408 0.7419 0.6984 0.7368 0.4696 0.5893 0.7209 0.7601 0.6205 0.5234

u4 0.8315 0.6218 0.4706 0.6458 0.7463 0.6684 0.4784 0.6893 0.6912 0.6009 0.4709 0.5756

u5 0.7853 0.6456 0.5296 0.5678 0.6854 0.6593 0.5295 0.6132 0.5731 0.7253 0.5234 0.6112

u6 0.8614 0.6602 0.5899 0.6843 0.9143 0.8063 0.6296 0.6815 0.8201 0.6704 0.4904 0.7231

Table 2 The distance between objects under the first fuzzy infor-

mation system

dis ~A1
u1 u2 u3 u4 u5 u6

u1 0.0000 0.0569 0.0251 0.0814 0.0730 0.0743

u2 0.0569 0.0000 0.0520 0.0783 0.0951 0.0981

u3 0.0251 0.0520 0.0000 0.1012 0.0885 0.0842

u4 0.0814 0.0783 0.1012 0.0000 0.0517 0.0565

u5 0.0730 0.0951 0.0885 0.0517 0.0000 0.0669

u6 0.0743 0.0981 0.0842 0.0565 0.0669 0.0000
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F ~A1

X ðu1Þ ¼ 0; F ~A2

X ðu1Þ ¼ 0; F ~A3

X ðu1Þ ¼ 1; F ~A1

Xcðu1Þ ¼ 0;

F ~A2

Xcðu1Þ ¼ 0; F ~A3

Xcðu1Þ ¼ 0;F ~A1

X ðu2Þ ¼ 0; F ~A2

X ðu2Þ ¼ 1;

F ~A3

X ðu2Þ ¼ 1; F ~A1

Xcðu2Þ ¼ 0; F ~A2

Xcðu2Þ ¼ 0; F ~A3

Xcðu2Þ ¼ 0;

F ~A1

X ðu3Þ ¼ 0; F ~A2

X ðu3Þ ¼ 0; F ~A3

X ðu3Þ ¼ 0; F ~A1

Xcðu3Þ ¼ 0;

F ~A2

Xcðu3Þ ¼ 0; F ~A3

Xcðu3Þ ¼ 1;F ~A1

X ðu4Þ ¼ 0; F ~A2

X ðu4Þ ¼ 0;

F ~A3

X ðu4Þ ¼ 1; F ~A1

Xcðu4Þ ¼ 0; F ~A2

Xcðu4Þ ¼ 0; F ~A3

Xcðu4Þ ¼ 0;

F ~A1

X ðu5Þ ¼ 0; F ~A2

X ðu5Þ ¼ 0; F ~A3

X ðu5Þ ¼ 0; F ~A1

Xcðu5Þ ¼ 0;

F ~A2

Xcðu5Þ ¼ 0; F ~A3

Xcðu5Þ ¼ 1;F ~A1

X ðu6Þ ¼ 1; F ~A2

X ðu6Þ ¼ 1;

F ~A3

X ðu6Þ ¼ 1; F ~A1

Xcðu6Þ ¼ 0; F ~A2

Xcðu6Þ ¼ 0; F ~A3

Xcðu6Þ ¼ 0:

According to Definition 3.4, the generalized lower and

upper approximation set of set X when b ¼ 0:6 are

obtained as follows:

MsFP3

i¼1
~Ai
ðXÞb ¼ fu2; u6g;

MsFP3

i¼1
~Ai
ðXÞb ¼ fu1; u2; u3; u4; u5; u6g:

So the positive region, the negative region and the

boundary region of the set X are as follows:

POS
bP3

i¼1
~Ai

¼ fu2; u6g; NEGbP3

i¼1
~Ai

¼ ;;

Bn
bP3

i¼1
~Ai

¼ fu1; u3; u4; u5g:

This means that patients No. 2 and No. 6 are definitely not

sick, while patients No. 1, No. 3, No. 4 and No. 5 may or

may not be sick.

According to Definition 3.5, the optimistic lower and

upper approximation set of set X are obtained as follows:

OMsFP3

i¼1
~Ai
ðXÞ ¼ fu1; u2; u4; u6g; OMsFP3

i¼1
~Ai

ðXÞ ¼ fu1; u2; u4; u6g:

So the positive region, the negative region and the

boundary region of the set X are as follows:

POSOP3

i¼1
~Ai

¼ fu1; u2; u4; u6g; NEGOP3

i¼1
~Ai

¼ fu3; u5g; BnOP3

i¼1
~Ai

¼ ;:

This means that patients No. 1, No. 2, No. 4 and No. 6 are

definitely not sick, while patients No. 3 and No. 5 are

definitely sick.

