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Abstract This paper focuses on fuzzy adaptive practical

finite-time output feedback control problem for a class of

single-input and single-output nonlinear system with time-

varying delays in nonstrict feedback form. Fuzzy logic

systems are adopted to approximate the unknown nonlinear

functions, and state observer is constructed to estimate the

unmeasured states. By combining practical finite-time

Lyapunov stability theory with the backstepping design, an

observer-based fuzzy adaptive practical finite-time control

strategy is proposed. Meanwhile, the stability of the closed-

loop system is proved, which means that the output can

follow the given reference signal in a finite time, and the

closed-loop system is semi-global practical finite-time

stability. Finally, two simulation examples are provided to

elaborate the effectiveness of the presented control

strategy.

Keywords Practical finite-time stability � Fuzzy adaptive

control � Nonstrict feedback system � Backstepping design �
Time-varying delays

1 Introduction

During the past several years, the neural networks (NNs) or

FLSs [1–3] are adopted to deal with the control problem of

uncertain nonlinear systems. By using adaptive backstep-

ping design, some significant results have been received,

see [4–9]. Among them, the authors in [4, 5] have studied

the adaptive fuzzy or NNs control problems for SISO

nonlinear pure feedback systems with time-varying delays.

The authors in [6] developed the fuzzy adaptive tracking

control scheme for SISO strict feedback nonlinear system

with input delays, and in [7] presented the output feedback

adaptive NNs control scheme for nonlinear stochastic

system with time-varying delay. However, in many real-

world systems, the systems states of considered plants are

usually not available or measurable directly; therefore,

fuzzy adaptive observer needs be designed to get the esti-

mation of unmeasured states. Subsequently, the author in

[9] investigated the output feedback adaptive fuzzy control

problem for nonlinear multi-input and multi-output

(MIMO) systems with time delays.

However, the aforementioned presented control design

strategies are all considered in the pure/strict feedback

systems. In adaptive backstepping control design process,

note that FLSs or radial basis functions are adopted to

approximate the systems nonlinear functions, it only con-

tains partial state variables. However, nonlinear nonstrict

feedback systems are more general nonlinear system, the

nonlinear function contains the whole state vector in the i-

subsystem. If the above presented control strategies for

pure feedback or strict feedback systems are directly

applied in nonlinear nonstrict feedback systems, thus, it

will lead to much more difficulties, such as the ‘‘algebraic

loop problem,’’ which is not be permitted. Therefore, a new

adaptive backstepping design strategy needs be presented.

To overcome this problem, recently, some significant fuzzy

or NNs adaptive control strategies are presented for non-

linear nonstrict feedback systems, see [10–15]. Among

them, the authors in works [10, 11] developed the

approximation-based adaptive fuzzy or NNs control

methods for nonlinear nonstrict feedback systems, and in

[12] investigated the neural adaptive output feedback
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control issue for nonlinear stochastic system. The authors

in [13–15] have presented the observer-based fuzzy or NNs

adaptive control strategies for nonstrict feedback systems.

In the real-world systems, consider the factors of cost

saving and the maximization of interest, such as the vehicle

guidance system, the attitude control systems of the flight

vehicle and robot control systems, which be expected to

arrive the equilibrium state in a finite or fixed time. If the

tracking time and the transient time of the real-world sys-

tems go to arbitrary or infinite, which will cost the high

charge, apparently, we can see that the above results are all

considered in the infinite time and not consider the setting

time in their control process, the perform time may be very

long. As the finite-time controllers contain the terms of

exponential power, the finite-time control method has

better robustness, fast transient performance and high

precision performance. Therefore, the finite-time control

methods have paid the considerable attention for many

scholars.

Recently, some crucial works of finite-time control have

been received, such as [16–28]. Bhat et al. [16, 17] first

presented finite-time stability theory for nonlinear systems

and addressed chattering problems of the adaptive laws

caused by terminal sliding mode controller. In addition, the

authors in [16, 17] also give several criterions of the finite-

time stability. Later, the authors in [18–22] presented the

semi-global practical finite-time stability (SGPFS) for

uncertain nonlinear systems. Among them, the authors in

[18] presented the observer-based neural adaptive finite-

time control method for quantized system, and in [19]

studied the fuzzy adaptive tracking control issue for non-

linear pure feedback system. In addition, the authors in

[20, 21] have developed the fuzzy adaptive finite-time

control strategies for SISO nonstrict feedback nonlinear

systems and in work [22] are for interconnected large-scale

nonlinear systems. Furthermore, the authors in [23–27]

studied the global finite-time control problems for nonlin-

ear strict feedback systems by combining and adding a

power integrator theory with backstepping recursion design

technique. The authors in [28] presented the neural adap-

tive control scheme for high-order nonlinear nonstrict

feedback systems. Obviously, the above controlled systems

do not consider the unknown time-varying delays.

In this paper, the issue of fuzzy adaptive finite-time

control is studied for SISO nonlinear nonstrict feedback

system with time-varying delays. FLSs are utilized to

approximate nonlinear functions. Moreover, to estimate the

unmeasurable states, fuzzy adaptive observer is con-

structed. Compared to existing works, the major contribu-

tions can be described as: (1) By combining finite-time

Lyapunov–Krasovskii stability theory with backstepping

design, this paper presented an observer-based fuzzy

adaptive practical finite-time control scheme for SISO

nonlinear system with time-varying delays. The presented

control strategy can ensure that all the signals of closed-

loop systems are bounded and the tracking error converges

to a small neighborhood of the zero in a finite time; (2)

compared with the existing finite-time control results in

[18–22], the problems of time-varying delay are considered

in this paper and the nonlinear systems are in nonstrict

feedback forms. On the one hand, in [19–21, 23–28], the

state variables are all available. In this paper, the state

variables are not completely available; thus, a fuzzy state

observer is constructed and does not like [18]; on the other

hand, the nonlinear functions in this paper are completely

unknown and do not satisfy the linear growth condition like

[25–27].

