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Abstract This paper focuses on fuzzy adaptive practical
finite-time output feedback control problem for a class of
single-input and single-output nonlinear system with time-
varying delays in nonstrict feedback form. Fuzzy logic
systems are adopted to approximate the unknown nonlinear
functions, and state observer is constructed to estimate the
unmeasured states. By combining practical finite-time
Lyapunov stability theory with the backstepping design, an
observer-based fuzzy adaptive practical finite-time control
strategy is proposed. Meanwhile, the stability of the closed-
loop system is proved, which means that the output can
follow the given reference signal in a finite time, and the
closed-loop system is semi-global practical finite-time
stability. Finally, two simulation examples are provided to
elaborate the effectiveness of the presented control
strategy.

Keywords Practical finite-time stability - Fuzzy adaptive
control - Nonstrict feedback system - Backstepping design -
Time-varying delays

1 Introduction

During the past several years, the neural networks (NNs) or
FLSs [1-3] are adopted to deal with the control problem of
uncertain nonlinear systems. By using adaptive backstep-
ping design, some significant results have been received,
see [4-9]. Among them, the authors in [4, 5] have studied
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the adaptive fuzzy or NNs control problems for SISO
nonlinear pure feedback systems with time-varying delays.
The authors in [6] developed the fuzzy adaptive tracking
control scheme for SISO strict feedback nonlinear system
with input delays, and in [7] presented the output feedback
adaptive NNs control scheme for nonlinear stochastic
system with time-varying delay. However, in many real-
world systems, the systems states of considered plants are
usually not available or measurable directly; therefore,
fuzzy adaptive observer needs be designed to get the esti-
mation of unmeasured states. Subsequently, the author in
[9] investigated the output feedback adaptive fuzzy control
problem for nonlinear multi-input and multi-output
(MIMO) systems with time delays.

However, the aforementioned presented control design
strategies are all considered in the pure/strict feedback
systems. In adaptive backstepping control design process,
note that FLSs or radial basis functions are adopted to
approximate the systems nonlinear functions, it only con-
tains partial state variables. However, nonlinear nonstrict
feedback systems are more general nonlinear system, the
nonlinear function contains the whole state vector in the i-
subsystem. If the above presented control strategies for
pure feedback or strict feedback systems are directly
applied in nonlinear nonstrict feedback systems, thus, it
will lead to much more difficulties, such as the “algebraic
loop problem,” which is not be permitted. Therefore, a new
adaptive backstepping design strategy needs be presented.
To overcome this problem, recently, some significant fuzzy
or NNs adaptive control strategies are presented for non-
linear nonstrict feedback systems, see [10—15]. Among
them, the authors in works [10, 11] developed the
approximation-based adaptive fuzzy or NNs control
methods for nonlinear nonstrict feedback systems, and in
[12] investigated the neural adaptive output feedback
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control issue for nonlinear stochastic system. The authors
in [13—-15] have presented the observer-based fuzzy or NNs
adaptive control strategies for nonstrict feedback systems.

In the real-world systems, consider the factors of cost
saving and the maximization of interest, such as the vehicle
guidance system, the attitude control systems of the flight
vehicle and robot control systems, which be expected to
arrive the equilibrium state in a finite or fixed time. If the
tracking time and the transient time of the real-world sys-
tems go to arbitrary or infinite, which will cost the high
charge, apparently, we can see that the above results are all
considered in the infinite time and not consider the setting
time in their control process, the perform time may be very
long. As the finite-time controllers contain the terms of
exponential power, the finite-time control method has
better robustness, fast transient performance and high
precision performance. Therefore, the finite-time control
methods have paid the considerable attention for many
scholars.

Recently, some crucial works of finite-time control have
been received, such as [16-28]. Bhat et al. [16, 17] first
presented finite-time stability theory for nonlinear systems
and addressed chattering problems of the adaptive laws
caused by terminal sliding mode controller. In addition, the
authors in [16, 17] also give several criterions of the finite-
time stability. Later, the authors in [18-22] presented the
semi-global practical finite-time stability (SGPFS) for
uncertain nonlinear systems. Among them, the authors in
[18] presented the observer-based neural adaptive finite-
time control method for quantized system, and in [19]
studied the fuzzy adaptive tracking control issue for non-
linear pure feedback system. In addition, the authors in
[20, 21] have developed the fuzzy adaptive finite-time
control strategies for SISO nonstrict feedback nonlinear
systems and in work [22] are for interconnected large-scale
nonlinear systems. Furthermore, the authors in [23-27]
studied the global finite-time control problems for nonlin-
ear strict feedback systems by combining and adding a
power integrator theory with backstepping recursion design
technique. The authors in [28] presented the neural adap-
tive control scheme for high-order nonlinear nonstrict
feedback systems. Obviously, the above controlled systems
do not consider the unknown time-varying delays.