According to Definition 3.6, the pessimism lower and

upper approximation sets of set X are obtained as follows:

PMsFP3

i¼1
~Ai
ðXÞ ¼ fu6g; PMsFP3

i¼1
~Ai
ðXÞ

¼ fu1; u2; u3; u4; u5; u6g:

So the positive region, the negative region and the

boundary region of the set X are as follows:

POSPP3

i¼1
~Ai

¼ fu6g; NEGPP3

i¼1
~Ai

¼ ;; BnPP3

i¼1
~Ai

¼ fu1; u2; u3; u4; u5g:

This means that patients NO. 6 is definitely not sick, while

patients NO. 1, NO. 2, NO. 3, NO. 4 and NO. 5 may or may

not be sick.

Table 3 The distance between objects under the second fuzzy

information system

dis ~A2
u1 u2 u3 u4 u5 u6

u1 0.0000 0.0462 0.0659 0.0150 0.0488 0.1193

u2 0.0462 0.0000 0.1120 0.0578 0.0750 0.0945

u3 0.0659 0.1120 0.0000 0.0563 0.0436 0.1344

u4 0.0150 0.0578 0.0563 0.0000 0.0493 0.1162

u5 0.0488 0.0750 0.0436 0.0493 0.0000 0.1361

u6 0.1193 0.0945 0.1344 0.1162 0.1361 0.0000

Table 4 The distance between objects under the third fuzzy infor-

mation system

dis ~A3
u1 u2 u3 u4 u5 u6

u1 0.0000 0.0441 0.0941 0.0581 0.0815 0.0552

u2 0.0441 0.0000 0.1337 0.0871 0.1257 0.0475

u3 0.0941 0.1337 0.0000 0.0977 0.0919 0.1297

u4 0.0581 0.0871 0.0977 0.0000 0.0826 0.0914

u5 0.0815 0.1257 0.0919 0.0826 0.0000 0.1117

u6 0.0552 0.0475 0.1297 0.0914 0.1117 0.0000
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4 Uncertainty Measurement of Multi-source
Fuzzy Information System

In this section, for the multi-granulation rough set models

of MsFIS proposed in Sect. 3, several different uncertainty

measurement methods are proposed. It is well known that

the uncertainty of knowledge is caused by boundary region.

The larger the boundary area is, the lower accuracy and the

higher roughness. On the contrary, the smaller the bound-

ary area is, the higher accuracy and the lower roughness.

Definition 4.1 Let MsFIS ¼ fFIS1;FIS2; . . .;FISqg be a

multi-source fuzzy information system, where FISi ¼
ðU; ~Ai;Vi;FiÞ (i� q). ~Ai represents the condition attribute

set under the source i. For any X � U, the type-I general-

ized approximation accuracy and roughness of the set

X with respect to
Pq

i¼1
~Ai are defined as follows:

aIMsFðXÞb ¼

����MsFPq

i¼1
~Ai
ðXÞb

����
����MsFPq

i¼1
~Ai
ðXÞb

����

; qIMsFðXÞb ¼ 1� aIMsFðXÞb:

ð21Þ

Similarly, the type-I optimistic approximation accuracy

and roughness of the set X with respect to
Pq

i¼1
~Ai are

defined as follows:

aIOMsFðXÞ¼

����OMsFPq

i¼1
~Ai
ðXÞ

����
����OMsFPq

i¼1
~Ai
ðXÞ

����

; qIOMsFðXÞ¼1�aIOMsFðXÞ:

ð22Þ

The type-I pessimistic approximation accuracy and

roughness of the set X with respect to
Pq

i¼1
~Ai are defined

as follows:

aIPMsFðXÞ ¼

����PMsFPq

i¼1
~Ai
ðXÞ

����
����PMsFPq

i¼1
~Ai
ðXÞ

����

; qIPMsFðXÞ ¼ 1� aIPMsFðXÞ:

ð23Þ

Definition 4.1 defines the accuracy and roughness of the

set from the perspective of the approximate set. Because

for a rough set, the larger the boundary field, the coarser the

set. We give a definition of type II roughness and

approximate accuracy.