2 Problem Formulations and Preliminaries

2.1 System Description

Consider the SISO nonlinear nonstrict feedback system as

_x1 ¼ x2 þ f1ðxÞ þ h1ðx1ðt � s1ÞÞ þ d1ðtÞ
_xi ¼ xiþ1 þ fiðxÞ þ hiðx1ðt � siÞÞ þ diðtÞ
_xn ¼ uþ fnðxÞ þ hnðx1ðt � snÞÞ þ dnðtÞ
y ¼ x1 i ¼ 2; . . .; n� 1

8
>><

>>:

ð1Þ

where x ¼ ½x1; x2; . . .; xn�T is the state vector, y 2 R and

u 2 R are output and control input, respectively. fið�Þ and

hið�Þ are the unknown smooth nonlinear functions and

satisfy fið0Þ ¼ 0. si is unknown bounded time delay satis-

fying sij j � s and the derivative of si satisfies _siðtÞ� s� � 1,

where s and s� are known constant. diðtÞ(i ¼ 1; 2; . . .; n) is
the dynamic disturbance and satisfies jdiðtÞj � d�i with d�i
being known constant. Moreover, the only available state is

output y.

Assumption 1 [8, 9] The unknown nonlinear smooth

function hiðx1Þ satisfies

hiðx1Þj j2 � z1Hiðz1Þ þ �HiðyrÞ þ -i

where z1 is the tracking error, �Hið�Þ and Hið�Þ are bounded

and known functions, which satisfy �Hið0Þ ¼ 0, -i is a

positive constant.

Lemma 1 [10, 12] (Young’s inequality) For

8ða; bÞ 2 R2, the following inequality holds

ab� ep

p
jajp þ 1

qeq
jbjq

where e[ 0, p[ 1, q[ 1 and ðp� 1Þðq� 1Þ ¼ 1.

Our control objective is to present a practical finite-time

fuzzy adaptive control strategy for system (1), such that all

the signals of the closed-loop system are bounded and
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output yðtÞ can track the given reference signal yrðtÞ in a

finite time.

2.2 Fuzzy Logic Systems

From [14], FLSs are consisted by the following four parts:

the knowledge base, the fuzzifier, the fuzzy inference

engine working on fuzzy rules and the defuzzifier. The

knowledge base is consisted by the following inference

rules:

Rl : If x1 is F
l
1 and x2 is F

l
2 and . . . and xn is F

l
n;

then y is Gl; l ¼ 1; 2; . . .;N:

where x ¼ ½x1; x2; . . .; xn�T and y are the FLS input and

output, respectively. Gl and Fl
i are fuzzy sets, together with

the fuzzy membership functions lGlðyÞ and lFl
i
ðxiÞ,

respectively, and N is the rules number.

According to [14], define the FLS as

yðxÞ ¼
PN

l¼1 �yl
Qn

i¼1 lFl
i
ðxiÞ

PN
l¼1

Qn
i¼1 lFl

i
ðxiÞ

ð2Þ

where �yl ¼ max
yl2R

lGlðylÞ.
Fuzzy basis functions can be described as

ul ¼
Qn

i¼1 lFl
i
ðxiÞ

PN
l¼1

Qn
i¼1 lFl

i
ðxiÞ

Denoting uðxÞ ¼ ½u1ðxÞ; . . .;uNðxÞ�
T
and nT ¼ ½�y1; �y2; . . .;

�yN � ¼ ½n1; n2; . . .; nN �, then rewritten the FLS (2) as

yðxÞ ¼ nTuðxÞ ð3Þ

Lemma 2 [8, 14] Let f ðxÞ be a continuous function,

which is defined on a compact set X. Then for any constant

e[ 0, there exists a FLS (3) such as

sup
x2X

f ðxÞ � nTuðxÞ
�
�

�
�� e ð4Þ

where e is the fuzzy minimum approximation error.

2.3 Finite Time

To deal with finite-time fuzzy adaptive control problem,

consider the following valid Lemmas and Definition.

Definition 1 [18–20] For all initial values fðt0Þ ¼ f0,
there exists a constant 1[ 0 and setting time Tðe; f0Þ\1
satisfies fðtÞk k\1, for 8t� t0 þ T ; thus, the equilibrium

point f ¼ 0 of nonlinear system _f ¼ f ðfÞ is semi-global

practical finite-time stability (SGPFS).

Lemma 3 [18–20] For real number 0\p� 1 and fi 2 R,

i ¼ 1; 2; . . .; k, we have

Xk

i¼1

fij j
 !p

�
Xk

i¼1

fij jp � k1�p
Xk

i¼1

fij j
 !p

ð5Þ

Lemma 4 [18–20] For l, r and / are positive constants,

and w and n are real variables, we have

wj jl nj jr � l
lþ r

/ wj jlþrþ r
lþ r

/�l
r nj jlþr ð6Þ

Lemma 5 [18–20] Consider differential equation
_̂fðtÞ ¼ �gf̂ðtÞ þ lwðtÞ, where g[ 0 and l[ 0 are real

numbers, and function wðtÞ is positive. Under the initial

value f̂ðt0Þ� 0, if wðtÞ� 0 for 8t� t0, we have f̂ðtÞ� 0 for

8t� t0.

Lemma 6 [18–20] For any positive-definite function

Vð1Þ, with scales c[ 0, 0\b\1 and r[ 0, the nonlinear

system _1 ¼ f ð1Þ satisfies
_Vð1Þ� � cVbð1Þ þ r; t� 0 ð7Þ

thus the nonlinear system _1 ¼ f ð1Þ is SGPFS.

Proof For 80\d� 1, according to (7), we have

_Vð1Þ� � cð1� dÞVbð1Þ � cdVbð1Þ þ r ð8Þ

Let �X1 ¼ f1jVbð1Þ[ r
ð1�dÞcg and X1 ¼ f1jVbð1Þ�

r
ð1�dÞcg. There are two cases to consider as

Case 1: If 1ðtÞ 2 �X1, we have

_Vð1Þ� � dcVbð1Þ ð9Þ

Integrating it over ½0; T �, we have
Z T

0

_Vð1Þ
Vbð1Þdt� �

Z T

0

dcdt ð10Þ

In addition, we have

1

1� b
½V1�bð1ðTÞÞ � V1�bð1ð0ÞÞ� � � dcT ð11Þ

We can define

Treach ¼
1

ð1� bÞdc V1�bð1ð0ÞÞ � r
ð1� dÞc

� �ð1�bÞ=b
" #

where Vð1ð0ÞÞ is the initial condition of Vð1Þ. Therefore,
according to (11), we have 1ðtÞ 2 X1 for 8T � Treach.