In this paper, the issue of fuzzy adaptive finite-time
control is studied for SISO nonlinear nonstrict feedback
system with time-varying delays. FLSs are utilized to
approximate nonlinear functions. Moreover, to estimate the
unmeasurable states, fuzzy adaptive observer is con-
structed. Compared to existing works, the major contribu-
tions can be described as: (1) By combining finite-time
Lyapunov—Krasovskii stability theory with backstepping
design, this paper presented an observer-based fuzzy
adaptive practical finite-time control scheme for SISO
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nonlinear system with time-varying delays. The presented
control strategy can ensure that all the signals of closed-
loop systems are bounded and the tracking error converges
to a small neighborhood of the zero in a finite time; (2)
compared with the existing finite-time control results in
[18-22], the problems of time-varying delay are considered
in this paper and the nonlinear systems are in nonstrict
feedback forms. On the one hand, in [19-21, 23-28], the
state variables are all available. In this paper, the state
variables are not completely available; thus, a fuzzy state
observer is constructed and does not like [18]; on the other
hand, the nonlinear functions in this paper are completely
unknown and do not satisfy the linear growth condition like
[25-27].

2 Problem Formulations and Preliminaries

2.1 System Description

Consider the SISO nonlinear nonstrict feedback system as

X1 = x2 +fi(x) + Ay (xi (t — 71)) +di (1)

X = xip1 +fi(x) + hi(xa (= ) + di() (1)
Xn = u+fo(x) + hy(x (7 — 10)) + dn(2)
y=x1 i=2,...n—1

where x = [x1,x,.. .,x,JT is the state vector, y € R and

u € R are output and control input, respectively. f;(-) and
hi(-) are the unknown smooth nonlinear functions and
satisfy f;(0) = 0. 7; is unknown bounded time delay satis-
fying |7;| <t and the derivative of t; satisfies 7;(r) <7* <1,
where 7 and t* are known constant. d;(#)(i = 1,2,...,n) is
the dynamic disturbance and satisfies |d;(t)| <d} with d}
being known constant. Moreover, the only available state is
output y.

Assumption 1 [8, 9] The unknown nonlinear smooth
function h;(x;) satisfies

|hi(x1)]* < z1Hi(z1) + Hi(y,) + @;

where z; is the tracking error, H;(-) and H;(+) are bounded
and known functions, which satisfy H;(0) =0, @; is a
positive constant.

Lemma 1 [10, 12] (Young’s inequality) For
V(a,b) € R?, the following inequality holds

1
—1b]*

Ep
ab< —|al’ +
p qe?

where ¢ >0,p>1,q>1and (p—1)(g—1)=1.

Our control objective is to present a practical finite-time
fuzzy adaptive control strategy for system (1), such that all
the signals of the closed-loop system are bounded and
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output y(¢) can track the given reference signal y,(¢) in a
finite time.

2.2 Fuzzy Logic Systems

From [14], FLSs are consisted by the following four parts:
the knowledge base, the fuzzifier, the fuzzy inference
engine working on fuzzy rules and the defuzzifier. The
knowledge base is consisted by the following inference
rules:

R':If x; is F| and x; is F} and ... and x, is F",
thenyis G', =1,2,...,N.
where x = [x1,xp, .. .,xn]T and y are the FLS input and

output, respectively. G' and F f are fuzzy sets, together with
the fuzzy membership functions pug(y) and pp(x;),

respectively, and N is the rules number.
According to [14], define the FLS as

_ Z?/:l i '“F{(xi)

y(x) = . (2)
Zév:l [T~ 1 (xi)
where y; = max pg (y1).
Fuzzy basis functions can be described as
P VRV
[ n

Z;V:l [T~ HE! (x7)
Denoting (x) = [¢,(¥), .., oy (0] and & =[5y, %y, ..,
yv] = [&1, &, - - -, Ex], then rewritten the FLS (2) as
(@) = o) (3)
Lemma 2 [8, 14] Let f(x) be a continuous function,

which is defined on a compact set Q. Then for any constant
& > 0, there exists a FLS (3) such as

suplf(x) — & o(x)| <e (4)
xeQ

where ¢ is the fuzzy minimum approximation error.

2.3 Finite Time

To deal with finite-time fuzzy adaptive control problem,
consider the following valid Lemmas and Definition.

Definition 1 [18-20] For all initial values ((#) = (o,
there exists a constant ¢ > 0 and setting time 7'(¢, {,) <oo
satisfies ||{(?)|| <¢, for Vi >1y + T thus, the equilibrium
point { =0 of nonlinear system { = f({) is semi-global
practical finite-time stability (SGPFES).

