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Abstract Motion control for an uncertain swarm robot

system consisting of N robots is considered. The robots

interact with each other through attractions and repulsions,

which mimic some biological swarm systems. The uncer-

tainty in the system is possibly fast time varying and

bounded with unknown bound, which is assumed to be

within a prescribed fuzzy set. On this premise, an adaptive

robust control is proposed. Based on the proposed control,

an optimal design problem under the fuzzy description of

the uncertainty is formulated. This optimal problem is

proven to be tractable, and the solution is unique. The

solution to this optimal problem is expressed in the closed

form. The performance of the resulting control is twofold.

First, it assures the swarm robot system deterministic per-

formances (uniform boundedness and uniform ultimate

boundedness) regardless of the actual value of the uncer-

tainty. Second, the minimization of a fuzzy-based perfor-

mance index is assured. Therefore, the optimal design

problem of the adaptive robust control for fuzzy swarm

robot systems is completely solved.

Keywords Swarm robot systems � Uncertainty � Fuzzy set

theory � Adaptive robust control � Optimization

1 Introduction

A swarm system can be found in species such as ant

colonies, bird flocking, animal herding, bacteria molding

[1, 2], which is an aggregation of multiple agents. The

agents in swarm systems interact with each other through

attractions and repulsions. Based on the relatively simple

strategies, they mimic some complex global behaviors.

Such exotic collective behavior is called ‘‘swarm intelli-

gence’’ or ‘‘collective intelligence,’’ which has fascinated

the interest of researchers for many years. With the

development of the technology such as sensing, informa-

tion processing and computation, the swarm concept has

been applied in engineering. As a result, there are swarm

mechanical systems, including systems composed of mul-

tiple robots, satellites and vehicles.

Control design is the key to determine the motion of

system. Hence, it is crucial in the study of swarm

mechanical systems. There are two approaches for the

control design of swarm mechanical systems: kinematic

approaches and dynamic approaches. The kinematic

approaches concern the formulation and analysis of the

ideal performance unaware of its implementation. In [3], a

kinematic control for platoons of autonomous vehicles is

proposed based on the definition of suitable task functions,

which are handled in the framework of singularity-robust

task-priority kinematics. In [4], a kinematic model for

swarm aggregations is built. It suggests that this model can
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be viewed as an approximation for some swarms with point

mass dynamics. In [5], the properties and modeling of self-

organized fish schools are investigated. In [6], the control

law based on a distributed swarm aggregation algorithm is

designed for multiple kinematic robots. The dynamic

approaches, on the other hand, emphasize on how to

achieve the performance by taking the dynamic charac-

teristics of agents into account. In [7], a sliding-mode

control for swarms is proposed to force the motion to meet

the kinematic model. In [8], issues in both the kinematic

and dynamic domains of swarm systems are addressed. In

[9], a novel robust decentralized adaptive control based on

fuzzy logic is proposed for the multi-agent systems. In

[10], the dynamics and control for robot swarms are

considered.

In practice, the uncertainty is an unavoidable plague.

Hence, it is inevitable in dynamic modeling. Since the

uncertainty enters the line of sight, the description of the

uncertainty has become a major task. In this paper, the

uncertainty is possibly fast time varying and bounded with

unknown bound. The only known information is that the

bound lies within a prescribed and compact fuzzy set. That

is, only the bound of the uncertainty is fuzzy. Instead of

Takagi–Sugeno (T–S)-type fuzzy or other if–then rules-

based fuzzy, the fuzzy set theory is employed to describe

the uncertainty bound. Based on the fuzzy uncertainty

description, we consider a swarm robot system consisting

of N robots and devote to the control design problem.

The main contributions of this paper are fourfold. First,

we creatively introduce the swarm intelligence into the

multi-robot systems (thereby the swarm robot systems),

which is accomplished by the design of the function Gij.

Based on this, we design the kinematic and dynamic

models for the swarm robot systems. Second, we treat the

kinematic performance as a constraint and then obtain the

analytic (i.e., closed form) constraint force by employing

Udwadia–Kalaba approach. The constraint force obeys the

Lagrange’s form of d’Alembert’s principle, and it can be

adopted as the ideal control input. Motivated by the con-

straint force, we propose the nominal control actions of the

swarm robot systems. Third, in combination with the fuzzy

description of the uncertainty, an adaptive robust control is

proposed to compensate the uncertainty. The resulting

control is deterministic, which renders the system uniform

boundedness and uniform ultimate boundedness regardless

of the uncertainty. Fourth, the optimal design of the

adaptive robust control is completed by choosing a control

parameter to minimize a fuzzy-based performance index.

This optimization problem is proven to be tractable, with

the solution to be existent, unique and in closed form.

2 Fuzzy Swarm Robot System

2.1 Kinematic Model

Consider a swarm system consisting of N robots moving on

the ground. For robot i 2 N , N ¼ 1; 2; . . .;Nf g, the posi-

tion is described by the coordinate qi ¼ ½xi; yi�T, the

velocity is described by _qi ¼ ½ _xi; _yi�T, the kinematic model

of robot i is governed by

_qiðtÞ ¼ �
XN

j¼1;j 6¼i

rqiGijðqiðtÞ; qjðtÞÞ; ð1Þ

where t is the time, and the function Gijðqi; qjÞ : Rn �
Rn ! R is C1 (i.e., the first-order derivative of Gij exists).

Let gijðqi; qjÞ :¼ rqiGijðqi; qjÞ, where the function gij :

Rn ! R can represent the attraction and repulsion between

agents i and j [4]. The functions Gijðqi; qjÞ and gijðqi; qjÞ
comply with the properties and performances in [8, 11].

2.2 Dynamic Model

Suppose the acceleration is described by €qi ¼ ½€xi; €yi�T, the
mass is described by mi, the dynamic model of robot i is

governed by

MiðriÞ€qi ¼ FiðriÞ þ siðtÞ; ð2Þ

MiðriÞ ¼
miðriÞ 0

0 miðriÞ

� �
; ð3Þ

where ri 2 Ri � Rpi is the uncertain parameter with Ri (the

possible bound of ri) compact but unknown, FiðriÞ is the
drag force, siðtÞ is the control input.