Case 2: If 1ðtÞ 2 X1, from the first case, the trajectory of

1ðtÞ is not beyond the set X1. The time to arrive the set X1

is bounded as Treach, that is, the solution of _1 ¼ f ð1Þ is

bounded in a finite time.
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3 Fuzzy State Observer Design

In this paper, the only measurable variable is state x1. Thus,

state observer needs be constructed to get the estimation of

unmeasured states xi ði ¼ 2; 3; . . .; nÞ. On the basis of

Lemma 2, the following FLS is adopted to approximate the

unknown function fiðxÞ as

f̂iðx̂jn̂iÞ ¼ n̂Ti uiðx̂Þ ð12Þ

Define the optimal parameter vectors n�i as

n�i ¼ arg min
ni2Xi

sup
x̂2Û; x2U

fiðxÞ � f̂iðx̂jn̂iÞ
�
�
�

�
�
�

" #

where U, Û and Xi are compact regions for x, x̂ and n̂i,
respectively. Thus, define the fuzzy minimum approxima-

tion error ei as

ei ¼ fiðxÞ � f̂iðx̂ n�i
�
� Þ ð13Þ

where ei satisfies that eij j � e�i , and e�i is a positive constant.
Thus, rewritten system (1) as

_x ¼ A0xþ
Pn

i¼1

BifiðxÞ þ hþ Kþ Bnu

y ¼ �Cx

8
<

:
ð14Þ

where A0 ¼
0

..

.
In�1

0 0 � � � 0

2

4

3

5

n�n

, �C ¼ ½1; 0; . . .; 0�1�n,

Bi ¼ ½0; . . .; 0; 1
|fflfflfflfflfflffl{zfflfflfflfflfflffl}

i

; . . .; 0�Tn�1, h ¼ ½h1; h2; . . .; hn�Tn�1, K ¼

½d1; d2; . . .; dn�Tn�1 and Bn ¼ ½0; . . .; 0; 1�Tn�1.

To estimate the immeasurable states, fuzzy state obser-

ver is designed as

_̂x ¼ Ax̂þ Kyþ
Pn

i¼1

Bif̂iðx̂jn̂iÞ þ Bnu

ŷ ¼ �Cx̂1

8
<

:
ð15Þ

where A ¼ A0 � K �C and K ¼ ½k1; k2; . . .; kn�Tn�1.

Define virtual observation error vector e ¼ x� x̂, from

(14) and (15), we have

_e ¼ Aeþ
Xn

i¼1

Bi
~nTi uiðx̂Þ þ hþ Kþ e ð16Þ

where ~ni ¼ n�i � n̂i is the adaptive parameter vector error.

The observer gain matrix K is chosen as A is a strict

Hurwitz matrix, for any matrix Q ¼ QT [ 0; thus, matrix

P ¼ PT
i satisfies

ATPþ PA ¼ �2Q ð17Þ

From observer error system (16), choose the Lyapunov

function as

�V0 ¼
1

2
eTPe

Due to the existence of the term of time delay, thus, we

utilize the Lyapunov–Krasovksii to deal with the problem

of time delay. Choose the Lyapunov–Krasovksii function

as

V0 ¼ �V0 þW0 ¼
1

2
eTPeþW0 ð18Þ

where W0 ¼ erðs�tÞ

2ð1�s�Þ
Pn

i¼1

R t
t�sðtÞ e

rsz1ðsÞðHiðz1ðsÞÞÞds is a pos-

itive-definition function, r is a positive constant.

From (16)–(18), we have

_V0 ¼
1

2
_eTPeþ 1

2
eTP _eþ _W0

� � kminðQÞ ek k2þ _W0

þ eTP
Xn

i¼1

Bi
~nTi uiðx̂Þ þ hþ Kþ e

 ! ð19Þ

According to the fact 0\uT
i ðx̂Þuiðx̂Þ� 1, adopting

Assumption 1 and Lemma 1, we have

eTP
Xn

i¼1

Bi
~nTi uiðx̂Þ�

Pk k2

2

Xn

i¼1

~nTi ~ni þ
n

2
ek k2 ð20Þ

eTPðeþ KÞ� ek k2þ Pk k2

2
e�k k2þ Pk k2

2

Xn

i¼1

d�2i ð21Þ

eTPh� Pk k2

2
ek k2þ 1

2
h2

� Pk k2

2
ek k2þ

Xn

i¼1

qi

þ 1

2

Xn

i¼1

ðz1ðt � siÞHiðz1ðt � siÞÞÞ

ð22Þ

where qi � 1
2
ð �Hiðyrðt � siÞÞ þ -iÞ is a constant.

_W0 ¼ �rW0 þ
erðs�tÞ

2ð1� s�Þ
Xn

i¼1

½ertz1ðtÞðHiðz1ðtÞÞÞ

� erðt�sÞz1ðt � sÞHiðz1ðt � siÞÞð1� _sÞ�

� � rW0 þ
ers

2ð1� s�Þ
Xn

i¼1

z1ðtÞðHiðz1ðtÞÞÞ

� 1

2

Xn

i¼1

ðz1ðt � siÞHiðz1ðt � siÞÞÞ

ð23Þ

Substituting (20)–(23) into (19) yields

_V0 � � k0 ek k2þ Pk k2

2

Xn

j¼1

~nTj
~nj � rW0 þM0

þ ers

2ð1� s�Þ
Xn

i¼1

z1ðtÞðHiðz1ðtÞÞÞ
ð24Þ
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where k0 ¼ kmin � ðnþ Pk k2Þ=2� 1 and M0 ¼ Pk k2

ð e�k k2þ
Pn

i¼1 d
�2
i Þ=2þ

Pn
i¼1 qi.

4 Practical Finite-Time Fuzzy Adaptive Control
and Stability Analysis

In this section, a practical finite-time fuzzy adaptive control

scheme is presented by adopting backstepping design.

Define the coordinates transformation as

z1 ¼ x1 � yr
zi ¼ x̂i � ai�1

�

ð25Þ

where z1 is the tracking error and ai�1, i ¼ 2; 3; . . .; n are

the intermediate control functions.