Lemma 3 [18-20] For real number 0<p <1 and {; € R,
i=1,2,..., k, we have

k P k k P
(Z |ci|> <yl Skl”< |z,~|> (%)
i=1 i=1 i=1

L

Lemma 4 [18-20] For u, o and ¢ are positive constants,
and \y and ¢ are real variables, we have

. 1 g
[p]"¢” < m¢|l//|ﬂ+y+m¢ o[ E|rte (6)

Lemma 5 [18-20] Consider differential equation

E(1) = —nl(t) + uw(t), where 1> 0 and 1> 0 are real
numbers, and function w(t) is positive. Under the initial
value f(to) >0, if w(t) >0 for Vt > ty, we have f(t) >0 for
Vt>t.

Lemma 6 [18-20] For any positive-definite function
V(¢), with scales y > 0, 0< <1 and ¢ > 0, the nonlinear
system ¢ = f(g) satisfies

V() < = Vi) + 0,120 (7)
thus the nonlinear system ¢ = f(¢) is SGPFS.

Proof For Y0< <1, according to (7), we have

V(e) < =91 =) VP(e) = pVP(e) + o (8)

Let Q. ={c|V/(c) > %5} and Q. ={c[VF(¢)<
ﬁ} There are two cases to consider as

Case 1: If ¢(1) € Q., we have
V()< —apvF(e) 9)

Integrating it over [0, 7], we have

T V(g) T
/0 Vﬂ(g)dtg —/0 oydt (10)

In addition, we have
1

T V(1)) = VITP(e(o)] < = oT (11)
We can define
B 1 . ~ . (1-p)/B
Treach - (1 — ﬁ)éy 14 (5(0)) ((1 _ 5)“/)

where V(¢(0)) is the initial condition of V(¢). Therefore,
according to (11), we have ¢(¢) € Q. for VT > Tieqch.

Case 2: If ¢(7) € Q, from the first case, the trajectory of
¢() is not beyond the set Q.. The time to arrive the set Q.
is bounded as T, that is, the solution of ¢ =f(¢) is
bounded in a finite time.
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3 Fuzzy State Observer Design

In this paper, the only measurable variable is state x;. Thus,
state observer needs be constructed to get the estimation of
unmeasured states x; (i =2,3,...,n). On the basis of
Lemma 2, the following FLS is adopted to approximate the
unknown function f;(x) as

f;(ﬂgl) = ng‘Pz()e) (12)

Define the optimal parameter vectors & as
& —argmm sup V A)Zf
GE€9 | seU xeU

where U, U and Q; are compact regions for x, X and f,-,
respectively. Thus, define the fuzzy minimum approxima-
tion error &; as

& = fi(x) — £i(%]&) (13)

where ¢, satisfies that |¢;| <&}, and & is a positive constant.
Thus, rewritten system (1) as

X=Aox+ > Bfi(x) +h+ A+ B,u

= (14)
y=Cx 0
where Ay = 1,4 s 62[1707"'70]1><n’
0 0 0J,.,
Bi=10,...,0,1,...,0]' ,, h=[h,hy.. k), A=
[d\,dy,....d,)"  and B, =[0,...,0,1]] .

To estimate the immeasurable states, fuzzy state obser-
ver is designed as

. n ~ ~

X =Ax+ Ky+ > Bfi(%|&) + Bu

) = (15)

y=Cx
where A = Ay — KC and K = [ky, ka, . . ., k]! ;.

Define virtual observation error vector ¢ = x — x, from
(14) and (15), we have

e—Ae—I—ZBlf 0,(X)+h+A+¢ (16)

where é,» =& - é,- is the adaptive parameter vector error.

The observer gain matrix K is chosen as A is a strict
Hurwitz matrix, for any matrix Q = QT > 0; thus, matrix
P = PT satisfies

AP+ PA=-2Q (17)

From observer error system (16), choose the Lyapunov
function as

@ Springer

1
Vo = EeTPe

Due to the existence of the term of time delay, thus, we
utilize the Lyapunov—Krasovksii to deal with the problem
of time delay. Choose the Lyapunov—Krasovksii function

as

_ 1
V0=V0+W0=§eTPe+Wo (18)

where Wy = '(I ) th (€21 (8)(Hi(z1(s)))ds is a pos-
itive- deﬁmtlon fundtibn r 1s a positive constant.
From (16)-(18), we have

Vo= 2éPe + Lo Pé 4 W,

= —<e re —e re

0 ) ) 0
R 2 .