Definition 4.2 Let MsFIS ¼ fFIS1;FIS2; . . .;FISqg be a

multi-source fuzzy information system, where FISi ¼
ðU; ~Ai;Vi;FiÞ (i� q). ~Ai represents the condition attribute

set under the source i. For any X � U, the type II gener-

alized approximation accuracy and roughness of the set

X with respect to
Pq

i¼1
~Ai are defined as follows:

aIIMsFðXÞb ¼1� qIIMsFðXÞb

qIIMsFðXÞb ¼

����MsFPq

i¼1
~Ai
ðXÞb �MsFPq

i¼1
~Ai
ðXÞb

����
��U

�� ¼

����Bn
bPq

i¼1
~Ai

ðXÞ
����

��U
�� :

ð24Þ

Similarly, the type II optimistic approximation accuracy

and roughness of the set X with respect to
Pq

i¼1
~Ai are

defined as follows:

aIIOMsFðXÞ ¼1� qIIOMsFðXÞ;

qIIOMsFðXÞ ¼

����OMsFPq

i¼1
~Ai
ðXÞ � OMsFPq

i¼1
~Ai
ðXÞ

����
��U

��

¼

����Bn
OPq

i¼1
~Ai

ðXÞ
����

��U
�� :

ð25Þ

the type II pessimistic approximation accuracy and

roughness of the set X with respect to
Pq

i¼1
~Ai are defined

as follows:

aIIPMsFðXÞ ¼1� qIIPMsFðXÞ;

¼

����PMsFPq

i¼1
~Ai
ðXÞ � PMsFPq

i¼1
~Ai
ðXÞ

����
��U

��

¼

����Bn
PPq

i¼1
~Ai

ðXÞ
����

��U
�� :

ð26Þ

Definition 4.3 Let MsFIS ¼ fFIS1;FIS2; . . .;FISqg be a

multi-source fuzzy information system, where FISi ¼
ðU; ~Ai;Vi;FiÞ (i� q). ~Ai represents the condition attribute

set under the source i. For any X � U, the generalized

approximation quality of the set X with respect to
Pq

i¼1
~Ai

is defined as follows:
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xMsFðXÞb ¼

����MsFPq

i¼1
~Ai
ðXÞb

����
��U

�� ¼

����POS
bPq

i¼1
~Ai

ðXÞ
����

��U
�� :

ð27Þ

Similarly, the optimistic approximation quality and

pessimistic approximation quality of the set X with respect

to
Pq

i¼1
~Ai are defined as follows:

xOMsFðXÞ ¼

����OMsFPq

i¼1
~Ai
ðXÞ

����
��U

�� ¼

����POS
OPq

i¼1
~Ai

ðXÞ
����

��U
�� ;

xPMsFðXÞ ¼

����PMsFPq

i¼1
~Ai
ðXÞ

����
��U

�� ¼

����POS
PPq

i¼1
~Ai

ðXÞ
����

��U
�� :

ð28Þ

Theorem 4.1 Let MsFIS ¼ fFIS1;FIS2; . . .;FISqg be a

multi-source fuzzy information system, where FISi ¼
ðU; ~Ai;Vi;FiÞ (i� q). For any X; Y � U, there are several

relations between several uncertainty measures.

(1) aIPMsFðXÞ� aIMsFðXÞb � aIOMsFðXÞ;
qIOMsFðXÞ� qIMsFðXÞb � qIPMsFðXÞ:

(2) aIIPMsFðXÞ� aIIMsFðXÞb � aIIOMsFðXÞ;
qIIOMsFðXÞ� qIIMsFðXÞb � qIIPMsFðXÞ:

(3) xPMsFðXÞ�xMsFðXÞb �xOMsFðXÞ:

Proof It is easy to prove by definition. h

Example 4.1 (Continue Example 3.1) For

X ¼ fu1; u2; u4; u6g, the type I generalized approximation

accuracy and roughness of the set X with respect to
P3

i¼1
~Ai

are computed as follows: aIMsFðXÞ0:6 ¼ 1
3
; qIMsFðXÞ0:6 ¼ 2

3
:

The type II generalized approximation accuracy and

roughness of the set X with respect to
P3

i¼1
~Ai are defined

as follows: aIIMsFðXÞ0:6 ¼ 1
3
; qIIMsFðXÞ0:6 ¼ 2

3
: The

generalized approximation quality of the set X with respect

to
P3

i¼1
~Ai is defined as follows: xMsFðXÞ0:6 ¼ 1

3
:

For X ¼ fu1; u2; u4; u6g, the type I optimistic approxi-

mation accuracy and roughness of the set X with respect to
P3

i¼1
~Ai are computed as follows: aIOMsFðXÞ ¼

1; qIOMsFðXÞ ¼ 0: The type II optimistic approximation

accuracy and roughness of the set X with respect to
P3

i¼1
~Ai

are defined as follows: aIIOMsFðXÞ ¼ 1; qIIOMsFðXÞ ¼ 0: The

optimistic approximation quality of the set X with respect

to
P3

i¼1
~Ai is defined as follows: xOMsFðXÞ ¼ 2

3
:

For X ¼ fu1; u2; u4; u6g, the type I pessimistic approxi-

mation accuracy and roughness of the set X with respect to
P3

i¼1
~Ai are computed as follows: aIPMsFðXÞ ¼

1
6
; qIMsFðXÞ ¼ 5

6
: The type II pessimistic approximation

accuracy and roughness of the set X with respect to
P3

i¼1
~Ai

are defined as follows: aIIPMsFðXÞ ¼ 1
6
; qIIPMsFðXÞ ¼ 5

6
: The

pessimistic approximation quality of the set X with respect

to
P3

i¼1
~Ai is defined as follows: xPMsFðXÞ ¼ 1

6
:

5 Experiment Evaluations

In this paper, three kinds of multi-granulation rough set

models for MsFIS are proposed, and uncertainty mea-

surement methods related to approximate sets are defined.

In this section, in order to prove the correctness and

practicability of the related theory, we propose an Algo-

rithm 1 for calculating the uncertainty of multi-granulation

rough sets of MsFIS. In this paper, we only propose the

generalized multi-granulation correlation uncertainty

algorithm for MsFIS. The corresponding pessimistic and

optimistic algorithm can be realized by changing the

threshold b, which is not discussed in this paper. Then a

series of experiments are carried out to demonstrate the

effectiveness of the Algorithm 1 by downloading data sets

from machine learning database.
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We analyze the time complexity of the Algorithm 1 as

shown below. From step 3 to step 9, the distance between

objects under each source is calculated, and the time

complexity is OðjUj2 
 jAj 
 qÞ (q is the number of sour-

ces.). From step 11 to step 20, the tolerance classes of each

object under each source are computed, and the time

complexity is OðjUj2 
 qÞ. From step 21 to step 35, we

calculate the sum of support characteristic function of each

element for a given concept and the complement according

to
Pq

i¼1 FISi, and the time complexity is OðjUj 
 qÞ. From
step 37 to step 44, the upper and lower approximation sets

of X are calculated, and the time complexity is O(|U|).

5.1 Generation of Multi-source Fuzzy Information

System

As we all know, we can’t get multi-source fuzzy data sets

directly from UCI(http://archive.ics.uci.edu/ml/data-

sets.html). In order to obtain the data needed in the

experiment, we fuzzify the data set to make it a fuzzy

information system and then obtain a multi-source fuzzy

information system by adding white noise and random

noise. The specific operation methods are given as follows.

Next, we introduce the method of adding white noise to the

original data. First, a set of numbers ðn1; n2; . . .; nqÞ satis-
fying normal distribution is generated. Add white noise as

follows:

FISiðx;aÞ ¼
FISðx;aÞ þ ni; ðif 0� FISðx;aÞ þ nij j�1Þ

FISðx;aÞ; else:

(

ð29Þ

Similarly, the method of adding random noise is as follows:

FISiðx; aÞ ¼
FISðx; aÞ þ ri; ðif 0� FISðx; aÞ þ rij j� 1Þ

FISðx; aÞ; else:

(

ð30Þ

where FIS(x, a) denotes the value of object x under attri-

bute a in the original fuzzy information system, FISiðx; aÞ
denotes the value of object x under attribute a in the ith

fuzzy information system which adding noise. Then we

randomly select 40% of the original data table to add white

noise and then randomly select 20% of the remaining data

to add random noise. The rest of the data information

remains unchanged. Finally, we obtained a multi-source

fuzzy information system.