Assumption 1 The inertia matrix MiðriÞ is positive def-

inite: For each ri, MiðriÞ[ 0.

Assumption 2 (1) Let xi ¼ ½qiT _qi
T�T. Its initial condition

is denoted by xi0: For each entry of xi0, namely xi0j,

j ¼ 1; 2; . . .; 2n, there exists a fuzzy set Xi
0j in a universe of

discourse Ni
j � R characterized by a membership function

lNi
j
: Ni

j ! ½0; 1�. That is

Xi
0j ¼ xi0j; lNi

j
xi0j

� �� �
jxi0j 2 Ni

j

n o
: ð4Þ

Here Ni
j � R is compact and is known. (2) For each entry

of vector ri, namely rij, j ¼ 1; 2; . . .; pi, the function rijð�Þ
is Lebesgue measurable. (3) For each rij, there exists a

fuzzy set Sij in a universe of discourse Rij � R character-

ized by a membership function lRij
: Rij ! ½0; 1�. That is

Sij ¼ rij; lRij
ðrijÞ

� �
jrij 2 Rij

n o
: ð5Þ
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Remark 1 The system, in which the uncertainty is

described by fuzzy theory, is called fuzzy system.

Assumption 2 suggests to use fuzzy theory to describe the

possible value of the uncertainty. This method of uncer-

tainty description is different from probability theory,

Takagi–Sugeno fuzzy model, Mamdani fuzzy model or

other fuzzy inference if–then rule-based models. We call

system (2) under the description of Assumption 2 fuzzy

swarm robot system.

3 Ideal Control of Swarm Robot System

Employing Udwadia–Kalaba approach [12–17], we treat

kinematic performance (1) of robot i as a constraint of

system (2); then, the ideal control of swarm robot system

can be obtained as follows.

First, we differentiate (1) with respect to t; then, we have

€qiðtÞ ¼ � d

dt

XN

j¼1;j 6¼i

rqiGijðqiðtÞ; qjðtÞÞ

¼: /iðqðtÞ; _qðtÞ; tÞ:
ð6Þ

By creatively treating (6) as a second-order constraint, the

control input can be selected as

siðtÞ ¼ M
1
2

i ðriÞ½M
�1

2

i ðriÞ�þ Ui �M�1
i ðriÞFiðriÞ

� �
: ð7Þ

This control assures agent i to meet kinematic performance

(1). It is model-based and can be implemented as a feed-

back control. This control is ideal. One only can use it

under the following two provisions. First, the initial con-

dition of robot i must be the same as (1). Second, the model

of robot i must be known, including the value of the

uncertain parameter riðtÞ. In practice, however, the pro-

visions are likely not met. Therefore, an adaptive robust

control design is needed.

4 Adaptive Robust Control Design

Taking the uncertainty into account, we first decompose the

system parameters MiðriÞ and FiðriÞ. We consider �Mi,

DMiðriÞ, �Fi and DFiðriÞ such that

MiðriÞ ¼ �Mi þ DMiðriÞ;
FiðriÞ ¼ �Fi þ DFiðriÞ;

ð8Þ

where �Mi and �Fi are the ‘‘nominal’’ portions of the system

parameters, and DMi and DFi are the corresponding

uncertain portions. We assume that �Mi is positive definite

(since the nominal portion �Mi is the designer’s direction,
�Mi [ 0 is always feasible). Furthermore, the functions
�Mið�Þ, DMið�Þ, �Fið�Þ, DFið�Þ are all continuous.

Let DiðriÞ :¼ M�1
i ðriÞ, �Di :¼ �M�1

i , DDiðriÞ :¼
DiðriÞ � �Di, EiðriÞ :¼ �MiM

�1
i ðriÞ � Ii, we further have

DDiðriÞ :¼ �DiEiðriÞ, Di ¼ �Di þ DDi. For given constant

matrix Pi 2 Rn�n, Pi [ 0, let

WiðriÞ :¼ Pi
�DiEiðriÞ �MiP

�1
i : ð9Þ

Assumption 3

1. There exists a (possibly unknown) scalar qEi
[ � 1

such that,

min
ri2Ri

kmin WiðriÞ þWT
i ðriÞ

� 	
� 2qEi

[ � 2: ð10Þ

2. The unknown scalar qEi
belongs to a known fuzzy

number.

Let

Si :¼
XN

j¼1;j 6¼i

rqiGijðqiðtÞ; q jðtÞÞ: ð11Þ

We now propose a performance measure:

bi :¼ _qi þ Si: ð12Þ

Our adaptive robust control consists of three portions: si1,
si2 and si3. si1 and si2 are proposed based on the nominal

system (no uncertain parameters involved), which is given

by

si1 ¼ �Mi /i � �M�1
i

�Fi

� 	
; ð13Þ

si2 ¼ � ji �MiP
�1
i ð _qi þ SiÞ

¼ � ji �MiP
�1
i bi;

ð14Þ

where ji [ 0 is a scalar parameter. si1 is motivated by (7).

Assumption 4 (1) There are a (possibly unknown) con-

stant vector ai 2 Rki and a known function Pið�Þ such that

ð1þ qEi
Þ�1

max
ri2Ri

PiDDiðriÞ½FiðriÞ þ si1 þ si2�k

þPi
�DiDFiðriÞk�PiðaiÞ;

ð15Þ

where the function PiðaiÞ is (i) C1; (ii) concave [11]; (iii)

nondecreasing with respect to each component of its

argument ai. (2) Each entry of ai (namely aij,
j ¼ 1; 2; . . .; ki) belongs to a known fuzzy number.