< — Amin(Q)[le[I"+Wo (19)

—I—eTP(ZBf @;(% +h+/1+s>

According to the fact 0<q!(%)p,(x) <1, adopting
Assumption 1 and Lemma 1, we have
n 2 n
IPY B g s Zé &+ 2 el (20)
i—1
P o, WP
TP(e+ A) < Jlel*+ [l |+ 75 Zd2 (21)

2

T IPI"y 2, 1o

Ph< —— —h
e <5 Ilell +2

2
=" - qi (22)

+ %zn:(zl(t — ’E,‘)H (Z](t - I-i)))
i=1

where g; > 1 (Hi(y,(t — 1;)) + ;) is a constant.
W er(rft) n . "
= — _— T t i

0 =—rWo +2( —y2 [8 21(2) (Hi(z1 (1))

— ez (1 — D) H(z (t—ri))(1 —1)]
" (23)

e’
m; 21(t)(Hi(z1(1)))
Hi(z1(t — 1))
Substituting (20)—(23) into (19) yields

Vo< — gflelf+ 12 ” Z«: & — rWo + My

+m;zl (1)(Hi(z (1))

(24)
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where (n+||P|H)/2 -1
(HS*HZ"' > i d?)/2 + > i1 G-

20 = Jmin — and M, = |P|

4 Practical Finite-Time Fuzzy Adaptive Control
and Stability Analysis

In this section, a practical finite-time fuzzy adaptive control
scheme is presented by adopting backstepping design.
Define the coordinates transformation as
i1 =X —Yr (25)
Zi =X — 0
where z; is the tracking error and o;_;, i = 2,3, ...,

the intermediate control functions.
Step 1 From (1) and (15), define z, = x, — «;, we have

n are

1 =X =Y,
=an+ou+&70i(8) + o (k) + e+ dy (26)
+ oo+ h 4+ E o (h) = & (B) — Y,
Choose the Lyapunov—Krasovksii function as

1
Vi=Vy +—Z1 61 f] ’19T19| + W (27)

2

where 1, >0 and #; > 0 are design parameters. E,» =

& — ¢ and ¢; is the estimation of & Define Uf =

0; = 9F —J; and ¥; is the estimation of V(i =1,...,n).
Define W is
W= [ e )
1 =377 v e“zi(s 1(z1(s )
2(1 - T*) t—14(1)

From (26)—(28), we have
. . . 1 ~2 1 ~ » .
Vi=Vo+ 2121 _;é{él - _*19{191 + Wi
1
< —Jollel*+z1z2 — rWo + -5 L ” Z 070; + Mo

l—r ZZ]

+ &0 (3) + E @y (21) +diy + &1 + E 9 (1)

— & (81) + b —¥,)

1))+ zi(o + e

1 ~-2 1 ~ = .
—n—flrél —ﬁ—191T191+W1
1 1
(29)

According to the fact of 0< @l (-)¢,(-) <1, applying
Lemma 1 and Assumption 1, for any constant = > 0, we
have

er(rft)

20— O @)
— "z (t — 1) H (21 (t — 7))(1 — 7)]

e (30)
mzl (t)(Hi(z1(1)))

_ %Z] (t—1)H (z1(t — 1))

W] =—rW,; +

< —rW; +

3, .
zi(er+6 +dp) < 34 —H 1>+~ ||s II? +3 d2 (31)
*T o _5*T o < E 219* % 32
21(E7 (%) = &7 @y (R1)) < 211 ]+n (32)
1 1
zihy < EZ%JrEh%
1 1
<§ %+521(I—T1)H1(Zl(l‘—ﬁ)) (33)
1~ 1
+§H1(y:( r,))+§w1

Substituting (30)—(33) into (29) results in

Vi< = dllel>=rWo — rWy + 2122 —I— Z

+z <051+ D) ZH z1( +f1(/’1(x1)

er‘[

. i
+ mHl (Zl(l)) -y, +2z1 + TZI>

T i N g o
+-1 (nl—Z% — 791) +-=L (’7121901()‘1) - 51) + M,
o\ 2 m

(34)

where A4 =2 —1/2 and M,

e[ /2 +di?/2 and g,
constant.

Design the intermediate control function o, parameter

=My+q +2/n+
=H(y,(t—11))/2+®@/2 is a

adaptive laws él and 1551 as

3 7'[19 et n
o = —clzfﬁ ' -2z _TIZI _mzHi(Z'(t))
i=1

rt

ne .
~ o) - WHI(ZIU)) + 5,
(35)
51 :’11Z1§01(£1)—5151 (36)
g =""2 54, (37)
2
where = (2n—1)/(2n+1), ¢; >0, §; >0 and §; >0

are design parameters. The chosen of the adaptive laws
should satisfy Lemma 5. From (35)—(37), it follows that
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; ) z According to the fact 0<¢!(%)¢;(x) <1, applying
Vi< — Me|*—cizt |— + & Pi \X)Pi
h= tlell IZ 2 ; é ae Lemma 1 and Assumption 1, for any constant = > 0, we
PHUU A have
+ =&+ =00 — W — W, (38) T T 2 m, .,
M M Zi(ff ¢;(%) — & (Pi(ﬁ')) < *"‘Ezi v; (42)
(n _ l)err s
,mzl(t)l‘h(m(t))Jer 1,
T _Zlé (p[( )< 2Z + 6 61 (43)

Step 2 i(2<i<n—1): According to (15) and (25),
define z;1; = x;+1 — a;, we have
Gi= o+ i + &%) — E‘TQDi()E)
+ & o) — &%) + &
0ol » .
-l (e2+ &1 +di + & ()
Oy (39)
&1 () + E o1 (1) + )
n 60(,’ .

