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Abstract Nested probabilistic-numerical linguistic term

sets (NPNLTSs), which can be used to express two layers

of evaluation information from qualitative and quantita-

tive views, increase the flexibility of representing the

nested uncertain information. In order to enhance and

extend the applicability of the NPNLTSs, in this paper, we

mainly investigate and develop some different types of

distance and similarity measures for NPNLTSs. Firstly, a

family of distance and similarity measures between two

NPNLTSs with their properties and proofs are proposed.

Then, we further establish a variety of weighted distance

and similarity measures between two collections of

NPNLTSs in discrete case, continuous case and ordered

weighted case, respectively. Based on that, an approach

based on the proposed measures is put forward to deal with

multi-attribute decision-making problems. After that, a

practical application concerning the evaluation of medical

treatment is given to illustrate the usability and effective-

ness of the proposed approach. Finally, some comparisons

and analyses are provided from three angles including the

impact of using various decision-making methods, various

distance and similarity measures and the changed focal

parameters.

Keywords Nested probabilistic-numerical linguistic term

sets � Distance measure � Similarity measure � Multi-

attribute decision making � Evaluation of medical treatment

1 Introduction

Fuzzy linguistic approach, which was first introduced by

Zadeh [42], has been extended into several different

models [5, 27, 28, 32]. It has attracted a lot of attention

recently, due to its effectiveness and practicality in repre-

senting uncertainty and vagueness of meanings whose

nature is qualitative rather than quantitative [41]. In recent

years, the most popular extended fuzzy linguistic approa-

ches have been based on hesitant fuzzy linguistic term sets

(HFLTSs) [23] or probabilistic linguistic term sets (PLTSs)

[22]. Since HFLTSs focus on the comparative linguistic

expressions where the decision makers (DMs) can propose

several possible linguistic terms at the same time based on

hesitant fuzzy sets (HFSs) [26] and linguistic term sets

(LTSs) [42], they increase the flexibility and capability of

eliciting and representing linguistic information. On the

other hand, PLTSs can express different importance

degrees of the linguistic terms where the DMs hesitate

among some linguistic terms; that is to say, it permits the

DMs to use several linguistic terms to assess a linguistic

variable, and these linguistic terms can be further calcu-

lated together with their associated probabilities. Since

HFLTSs and PLTSs provide merits in depicting the DM’s

cognitions and preferences, many researchers have studied
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them in qualitative decision making. For example, based on

HFLTSs, lots of researches which contain basic operational

laws [23, 31], aggregation operations [11], information

measures including distance [9, 17], correlation [18],

entropy [12] have been made. For another, with PLTSs, the

basic operation [22], the improved operation [11], deci-

sion-making approach [16], etc., have also been studied.

It should be noted that HFLTSs and PLTSs were

introduced to handle the decision-making problems which

are represented in qualitative situations. However, in the

face of increasingly complicated environment, uncertainty

often contains both qualitative information and quantitative

information in a certain problem. For instance, when

evaluating the ‘‘performance’’ of a sensor, the qualitative

terms such as ‘‘good,’’ ‘‘medium’’ and ‘‘bad’’ can be used;

meanwhile, when evaluating the ‘‘error’’ of the sensor, it

should be given a numerical information. Additionally,

HFLTSs and PLTSs have some limitations due to the fact

that they can only express a layer of evaluation information

about the relevant attributes. However, some complex

multi-attribute decision-making problems contain nested

information, and the whole process needs to be evaluated

twice so that the experts can make full use of decision

information to get more accurate result. Motivated by

PLTSs, Wang et al. [29] proposed the concept of the nested

probabilistic-numerical linguistic term sets (NPNLTSs),

which provides a different and more powerful form to fully

represent the DMs’ preferences with qualitative informa-

tion and quantitative information in the decision-making

process. Besides, by using NPNLTSs, an extended TOPSIS

method has been proposed to deal with multi-attribute

group decision-making problem [29]. Later, with the nes-

ted probabilistic-numerical linguistic information, an opti-

mization problem about tracking maneuvering target by

multiple-sensors problem has been solved [30].

In order to apply NPNLTSs to deal with multi-attribute

decision-making problems more effectively, we should pay

more attention to the basic characteristics about NPNLTSs,

in particular distance and similarity measures which are the

basis of some well-known methods, such as TOPSIS [3],

VIKOR [20] and ELECTRE [4]. Furthermore, these mea-

sures are also fundamentally important in many scientific

fields, such as decision making [34], machine learning [13]

and pattern recognition [2]. Therefore, distance and simi-

larity measures are common tools and have been widely

used in measuring the deviations and the closeness degrees

of different arguments [17]. Up to now, many scholars

have paid great attention to this issue and have achieved

many results, which can be roughly classified into two

sorts: one sort is mainly based on the traditional distance

measures, such as the Hamming distance [40], the

Euclidean distance [40] and the Hausdorff metric [10]. And

the other is on the basis of some weighted distance oper-

ators, such as the ordered weighted distance measures

[36, 38, 39], the hybrid weighted distance measures [35]

and the fuzzy ordered distance measures [24]. Furthermore,

all these distance measures have been extended into fuzzy

sets [21], intuitionistic fuzzy sets [25], interval-valued

intuitionistic fuzzy sets [1, 19], linguistic fuzzy sets [8],

hesitant fuzzy sets [37] and HFLTSs [17]. Therefore, in

this paper, we focus on investigating the distance and

similarity measures for NPNLTSs, not only over one single

aspect, but also consider multiple aspects in discrete case,

continuous case and ordered weighted situation. Addi-

tionally, an approach based on these measures would be

proposed to deal with a multi-attribute decision-making

problem with NPNLTSs. Moreover, in order to understand

the effects of different distance measures, various decision-

making methods and the changed focal parameters on the

results, we make some experiment simulations about the

case study considering the evaluation of medical treatment.