Remark 2 The qEi
and aij (j ¼ 1; 2; . . .; ki) are relative to

the uncertain parameter ri. As fuzzy numbers, qEi
and aij

are described by their corresponding membership func-

tions. Their membership functions can be determined by

fuzzy arithmetic and decomposition theorem. Based on

Assumption 3 and the fact that the universes of discourse

Rij (j ¼ 1; 2; . . .; pi) are known, we can evaluate the value

of qEi
.
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The adaptive parameter vector âi is governed by the

following adaptive law

_̂ai ¼ ji
oPT

i

oai
ðâiÞ bik k � �jiâi

� �
; ð16Þ

where �ji 2 R[ 0, âijðt0Þ[ 0 (âij denotes the j-th compo-

nent of the vector âi, j ¼ 1; 2; . . .; ji). Notice that the

parameter ji determines not only control si2 but also the

adaptive parameter. The third portion of the control is

proposed as

si3 ¼ � �MiP
�1
i ciliPiðâiÞ; ð17Þ

where ci ¼ liklikxi , li ¼ biPiðâiÞ. Both xi 2 R[ 0 and

li 2 R[ 0 are design parameters. Therefore, the adaptive

robust control is given by

si ¼ si1 þ si2 þ si3: ð18Þ

di : ¼ bTi âi � aið ÞT
h iT

2 Rnþki ð19Þ

d : ¼ dT1 dT2 � � � dTN
� �T2 R

PN

i¼1
nþkið Þ: ð20Þ

Theorem 1 Subject to Assumptions 1, 2, 3, 4, control

(18) renders system (2) uniformly bounded (i.e., for

kdðt0Þk\r, there is a dðrÞ[ 0 such that kdðtÞk\dðrÞ for
all t� t0) and uniformly ultimately bounded (i.e., for

kdðt0Þk\r, there exists a d[ 0 such that for all �d[ d,

there is a time interval Tð�d; rÞ\1 with kdðtÞk\�d for all

t� t0 þ Tð�d; rÞ).

Proof Consider the Lyapunov function candidate

VðdÞ ¼
XN

i¼1

Viðbi; âi � aiÞ; ð21Þ

Vi ¼ bTi Pibi þ ð1þ qEi
Þðâi � aiÞTj�1

i ðâi � aiÞ: ð22Þ

The derivative of Vi is given by

_Vi ¼ 2bTi Pi
_bi þ 2ð1þ qEi

Þðâi � aiÞTj�1
i

_̂ai: ð23Þ

For the term 2bTi Pi
_bi, according to (2), (8), (13), (14), (17)

and the definition of Di, �Di, DDi, Ei, we have

2bTi Pi
_bi ¼ 2bTi Pið€qi þ _SiÞ

¼ 2bTi Pi½M�1
i ðFi þ si1 þ si2 þ si3Þ � /i�

¼ 2bTi ½PiDDiðFi þ si1 þ si2Þ þ Pi
�DiDFi�

þ 2bTi Pi½ �Dið �Fi þ si1Þ � /i� þ 2bTi Pi
�Disi2

þ 2bTi Pi
�Disi3 þ 2bTi PiDDisi3

� 2 bik kmax
ri2Ri

PiDDiðFi þ si1 þ si2Þ þ Pi
�DiDFik k

þ 2bTi Pi
�M�1
i

�Fi þ �M�1
i ½ �Mið/i � �M�1

i
�FiÞ� � /i


 �

� 2bTi Pi
�Dið�ji �MiP

�1
i biÞ � 2ci½biPiðâiÞ�Tli

� 2ci½biPiðâiÞ�TðPi
�DiEi

�MiP
�1
i liÞ

ð24Þ

Since li ¼ biPiðâiÞ, by (9) and (15), we further have

2bTi Pi
_bi � 2ð1þ qEi

Þ bik kPiðaiÞ � 2ji bik k2

� 2ci lik k2 � 2cil
T
i ðPi

�DiEi
�MiP

�1
i Þli

� � 2ji bik k2þ2ð1þ qEi
Þ bik kPiðaiÞ � 2ci lik k2

� cil
T
i ½Pi

�DiEi
�MiP

�1
i þ ðPi

�DiEi
�MiP

�1
i ÞT�li

� � 2ji bik k2þ2ð1þ qEi
Þ bik kPiðaiÞ � 2ci lik k2

� cil
T
i ðWi þWT

i Þli
ð25Þ

According to (10) and Rayleigh’s inequality, we have

� lTi ðWi þWT
i Þli � � kminðWi þWT

i Þ lik k2

� min
ri2Ri

kminðWiðriÞ þWT
i ðriÞÞ lik k2

� � 2qEi
lik k2

ð26Þ

As a result, we have

2bTi Pi
_bi � � 2ji bik k2 þ 2ð1þ qEi

Þ bik kPiðaiÞ
� 2cið1þ qEi

Þ lik k2:
ð27Þ

By ci ¼ liklik
xi and li ¼ biPiðâiÞ,
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2bTi Pi
_bi

� � 2ji bik k2 þ 2ð1þ qEi
Þ bik kPiðaiÞ

� 2lið1þ qEi
Þ lik k2þxi

¼ � 2ji bik k2 þ 2ð1þ qEi
Þ bik kPiðaiÞ

� 2lið1þ qEi
Þ lik k2þxi

�2ð1þ qEi
Þ bik kPiðâiÞ þ 2ð1þ qEi

Þ bik kPiðâiÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼0

¼ � 2ji bik k2 þ 2ð1þ qEi
Þ bik kPiðâiÞ � 2lið1þ qEi

Þ
�

� lik k2þxi

i
þ 2ð1þ qEi

Þ bik k PiðaiÞ �PiðâiÞ½ �

¼ � 2ji bik k2 þ 2ð1þ qEi
Þ½klik � liklik

2þxi �
þ 2ð1þ qEi

Þ bik k PiðaiÞ �PiðâiÞ½ �:
ð28Þ

A simple algebra shows that

klik � liklik2þxi � �ni; ð29Þ

�ni :¼ � li½lið2þ xiÞ��
2þxi
1þxi þ ½lið2þ xiÞ��

1
1þxi

¼ ½lið2þ xiÞ��
1

1þxi
1þ xi

2þ xi

[ 0:
ð30Þ

According to the concavity of PiðaiÞ, we have

PiðaiÞ �PiðâiÞ�
oPi

oai
ðâiÞðai � âiÞ: ð31Þ

Therefore, we have

2bTi Pi
_bi � � 2ji bik k2 þ 2ð1þ qEi

Þ�ni

þ 2ð1þ qEi
Þ bik k oPi

oai
ðâiÞðai � âiÞ:

ð32Þ

For the term 2ð1þ qEi
Þðâi � aiÞTj�1

i
_̂ai, by substituting

adaptive law (16), we have

2ð1þ qEi
Þðâi � aiÞTj�1

i
_̂ai

¼ ½2ð1þ qEi
Þðâi � aiÞT

oPT
i

oai
ðâiÞ bik k�T

� 2ð1þ qEi
Þðâi � aiÞT �jiâi

¼ 2ð1þ qEi
Þ bik k oPi

oai
ðâiÞðâi � aiÞ

� 2ð1þ qEi
Þðâi � aiÞT �jiâi:

ð33Þ

Substituting (32) and (33) into (23), we have

_Vi � � 2ki bik k2 þ 2ð1þ qEi
Þ�ni

� 2ð1þ qEi
Þðâi � aiÞT �jiâi

¼ �2ki bik k2 þ 2ð1þ qEi
Þ�ni � 2ð1þ qEi

Þðâi�
aiÞT �jiðâi � aiÞ � 2ð1þ qEi

Þðâi � aiÞT �jiai
� � 2ki bik k2 þ 2ð1þ qEi

Þ�ni � 2ð1þ qEi
Þ�ji âi � aik k2

þ 2ð1þ qEi
Þ�ji aik k âi � aik k:

ð34Þ

Let �g1i ¼ minf2ki; 2ð1þ qEi
Þ�jig, �g2i ¼ 2ð1þ qEi

Þ�ji�
aik k, �g3i ¼ 2ð1þ qEi

Þ�ni, g1i ¼ 3�g1i
4
, g2i ¼

�g2
2i

�g1i
þ �g3i. Based on

ð ffiffiffiffiffiffi
�g1i

p
dik k=2� �g2i=

ffiffiffiffiffiffi
�g1i

p Þ2 � 0, we have

_Vi � � �g1i bik k2 � �g1i âi � aik k2 þ �g2i âi � aik k þ �g3i

� � �g1ið bik k2 þ âi � aik k2Þ

þ �g2i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bik k2 þ âi � aik k2

q
þ �g3i

¼ ��g1i dik k2 þ �g2i dik k þ �g3i

� � �g1i dik k2 þ �g1i
4

dik k2 þ �g22i
�g1i

þ �g3i

¼ �g1i dik k2 þ g2i:

ð35Þ

Let g1 ¼ mini2N g1i, g2 ¼ maxi2N g2i. Then we have

_V ¼
XN

i¼1

_Vi �
XN

i¼1

ð�g1i dik k2 þ g2iÞ

�
XN

i¼1

ð�g1 dik k2 þ g2Þ ¼ � g1
XN

i¼1

dik k2 þ Ng2

¼ �g1 dk k2 þ Ng2 ¼ � g dk k2 þ h;

ð36Þ

where g ¼ g1, h ¼ Ng2. According to the result of (36), we

conclude that _V is negative definite for all dk k such that

dk k[

ffiffiffi
h
g

s

: ð37Þ

Since each universe of discourse Rij is compact (hence

closed and bounded), the uncertainty ri is bounded. Thus,

both g and h are bounded. Therefore, _V is negative definite

when dk k is sufficiently large. According to [18], we

conclude that the solution of system (2) under control (18)

is uniformly bounded and uniformly ultimately bounded.

According to (22) and Rayleigh’s inequality, we have
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kminðPiÞ bik k2þð1þ qEi
Þj�1

i âi � aik k2

�Vi

� kmaxðPiÞ bik k2þð1þ qEi
Þj�1

i âi � aik k2:
ð38Þ

Let n1i¼minfkminðPiÞ;ð1þqEi
Þj�1

i g, n2i¼maxfkmaxðPiÞ;
ð1þqEi

Þj�1
i g. Thus, we have

n1i dik k2 �Vi � n2i dik k2; ð39Þ

XN

i¼1

n1i dik k2 �V �
XN

i¼1

n2i dik k2: ð40Þ

Let n1 ¼ mini2N n1i, n2 ¼ maxi2N n2i, we have

n1 dk k2 �V � n2 dk k2; dk k2¼
XN

i¼1

dik k2: ð41Þ

According to [19], we conclude the uniform boundedness

with

dðrÞ ¼

ffiffiffiffiffi
n2
n1

r
R; if r�R;

ffiffiffiffiffi
n2
n1

r
r; if r[R;

8
>><

>>:
ð42Þ

R ¼

ffiffiffi
h
g

s

: ð43Þ

The uniform ultimate boundedness is also proven by taking

d ¼ R
ffiffiffiffiffiffiffiffiffiffiffiffi
n2=n1

p
. For given d[ d,

kdðtÞk� �d; 8 t� t0 þ Tðd; rÞ: ð44Þ

Tðd; rÞ ¼
0; if r�R;

n2r
2 � n1R

2

gR
2 � h

; if r[R;

8
><

>:
ð45Þ

R ¼

ffiffiffiffiffi
n1
n2

s

d: ð46Þ

h

Remark 3 The uniform boundedness and uniform ulti-

mate boundedness of the controlled system are guaranteed

deterministically regardless of the uncertainty. Since the

design parameter ji impacts on both control si2 and si3 (ji
determines the rate of adaptation and si3 is relative to

adaptive parameter), the optimization of ji will be very

important to system performances. In the next section, we

will find the optimal choice of ji.

5 Control Parameter Optimization

According to (34) and Rayleigh’s inequality,

_Vi � � 2ji
kmaxðPiÞ

bTi Pibi þ 2ð1þ qEi
Þ�ni � 2ð1þ qEi

Þ�

�ji âi � aik k2 þ ð1þ qEi
Þ�ji aik k2 þ âi � aik k2
� �

¼ � 2ji
kmaxðPiÞ

bTi Pibi � ð1þ qEi
Þ�ji âi � aik k2

þ ð1þ qEi
Þ�ji aik k2 þ 2ð1þ qEi

Þ�ni

¼ � 2ji
kmaxðPiÞ

bTi Pibi � ji �jið1þ qEi
Þðâi � aiÞTj�1

i �

ðâi � aiÞ þ ð1þ qEi
Þ�ji aik k2 þ 2ð1þ qEi

Þ�ni:
ð47Þ

Let ĝ ¼ minf 2
kmaxðPiÞ ; �jig, ĥi ¼ ð1þ qEi

Þ�ji aik k2þ
2ð1þ qEi

Þ�ni. According to (22), then we have

_Vi � � jiĝiVi þ ĥi: ð48Þ

Notice that (48) is a differential inequality, not a differ-

ential equation. Next, we will analyze (48) according to the

procedure in [21].