> e (§Te - Fow)

J=1

Choose the Lyapunov—Krasovksii function as

1 I ospe 1 s
Vi=Vi+-2+—CTé+—979,+ W 40
1+2Z,+217if,51+2ﬁi Ui+ W (40)

where #; > 0 and #; > 0 are design parameters. According
to (39)—(40), we have

. . . 1 ~r2 1 ~ = .
Vi=Vig+auii——&&— =00+ W,
i i

i—1
S — ;4;1 HeHz— ZCngﬂ — rWO - (l - 1)}"W| + ZiZi+1
j=1
i
) + Z €T€, + iz

(n—i+1)e"
T oy @O0

- V*Tq)r(—t) +é q)l( ) + C (pl(—l) :‘i - gi ¢i(x)
aaz—l

6x1

(62 +dy e+ —ETp () + EIT(PI()EI)

+Z®o¢, 1( (P, t) + & 40,( )>>

R S LA
i j=1

+ o —

+&T o (%

1 -2
- & -
i
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afxz 1

ox 0 (62+81 + d; +E{(P1()21))
2 2 aO(i—l 2+1 (H ||2+|| *||2+d*2 + ETE )
& 6x1 2 ¢ ¢ ! 1>

_ .aOCi—I ( *T (A) é*T (A )) < E 2 aai—l 2_"_%19*
Zj ox 1 P1x 1 ¢1\x1)) = 215 ox, 1

(45)

(44)

60(,-71 2 1 2
<ax1 ) 2l
oo\ 1

(“ 1) +aalt—n) iz - n)) (46)

‘L']))ﬁ'%‘lﬂ]

- 2 (6700 - o) < Zﬁ*
+1§n:ETE- +Z2Z (a“”) (47)
P e AN

Substituting (30) and (42)—(47) into (41) results in

2 n
Vi < —)vi_1||e\|2—|—” ” Zf & — Zc]zzﬁ (i — 1)rw,
(n—i+1)e"
— Wy — 21 () H, (
rWo 20— o) 1(zi (2 +Z ff

—1 s P | T &

n _ élTél+Ztlﬁjfﬂj+§Z§jT§j+ZiZi+l
= j=2
l—l n
15

LS (G

3 Zi aX1

al — .
0 (Mg

i \ 2

(48)

where  M; =My +qi + (|&'|*+d> + X, 07)/2+
207 /n+2/mEi = iy, (%l) and J; = A —1/2.

- .
o + =i+ zZio1 +§+

. ;
+M; +f] (50 — &)

L
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Design the intermediate control function «;, parameter

adaptive laws Ei and oJ; as

o= —cizt ' - S i —E- all %
2 5 2
2432 (49)
f' = nzip; (%) — 5551' (50)
9, = ”’Zﬂ 2 _ 5.4, (51)

where ¢; > 0, §; > 0 and J; > 0 are design parameters.
From (49)—(51), it follows that

2 n
V,S —)v,‘_|||€H2—rW0 (l— I)VW + — ” || foé]

(O H (21 (1)

i 5 o i 5‘~ .
BTNy R
j=1"1 j=1"1
(52)

Step 3 n: This is the last step. Thus, from (15) and (25),
we have

. ao‘n—l
n=U— o (ex+ e +hi + T (R)
+di =&y (01) + &9y (01)) + E, (53)
1 oo, 1 T
YT (e +§Te)
j=1
where
= T - aoCn—l
En = k’lel + én (/)n(zn) - ~ (xj-H - klel)
=i axj
n—1 n—1 n—1
a(xn7 X a(xn7 ~ 60(,,,
_Z Aléj_ Al i (/,ll)ygl)
=1 9% = 0 =1 Oy
aanfl ~
-l + oy ()
Choose the Lyapunov—Krasovskii function as
V=V._i14+=2 ErE 4
v, 2 n 2’,’" n£ﬂ+W1 (5 )

where 7, > 0 is a design parameter.
According to (53)—(54), we have

o . 1 -2 .
V= Vl’l—l +ZnZn _r’_é,{én + Wl

n—1
< — Jullel?—rWo — an1+” I Z; &= a5’
j=1 j=1

nl

’19T19 + M,
L n ] +5+n 00,1 2
e ) ox,
Iz & . x n—1 2~
32 GG (mliz — &) + =&
j= n
(55)

where A, = A,-1 — 1/2, My = M,—1 + q1 + (||3*H2+df2)/

2+295/2 and B, = B, + 2, 3 ()2,

= 0%
Design the controller u, adaptive law (9n as

b1 1 n+5 00,1 2
2 AN

2 —
U= —Cpg, —Zn—-1 — 3% — En

(56)