Step 1 From (1) and (15), define z2 ¼ x̂2 � a1, we have

_z1 ¼ _x1 � _yr

¼ z2 þ a1 þ n�T1 u1ðx̂Þ þ n̂T1u1ðx̂1Þ þ e2 þ d1

þ e1 þ h1 þ ~nT1u1ðx̂1Þ � n�T1 u1ðx̂1Þ � _yr

ð26Þ

Choose the Lyapunov–Krasovksii function as

V1 ¼ V0 þ
1

2
z21 þ

1

2g1
~nT1
~n1 þ

1

2�g1
~#T
1
~#1 þW1 ð27Þ

where g1 [ 0 and �g1 [ 0 are design parameters. ~ni ¼
n�i � n̂i and n̂i is the estimation of n�i . Define #�

i ¼ n�i
�
�
�
�2,

~#i ¼ #�
i � #̂i and #̂i is the estimation of #�

i (i ¼ 1; . . .; n).

Define W1 is

W1 ¼
erðs�tÞ

2 1� s�ð Þ

Z t

t�s1ðtÞ
ersz1ðsÞðH1ðz1ðsÞÞÞds ð28Þ

From (26)–(28), we have

_V1 ¼ _V0 þ z1 _z1 �
1

g1
~nT1

_̂n1 �
1

�g1
~#T
1
_̂
#1 þ _W1

� � k0 ek k2þz1z2 � rW0 þ
Pk k2

2

Xn

j¼1

~hTj ~hj þM0

þ ers

2ð1� s�Þ
Xn

i¼1

z1ðtÞðHiðz1ðtÞÞÞ þ z1ða1 þ e2

þ n�T1 u1ðx̂Þ þ n̂T1u1ðx̂1Þ þ d1 þ e1 þ ~nT1u1ðx̂1Þ

� n�T1 u1ðx̂1Þ þ h1 � _yrÞ �
1

g1
~nT1

_̂n1 �
1

�g1
~#T
1
_̂
#1 þ _W1

ð29Þ

According to the fact of 0\uT
1 ð�Þu1ð�Þ � 1, applying

Lemma 1 and Assumption 1, for any constant p[ 0, we

have

_W1 ¼ �rW1 þ
erðs�tÞ

2 1� s�ð Þ ½e
rtz1ðtÞðH1ðz1ðtÞÞÞ

� erðt�sÞz1ðt � sÞH1ðz1ðt � sÞÞð1� _sÞ�

� � rW1 þ
ers

2 1� s�ð Þ z1ðtÞðH1ðz1ðtÞÞÞ

� 1

2
z1ðt � sÞH1ðz1ðt � sÞÞ

ð30Þ

z1ðe2 þ e1 þ d1Þ�
3

2
z21 þ

1

2
ek k2þ 1

2
e�k k2þ 1

2
d�21 ð31Þ

z1ðn�T1 u1ðx̂Þ � n�T1 u1ðx̂1ÞÞ�
p
2
z21#

�
1 þ

2

p
ð32Þ

z1h1 �
1

2
z21 þ

1

2
h21

� 1

2
z21 þ

1

2
z1ðt � s1ÞH1ðz1ðt � s1ÞÞ

þ 1

2
�H1ðyrðt � s1ÞÞ þ

1

2
-1

ð33Þ

Substituting (30)–(33) into (29) results in

_V1 � � k1 ek k2�rW0 � rW1 þ z1z2 þ
Pk k2

2

Xn

j¼1

~nTj ~nj

þ z1 a1 þ
ers

2ð1� s�Þ
Xn

i¼1

Hiðz1ðtÞÞ þ n̂T1u1ðx̂1Þ
 

þ ers

2 1� s�ð ÞH1 z1ðtÞÞ � _yr þ 2z1 þ
p#̂1

2
z1

 !

þ
~#T
1

�g1

�g1p
2

z21 �
_̂
#1

� �

þ
~nT1
g1

g1z1u1ðx̂1Þ �
_̂n1

� 	
þM1

ð34Þ

where k1 ¼ k0 � 1=2 and M1 ¼ M0 þ q1 þ 2=pþ
e�k k2=2þ d�21 =2 and q1 ¼ �H1ðyrðt � s1ÞÞ=2þ -1=2 is a

constant.

Design the intermediate control function a1, parameter

adaptive laws
_̂n1 and

_̂
#1 as

a1 ¼ �c1z
2b�1
1 � 2z1 �

p#̂1

2
z1 �

ers

2ð1� s�Þ
Xn

i¼1

Hiðz1ðtÞÞ

� n̂T1u1ðx̂1Þ �
ners

2 1� s�ð ÞH1ðz1ðtÞÞ þ _yr

ð35Þ
_̂n1 ¼ g1z1u1ðx̂1Þ � d1n̂1 ð36Þ
_̂
#1 ¼

�g1p
2

z21 � �d1#̂1 ð37Þ

where b ¼ ð2n� 1Þ=ð2nþ 1Þ, c1 [ 0, d1 [ 0 and �d1 [ 0

are design parameters. The chosen of the adaptive laws

should satisfy Lemma 5. From (35)–(37), it follows that

123

K. Li, S. Tong: Fuzzy Adaptive Practical Finite-Time Control for Time Delays Nonlinear Systems 1017



_V1 � � k1 ek k2�c1z
2b
1 þ Pk k2

2

Xn

j¼1

~nTj
~nj þ z1z2

þ d1
g1

~nT1 n̂1 þ
�d1
�g1

~#T
1 #̂1 � rW0 � rW1

� ðn� 1Þers
2 1� s�ð Þ z1ðtÞH1ðz1ðtÞÞ þM1

ð38Þ

Step 2 ið2� i� n� 1Þ: According to (15) and (25),

define ziþ1 ¼ x̂iþ1 � ai, we have

_zi ¼ ai þ ziþ1 þ n�Ti uiðx̂Þ � ~nTi uiðx̂Þ
þ ~nTi uiðx̂iÞ � n�Ti uiðx̂iÞ þ �Ni

� oai�1

ox1
e2 þ e1 þ d1 þ n�T1 u1ðx̂Þ



�n�T1 u1ðx̂1Þ þ ~nT1u1ðx̂1Þ þ h1

	