The contribution of this paper lies in the following aspects:

(1) Based on some well-known traditional distance

measures over one single aspect, the distance and

similarity measures for two NPNLTSs with their

properties and proofs are proposed.

(2) Considering multiple aspects in three situations,

which are the discrete case, the continuous case and

the ordered weighted case, respectively, the distance

and similarity measures for two collections of

NPNLTSs are provided.

(3) A decision-making approach with the proposed

distance and similarity measures is provided, and

we apply to a case study considering the evaluation

of medical treatment.

(4) Some comparisons and analyses by experiment

simulations are completed from three angles includ-

ing various decision-making methods, various dis-

tance and similarity measures and some changed

focal parameters.

To do so, the rest of this paper is organized as follows:

Sect. 2 presents the concept of the linguistic term sets and

the nested probabilistic-numerical linguistic term sets. In

Sect. 3, we give definitions and properties of distance and

similarity measures for two NPNLTSs and for two col-

lections of NPNLTSs in three cases. In Sect. 4, we propose

a decision-making approach based on the proposed dis-

tance measures. Section 5 makes comparative analysis and

discussion by experiment simulations from three aspects.

Section 6 ends the paper with some conclusions.
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2 Linguistic Term Sets and Nested Probabilistic-
Numerical Linguistic Term Sets

Since linguistic terms express the DMs’ knowledge more

comfortably and straightforward in the process of decision

making, they have been considered to be closer to human

being’s cognitive processes [41] and provide good appli-

cation results in many fields [6, 7, 12, 33]. In the following,

we recall the concept of the linguistic term sets and further

introduce the nested probabilistic-numerical linguistic term

sets.

2.1 Linguistic Term Sets

Zadeh first proposed the fuzzy linguistic approach to pre-

sent the linguistic information, and its definition was given

as follows [41]:

Definition 1 [41] A linguistic variable is characterized by

a quintuple H; T Hð Þ;U;G;Mð Þ, where H is the name of

variable; T Hð Þ denotes the term set of H, i.e., the set of its

linguistic values; U is a universe of discourse; G is a

syntactic rule for generating the terms in T Hð Þ; and M is a

semantic rule for associating each linguistic value X with

its meaning, M Xð Þ is a fuzzy subset of U.

Obviously, a linguistic variable depends on its linguistic

descriptors and semantics, and many different ways choose

the linguistic descriptor including the ordered structure

approach and the context-free grammar approach to define

its semantic [14]. Additionally, three ways can define the

corresponding semantics: (1) based on an ordered structure

of the linguistic term set; (2) based on membership func-

tions and a semantic rule; and (3) mixed semantics. Up to

now, many researchers have mainly studied the ordered

structure approach and the semantics based on the ordered

structure of the linguistic term set. Based on the above

method, all the terms of the linguistic set are distributed on

a scale [14, 15]. For example, the well-known set of seven

linguistic terms is given as (see Fig. 1):

Moreover, the semantics based on the ordered structure

of the linguistic term set introduce the semantics over the

linguistic term set. For instance, the above linguistic term

set of seven terms with its syntax and fuzzy semantics

representation can be shown in Fig. 2.

2.2 Nested Probabilistic-Numerical Linguistic Term

Sets

Probabilistic linguistic term sets (PLTSs), which permit the

DMs to hesitate among some linguistic terms with their

associated probabilities, are a powerful structure in

reflecting the importance degrees of the corresponding

linguistic terms.

Definition 2 [22] Let S1 ¼ s0; s1; . . .; ssf g be a linguistic

term set, a PLTS can be defined as:

LðpÞ ¼
(
LðkÞðpðkÞÞjLðkÞ 2 S1; p

ðkÞ � 0; k ¼ 1; 2; . . .;#LðpÞ;

X#LðpÞ

k¼1

pðkÞ � 1

)

ð1Þ

where L kð Þ p kð Þ� �
is the linguistic term LðkÞ associated with

the probability pðkÞ, and #LðpÞ is the number of all dif-

ferent linguistic terms in LðpÞ.

Similar to the situations of PLTS, where the DMs may

hesitate among some linguistic terms with their associated

probabilities when evaluating an alternative, in a complex

circumstance which contains both qualitative and quanti-

tative information, the DMs may not only hesitate between

several linguistic terms, but also have nested numerical

information about the above linguistic terms. Hence,

motivated by PLTSs, Wang et al. [18] introduced the

nested probabilistic-numerical linguistic term sets

(NPNLTSs) and the normalized NPNLTSs (N-NPNLTSs)

as follows:

Definition 3 [29] Let NPN ¼ fOL pð Þ IL vð Þf gg be a

nested probabilistic-numerical linguistic term set

(NPNLTS), which consists of an outer-layer probabilistic

linguistic term set (OPLTS) OL pð Þ and an inner-layer

numerical linguistic term set (INLTS) IL vð Þ, i.e.,

{ }0 1 2 3 4 5 6, , , , , ,S s none s very low s low s medium s high s very high s perfect= = = = = = = =

very low low mediumnone high very high perfect

S0 S1 S2 S3 S4 S5 S6

Fig. 1 The set S of seven linguistic terms
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OL pð Þ ¼
(
OL kð Þ p kð Þ

� �
jOL kð Þ 2 OS; p kð Þ � 0;

k ¼ 1; 2; . . .;#OL pð Þ;
X#OL pð Þ

k¼1

p kð Þ � 1

) ð2Þ

IL vð Þ ¼
�
IL

lð Þ
kð Þ v

lð Þ
kð Þ

� �
jIL lð Þ

kð Þ 2 IS; v
lð Þ
kð Þ � 0;

¼ 1; 2; . . .;#OL pð Þ; l ¼ 1; 2; . . .;#IL vð Þ
� ð3Þ

where OS ¼ fsaja ¼ 0; 1; 2; . . .; sg and IS ¼ fnbjb ¼
0; 1; 2; . . .; 1g are called an outer-layer linguistic term set

(OLTS) and an inner-layer linguistic term set (ILTS),

respectively, in the nested linguistic term set (NLTS)

NS ¼ fsa nb
� 	

g. OL kð Þ p kð Þ� �
is the kth outer-layer lin-

guistic term element (OLTE) in the OLTS associated with

the probability p kð Þ, and #OL pð Þ is the number of the

linguistic term element in OL pð Þ. IL
lð Þ
kð Þ v

lð Þ
kð Þ

� �
is the lth

inner-layer linguistic term element (ILTE) in the ILTS

associated with the value v
lð Þ
kð Þ under kth OLTE, and #IL vð Þ

is the number of the linguistic term element in IL vð Þ.