én = NpZn Py ()_En) - 5'15”

where ¢, > 0 and ,, > 0 are design parameters. According
to (57), the chosen of the adaptive laws satisfy Lemma 5.
From (56)—(57), it follows that

. n P 2 n o
V< —lelt=3ag + LD S - er -,

j=1

(57)

n St o s n—1 5 o
— W, +Zn—{5f§,~+zngﬁfﬁj+m (58)
+ 2 Zé gt lag Zé &
By applying Lemma 1, we have
5] aT Q0 _5j oT [ qxT qT 5] aT .9 gj *T g%
0 =) (97— d7) < 3701+ 5 0T
(59)

Dgg dg(er &)< - 2Ee s Dare (o0)
n n J i) = 2’7] > =) 2’7]' Jci

Substituting (59)—(60) into (58) yields
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n
V< = llel’=> ¢z — rWo — Wy + D
j=1

n—=1 3
F Y.
+ = Zé gt Lere, —22—119719,.
=1 <N
s s [P
_ngéﬁ 2 GG+ 25 §
=1 <M =
(61)
whereD:M,,—i—Z;ﬂ 19*T19*+Z f*Tf
J=
Choose k:min{c_,-,nr,é (||PH +1)n;, 61 — (n— 1+

|P||*)n,}, rewritten (61) as

V<~ (ml@)lel)

5 (@)

B
1
— Dnllel?— kWL + kWl — kw, — 2ﬁk< 3 f)
=
B
— kWl kWl —kw, + k(Z—iT >
J
k<22—5 5,)

+ k(iiﬁrz@)ﬁ—k(ﬂ L 7)!3
=20 7 =20 7
5 L
j=1 2 !
By applying Lemma 4, we have
(min(@Q)lel®) - 17 < (1 = BB 4 din(Q) el (63)

wl-1P< (1= gt 4wy (64)
— BB+ wy (65)

B
"oy PR R
(2 ljz—méfé,) V<a-pplr ey li—%ff & (66)
= =

wl 1<

n p
(izn %9) 1< - ﬁﬁﬂuz %9 (67)

Substituting (63)—(67) into (62) and adopting Lemma 3,
we have

V< — V4o (68)

where y = mm{ Nk 2k k} and
BB" +D.

@ Springer

From the proof of Lemma 6, let ¢ = [z, e, &, 9], we can

obtain the reach time as Trepch = W[Vkﬁ(z(O),e(O)7

£(0),9(0)) — (%5)""""), with the initial values z(0) =

[21(0), -,z (O], e(0) = [e1(0),.. .,en(O)JT, 9(0) =
[91(0),.., d,-1(0)]" and (0) = [&,(0), ..., &,(0)]". Thus,
it should satisfy Lemma 6 such as V#(z, e, g,ﬁ) (= 5) for

Vt > Treach, Which means that controlled system is SGPFS.
Moreover, for Vt > Tieach, We have

v 25 ) =

That is, after finite time Tie,ch, the tracking error keeps in
a small neighborhood of the zero.

Now, according to the above control design and stability
analysis, we are ready to summarize our major results for
the resulting closed-loop system as follows.

Theorem 1 Under Assumption 1, Definition 1 and Lem-
mas 1-6, consider nonlinear system (1), controller u (56),
and state observer (15), intermediate control functions o

(35) and o; (49), adaptive laws &, (36), 9; (37), & (50), 9

(51) and f,, (87), can guarantee that all the signals of
closed-loop system are SGPFS, tracking and observer
errors converge to a small neighborhood of the origin in a
finite time.

Remark 1 From Theorem 1, (69) and the proof of Lemma
6, it means that all signals of the closed-loop system are
bounded. In addition, by increasing the design parameters
¢i, W N> ki, or decreasing the design parameters f, o;,
0;(i=1,2,...,n) and 7w can make tracking error be small,
and all variables of the controlled system have the fast
convergence rate.

5 Simulation Example

In this section, two simulation examples are provided to
elaborate the effectiveness of the presented control method.