�
Xn

j¼1

oai�1

ox̂j
n�Tj ujðx̂Þ � ~nTj ujðx̂Þ
� 	

ð39Þ

where

Ni ¼ kie1 þ n̂Ti uiðx̂iÞ �
Xn

j¼1

oai�1

ox̂j
ð _̂xjþ1 � kje1Þ �

Xi�1

j¼1

oai�1

on̂j

_̂nj

�
Xi�1

j¼1

oai�1

o#̂j

_̂
#j �

Xi�1

j¼1

oai�1

oy
ðj�1Þ
r

yðjÞr � oai�1

ox1
x̂2 þ n̂T1u1ðx̂1Þ
� 	

Choose the Lyapunov–Krasovksii function as

Vi ¼ Vi�1 þ
1

2
z2i þ

1

2gi
~nTi
~ni þ

1

2�gi
~#T
i
~#i þW1 ð40Þ

where �gi [ 0 and gi [ 0 are design parameters. According

to (39)–(40), we have

_Vi ¼ _Vi�1 þ zi _zi �
1

gi
~nTi

_̂ni �
1

�gi
~#T
i
_̂
#i þ _W1

� � ki�1 ek k2�
Xi�1

j¼1

cjz
2b
j � rW0 � ði� 1ÞrW1 þ ziziþ1

þ i� 2

2
~nT1
~n1 þ

Pk k2

2

Xn

j¼1

~nTj
~nj þ

1

2

Xi�1

j¼2

~nTj
~nj þ

Xi�1

j¼1

�dj
�gj

~#T
j #̂j

� ðn� iþ 1Þers
2ð1� s�Þ z1ðtÞH1ðz1ðtÞÞ þ

Xi�1

j¼1

dj
gj
~nTj n̂j þ zi½zi�1

� n�Ti uiðx̂iÞ þ n�Ti uiðx̂Þ þ ~nTi uiðx̂iÞ þ �Ni � ~nTi uiðx̂Þ

þ ai �
oai�1

ox1
e2 þ d1 þ e1 þ h1 � n�T1 u1ðx̂1Þ þ ~nT1u1ðx̂1Þ
�

þ n�T1 u1ðx̂Þ
�
þ
Xn

j¼1

oai�1

ox̂j
�~nTj ujðx̂Þ þ n�Tj ujðx̂Þ
� 	

!

� 1

gi
~nTi

_̂ni �
1

�gi
~#T
i
_̂
#i þ _W1 þ

i� 2

2

Xn

j¼1

~nTj
~nj þMi�1

ð41Þ

According to the fact 0\uT
i ðx̂Þuiðx̂Þ� 1, applying

Lemma 1 and Assumption 1, for any constant p[ 0, we

have

zi n
�T
i uiðx̂Þ � n�Ti uiðx̂iÞ


 �
� 2

p
þ p

2
z2i #

�
i ð42Þ

�zi~n
T
i uiðx̂Þ�

1

2
z2i þ

1

2
~nTi
~ni ð43Þ

� zi
oai�1

ox1
e2 þ e1 þ d1 þ ~nT1u1ðx̂1Þ
� 	

� 2z2i
oai�1

ox1

� �2

þ 1

2
ek k2þ e�k k2þd�21 þ ~nT1

~n1
� 	 ð44Þ

� zi
oai�1

ox1
n�T1 u1ðx̂Þ � n�T1 u1ðx̂1Þ

 �

� p
2
z2i

oai�1

ox1

� �2

þ 2

p
#�
1

ð45Þ

�zi
oai�1

ox1
h1 �

1

2
z2i

oai�1

ox1

� �2

þ 1

2
h21

� 1

2
z2i

oai�1

ox1

� �2

þ 1

2
z1ðt � s1ÞH1ðz1ðt � s1ÞÞ

þ 1

2
�H1ðyrðt � s1ÞÞ þ

1

2
-1

ð46Þ

� zi
Xn

j¼1

oai�1

ox̂j
n�Tj ujðx̂Þ � ~nTj ujðx̂Þ
� 	

� 1

2

Xn

j¼1

#�
j

þ 1

2

Xn

j¼1

~nTj
~nj þ z2i

Xn

j¼1

oai�1

ox̂j

� �2

ð47Þ

Substituting (30) and (42)–(47) into (41) results in

_Vi � � ki�1 ek k2þ Pk k2

2

Xn

j¼1

~nTj
~nj �

Xi�1

j¼1

cjz
2b
j � ði� 1ÞrW1

� rW0 �
ðn� iþ 1Þers
2ð1� s�Þ z1ðtÞH1ðz1ðtÞÞ þ

Xi�1

j¼1

dj
gj
~nTj n̂j

þ i� 1

2
~nT1
~n1 þ

Xi�1

j¼1

�dj
�gj

~#T
j #̂j þ

1

2

Xi

j¼2

~nTj
~nj þ ziziþ1

þ i� 1

2

Xn

j¼1

~nTj ~nj þ zi ai þ Ni þ zi�1 þ
zi

2
þ p#̂i

2
zi

"

þ pþ 5

2
zi

oai�1

ox1

� �2
#

þMi þ
~nTi
gi

gi/iðx̂iÞzi �
_̂ni

� 	

þ
~#T
i

�gi

p�gi
2

z2i �
_̂
#i

� �

ð48Þ

where Mi ¼ Mi�1 þ q1 þ ð e�k k2þd�21 þ
Pn

j¼1 #�
j Þ=2þ

2#�
1=pþ 2=p,Ni ¼ �Ni þ zi

Pn
j¼1 ðoai�1

ox̂j
Þ2 and ki ¼ ki�1�1=2.
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Design the intermediate control function ai, parameter

adaptive laws
_̂ni and

_̂
#i as

ai ¼ �ciz
2b�1
i � zi

2
� zi�1 � Ni �

p#̂i

2
zi

� pþ 5

2
zi

oai�1

ox1

� �2

ð49Þ

_̂ni ¼ giziuiðx̂iÞ � din̂i ð50Þ
_̂
#i ¼

�gip
2

z2i � �di#̂i ð51Þ

where ci [ 0, di [ 0 and �di [ 0 are design parameters.