Definition 4 [29] Let NPN¼ OLN pð Þ ILN vð Þ
� 	� 	

be a

normalized NPNLTS (N-NPNLTS) that consists of a nor-

malized OPLTS OLN pð Þ and a normalized INLTS ILN vð Þ:

OLN pð Þ ¼
(
OLN kð Þ pN kð Þ

� �
jOLN kð Þ 2 OS; pN kð Þ � 0;

k ¼ 1; 2; . . .; sþ 1;
Xsþ1

k¼1

pN kð Þ ¼ 1

)

ð4Þ

ILN vð Þ ¼ IL
N lð Þ
kð Þ v

N lð Þ
kð Þ

� �
jILN lð Þ

kð Þ 2 IS; 1� v
N lð Þ
kð Þ � 0;

n
k ¼ 1; 2; � � � ; sþ 1; l ¼ 1; 2; . . .; 1þ 1

o ð5Þ

where pNðkÞ ¼ pðkÞ
.Psþ1

k¼1 p
ðkÞ and v

N lð Þ
kð Þ ¼ v

lð Þ
kð Þ

.Psþ1
k¼1 v

lð Þ
kð Þ.

Remark 1 According to definitions above, the OLTS and

the ILTS in a NPNLTS can not only consist of ordinal

variables like PLTSs, but also consist of nominal variables.

Therefore, there are four cases obviously. Case 1: the ele-

ments of the OLTS and the ILTS are both ordinal variables;

Case 2: the elements of the OLTS and the ILTS are ordinal

variables and nominal variables, respectively; Case 3: the

elements of the OLTS and the ILTS are nominal variables

and ordinal variables, respectively; Case 4: the elements of

the OLTS and the ILTS are both nominal variables.

Since there have been some popular fuzzy sets to

describe complex and uncertain information, we make

some comparisons of NPNLTSs and these fuzzy sets which

are presented in Introduction. Table 1 shows the merits of

NPNLTSs [29] compared with other popular types of fuzzy

sets, such as HFLTSs [23] and PLTSs [22].

Example 1 Let OS and IS be an OLTS and an ILTS in a

NLTS, respectively, i.e.,

Table 1 The comparison of some popular fuzzy sets

Fuzzy sets Type of information Type of variable Expert weight information

NPNLTSs [29] Qualitative and quantitative Ordinal and nominal variables Complete

HFLTSs [23] Qualitative Ordinal variables Partial

PLTSs [22] Qualitative Ordinal variables Complete

very low low mediumnone high very high perfect
S1 S2 S3S0 S4 S5 S6

0.17 0.33 0.50 0.67 0.83 1

Fig. 2 The set S of seven linguistic terms with its semantics
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OS¼ s0 : poorstudent;s1 : averagestudent;s2 : topstudentf g

IS ¼ n0 : attention score; n1 : attitude score; n2 : intelligence scoref g

Then, there are two N-NPNLTSs as follows:

NPN1¼
s0ð0:3Þ n0 0:7ð Þ; n1 0:5ð Þ; n2 0:8ð Þf g;
s1ð0:4Þ n0 0:8ð Þ; n1 0:6ð Þ; n2 0:8ð Þf g;
s2ð0:3Þ n0 0:9ð Þ; n1 0:7ð Þ; n2 0:7ð Þf g

8><
>:

9>=
>;;

NPN2¼
s0ð0:6Þ n0 0:7ð Þ; n1 0:5ð Þ; n2 0:8ð Þf g;
s1ð0:4Þ n0 0:8ð Þ; n1 0:6ð Þ; n2 0:8ð Þf g

( )

where OLN
1 pð Þ and OLN

2 pð Þ are OLN
1 pð Þ¼ s0ð0:3Þ;f s1ð0:4Þ;

s2ð0:3Þg, OLN
2 pð Þ¼ s0ð0:6Þ; s1ð0:4Þf g and ILN vð Þ is

ILN vð Þ ¼ n0 0:7ð Þ;ff n1 0:5ð Þ; n2 0:8ð Þg; n0f 0:8ð Þ; n1 0:6ð Þ;
n2 0:8ð Þg; n0 0:9ð Þ; n1 0:7ð Þ; n2 0:7ð Þf gg.

Here, for a student,NPN1 means the probabilities of the poor

student, average student and top student are 0.3, 0.4 and 0.3,

respectively.Meanwhile, the attention score, attitude score and

intelligence score for poor student are 0.7, 0.5 and 0.8,

respectively, for average student are 0.8, 0.6 and 0.8, respec-

tively, and for top student are 0.9, 0.7 and 0.7, respectively.

Similarly, we can interpret the meaning for NPN2.

3 Distance and Similarity Measures
with NPNLTSs

Since the distance and similarity measures are very

important to calculate the deviation and closeness degrees

of different arguments, and the existing measuring methods

cannot be used to deal with the relevant measures with

NPNLTSs, it is necessary to study the distance and simi-

larity measures over NPNLTSs. In this section, we propose

a family of distance and similarity measures between two

NPNLTSs and two collections of NPNLTSs.