5.2 Comparison of Uncertainty Measures of Three

Multi-granulation Rough Sets in MsFIS

In this experiment, we downloaded two data sets from UCI,

named ‘‘winequality-red’’ and ‘‘winequality-white’’

(‘‘winequality-red’’ and ‘‘winequality-white’’ are not fuzzy

information tables, after processing, they become fuzzy

information tables) and then randomly generated two fuzzy

data sets. The four data sets are used as the original

information system to generate a multi-source fuzzy

information system with 10 sources. More detailed infor-

mation on these four data sets is given in Table 5. The

entire experiment was run on a private computer. The

specific operating environment (including hardware and

software) is shown in Table 6.

In this paper, we conducted 10 experiments on the same

data set by changing noise data. Because the generalized

multi-granulation rough set of MsFIS is related to the

selection of threshold b, we make b ¼ 0:6 in the process of

experiment. Because the distances of objects under dif-

ferent datasets are different, we choose different thresholds

d for different datasets. In the experimental process of

dataset own-data1, d ¼ 0:1; in the experimental process of

dataset winequality-red and winequality-white, d ¼ 0:01;

and in the experimental process of dataset own-data2,

d ¼ 0:06. The selection of concepts is a subset randomly

generated by universe U. The uncertainties of the three

rough set models corresponding to each data set are shown

in Tables 7, 8, 9 and 10, respectively.

Table 5 Specific information

about the data sets
No. Dataset name Capacity Objects Attributes Number of sources

1 own-data1 10200 170 6 10

2 winequality-red 175890 1599 11 10

3 own-data2 210000 3000 7 10

4 winequality-white 538780 4898 11 10

Table 6 Specific information about the operating environment

Name Model Parameter

CPU Intel(R) Core(TM) i3-2370M 2.40 GHz

Platform MATLAB R2016b

System Windows 7 64 bit

Memory DDR3 4 GB; 1600 Mhz

Hard Disk MQ01ABD050 500 GB
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In order to see more intuitively and concisely the dif-

ferences among the three models with different uncertainty

measures, the experimental results in Tables 7, 8, 9 and 10

are shown in Figs. 2, 3, 4 and 5.

The following conclusions can be drawn from the

experimental results.

• From Figs. 2, 3, 4 and 5, we can see that the pessimistic

approximation accuracy of type I is less than the

generalized approximation accuracy of type I is less

than the type I optimistic approximation accuracy; the

type I optimistic roughness is less than the generalized

roughness of type I is less than the type I pessimistic

roughness. Similarly, the pessimistic approximation

accuracy of type II is less than the generalized

approximation accuracy of type II is less than the type

II optimistic approximation accuracy; the type II

optimistic roughness is less than the generalized

roughness of type II is less than the type II pessimistic

roughness. The pessimistic approximation quality is

less than the generalized approximation quality is less

than the optimistic approximation quality. The exper-

imental results satisfy Theorem 4.1.

• At the time of object selection, the optimistic multi-

granulation rough set of MsFIS is too loose to be

sufficiently accurate to characterize the concept. The

main reason is that the optimistic multi-granulation

rough set of MsFIS has a positive description when

selecting objects. The object only needs to support the

concept in at least one source. For objects with possible

descriptions, it is possible to support the concept under

all sources. This requirement will add a lot of useless

Table 7 Uncertainty measurement on ‘‘own-data1’’

No. aI bI aII bII x

G O P G O P G O P G O P G O P

1 0.6893 1.0000 0.1720 0.3107 0.0000 0.8280 0.8118 1.0000 0.2353 0.1882 0.0000 0.7647 0.4176 0.5000 0.1588

2 0.7400 0.9884 0.0938 0.2600 0.0116 0.9063 0.8471 0.9941 0.1471 0.1529 0.0059 0.8529 0.4353 0.5000 0.0882

3 0.7228 0.9651 0.0897 0.2772 0.0349 0.9103 0.8353 0.9824 0.1647 0.1647 0.0176 0.8353 0.4294 0.4882 0.0824

4 0.7228 0.9824 0.1161 0.2772 0.0176 0.8839 0.8353 0.9824 0.1941 0.1647 0.0176 0.8059 0.4294 0.4824 0.1059

5 0.6731 0.9882 0.0485 0.3269 0.0118 0.9515 0.8000 0.9941 0.0765 0.2000 0.0059 0.9235 0.4118 0.4941 0.0471

6 0.7100 0.9767 0.0625 0.2900 0.0233 0.9375 0.8294 0.9882 0.1176 0.1706 0.0118 0.8824 0.4176 0.4941 0.0588