From (49)–(51), it follows that

_Vi � � ki�1 ek k2�rW0 � ði� 1ÞrW1 þ
Pk k2

2

Xn

j¼1

~nTj
~nj

þ ziziþ1 �
Xi�1

j¼1

cjz
2b
j þ i� 1

2
~nT1 ~n1 þ

1

2

Xi

j¼2

~nTj ~nj

þ i� 1

2

Xn

j¼1

~nTj
~nj �

ðn� iþ 1Þers
2 1� s�ð Þ z1ðtÞH1ðz1ðtÞÞ

þ
Xi

j¼1

�dj
�gj

~#T
j #̂j þ

Xi

j¼1

dj
gj
~nTj n̂j þMi

ð52Þ

Step 3 n: This is the last step. Thus, from (15) and (25),

we have

_zn ¼ u� oan�1

ox1
ðe2 þ e1 þ h1 þ n�T1 u1ðx̂Þ

þ d1 � n�T1 u1ðx̂1Þ þ ~nT1u1ðx̂1ÞÞ þ �Nn

�
Xn

j¼1

oan�1

ox̂j
�~nTj ujðx̂Þ þ n�Tj ujðx̂Þ
� 	

ð53Þ

where

�Nn ¼ kne1 þ n̂Tnunðx̂nÞ �
Xn

j¼1

oan�1

ox̂j
ð _̂xjþ1 � kje1Þ

�
Xn�1

j¼1

oan�1

on̂j

_̂nj �
Xn�1

j¼1

oan�1

o#̂j

_̂
#j �

Xn�1

j¼1

oan�1

oy
ðj�1Þ
r

yðjÞr

� oan�1

ox1
ðx̂2 þ n̂T1u1ðx̂1ÞÞ

Choose the Lyapunov–Krasovskii function as

V ¼ Vn�1 þ
1

2
z2n þ

1

2gn
~nTn
~nn þW1 ð54Þ

where gn [ 0 is a design parameter.

According to (53)–(54), we have

_V ¼ _Vn�1 þ zn _zn �
1

gn
~nTn

_̂nn þ _W1

� � kn ek k2�rW0 � nrW1 þ
Pk k2

2

Xn

j¼1

~nTj
~nj �

Xn�1

j¼1

cjz
2b
j

þ n� 1

2

Xn

j¼1

~nTj
~nj þ

Xn�1

j¼1

dj
gj
~nTj n̂j þ

Xn�1

j¼1

�dj
�gj

~#T
j #̂j þMn

þ zn uþ zn�1 þ Nn þ
zn

2
þ 5þ p

2
zn

oan�1

ox1

� �2
" #

þ 1

2

Xn

j¼2

~nTj
~nj þ

~nTn
gn

gn/nðx̂nÞzn �
_̂nn

� 	
þ n� 1

2
~nT1
~n1

ð55Þ

where kn ¼ kn�1 � 1=2, Mn ¼ Mn�1 þ q1 þ ð e�k k2þd�21 Þ=

2þ 2#�
1=2 and Nn ¼ �Nn þ zn

Pn

j¼1

ðoan�1

ox̂j
Þ2.

Design the controller u, adaptive law
_̂hn as

u ¼ �cnz
2b�1
n � zn�1 �

1

2
zn � Nn �

pþ 5

2
zn

oan�1

ox1

� �2

ð56Þ
_̂nn ¼ gnznunðx̂nÞ � dnn̂n ð57Þ

where cn [ 0 and dn [ 0 are design parameters. According

to (57), the chosen of the adaptive laws satisfy Lemma 5.

From (56)–(57), it follows that

_V � � kn ek k2�
Xn

j¼1

cjz
2b
j þ Pk k2

2

Xn

j¼1

~nTj ~nj � rW0

� nrW1 þ
Xn

j¼1

dj
gj
~nTj n̂j þ

Xn�1

j¼1

�dj
�gj

~#T
j #̂j þMn

þ 1

2

Xn

j¼2

~nTj
~nj þ

n� 1

2
~nT1
~n1 þ

n� 1

2

Xn

j¼1

~nTj
~nj

ð58Þ

By applying Lemma 1, we have

�dj
�gj

~#T
j #̂j ¼

�dj
�gj

~#T
j #�T

j � ~#T
j

� 	
� �

�dj
2�gj

~#T
j
~#j þ

�dj
2�gj

#�T
j #�

j

ð59Þ
dj
gj
~nTj n̂j ¼

dj
gj
~nTj n�Tj � ~nTj

� 	
� � dj

2gj
~nTj
~nj þ

dj
2gj

n�Tj n�j ð60Þ

Substituting (59)–(60) into (58) yields
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_V � � kn ek k2�
Xn

j¼1

cjz
2b
j � rW0 � nrW1 þ D

þ 1

2

Xn

j¼2

~nTj
~nj þ

n� 1

2
~nT1
~n11 �

Xn�1

j¼1

�dj
2�gj

~#T
j
~#j

�
Xn

j¼1

dj
2gj

~nTj
~nj þ

n� 1

2

Xn

j¼1

~nTj
~nj þ

Pk k2

2

Xn

j¼1

~nTj
~nj

ð61Þ

where D ¼ Mn þ
Pn�1

j¼1

�dj
2�gj

#�T
j #�

j þ
Pn

j¼1

dj
2gj

n�Tj n�j .

Choose k ¼ minfcj; nr; dj � ð Pk k2þ1Þgj; d1 � ðn� 1þ
Pk k2Þg1g, rewritten (61) as

_V � � kn
kminðQÞ

kminðQÞ ek k2
� 	b

þ kn
kminðQÞ

kminðQÞ ek k2
� 	b

� kn ek k2� kW
b
0 þ kW

b
0 � kW0 � 2bk

Xn

j¼1

1

2
z2j

 !b

� kW
b
1 þ kW

b
1 � kW1 þ k

Xn

j¼1

1

2gj
~nTj
~nj

 !b

� k
Xn

j¼1

1

2gj
~nTj
~nj

 !b

�k
Xn

j¼1

1

2gj
~nTj
~nj þ D

þ k
Xn�1

j¼1

1

2�gj
~#T
j
~#j

 !b

�k
Xn�1

j¼1

1

2�gj
~#T
j
~#j

 !b

� k
Xn�1

j¼1

1

2�gj
~#T
j
~#j

ð62Þ

By applying Lemma 4, we have

ðkminðQÞ ek k2Þb � 1b �ð1� bÞbb=1�b þ kminðQÞ ek k2 ð63Þ

W
b
0 � 1b �ð1� bÞbb=1�b þW0 ð64Þ

W
b
1 � 1b �ð1� bÞbb=1�b þW1 ð65Þ

Xn

j¼1

1

2gj
~nTj ~nj

 !b

�1b �ð1� bÞbb=1�b þ
Xn

j¼1

1

2gj
~nTj ~nj ð66Þ

Xn�1

j¼1

1

2�gj
~#T
j
~#j

 !b

�1b �ð1� bÞbb=1�b þ
Xn�1

j¼1

1

2�gj
~#T
j
~#j ð67Þ

Substituting (63)–(67) into (62) and adopting Lemma 3,

we have

_V � � cVb þ r ð68Þ

where c ¼ min kn
kminðQÞ ; 2

bk; k
n o

and r ¼ 5ð1�
bÞbb=1�b þ D.