3.1 Distance and Similarity Measures Between Two

NPNLTSs

Inspired by the existing research analyzed in Introduction, we

set out our investigation from two aspects, which are the

extensions of the traditional distance and similarity measures

and on the basis of different types of some weighted forms,

respectively. Suppose that the NPNLTSs are all N-NPNLTSs

in this paper for the sake of the convenient calculation. In the

following, we first put forward the axioms of distance and

similarly measures for NPNLTSs:

Definition 5 Let OS ¼ fsaja ¼ 0; 1; 2; . . .; sg and IS ¼
fnbjb ¼ 0; 1; 2; . . .; 1g be an OLTS and an ILTS, respec-

tively, NPN1 and NPN2 be two NPNLTSs, then the

distance measure between NPN1 and NPN2 is defined as

d NPN1;NPN2ð Þ, which satisfies:

(1) 0� d NPN1;NPN2ð Þ� 1;

(2) d NPN1;NPN2ð Þ ¼ 0 if and only if NPN1 ¼ NPN2;

(3) d NPN1;NPN2ð Þ ¼ d NPN2;NPN1ð Þ.

As the complementary concept of distance measure, the

similarity measure between two NPNLTSs can be descri-

bed in the next definition:

Definition 6 Let OS ¼ fsaja ¼ 0; 1; 2; . . .; sg and IS ¼
fnbjb ¼ 0; 1; 2; . . .; 1g be an OLTS and an ILTS, respec-

tively, NPN1 and NPN2 be two NPNLTSs, then the simi-

larity measure between NPN1 and NPN2 is defined as

q NPN1;NPN2ð Þ, which satisfies:

(1) 0� q NPN1;NPN2ð Þ� 1;

(2) q NPN1;NPN2ð Þ ¼ 1 if and only if NPN1 ¼ NPN2;

(3) q NPN1;NPN2ð Þ ¼ q NPN2;NPN1ð Þ.

It is similar to the axioms of distance and similarity

measures for HFSs and HFLTSs given by Xu [37] and Liao

[17], respectively. And the three conditions of each axiom

are easy to be understood and essential for the definitions

of the measures. It can be easy to see that the relationship

between the distance and similarity measures is:

q NPN1;NPN2ð Þ ¼ 1� d NPN1;NPN2ð Þ ð6Þ

Hence, in this paper, we mainly discuss the distance

measures of N-NPNLTSs, and the corresponding similarity

measures can be obtained by Eq. (6).

In general, different NPNLTSs have different numbers

of OPLTSs or INLTSs in real applications, such as

Example 1. In order to operate correctly when comparing

two NPNLTSs, we first propose a method to add the ele-

ments under different cases in a NPNLTS.

Definition 7 Let NPN1 ¼ fOL k1ð Þ
1 p

k1ð Þ
1

� �
IL

l1ð Þ
1 v

l1ð Þ
1

� �n o
g

and NPN2 ¼ OL
k2ð Þ
2 p

k2ð Þ
2

� �
IL

l2ð Þ
2 v

l2ð Þ
2

� �n on o
be two

NPNLTSs, where k1 ¼ 1; 2; . . .;#OL1 p1ð Þ; k2 ¼ 1; 2; . . .;
#OL2 p2ð Þ; l1 ¼ 1; 2; . . .;#IL1 v1ð Þ and l2 ¼ 1; 2; . . .;

#IL2 v2ð Þ, #OL1 p1ð Þ;#OL2 p2ð Þ; #IL1 v1ð Þ and #

IL2 v2ð Þ are the numbers of the OLTS in OL1 p1ð Þ; OL2 p2ð Þ
and the ILTS in IL1 v1ð Þ; IL2 v2ð Þ, respectively. Suppose that
#OL1 p1ð Þ\#OL2 p2ð Þ and #IL1 v1ð Þ\#IL2 v2ð Þ, then we

can add the elements for the sake of convenient calculation

under different cases as follows:

Case 1 Add min OLið Þ;min ILj

� �
;OLi 2 OL; ILj 2 IL

with pi ¼ 0; vj ¼ 0 until #OL1 p1ð Þ ¼ #OL2 p2ð Þ,
#IL1 v1ð Þ ¼ #IL2 v2ð Þ, respectively.

Case 2 Add min OLið Þ;OLi 2 OL with pi ¼ 0 until

#OL1 p1ð Þ ¼ #OL2 p2ð Þ and add the missing linguistic
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terms in the ILTS with the estimated values until

#IL1 v1ð Þ ¼ #IL2 v2ð Þ.
Case 3 Add the missing linguistic terms in the OLTS

with the estimated probabilities until #OL1 p1ð Þ ¼
#OL2 p2ð Þ, and add min ILj

� �
; ILj 2 IL with vj ¼ 0 until

#IL1 v1ð Þ ¼ #IL2 v2ð Þ.
Case 4 Add the missing linguistic terms in the OLTS

and the ILTS with the estimated probabilities and values

until #OL1 p1ð Þ ¼ #OL2 p2ð Þ,#IL1 v1ð Þ ¼ #IL2 v2ð Þ,
respectively.