Definition 1 [20] Let xðw; tÞ be a scalar function of the

scalar w and t in some open-connected set D. A function

wðtÞ, t0 � t� �t, �t[ t0 is a solution to the differential

inequality

_wðtÞ�xðwðtÞ; tÞ; ð49Þ

on ½t0;�tÞ if wðtÞ is continuous on ½t0;�tÞ and its derivative on

½t0;�tÞ satisfies (49).

In general, the solution to differential inequality (49) is

not unique and not available. Thus, the analysis will be

more difficult.

Theorem 2 [20] Let xð/ðtÞ; tÞ be continuous on an open-
connected set D 2 R2 such that the initial value problem

for the scalar equation

_/ðtÞ ¼ xð/ðtÞ; tÞ; /ðt0Þ ¼ /0; ð50Þ

has a unique solution. If /ðtÞ is a solution of (50) on

t0 � t��t and wðtÞ is a solution of (49) on t0 � t� �t with
wðt0Þ�/ðt0Þ, then wðtÞ�/ðtÞ for t0 � t��t.

Theorem 2 provides an upper bound for the nonunique

solution of (49). Since the solution of (49) is not unique and

not available and the solution of (50) is unique, we often

explore the upper bound of the solution to differential

inequality (49) instead of the solution itself.
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Theorem 3 [21] Consider differential inequality (49) and

differential equation (50). Suppose that for some constant

L[ 0, the function xð�Þ satisfies the Lipschitz condition

jxðm1; tÞ � xðm2; tÞj � Ljm1 � m2j; ð51Þ

for all points ðm1; tÞ, ðm2; tÞ 2 D. Then, any function wðtÞ
that satisfies differential inequality (49) for t0 � t� �t also
satisfies the inequality

wðtÞ�/ðtÞ; ð52Þ

for t0 � t��t.

In order to solve differential inequality (48), we consider

the differential equation

_riðtÞ ¼ � jiĝiri þ ĥi; riðt0Þ ¼ Vi0 ¼ Viðt0Þ: ð53Þ

The function �jiĝiri þ ĥi satisfies the Lipschitz condition

with L ¼ jiĝi. Solving (53), then we get

riðtÞ ¼ Vi0 �
ĥi
jiĝi

 !
exp �jiĝiðt � t0Þ½ � þ ĥi

jiĝi
: ð54Þ

By Theorems 2 and 3, we have

ViðtÞ� Vi0 �
ĥi
jiĝi

 !
exp �jiĝiðt � t0Þ½ � þ ĥi

jiĝi
; ð55Þ

for all t� t0.

Similarly, for any ts and any s� ts, we can get

ViðsÞ� Vis �
ĥi
jiĝi

 !
exp �jiĝiðs� tsÞ½ � þ ĥi

jiĝi
: ð56Þ

Here Vis¼ViðtsÞ¼bTi ðtsÞPibiðtsÞþ ð1þqEi
Þ½âiðtsÞ�ai�Tj�1

i

½âiðtsÞ�ai�, ts is the time when control (18) is activated,

which is not necessary to be t0. Let

Ciðji; s; tsÞ :¼ Vis �
ĥi
jiĝi

 !
exp �jiĝiðs� tsÞ½ �; ð57Þ

Ci1ðjiÞ :¼
ĥi
jiĝi

: ð58Þ

In (57), the Ciðji; s; tsÞ is a reflection of the system’s

transient performance. For each ji, ts, as s approaches to

1, Ciðji; s; tsÞ approaches to zero. In (58), the Ci1ðjiÞ is
relevant to the steady-state portion of the system’s

performances.

Definition 2 For a fuzzy set A ¼ ft; lNðtÞ j t 2 Ag and

any function f ðtÞ : A ! R, the D-operation of f ðtÞ is

defined as

D½f ðtÞ� ¼
R
A
f ðtÞlAðtÞdtR
A
lAðtÞdt

: ð59Þ

Remark 4 For any crisp constant c 2 R, D½cf ðtÞ� ¼
cD½f ðtÞ�. The D-operation represents a defuzzification

algorithm or a fuzzy-theoretic average. In the special case

that f ðtÞ ¼ t, the expression of D-operation is identical to

the center of gravity defuzzification method.

We now propose the following performance index: For

any ts, let

Jiðji; tsÞ : ¼ �aiJi1ðji; tsÞ þ �biJi2ðjiÞ; ð60Þ

Ji1ðji; tsÞ : ¼ D

Z 1

ts

C2
i ðji; s; tsÞds

� �
; ð61Þ

Ji2ðjiÞ ¼ D C2
i1ðjiÞ

� �
: ð62Þ

Here, the performance index is composed of two portions:

Ji1 and Ji2. �ai [ 0 is the weighting factor of Ji1, and �bi [ 0

is the weighting factor of Ji2. By the D-operation, Ji1 can

represent the average of the system’s overall transient

performance and Ji2 can represent the average of the

steady-state performance.

Our optimal design problem can be stated as follows:

For given Pi, �ji, �ai and �bi, choose the optimal value of the

parameter ji [ 0 such that the performance index Jiðji; tsÞ
is minimized. By the integral operation, we have
Z 1

ts

C2
i ðji; s; tsÞds

¼ Vis �
ĥi
jiĝi

 !2Z 1

ts

exp �2jiĝiðs� tsÞ½ �ds

¼ Vis �
ĥi
jiĝi

 !2
1

2jiĝi

� �
:

ð63Þ

Taking the D-operation of (63), we have

Ji1ðji; tsÞ ¼ D

Z 1

ts

C2
i ðji; s; tsÞds

� �

¼ D Vis �
ĥi
jiĝi

 !2
1

2jiĝi

� �2
4

3
5

¼ 1

2jiĝi
D V2

is

� �
þ 1

2j3i ĝ
3
i

D ĥ2i

h i

� 1

j2i ĝ
2
i

D Visĥi
h i

;

ð64Þ

Ji2ðjiÞ ¼ D C2
i1ðjiÞ

� �
¼ 1

j2i ĝ
2
i

D ĥ2i

h i
: ð65Þ

Substituting (64) and (65) into (60), then we get
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Jiðji; tsÞ ¼
�ai