Example 1 Consider the second-order SISO nonlinear
nonstrict feedback system as

X1 =x +f ()C],Xz) + h]()C] (l — ‘L'])) +d, (l)

Xo =u+fr(x1,x0) + ha(xi(t — 11)) + da(2) (70)

y=xi
where fi(x1,x2) = — 0.5x3 sin(x1x2) /(1 + x7), fo(x1,x2) =
sin(x; x,)/e"™%, di(r) = 0.5cos(t) +sin(z) and dy(r) =
0.6sin(7). The reference signal is chosen as y,(f) =
2sin(t) 4 cos(4t). Choose nonlinear time-varying delay
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functions as h; = )“(’77”0)))), hy =x1(t —12(t)), w7 =

122 (1—7y (¢

0.5(1+0.4sint), (i =1,2), t = 0.4 and t* = 0.6.

Choose the fuzzy membership function as um(%;) =

CXP[—W], +,0=1,---,5.

According to [14], FLSs f,(£|&;) = flT(p,()E) are adopted
to approximate the unknown functions f;(x), i = 1, 2.

Choose the design parameters k; = 24(i = 1,2), matrix
Q0 =8I, from (17), we can obtain the positive-definite

. 0.1736 0.1667
matrix P = {0'1 667 816 67]' Define the state observer
as
X =% +ki(y—%) +f1()2|§1)
X = u+ko(y — x1) + (%) (71)
y=4x

In this numerical example, all the design parameters in

the controller u, adaptive laws é 1 and 1§,~ can be set as
ﬁ20.96, TC:3, C1=Cz=8, 1 26, 112:4, 51:
0, =4, 1 =4, 8, =6 and r = 1. The initial values are
selected as x;(0) =x,(0) =0.5, %(0)=0.02 and
X2(0) = 0.03. The other initial values are selected as zero.
Note that we use the MATLAB environment to solve the
theorem, and the simulation results can be obtained and
shown in Figs. 1, 2, 3, 4 and 5, where Fig. 1 shows the
trajectories of the tracking signal y, and output y; Fig. 2
displays the trajectory of the tracking error z;; Figs. 3 and 4
exhibit the trajectories of the states x; and their estimation
x;(i = 1,2); Fig. 5 shows the trajectory of controller u.

Example 2 In order to further verify the effectiveness of
the presented control scheme, the following electrome-
chanical system is considered from [18], and we are not
considering the input quantized. The system is displayed in
Fig. 6.

The system model can be described as

{M(jJqu'JrNsin(q) =1

LI = Vo —RI — Krg (72)

where M =J/Kr +mL3/(3Kr) + MoL}/Kr + 2MoR}/
(SKT), B = B()/KT, N = mLOG/(2KT) + M()LOG/KT, m =
0.506 kg is the link mass, J = 1.625 kgm2 is the rotor
inertia, Rp = 0.023 m is the radius of the load, M, =
0.434 kg is the load mass, Ly = 0.305 m is the link length,
By = 0.01625 Nms/rad is the coefficient of viscous fric-
tion at the joint, L = 0.025R is the armature inductance,
K, =09Nm/A is coefficient which characterizes the
electromechanical conversion of armature current to tor-
que, R = 0.05 Q is the armature resistance, /(¢) is the motor
armature current and G = 9.8 is the gravity coefficient.

f

3 1 1 1 I I I 1 1 1
1] 5 10 15 20 25 30 35 40 45 50

Titne (zec)

Fig. 1 Trajectories of the tracking signal y, and output y

[IR=R3 b

06F B

04t .

04t ]

DB} N

1
0 5 10 15 20 25 30 3B 40 45 50
Time (sec)

Fig. 2 Trajectory of z;

Consider the electromechanical system with time-vary-
ing delays and disturbance introduce the variable change as
X1 =¢q, X =¢q,x3 =1 and u = Vy/M. It is worth pointing
out that there exist the time delays in the signals trans-
mission process. In addition, in this simulation, we con-
sider the external disturbance A = x? sin(xx3). Thus, (72)
can be rewritten as

X1 =X +X% Sin(x2x3) + Iy (xl (t — T ([)))

. x3 N . B
Xy =" — —sinx; — —x

2 MB M 1 M 2

-‘rMCOSXQ sin x3 + hz(xl (l - ‘Cz(l))) (73)

. u K R
X3_— Z — Z)Cz — Zx:; + ]’l3(X1 (l — T3(I)))
y =X

@ Springer
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= ]
aof .
3t f .
l 30+ 8
2+ l B a0 H i
10
1 | n
| | {0 |
U - .
10 H
1k =20 i
ﬂ Aot ]
r l) { 40} .
_3 1 1 1 1 1 1 1 1 1 ‘50 . L L 1 1 1 . L 1
0 5 1 15 20 25 30 3F 40 45 &0 o5 WM 15w 2’3 3\ 40 45 50

Time (sec)

Fig. 3 Trajectories of x; and X;

b
—

1
5 10 15 20 25 30 35 40 45 50
Titne (sec)

Fig. 4 Trajectories of x, and x;

where Ay (x;(t — 71(1))) = %, hy(x1(1 — 12(1))) =

alenlsnte®) - py(x (- 15(1))) = x1(t — 13(0))1(0) =

1+x2 (1—12(1))
0.4(14+0.5co0s(1)),i =1,2,3,0 =02 and 7" =0.6. The
reference signal is chosen as y, = sin(0.5¢).