Then, we further give the definitions and properties of

different distance measures between two NPNLTSs under

different cases as follows:

Definition 8 Let OS ¼ fsaja ¼ 0; 1; 2; . . .; sg and IS ¼
fnbjb ¼ 0; 1; 2; . . .; 1g be an OLTS and an ILTS in a

NPNLTS, respectively, OL kð Þ p kð Þ� �
is the kth OLTE in the

OLTS associated with the probability p kð Þ, and #OL pð Þ is
the number of the linguistic term element in OL pð Þ.
IL

lð Þ
kð Þ v

lð Þ
kð Þ

� �
is the lth ILTE in the ILTS associated with the

value v
lð Þ
kð Þ, and #IL vð Þ is the number of the linguistic term

element in IL vð Þ. Let NPN1 xið Þ and NPN2 xið Þ be two

NPNLTSs on X ¼ x1; x2; . . .; xnf g which can be denoted as:

NPN1 xið Þ ¼
[

OL
kð Þ
1

p kð Þð Þ IL
lð Þ
1

v
lð Þ
kð Þ

� �n o
2NPN1�

OL
kð Þ
1 p kð Þ
� �

IL
lð Þ
1 v

lð Þ
kð Þ

� �n o
jk ¼ 1; 2; . . .;

#OL1 pð Þ; l ¼ 1; 2; . . .;#IL1 vð Þ
�

NPN2 xið Þ ¼
[

OL
kð Þ
2

p kð Þð Þ IL
lð Þ
2

v
lð Þ
kð Þ

� �n o
2NPN2

(
OL

kð Þ
2 p kð Þ
� �

IL
lð Þ
2 v

lð Þ
kð Þ

� �n o
jk ¼ 1; 2; . . .;#OL2 pð Þ;

l ¼ 1; 2; . . .;#IL2 vð Þ
)

where #OL1 pð Þ ¼ #OL2 pð Þ ¼ #OL pð Þ and #IL1 vð Þ ¼
#IL2 vð Þ ¼ #IL vð Þ. (Otherwise, we can extend the shorter

one by Definition 7.)

Case 1 Suppose that the subscripts in the OLTS and the

ILTS are arranged in the ascending order, inspired by

Definition 5, the NPN-Hamming distance of NPN1 xið Þ and
NPN2 xið Þ is defined as:

dh NPN1 xið Þ;NPN2 xið Þð Þ¼
1

#OL�#IL

X#OL

k¼1

X#IL

l¼1

OL
kð Þ
1 �OL

kð Þ
2




 



sþ1

þ p
kð Þ
1 �p

kð Þ
2




 


þ IL
lð Þ
1 �IL

lð Þ
2




 



1þ1

þ v
lð Þ
1 �v

lð Þ
2




 



0
@

1
A,4

ð7Þ

and the NPN-Euclidean distance of NPN1 xið Þ and

NPN2 xið Þ is defined as:

de NPN1 xið Þ;NPN2 xið Þð Þ¼
1

#OL�#IL

�

X#OL

k¼1

X#IL

l¼1

OL
kð Þ
1 �OL

kð Þ
2




 



sþ1

þ p
kð Þ
1 �p

kð Þ
2




 


þ IL
lð Þ
1 �IL

lð Þ
2




 



1þ1

þ v
lð Þ
1 �v

lð Þ
2




 



0
@

1
A,4

0
@

1
A

2
Þ1=2

ð8Þ

In addition, we can get the following NPN-generalized

distance measure motivated by the generalized idea [38]:

dg NPN1 xið Þ;NPN2 xið Þð Þ

¼ 1

#OL�#IL

X#OL

k¼1

X#IL

l¼1

 

�
OL

kð Þ
1 �OL

kð Þ
2




 



sþ1

þ p
kð Þ
1 �p

kð Þ
2




 


þ IL
lð Þ
1 �IL

lð Þ
2




 



1þ1

þ v
lð Þ
1 �v

lð Þ
2




 



0
@

1
A,4

0
@

1
A

k1CA
1=k

ð9Þ

where k[ 0. In particular, if k ¼ 1, then the above gen-

eralized distance becomes the NPN-Hamming distance; if

k ¼ 2, then the above generalized distance becomes the

NPN-Euclidean distance.

Case 2 Suppose that the subscripts in the OLTS are

arranged in the ascending order, the NPN-Hamming dis-

tance of NPN1 xið Þ and NPN2 xið Þ is defined as:

dh NPN1 xið Þ;NPN2 xið Þð Þ

¼ 1

#OL�#IL

X#OL

k¼1

X#IL

l¼1

OL
kð Þ
1 � OL

kð Þ
2




 



sþ 1

þ p
kð Þ
1 � p

kð Þ
2




 


þ v
lð Þ
1 � v

lð Þ
2




 



0
@

1
A,3

ð10Þ

and the NPN-Euclidean distance of NPN1 xið Þ and

NPN2 xið Þ is defined as:

de NPN1 xið Þ;NPN2 xið Þð Þ ¼ 1

#OL�#IL

X#OL

k¼1

X#IL

l¼1

 

OL
kð Þ
1 � OL

kð Þ
2




 



sþ 1

þ p
kð Þ
1 � p

kð Þ
2




 


þ v
lð Þ
1 � v

lð Þ
2




 



0
@

1
A,3

0
@

1
A

2
1
CA

1=2

ð11Þ

and the NPN-generalized distance measure is defined as:
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dg NPN1 xið Þ;NPN2 xið Þ
� �

¼ 1

#OL�#IL

X#OL

k¼1

X#IL

l¼1

OL
kð Þ
1 �OL

kð Þ
2




 



sþ1

þ p
kð Þ
1 �p

kð Þ
2




 


þ v
lð Þ
1 �v

lð Þ
2




 



0
@

1
A,3

0
@

1
A

k0
B@

1
CA

1=k

ð12Þ

where k[ 0. In particular, if k ¼ 1, then the above gen-

eralized distance becomes the NPN-Hamming distance; if

k ¼ 2, then the above generalized distance becomes the

NPN-Euclidean distance.