2jiĝi
D V2

is

� �
þ �ai
2j3i ĝ

3
i

D ĥ2i

h i

� �ai
j2i ĝ

2
i

D Visĥi
h i

þ
�bi

j2i ĝ
2
i

D ĥ2i

h i
:

ð66Þ

Let ki1 ¼ 1
2ĝi

D V2
is

� �
, ki2 ¼ 1

2ĝ3
i

D ĥ2i

h i
, ki3 ¼ 1

ĝ2
i

� D Visĥi
h i

,

ki4 ¼ 1
ĝ2
i

D ĥ2i

h i
, then we can rewrite (66) as

Jiðji; tsÞ ¼ ki1�aij
�1
i þ ki2�aij

�3
i � ki3�aij

�2
i

þ ki4 �bij
�2
i :

ð67Þ

The optimal design problem can be stated as follows: For

any ts,

min
ci

Jiðji; tsÞ; subject to ci [ 0: ð68Þ

To solve this problem, we take the first-order derivative of

Ji with respect to ji; then, we have

oJi

oji
¼ � 1

j4i
ki1�aij

2
i � 2ki3�ai � 2ki4 �bi

� 	
ji þ 3ki2�ai

� �
:

ð69Þ

Let ~a :¼ ki1�ai, ~b ¼ � 2 ki3�ai � ki4 �bi
� 	

, ~c ¼ 3ki2�ai. Then we

rewrite (69) in the form of

oJi

oji
¼ � 1

j4i
~aj2i þ ~bji þ ~c
� �

: ð70Þ

The stationary condition

oJi

oji
¼ 0 ð71Þ

leads to the following algebraic quadratic equation:

~aj2i þ ~bji þ ~c ¼ 0: ð72Þ

Theorem 4 Suppose D V2
is

� �
6¼ 0, D Visĥi

h i
6¼ 0, D ĥ2i

h i

6¼ 0, ~b\0, ~b2 � 4~a~c� 0. For given ki1, ki2, ki3, ki4, the
optimal solution jiopt exists and is unique, which globally

minimizes performance index (66).

Proof Since D V2
is

� �
6¼ 0, then we have ki1 6¼ 0. According

to ki1 6¼ 0, we get ~a 6¼ 0. Therefore, the solutions of alge-

braic quadratic equation (72) are given by

ji1 ¼
� ~b�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~b2 � 4~a~c

p

2~a
; ð73Þ

ji2 ¼
� ~bþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~b
2 � 4~a~c

q

2~a
:

ð74Þ

Since ~b2 � 4~a~c� 0, we conclude that the solutions ji1 and
ji2 are real solutions. Taking the second-order derivative of
Ji with respect to ji yields

oJ2i
oj2i

¼ 2~aj�3
i þ 3~bj�4

i þ 4~cj�5
i

¼ 1

j5i
2~aj2i þ 3~bji þ 4~c
� 	

:

ð75Þ

Substituting ji ¼ ji1 ¼ � ~b�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~b2 � 4~a~c

p� �
=2~a into

oJ2i
oj2

i

yields

oJ2i
oj2i

jji¼ji1 ¼
1

j5i1
2 ~aj2i1 þ ~bji1 þ ~c
� 	

þ ~bji1 þ 2~c
� �

¼ 1

j5i1
~bji1 þ 2~c
� 	

¼ 1

j5i1

� ~b2 � ~b
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~b2 � 4~a~c

p
þ 4~a~c

2~a

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~b2 � 4~a~c

p

j4i1
[ 0:

ð76Þ

Substituting ji ¼ ji2 ¼ � ~bþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~b2 � 4~a~c

p� �
=2~a into

oJ2i
oj2

i

yields

oJ2i
oj2i

jji¼ji2 ¼
1

j5i2
2 ~aj2i1 þ ~bji2 þ ~c
� 	

þ ~bji2 þ 2~c
� �

¼ 1

j5i2
~bji2 þ 2~c
� 	

¼ 1

j5i2

� ~b2 þ ~b
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~b2 � 4~a~c

p
þ 4~a~c

2~a

¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~b2 � 4~a~c

p

j4i2
\0:

ð77Þ

Therefore, the optimal jiopt [i.e., the solution ji of (68)] is
given by

jiopt ¼
� ~b�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~b2 � 4~a~c

p

2~a
: ð78Þ

The minimal performance index is given by

Jimin ¼ ki1�aij
�1
iopt þ ki2�aij

�3
iopt � ki3�aij

�2
iopt

þ ki4 �bij
�2
iopt:

ð79Þ

h

The optimal design problem is completely solved.

Remark 5 The current setting also applies in the special

case that the fuzzy sets are crisp (i.e., D V2
is

� �
¼ V2

is,

D ĥ2i

h i
¼ ĥ2i , D Visĥi

h i
¼ Visĥi). With the optimal jiopt,

adaptive robust control (18) renders system (2) uniform

boundedness and uniform ultimate boundedness. Further-

more, the optimal design of the parameter ji globally

minimizes the performance index Jiðji; tsÞ.
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6 Simulation Results

We consider a swarm robot system consisting of three

robots to verify the effectiveness of proposed control. Each

robot moves in a two-dimensional space. The position is

described by qi ¼ ½xi; yi�T; i ¼ 1; 2; 3. The equation of

motion of robot i is given by

mi 0

0 mi

� �
€xi
€yi

� �
¼ Fi þ si: ð80Þ

Here, Mi ¼
miðriÞ 0

0 miðriÞ

� �
.

For comparison purpose, we consider two types of

control for the swarm robot system: adaptive robust control

(18) and the linear-quadratic regulator (LQR) control. We

chose LQR for comparison because it has been used as a

benchmark for many new controls for comparisons in the

past. The most common robustness measures attributed to

the LQR are a one-half gain reduction in any input channel,

an infinite gain amplification in any input channel or a

phase error of plus or minus sixty degrees in any input

channel. In addition, the LQR is also robust with respect to

uncertainty in the real coefficients of the model (e.g.,

coefficients in the system matrix) and certain nonlineari-

ties, including control switching and saturation.