7 0.7300 0.9882 0.1447 0.2700 0.0118 0.8553 0.8412 0.9941 0.2353 0.1588 0.0059 0.7647 0.4294 0.4941 0.1294

8 0.7653 1.0000 0.1039 0.2347 0.0000 0.8961 0.8647 1.0000 0.1882 0.1353 0.0000 0.8118 0.4412 0.5000 0.0941

9 0.7475 1.0000 0.2039 0.2525 0.0000 0.7961 0.8529 1.0000 0.2882 0.1471 0.0000 0.7118 0.4353 0.5000 0.1824

10 0.7551 1.0000 0.1645 0.2449 0.0000 0.8355 0.8588 1.0000 0.2529 0.1412 0.0000 0.7471 0.4353 0.5000 0.1471

Table 8 Uncertainty measurement on ‘‘winequality-red’’

No. aI bI aII bII x

G O P G O P G O P G O P G O P

1 0.7741 1.0000 0.6691 0.2259 0.0000 0.3309 0.8724 1.0000 0.8018 0.1276 0.0000 0.1982 0.4371 0.4997 0.4009

2 0.7519 0.9975 0.6601 0.2481 0.0025 0.3399 0.8580 0.9987 0.7949 0.1420 0.0013 0.2051 0.4303 0.4991 0.3984

3 0.7014 0.9925 0.6736 0.2986 0.0075 0.3264 0.8243 0.9962 0.8049 0.1757 0.0038 0.1951 0.4128 0.4978 0.4028

4 0.6946 0.9975 0.6736 0.3054 0.0025 0.3264 0.8199 0.9987 0.8049 0.1801 0.0013 0.1951 0.4096 0.4997 0.4028

5 0.8200 0.9962 0.6708 0.1800 0.0038 0.3292 0.9012 0.9981 0.8030 0.0988 0.0019 0.1970 0.4503 0.4984 0.4015

6 0.7580 1.0000 0.6736 0.2420 0.0000 0.3264 0.8624 1.0000 0.8049 0.1376 0.0000 0.1951 0.4309 0.4997 0.4028

7 0.7214 0.9988 0.6726 0.2786 0.0012 0.3274 0.8386 0.9994 0.8043 0.1614 0.0006 0.1957 0.4178 0.4997 0.4021

8 0.7402 0.9975 0.6649 0.2598 0.0025 0.3351 0.8505 0.9987 0.7986 0.1495 0.0013 0.2014 0.4259 0.4997 0.3996

9 0.7260 0.9962 0.6712 0.2740 0.0038 0.3288 0.8412 0.9981 0.8030 0.1588 0.0019 0.1970 0.4209 0.4984 0.4021

10 0.7260 0.9950 0.6736 0.2740 0.0050 0.3264 0.8412 0.9975 0.8049 0.1588 0.0025 0.1951 0.4209 0.4976 0.4028
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descriptions in the lower approximation. In the upper

approximation, many possible descriptions may be lost,

which will make the conception of the concept

inaccurate. Conversely, the pessimistic multi-granula-

tion rough set of MsFIS is too strict on the concept of

domain.

• Because the pessimistic multi-granulation rough set and

optimistic multi-granulation rough set models of MsFIS

have limitations in practical application, we propose a

generalized multi-granulation rough set model for

MsFIS, which uses an information level b 2 ð0:5; 1�
to control the selection of objects. Threshold b is used

to control that the object can be described positively in

most sources, and at the same time, the object that may

be described below the corresponding level is deleted.

• Obviously, from Figs. 2, 3, 4 and 5, we can see that the

results of different models in different data sets are

inconsistent. Therefore, in practical application, differ-

ent fields should select models according to their own

requirements. Moreover, the uncertainty obtained by

different measurement methods is not entirely consis-

tent, so it is necessary to adopt different measures. In

actual application, we also need to choose reasonable

measurement methods according to different schemes.