Case 3 Suppose that the subscripts in the ILTS are

arranged in the ascending order, the NPN-Hamming dis-

tance of NPN1 xið Þ and NPN2 xið Þ is defined as:

dh NPN1 xið Þ;NPN2 xið Þ
� �

¼ 1

#OL�#IL

X#OL

k¼1

X#IL

l¼1

p
kð Þ
1 � p

kð Þ
2




 


þ IL
lð Þ
1 � IL

lð Þ
2




 



1þ 1

þ v
lð Þ
1 � v

lð Þ
2




 



0
@

1
A,3

ð13Þ

and the NPN-Euclidean distance of NPN1 xið Þ and

NPN2 xið Þ is defined as:

de NPN1 xið Þ;NPN2 xið Þð Þ ¼ 1

#OL�#IL

X#OL

k¼1

X#IL

l¼1

 

p
kð Þ
1 � p

kð Þ
2




 


þ IL
lð Þ
1 � IL

lð Þ
2




 



1þ 1

þ v
lð Þ
1 � v

lð Þ
2




 



0
@

1
A,3

0
@

1
A

2
1
CA

1=2

ð14Þ

and the NPN-generalized distance measure is defined as:

dg NPN1 xið Þ;NPN2 xið Þ
� �

¼ 1

#OL�#IL

X#OL

k¼1

X#IL

l¼1

 

p
kð Þ
1 �p

kð Þ
2




 


þ IL
lð Þ
1 �IL

lð Þ
2




 



1þ1

þ v
lð Þ
1 �v

lð Þ
2




 



0
@

1
A,3

0
@

1
A

k1CA
1=k

ð15Þ

where k[ 0. In particular, if k ¼ 1, then the above gen-

eralized distance becomes the NPN-Hamming distance; if

k ¼ 2, then the above generalized distance becomes the

NPN-Euclidean distance.

Case 4 The NPN-Hamming distance of NPN1 xið Þ and

NPN2 xið Þ is defined as:

dh NPN1 xið Þ;ð

NPN2 xið ÞÞ ¼ 1

#OL�#IL

X#OL

k¼1

X#IL

l¼1

p
kð Þ
1 � p

kð Þ
2




 


þ v
lð Þ
1 � v

lð Þ
2




 


� �.
2

ð16Þ

and the NPN-Euclidean distance of NPN1 xið Þ and

NPN2 xið Þ is defined as:

de NPN1 xið Þ;NPN2 xið Þ
� �

¼ 1

#OL�#IL

X#OL

k¼1

X#IL

l¼1

 

p
kð Þ
1 � p

kð Þ
2




 


þ v
lð Þ
1 � v

lð Þ
2




 


� �.
2

� �2!1=2
ð17Þ

and the NPN-generalized distance measure is defined as:

dg NPN1 xið Þ;NPN2 xið Þ
� �

¼ 1

#OL�#IL

X#OL

k¼1

X#IL

l¼1

 

p
kð Þ
1 � p

kð Þ
2




 


þ v
lð Þ
1 � v

lð Þ
2




 


� �.
2

� �k�1=k
ð18Þ

where k[ 0. In particular, if k ¼ 1, then the above gen-

eralized distance becomes the NPN-Hamming distance; if

k ¼ 2, then the above generalized distance becomes the

NPN-Euclidean distance.

Remark 2 Since the ILTSs present the corresponding

OLTSs, IL
lð Þ
kð Þ v

lð Þ
kð Þ

� �
is invariant with a certain OL kð Þ; that is

to say, if OL
kð Þ
1 ¼ OL

kð Þ
2 , then IL

lð Þ
1 v

lð Þ
1

� �
¼ IL

lð Þ
2 v

lð Þ
2

� �
.

Hence, under Case 3 and Case 4, the NPN-Hamming dis-

tance of NPN1 xið Þ and NPN2 xið Þ reduces to:

dh NPN1 xið Þ;NPN2 xið Þð Þ ¼ 1

#OL�#IL

X#OL

k¼1

X#IL

l¼1

p
kð Þ
1 � p

kð Þ
2




 



ð19Þ

and the NPN-Euclidean distance of NPN1 xið Þ and

NPN2 xið Þ reduces to:

de NPN1 xið Þ;ð

NPN2 xið ÞÞ ¼ 1

#OL�#IL

X#OL

k¼1

X#IL

l¼1

p
kð Þ
1 � p

kð Þ
2




 


� �2 !1=2

ð20Þ

and the NPN-generalized distance measure reduces to:

dg NPN1 xið Þ;NPN2 xið Þð Þ ¼ 1

#OL�#IL

X#OL

k¼1

X#IL

l¼1

p
kð Þ
1 � p

kð Þ
2




 


� �k !1=k

ð21Þ

where k[ 0. In particular, if k ¼ 1, then the above gen-

eralized distance becomes the NPN-Hamming distance; if

k ¼ 2, then the above generalized distance becomes the

NPN-Euclidean distance.

Theorem 1 Let NPN1 and NPN2 be two NPNLTSs on the

universe X ¼ x1; x2; . . .; xnf g which are defined by OL1 pð Þ,
IL1 vð Þ and OL2 pð Þ, IL2 vð Þ, where OL1 pð Þ, OL2 pð Þ and

IL1 vð Þ, IL2 vð Þ are their OPLTSs and INLTSs, respectively.

Then, a family of distance measures d NPN1;NPN2ð Þ de-

fined by Eqs. (7)–(18) satisfy the following conditions:
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(1) 0� d NPN1;NPN2ð Þ� 1.

(2) d NPN1;NPN2ð Þ ¼ d NPN2;NPN1ð Þ.
(3) d NPN1;NPN2ð Þ ¼ 0 , NPN1 ¼ NPN2.

Proof Here, we take Eq. (7) as an example to prove

properties above, and Eqs. (8)–(18) can be verified in a

similar way. From Eq. (7), we have

dh NPN1 xið Þ;ð NPN2 xið ÞÞ ¼ 1

#OL�#IL

X#OL

k¼1

X#IL

l¼1

OL
kð Þ
1 xið Þ � OL

kð Þ
2 xið Þ




 



sþ 1

þ p
kð Þ
1 xið Þ � p

kð Þ
2 xið Þ




 


þ IL
lð Þ
1 xið Þ � IL

lð Þ
2 xið Þ




 



1þ 1

þ v
lð Þ
1 xið Þ � v

lð Þ
2 xið Þ




 



0
@

1
A,4

(1) Since 0�OL
kð Þ
1 xið Þ� s and 0�OL

kð Þ
2 xið Þ� s, then

0� OL
kð Þ
1 xið Þ � OL

kð Þ
2 xið Þ




 


� sþ 1.