For the adaptive robust controller,

si ¼ si1 þ si2 þ si3: ð81Þ

We decompose the mass mi as mi ¼ �mi þ Dmi. �mi is the

nominal portion, and Dmi is the uncertain portion. Then we

have

�Mi ¼
�mi 0

0 �mi

� �
; DMi ¼

Dmi 0

0 Dmi

� �
: ð82Þ

In the same concept, Fi is decomposed as

Fi ¼ �Fi þ DFi ¼
�fi
�fi

� �
þ Df i

Df i

� �
: ð83Þ

Suppose Dmi is ‘‘close to 5’’ (belongs to a fuzzy set). Its

associated membership function (triangular type) is given

by

lDmi
ðmÞ ¼

10

50
m; 0� m� 5;

� 10

50
mþ 2; 5� m� 10;

8
><

>:
ð84Þ

Suppose Df i is ‘‘close to 0.2’’ (belongs to a fuzzy set). Its

associated membership function (triangular type) is given

by

lDfiðmÞ ¼

10

2
m; 0� m� 0:2;

� 10

2
mþ 2; 0:2� m� 0:4:

8
><

>:
ð85Þ

For the adaptive law, Assumption 4 is met by choosing

Piðai; qi; _qi; tÞ ¼ ai1k _qik2 þ ai2k _qik þ ai3

¼ ½ai1 ai2 ai3�
k _qik2

k _qik
1

2
64

3
75

¼:aTi ~Piðqi; _qi; tÞ;

ð86Þ

where ai1; ai2; ai3 are unknown constant parameters. For

simplicity without loosing validity, an alternative choice of

Pi can be given as

ai1k _qik2 þ ai2k _qik þ ai3 � aiðk _qik2 þ k _qik þ 1Þ
¼ aiðk _qik þ 1Þ2

¼:ai ~Piðqi; _qi; tÞ;
ð87Þ

where a1 ¼ maxfai1; ai2; ai3g. Then we have adaptive law

for the i-th vehicle as follows:

_̂ai ¼ ji ðk _qik þ 1Þ2kbik � �jiâ
h i

: ð88Þ

Here bi is defined as (12). Following steps (13), (14) and

(17), we finally have control (18). We firstly choose Con-

dition 1 for simulations: �mi ¼ 50, DmiðtÞ ¼ 5 sin t, ji ¼
�ji ¼ 1, xi ¼ 1, li ¼ 1, Pi ¼ I, �fi ¼ 10, Df iðtÞ ¼ 2 sin t. The

initial values are: x1ð0Þ ¼ 0, y1ð0Þ ¼ 0, x2ð0Þ ¼ 3,

y2ð0Þ ¼ 4, x3ð0Þ ¼ 5, y3ð0Þ ¼ 0, _x1ð0Þ ¼ 0:1, _y1ð0Þ ¼ 0:1,

_x2ð0Þ ¼ 0:2, _y2ð0Þ ¼ 0:2, _x3ð0Þ ¼ 0:3, _y3ð0Þ ¼ 0:3,

â1ð0Þ ¼ 0:2, â2ð0Þ ¼ 0:2, â3ð0Þ ¼ 0:2. Then, we have

V1s ¼ 49:58, V2s ¼ 104:06, V3s ¼ 89:87, ~a1 ¼
1229:1; ~b1 ¼ � 87:1; ~c1 ¼ 1:2, ~a2 ¼ 5414:2; ~b2 ¼
� 184:6; ~c2 ¼ 1:2, ~a3 ¼ 4038:1; ~b3 ¼ � 159:2; ~c3 ¼ 1:2.

Thus, the algebraic quadratic equations are given by

(�ai ¼ �bi ¼ 1)

1229:1j21 � 87:1j1 þ 1:2 ¼ 0;

5414:2j22 � 184:6j2 þ 1:2 ¼ 0;

4038:1j23 � 159:2j3 þ 1:2 ¼ 0:

8
><

>:
ð89Þ

The optimal j1opt; j2opt; j3opt is given by

j1opt ¼ 0:0189; j2opt ¼ 0:0088; j3opt ¼ 0:0103:

ð90Þ

Therefore, the adaptive robust controller is completely

designed.

Figure 1 shows the trajectories of three robots under the

optimal control [proposed control (81) with optimal

parameters (90)]. The robots aggregate toward the center

F. Dong et al.: Optimal Design of Adaptive Robust Control... 1067

123



when they are far away from the center. They never collide

with each other. In Fig. 2, we show the trajectories of three

robots under the nonoptimal control (proposed control (81)

with nonoptimal parameters j1 ¼ 1; j2 ¼ 0:8; j3 ¼ 0:85).

It can be seen that, even though the behaviors of three

robots are similar to those with optimal parameters:

aggregations and repulsions, the performance is inferior to

the optimal control. Figure 3 depicts the trajectories of

robots under LQR control, and all the robots move to the

lower left, which departs from the swarm performance.

Next, we explore the control effort (i.e., ksk) and fol-

lowing error (i.e., kbk) for three cases: (i) with the optimal

adaptive robust control, (ii) with the nonoptimal adaptive

robust control, (iii) with the LQR control. Here,

ksk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s21 þ s22 þ s23

q
; kbk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b21 þ b22 þ b23

q
: ð91Þ

In Figs. 4 and 5, the system performances under optimal

adaptive robust control, nonoptimal adaptive robust control

and LQR control are compared. As shown in Fig. 4, there

is no significant difference of ksk between optimal control

and nonoptimal control. The maximum value under opti-

mal parameters is about 62, while the maximum value

under nonoptimal is about 74. Both maximum values of

ksk under adaptive controls (optimal and nonoptimal) are

higher than that under LQR control. This is simply because

that a learning process is necessary to adjust the adaptive

parameters. When the adaptive parameters are close to

their real value adequately, the performances are better.

Although ksk under LQR control is smaller than that under

optimal control at the very beginning, it decreases much

Fig. 2 The trajectories of three robots under nonoptimal control

Fig. 1 The trajectories of three robots under optimal control Fig. 3 The trajectories of three robots under LQR control

Fig. 4 The comparison of control effort under optimal control,

nonoptimal control and LQR control
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more slowly than the other two controls. Figure 5 depicts

the history of kbk under different controls. The errors

under the adaptive controls are much more smaller than the

error under LQR control. Meanwhile, the errors under the

optimal adaptive robust control and nonoptimal adaptive

robust control quickly fall in a very small region, while

LQR control error decreases much more slowly. Compared

with the performance under nonoptimal control, the opti-

mal control is superior.