6 Conclusions

From the perspective of multi-granulation, this paper

considers the source of MsFIS as granularity and proposes

the rough set model suitable for MsFIS: generalized multi-

Table 9 Uncertainty measurement on ‘‘own-data2’’

No. aI bI aII bII x

G O P G O P G O P G O P G O P

1 0.8822 0.9990 0.1387 0.1178 0.0010 0.8613 0.9583 0.9997 0.4037 0.0417 0.0003 0.5963 0.3120 0.3330 0.0960

2 0.8777 0.9980 0.0936 0.1223 0.0020 0.9064 0.9567 0.9993 0.3287 0.0433 0.0007 0.6713 0.3110 0.3330 0.0693

3 0.8650 0.9980 0.0821 0.1350 0.0020 0.9179 0.9517 0.9993 0.2993 0.0483 0.0007 0.7007 0.3097 0.3330 0.0627

4 0.8700 1.0000 0.2642 0.1300 0.0000 0.7358 0.9537 1.0000 0.5740 0.0463 0.0000 0.4260 0.3100 0.3333 0.1530

5 0.8686 0.9990 0.0553 0.1314 0.0010 0.9447 0.9537 0.9997 0.2307 0.0463 0.0003 0.7693 0.3063 0.3330 0.0450

6 0.8647 0.9990 0.0922 0.1353 0.0010 0.9078 0.9520 0.9997 0.3107 0.0480 0.0003 0.6893 0.3067 0.3330 0.0700

7 0.8867 1.0000 0.2363 0.1133 0.0000 0.7637 0.9600 1.0000 0.5487 0.0400 0.0000 0.4513 0.3130 0.3333 0.1397

8 0.8777 0.9990 0.1575 0.1223 0.0010 0.8425 0.9567 0.9997 0.4473 0.0433 0.0003 0.5527 0.3110 0.3333 0.1033

9 0.8673 0.9980 0.2427 0.1327 0.0020 0.7573 0.9527 0.9993 0.5527 0.0473 0.0007 0.4473 0.3093 0.3330 0.1433

10 0.8716 0.9990 0.2112 0.1284 0.0010 0.7888 0.9543 0.9997 0.5007 0.0457 0.0003 0.4993 0.3100 0.3330 0.1337

Table 10 Uncertainty measurement on ‘‘winequality-white’’

No. aI bI aII bII x

G O P G O P G O P G O P G O P

1 0.5896 0.9775 0.4017 0.4104 0.0225 0.5983 0.8252 0.9924 0.7042 0.1748 0.0076 0.2958 0.2511 0.3279 0.1987

2 0.5267 0.9631 0.4027 0.4733 0.0369 0.5973 0.7885 0.9875 0.7048 0.2115 0.0125 0.2952 0.2354 0.3254 0.1991

3 0.4553 0.9752 0.4133 0.5447 0.0248 0.5867 0.7436 0.9916 0.7125 0.2564 0.0084 0.2875 0.2144 0.3285 0.2025

4 0.4960 0.9750 0.4154 0.5040 0.0250 0.5846 0.7705 0.9916 0.7144 0.2295 0.0084 0.2856 0.2258 0.3271 0.2029

5 0.5931 0.9787 0.4113 0.4069 0.0213 0.5887 0.8277 0.9929 0.7113 0.1723 0.0071 0.2887 0.2511 0.3285 0.2017

6 0.5210 0.9805 0.4150 0.4790 0.0195 0.5850 0.7856 0.9935 0.7142 0.2144 0.0065 0.2858 0.2332 0.3291 0.2027

7 0.4953 0.9698 0.4156 0.5047 0.0302 0.5844 0.7687 0.9898 0.7146 0.2313 0.0102 0.2854 0.2270 0.3283 0.2029

8 0.4874 0.9709 0.4024 0.5126 0.0291 0.5976 0.7638 0.9902 0.7050 0.2362 0.0098 0.2950 0.2246 0.3275 0.1987

9 0.4931 0.9745 0.4054 0.5069 0.0255 0.5946 0.7687 0.9914 0.7062 0.2313 0.0086 0.2938 0.2250 0.3277 0.2003

10 0.4576 0.9703 0.4183 0.5424 0.0297 0.5817 0.7638 0.9900 0.7164 0.2546 0.0100 0.2836 0.2148 0.3267 0.2040
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granulation rough set of MsFIS, optimistic multi-granula-

tion rough set of MsFIS and pessimistic multi-granulation

rough set of MsFIS. The related properties of different

multi-granulation models are also discussed. In order to

deeply study the rough set model of MsFIS, we also discuss

the uncertainty measurement methods applicable to MsFIS

in different senses. Finally, we also design an algorithm for

calculating the uncertainty of MsFIS and verify the algo-

rithm with four data sets. The experimental results show

that the generalized multi-granulation rough set model of

MsFIS has wider applicability.
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Fig. 2 Uncertainty measurement of multi-granulation model for ‘‘own-data1’’
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