Similarly, since 0� IL
lð Þ
1 xið Þ� 1 and 0� IL

lð Þ
2 xið Þ�

1, then 0� IL
lð Þ
1 xið Þ � IL

lð Þ
2 xið Þ




 


� 1þ 1.

Because 0� p
kð Þ
1 xið Þ� 1; 0� p

kð Þ
2 xið Þ� 1; 0� v

lð Þ
1

xið Þ� 1 and 0� v
lð Þ
2 xið Þ� 1, then 0� p

kð Þ
1 xið Þ





�p

kð Þ
2 xið Þj � 1 and 0� v

lð Þ
1 xið Þ � v

lð Þ
2 xið Þ




 


� 1.

Thus, 0� dh NPN1 xið Þ;NPN2 xið Þð Þ� 1.

(2) The symmetry of the measure dh NPN1 xið Þ;ð
NPN2 xið ÞÞ with respect to their argument is obvious.

Thus, dh NPN1 xið Þ;NPN2 xið Þð Þ ¼ dh NPN2 xið Þ;ð
NPN1 xið ÞÞ.

(3) We have

dh NPN1 xið Þ;NPN2 xið Þð Þ ¼ 0

,

OL
kð Þ
1 xið Þ � OL

kð Þ
2 xið Þ




 


 ¼ 0; 8xi 2 X

p
kð Þ
1 xið Þ � p

kð Þ
2 xið Þ




 


 ¼ 0; 8xi 2 X

IL
lð Þ
1 xið Þ � IL

lð Þ
2 xið Þ




 


 ¼ 0; 8xi 2 X

v
lð Þ
1 xið Þ � v

lð Þ
2 xið Þ




 


 ¼ 0; 8xi 2 X

8>>>>>>>><
>>>>>>>>:

, OL
kð Þ
1 xið Þ ¼ OL

kð Þ
2 xið Þ; p kð Þ

1 xið Þ
¼ p

kð Þ
2 xið Þ; IL lð Þ

1 xið Þ ¼ IL
lð Þ
2 xið Þ; v lð Þ

1 xið Þ
¼ v

lð Þ
2 xið Þ; 8xi 2 X

, NPN1 xið Þ ¼ NPN2 xið Þ:

Therefore, dh NPN1 xið Þ;NPN2 xið Þð Þ is a distance mea-

sure between NPNLTSs, and so do other distance

measures which are defined by Eqs. (8)–(18). h

Example 2 Let NPN1¼
s0ð0:6Þ n0 0:1ð Þf g;
s1ð0:4Þ n0 0:3ð Þ; n1 0:5ð Þf g

( )
and

NPN2¼ s1ð1Þ n0 0:3ð Þ; n1 0:5ð Þf gf g be two NPNLTSs under

Case 1. Then, we add the elements by Definition 7 to

extend NPN1;NPN2 as NPN1¼
s0ð0:6Þ n0 0:1ð Þ; n0 0ð Þf g;
s1ð0:4Þ n0 0:3ð Þ; n1 0:5ð Þf g

( )
and NPN2¼

s1ð1Þ n0 0:3ð Þ; n1 0:5ð Þf g;
s1ð0Þ n0 0:3ð Þ; n1 0:5ð Þf g

( )
, respectively. Thus, the gen-

eralized distance between NPN1 and NPN2 is:

dg NPN1;NPN2ð Þ

¼ 1

4
�

0�1j j
2

þ 0:6�1j jþ 0�0j j
2

þ 0:1�0:3j j
4

 !k

þ
0�1j j
2

þ 0:6�1j jþ 0�1j j
2

þ 0�0:5j j
4

 !k

þ
1�1j j
2

þ 0:4�0j jþ 0�0j j
2

þ 0:3�0:3j j
4

 !k

þ
1�1j j
2

þ 0:4�0j jþ 1�1j j
2

þ 0:5�0:5j j
4

 !k

0
BBBBBB@

1
CCCCCCA

0
BBBBBB@

1
CCCCCCA

1=k

If k ¼ 1, then the NPN-Hamming distance between

NPN1 and NPN2 is:

dh NPN1;NPN2ð Þ ¼ 1

4
� 1:1

4
þ 1:9

4
þ 0:4

4
þ 0:4

4

� �
¼ 0:2375

If k ¼ 2, then the NPN-Euclidean distance between

NPN1 and NPN2 is:

de NPN1;NPN2ð Þ ¼ 1

4
� 1:1

4

� �2

þ 1:9

4

� �2

þ 0:4

4

� �2

þ 0:4

4

� �2
 ! !1=2

¼ 0:2834

Next, we mainly discuss other distance measures under

Case 1, and other cases can be deduced from Definition 8.

The generalized NPN-Hausdorff distance measure is

defined as:

dgh NPN1 xið Þ;ð NPN2 xið ÞÞ ¼

max
k¼1;2;...;#OL
l¼1;2;...;#IL

OL
kð Þ
1 � OL

kð Þ
2




 



sþ 1

þ p
kð Þ
1 � p

kð Þ
2




 


þ IL
lð Þ
1 � IL

lð Þ
2




 



1þ 1

þ v
lð Þ
1 � v

lð Þ
2




 



0
@

1
A,4

0
@

1
A

k0
B@

1
CA

1=k

ð22Þ

where k[ 0.