To show the robustness of the proposed optimal control,

we apply the control to another different initial condition.

Condition 2: DmiðtÞ ¼ 5 sin 10t, Df iðtÞ ¼ 2 sin 10t.

x1ð0Þ ¼ 0, y1ð0Þ ¼ 5, x2ð0Þ ¼ 5, y2ð0Þ ¼ 3, x3ð0Þ ¼ 0,

y3ð0Þ ¼ 0, _x1ð0Þ ¼ � 0:1, _y1ð0Þ ¼ � 0:1, _x2ð0Þ ¼ 0:3,

_y2ð0Þ ¼ 0:1, _x3ð0Þ ¼ � 0:4, _y3ð0Þ ¼ 0:2. The comparisons

of control effort ksk and the following error kbk are shown

in Fig. 6a, b, respectively. Obviously, although the initial

condition (position and velocity) is changed under Condi-

tion 2 and the uncertainties are in a higher frequency, the

system performances are consistent to those under Condi-

tion 1. Both of ksk and kbk converge to a steady status

quite soon.

Since the uncertainty in system is time varying, we may

not have much information about it. The magnitude and the

frequency of the variation of the uncertainty will certainly

affect the control effort and system performance. Suppose

the uncertainty in the mass is Dmi ¼ A sinðxtÞ,
A 2 ½0; 10�;x 2 ½0; 5�. Let

�s ¼
R T
0
sðtÞdt
T

jðA;xÞ; ð92Þ

�b ¼
R T
0
bðtÞdt
T

jðA;xÞ; ð93Þ

Fig. 5 The comparison of the following error under optimal control,

nonoptimal control and LQR control

(a)

(b)

Fig. 6 The comparisons of control effort ksk and the following error

kbk under optimal control with respect to different initial conditions

Fig. 7 The average control effort �s with respect to A and x

Fig. 8 The average following error �b with respect to A and x
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bmax ¼ max
t

kbðtÞk
���
ðA;xÞ

: ð94Þ

Here, T ¼ 5 is the simulation time. The relations between

�s; �b; bmax and A;x are shown in Figs. 7, 8 and 9, respec-

tively. The conclusions of these results are twofold: i) The

magnitude of the uncertainty and the frequency of the

variation of the uncertainty have influences on the �s; �b and

bmax. These indices increase as A and x increase. ii) The

influences due to A and x are limited. The magnitudes of

variations of �s; �b; bmax are tiny. Their percentages are only

1.45%, 0.75%, 2.05%, respectively. This means the pro-

posed optimal control has strong robustness.

For comparison, we investigate the performance index �s
under LQR control. The result is shown in Fig. 10. It can

be seen that the average control torque under LQR control

is almost double of that under the proposed control with

optimal parameters.

7 Conclusion

Taking the uncertainty into account, we propose an optimal

adaptive robust control design for the swarm robot system,

which is deterministic. The uncertainty in the system is

assumed to be fast time varying and bounded. Fuzzy set

theory is introduced to describe the uncertainty of the

system. Here the fuzzy set theory is not if–then rule-based,

which is different from the fuzzy logic theory. The desired

system performance is twofold: deterministic and fuzzy.

The deterministic performance is to render the system

uniform boundedness and uniform ultimate boundedness.

The fuzzy performance consists of transient performance

and steady-state performance, which is guaranteed by a

fuzzy-based performance index. The control design

parameter ji is selected as the optimization parameter such

that the performance index is minimized. By solving the

optimization problem, the closed-form expressions of the

solution and the minimized performance index are

obtained.
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Appendix

We outline the fuzzy mathematics.

Membership function A function that the values

assigned to the elements of the universal set fall within a

specified range and indicate the membership grade of these

elements in the set in question, is called membership

function [22].

Fuzzy set A set X on the universe of discourse set X is a

fuzzy set if the elements of set A are mapped into real

numbers in [0, 1] by the membership function

lX : X ! ½0; 1�:
a-cut and strong a-cut For a given fuzzy set X defined

on X and any number a 2 ½0; 1�, the a-cut of fuzzy set X is

defined as aX ¼ fx j lXðxÞ� ag, and the strong a-cut of
fuzzy set X is defined as aþX ¼ fx j lXðxÞ[ ag:

Fuzzy numbers To qualify as a fuzzy number, a fuzzy set

X must possess the following properties: (i) X is a normal

fuzzy set; (ii) X is convex; (iii) the support of X must

be bounded; (iv) for each a 2 ð0; 1�, aX is a closed interval

in R.

Fig. 9 The maximum following error bmax with respect to A and x

Fig. 10 The average control effort �s under LQR control with respect

to A and x
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Fuzzy arithmetic Let X1, X2 denote two fuzzy numbers,

and aX1 ¼ ½a1; b1�, aX2 ¼ ½a2; b2�, a1\b1, a2\b2. Then,

the fuzzy arithmetic is provided as follows:

aðX1 þ X2Þ ¼ ½a1 þ a2; b1 þ b2�; ð95Þ
aðX1 � X2Þ ¼ ½a1 � b2; b1 � a2�; ð96Þ
aðX1 � X2Þ ¼ ½minða1a2; a1b2; b1a2; b1b2Þ;

maxða1a2; a1b2; b1a2; b1b2Þ�;
ð97Þ

aðX1=X2Þ ¼ ½minða1=a2; a1=b2; b1=a2; b1=b2Þ;
maxða1=a2; a1=b2; b1=a2; b1=b2Þ�:

ð98Þ

Decomposition theorem The fuzzy set H can be

decomposed as

H ¼
[

a2½0;1�

~Ha; ð99Þ

where [ is the union of the fuzzy sets (i.e., sup over

a 2 ½0; 1�), ~Ha is a special fuzzy set on the universe set

X defined by the membership function l ~Ha
¼ aIðxÞ, the

function I(x) is defined as

IðxÞ ¼ 1; if x 2 aH
0; if x 2 X � aH:

�
ð100Þ
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