From the proof of Lemma 6, let 1 ¼ ½z; e; ~n; ~#�, we can

obtain the reach time as Treach ¼ 1
ð1�bÞdc ½V1�bðzð0Þ; eð0Þ;

~nð0Þ; ~#ð0ÞÞ � ð r
ð1�dÞcÞ

ð1�bÞ=b�, with the initial values zð0Þ ¼
½z1ð0Þ; . . .; znð0Þ�T , eð0Þ ¼ ½e1ð0Þ; . . .; enð0Þ�T , ~#ð0Þ ¼
½ ~#1ð0Þ; . . .; ~#n�1ð0Þ�T and ~nð0Þ ¼ ½~n1ð0Þ; . . .; ~nnð0Þ�T . Thus,
it should satisfy Lemma 6 such as Vbðz; e; ~n; ~#Þ� r

ð1�dÞc for

8t� Treach, which means that controlled system is SGPFS.

Moreover, for 8t� Treach, we have

y� yrj j � 2
r

ð1� dÞc

� � 1
2b

ð69Þ

That is, after finite time Treach, the tracking error keeps in

a small neighborhood of the zero.

Now, according to the above control design and stability

analysis, we are ready to summarize our major results for

the resulting closed-loop system as follows.

Theorem 1 Under Assumption 1, Definition 1 and Lem-

mas 1–6, consider nonlinear system (1), controller u (56),

and state observer (15), intermediate control functions a1

(35) and ai (49), adaptive laws
_̂n1 (36),

_̂
#1 (37),

_̂ni (50),
_̂
#i

(51) and
_̂nn (57), can guarantee that all the signals of

closed-loop system are SGPFS, tracking and observer

errors converge to a small neighborhood of the origin in a

finite time.

Remark 1 From Theorem 1, (69) and the proof of Lemma

6, it means that all signals of the closed-loop system are

bounded. In addition, by increasing the design parameters

ci, gi, �gi, ki, or decreasing the design parameters b, di,
�di(i ¼ 1; 2; . . .; n) and p can make tracking error be small,

and all variables of the controlled system have the fast

convergence rate.

5 Simulation Example

In this section, two simulation examples are provided to

elaborate the effectiveness of the presented control method.

Example 1 Consider the second-order SISO nonlinear

nonstrict feedback system as

_x1 ¼ x2 þ f1ðx1; x2Þ þ h1ðx1ðt � s1ÞÞ þ d1ðtÞ
_x2 ¼ uþ f2ðx1; x2Þ þ h2ðx1ðt � s1ÞÞ þ d2ðtÞ
y ¼ x1

8
<

:
ð70Þ

where f1ðx1; x2Þ ¼ � 0:5x2 sinðx1x2Þ=ð1þ x41Þ, f2ðx1; x2Þ ¼
sinðx1 x2Þ=e1þx4

2 , d1ðtÞ ¼ 0:5 cosðtÞ þ sinðtÞ and d2ðtÞ ¼
0:6 sinðtÞ. The reference signal is chosen as yrðtÞ ¼
2 sinðtÞ þ cosð4tÞ. Choose nonlinear time-varying delay
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functions as h1 ¼ x1ðt�s1ðtÞÞ
1þx2

1
ðt�s1ðtÞÞ, h2 ¼ x1ðt � s2ðtÞÞ, si ¼

0:5ð1þ 0:4 sin tÞ, ði ¼ 1; 2Þ, s ¼ 0:4 and s� ¼ 0:6.

Choose the fuzzy membership function as lFl
i
ðx̂iÞ ¼

exp½� ðx̂i�6þ2lÞ2
16

�, þ, l ¼ 1; � � � ; 5.
According to [14], FLSs f̂iðx̂jn̂iÞ ¼ n̂Ti uiðx̂Þ are adopted

to approximate the unknown functions fiðxÞ, i ¼ 1; 2.

Choose the design parameters ki ¼ 24ði ¼ 1; 2Þ, matrix

Q ¼ 8I, from (17), we can obtain the positive-definite

matrix P ¼ 0:1736 0:1667
0:1667 8:1667

� 

. Define the state observer

as

_̂x1 ¼ x̂2 þ k1ðy� x̂1Þ þ f̂1ðx̂jn̂1Þ
_̂x2 ¼ uþ k2ðy� x̂1Þ þ f̂2ðx̂jn̂2Þ
ŷ ¼ x̂1

8
<

:
ð71Þ

In this numerical example, all the design parameters in

the controller u, adaptive laws
_̂n1 and

_̂
#i can be set as

b ¼ 0:96, p ¼ 3, c1 ¼ c2 ¼ 8, g1 ¼ 6, g2 ¼ 4, d1 ¼
d2 ¼ 4, �g1 ¼ 4, �d1 ¼ 6 and r ¼ 1. The initial values are

selected as x1ð0Þ ¼ x2ð0Þ ¼ 0:5, x̂1ð0Þ ¼ 0:02 and

x̂2ð0Þ ¼ 0:03. The other initial values are selected as zero.

Note that we use the MATLAB environment to solve the

theorem, and the simulation results can be obtained and

shown in Figs. 1, 2, 3, 4 and 5, where Fig. 1 shows the

trajectories of the tracking signal yr and output y; Fig. 2

displays the trajectory of the tracking error z1; Figs. 3 and 4

exhibit the trajectories of the states xi and their estimation

x̂i(i ¼ 1; 2); Fig. 5 shows the trajectory of controller u.

Example 2 In order to further verify the effectiveness of

the presented control scheme, the following electrome-

chanical system is considered from [18], and we are not

considering the input quantized. The system is displayed in

Fig. 6.