Choose the fuzzy membership function as pup(%;) =

&=3+D% . L7 .
exp[— g, i =1,2,3; I =1,...,5. According to [14],
FLSs fi(£|&) = éTg;(%) are adopted to approximate the
unknown functions f;(x), i = 1,2, 3.

Choose the design parameters k; =20(i = 1,2,3),
matrix Q = 81, from (17), we can obtain the positive-

@ Springer

Titne (sec)

Fig. 5 Trajectory of u

Fig. 6 Schematic of electromechanical system

0.2316 0.6316  0.2000
definite  matrix P = |0.6316 17.0632 8.6316
0.2000 8.6316 16.6316
Define the state observer as
X=%+ki(y - &)+ (&)
X =X+ k(y— %) +AHEE) (74)
B=u+k(y— %) +f(xE)

y==x
In this numerical example, all the design parameters in

the controller u, adaptive laws él and 1§5 can be set as
p=119/121, 1 =0.1, ¢; =0.5 ¢, = ¢3 =20, 5, =0.1,
n, =02, 53 =05, 6, =02, 6, =0.1, 535=0.3, 7j, =
il = 0.1, 6, = 5, = 0.5 and r = 0.8. The initial values are
selected as x;(0) = 0.05, x,(0) =0.02, x3(0) =0.01,
%1(0) =0.02, %,(0) =0.03 and x3(0) = 0.02. The other
initial values are selected as zero.
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oo/
"RV EAVEVA

_2 1 1 1 1 1 1 1 1 1
0 5 10 15 20 25 30 35 40 45 50

Time (sec)

Fig. 7 Trajectories of y, and y

0.s T T T T T T T T T

0.4F R

01r B

02F B

03F 1

0.4r B

_D 3 5 1 1 1 1 1 1 1 1 1
0 5 10 15 20 25 30 35 40 45 50

Time (sec)

Fig. 8 Trajectory tracking error z;

Finally, the simulation results can be obtained and
shown in Figs. 7, 8, 9, 10, 11 and 12, where Figs. 7 and 8
show the trajectories of the tracking signal y, and output y,
and tracking error zj, respectively; Figs. 9, 10 and 11
exhibit the trajectories of the states x; and their estimation
x;(i = 1,2,3); Fig. 12 shows the trajectory of controller u.

Remark 2 In this paper, the comparison is conducted with
the method in Ref. [18] without considering the input
quantized. The related parameters in both methods are the
same. The tracking performance and approximation effects
are presented in Figs. 13 and 14. In addition, in [18], a
linear observer is designed to estimate the unmeasured

T

———

osl/ \ [ [\ R |

o \ / \ ' \
/ W J
5 \ \ \,\ v \ /

1
] 5 10 15 20 25 30 3 40 45 50
Time (sec)

Fig. 9 Trajectories of x; and x;

Tz

———

_2 1 1 1 | 1 1 1 1 1
0 5 10 15 20 25 30 35 40 45 50
Time (sec)

Fig. 10 Trajectories of x, and x;

states. Note that this state observer is independent of the
controlled plants. The major disadvantage is that it cannot
obtain the good estimations of the unmeasured states. In
this paper, we design a fuzzy state observer (15), which can
obtain the good estimations of the immeasurable states.
Simultaneously, observer-based fuzzy adaptive practical
finite-time control scheme is presented, which has the
better tracking performance and approximation effects.

The above simulation results clearly shown that the
presented practical finite-time fuzzy adaptive control
strategy can ensure that all the signals of the closed-loop
system are bounded.
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Fig. 11 Trajectories of x3 and x3

50 T T T T T T T T T

40 .

20H B

A0k 4

50 1 1 1 1 1 1 1
1]

Titne (sec)

Fig. 12 Trajectory of controller u

6 Conclusions

In this paper, an observer-based practical finite-time fuzzy
adaptive control strategy has been developed for SISO
nonlinear nonstrict feedback system with time-varying
delays. On the basis of finite-time Lyapunov—Krasovskii
stability theory, the stability of the closed-loop systems can
be proved, which demonstrated that the observer and
tracking errors converge to a small neighborhood of the
zero in a finite time, and all the signals of the closed-loop
system are bounded.

@ Springer

Time (sec)

Fig. 13 Trajectories of tracking errors z;

50 ; ; ; : ; ; . : |
— The method in this paper
40 ——— The method in Ref, [18] [|

201 1

40 J
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Fig. 14 Trajectories of controllers u
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