The system model can be described as

M€qþ B _qþ N sinðqÞ ¼ I

L _I ¼ V0 � RI � KT _q

�

ð72Þ

where M ¼ J=KT þ mL20=ð3KTÞ þM0L
2
0=KT þ 2M0R

2
0=

ð5KTÞ, B ¼ B0=KT , N ¼ mL0G=ð2KTÞ þM0L0G=KT , m ¼
0:506 kg is the link mass, J ¼ 1:625 kgm2 is the rotor

inertia, R0 ¼ 0:023m is the radius of the load, M0 ¼
0:434 kg is the load mass, L0 ¼ 0:305m is the link length,

B0 ¼ 0:01625 Nm s/rad is the coefficient of viscous fric-

tion at the joint, L ¼ 0:025R is the armature inductance,

Kt ¼ 0:9Nm/A is coefficient which characterizes the

electromechanical conversion of armature current to tor-

que, R ¼ 0:05X is the armature resistance, IðtÞ is the motor

armature current and G ¼ 9:8 is the gravity coefficient.

Consider the electromechanical system with time-vary-

ing delays and disturbance introduce the variable change as

x1 ¼ q, x2 ¼ _q, x3 ¼ I and u ¼ V0=M. It is worth pointing

out that there exist the time delays in the signals trans-

mission process. In addition, in this simulation, we con-

sider the external disturbance D ¼ x21 sinðx2x3Þ. Thus, (72)
can be rewritten as

_x1 ¼ x2 þ x21 sinðx2x3Þ þ h1ðx1ðt � s1ðtÞÞÞ
_x2 ¼

x3

M
� N

M
sin x1 �

B

M
x2

þ B

M
cos x2 sin x3 þ h2ðx1ðt � s2ðtÞÞÞ

_x3 ¼
u

L
� K

L
x2 �

R

L
x3 þ h3ðx1ðt � s3ðtÞÞÞ

y ¼ x1

8
>>>>>>>><

>>>>>>>>:

ð73Þ

Fig. 1 Trajectories of the tracking signal yr and output y

Fig. 2 Trajectory of z1
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where h1ðx1ðt � s1ðtÞÞÞ ¼ x1ðt�s1ðtÞÞ
1þx2

1
ðt�s1ðtÞÞ, h2ðx1ðt � s2ðtÞÞÞ ¼

x1ðt�s2ðtÞÞ sinðx2ðtÞÞ
1þx2

1
ðt�s2ðtÞÞ , h3ðx1ðt � s3ðtÞÞÞ ¼ x1ðt � s3ðtÞÞ,siðtÞ ¼

0:4ð1þ 0:5 cosðtÞÞ,i ¼ 1; 2; 3,s ¼ 0:2 and s� ¼ 0:6. The

reference signal is chosen as yr ¼ sinð0:5tÞ.
Choose the fuzzy membership function as lFl

i
ðx̂iÞ ¼

exp½� ðx̂i�3þlÞ2
16

�, i ¼ 1; 2; 3; l ¼ 1; . . .; 5. According to [14],

FLSs f̂iðx̂jn̂iÞ ¼ n̂Ti uiðx̂Þ are adopted to approximate the

unknown functions fiðxÞ, i ¼ 1; 2; 3.

Choose the design parameters ki ¼ 20ði ¼ 1; 2; 3Þ,
matrix Q ¼ 8I, from (17), we can obtain the positive-

definite matrix P ¼
0:2316 0:6316 0:2000
0:6316 17:0632 8:6316
0:2000 8:6316 16:6316

2

4

3

5.

Define the state observer as

_̂x1 ¼ x̂2 þ k1ðy� x̂1Þ þ f̂1ðx̂jn̂1Þ
_̂x2 ¼ x̂3 þ k2ðy� x̂1Þ þ f̂2ðx̂jn̂2Þ
_̂x3 ¼ uþ k3ðy� x̂1Þ þ f̂3ðx̂jn̂3Þ
ŷ ¼ x̂1

8
>><

>>:

ð74Þ

In this numerical example, all the design parameters in

the controller u, adaptive laws
_̂n1 and

_̂
#i can be set as

b ¼ 119=121, p ¼ 0:1, c1 ¼ 0:5 c2 ¼ c3 ¼ 20, g1 ¼ 0:1,

g2 ¼ 0:2, g3 ¼ 0:5, d1 ¼ 0:2, d2 ¼ 0:1, d3 ¼ 0:3, �g1 ¼
�g2 ¼ 0:1, �d1 ¼ �d2 ¼ 0:5 and r ¼ 0:8. The initial values are

selected as x1ð0Þ ¼ 0:05, x2ð0Þ ¼ 0:02, x3ð0Þ ¼ 0:01,

x̂1ð0Þ ¼ 0:02, x̂2ð0Þ ¼ 0:03 and x̂3ð0Þ ¼ 0:02. The other

initial values are selected as zero.

Fig. 6 Schematic of electromechanical system

Fig. 5 Trajectory of uFig. 3 Trajectories of x1 and x̂1

Fig. 4 Trajectories of x2 and x̂2
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Finally, the simulation results can be obtained and

shown in Figs. 7, 8, 9, 10, 11 and 12, where Figs. 7 and 8

show the trajectories of the tracking signal yr and output y,

and tracking error z1, respectively; Figs. 9, 10 and 11

exhibit the trajectories of the states xi and their estimation

x̂i(i ¼ 1; 2; 3); Fig. 12 shows the trajectory of controller u.

Remark 2 In this paper, the comparison is conducted with

the method in Ref. [18] without considering the input

quantized. The related parameters in both methods are the

same. The tracking performance and approximation effects

are presented in Figs. 13 and 14. In addition, in [18], a

linear observer is designed to estimate the unmeasured

states. Note that this state observer is independent of the

controlled plants. The major disadvantage is that it cannot

obtain the good estimations of the unmeasured states. In

this paper, we design a fuzzy state observer (15), which can

obtain the good estimations of the immeasurable states.

Simultaneously, observer-based fuzzy adaptive practical

finite-time control scheme is presented, which has the

better tracking performance and approximation effects.

The above simulation results clearly shown that the

presented practical finite-time fuzzy adaptive control

strategy can ensure that all the signals of the closed-loop

system are bounded.

Fig. 8 Trajectory tracking error z1

Fig. 7 Trajectories of yr and y Fig. 9 Trajectories of x1 and x̂1

Fig. 10 Trajectories of x2 and x̂2
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6 Conclusions

In this paper, an observer-based practical finite-time fuzzy

adaptive control strategy has been developed for SISO

nonlinear nonstrict feedback system with time-varying

delays. On the basis of finite-time Lyapunov–Krasovskii

stability theory, the stability of the closed-loop systems can

be proved, which demonstrated that the observer and

tracking errors converge to a small neighborhood of the

zero in a finite time, and all the signals of the closed-loop

system are bounded.
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