In particular, if k ¼ 1, then the above generalized NPN-

Hausdorff distance becomes the NPN-Hamming-Hausdorff

distance:

dhgh NPN1 xið Þ;NPN2 xið Þð Þ
¼ max

k¼1;2;...;#OL
l¼1;2;...;#IL

OL
kð Þ
1 �OL

kð Þ
2




 



sþ1

þ p
kð Þ
1 �p

kð Þ
2




 


þ IL
lð Þ
1 �IL

lð Þ
2




 



1þ1

þ v
lð Þ
1 �v

lð Þ
2




 



0
@

1
A,4

ð23Þ

If k ¼ 2, then the generalized NPN-Hausdorff distance

becomes the NPN-Euclidean–Hausdorff distance:
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degh NPN1 xið Þ;ð

NPN2 xið ÞÞ¼ max
k¼1;2;...;#OL
l¼1;2;...;#IL

OL
kð Þ
1 �OL

kð Þ
2




 



sþ1

þ p
kð Þ
1 �p

kð Þ
2




 


þ IL
lð Þ
1 �IL

lð Þ
2




 



1þ1

þ v
lð Þ
1 �v

lð Þ
2




 



0
@

1
A,4

0
@

1
A

2
0
B@

1
CA

1=2

ð24Þ

The hybrid NPN-Hamming distance between NPN1 xið Þ
and NPN2 xið Þ:
dhh NPN1 xið Þ;NPN2 xið Þð Þ

¼ 1

2

1

#OL�#IL

P#OL

k¼1

P#IL

l¼1

OL
kð Þ
1
�OL

kð Þ
2j j

sþ1
þ p

kð Þ
1 � p

kð Þ
2




 


þ IL
lð Þ
1
�IL

lð Þ
2j j

1þ1
þ v

lð Þ
1 � v

lð Þ
2




 


� �

4

þ max
k¼1;2;...;#OL
l¼1;2;...;#IL

OL
kð Þ
1
�OL

kð Þ
2j j

sþ1
þ p

kð Þ
1 � p

kð Þ
2




 


þ IL
lð Þ
1
�IL

lð Þ
2j j

1þ1
þ v

lð Þ
1 � v

lð Þ
2




 


� �

4

0
BBBBBB@

1
CCCCCCA

ð25Þ

The hybrid NPN-Euclidean distance between NPN1 xið Þ
and NPN2 xið Þ:
dhe NPN1 xið Þ;ð

NPN2 xið ÞÞ¼ 1

2

1

#OL�#IL

X#OL

k¼1

X#IL

l¼1

OL
kð Þ
1 �OL

kð Þ
2




 



sþ1

þ p
kð Þ
1 �p

kð Þ
2




 


þ IL
lð Þ
1 �IL

lð Þ
2




 



1þ1

þ v
lð Þ
1 �v

lð Þ
2




 



0
@

1
A,4

0
@

1
A

2

þ max
k¼1;2;...;#OL
l¼1;2;...;#IL

OL
kð Þ
1

�OL
kð Þ
2j j

sþ1
þ p

kð Þ
1
�p

kð Þ
2j jþ IL

lð Þ
1

�IL
lð Þ
2j j

1þ1
þ v

lð Þ
1
�v

lð Þ
2j j

� �

4

� �2

0
BBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCA

0
BBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCA

1=2

ð26Þ

The generalized hybrid distance between NPN1 xið Þ and
NPN2 xið Þ:
dhg NPN1 xið Þ;ð

NPN2 xið ÞÞ ¼ 1

2

1

#OL�#IL

P#OL

k¼1

P#IL

l¼1

OL
kð Þ
1
�OL

kð Þ
2j j

sþ1
þ p

kð Þ
1 � p

kð Þ
2




 


þ IL
lð Þ
1
�IL

lð Þ
2j j

1þ1
þ v

lð Þ
1 � v

lð Þ
2




 


� �

4

� �k

þ max
k¼1;2;...;#OL
l¼1;2;...;#IL

OL
kð Þ
1

�OL
kð Þ
2j j

sþ1 þ p
kð Þ
1
�p

kð Þ
2j jþ IL

lð Þ
1

�IL
lð Þ
2j j

1þ1 þ v
lð Þ
1
�v

lð Þ
2j j

� �

4

� �k

0
BBBB@

1
CCCCA

0
BBBB@

1
CCCCA

1=k

ð27Þ

where k[ 0.

It is easy to prove that Eqs. (22)–(27) also satisfy the

properties in Theorem 1, and we omit it.

Example 3 (Continued with Example 2) According to

Eq. (22), the generalized NPN-Hausdorff distance between

NPN1 and NPN2 is:

dgh NPN1;ð NPN2Þ

¼ max

0�1j j
2

þ 0:6�1j jþ 0�0j j
2

þ 0:1�0:3j j
4

 !k

;
0�1j j
2

þ 0:6�1j jþ 0�1j j
2

þ 0�0:5j j
4

 !k

;

1�1j j
2

þ 0:4�0j jþ 0�0j j
2

þ 0:3�0:3j j
4

 !k

;
1�1j j
2

þ 0:4�0j jþ 1�1j j
2

þ 0:5�0:5j j
4

 !k

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

0
BBBBBB@

1
CCCCCCA

1=k

If k ¼ 1, then the NPN-Hamming-Hausdorff distance

between NPN1 and NPN2 is:

dhgh NPN1;NPN2ð Þ ¼ max
1:1

4
;
1:9

4
;
0:4

4
;
0:4

4

� �
¼ 0:475

If k ¼ 2, then the NPN-Euclidean-Hausdorff distance

between NPN1 and NPN2 is:

de NPN1;NPN2ð Þ¼ max
1:1

4

� �2

;
1:9

4

� �2

;
0:4

4

� �2

;
0:4

4

� �2
( ) !1=2

¼0:475

The generalized hybrid distance between NPN1 and

NPN2 is:

dhg NPN1;NPN2ð Þ ¼ 1

2
� 1

4
� 1:1

4

� �k

þ 1:9

4

� �k
   

þ 0:4

4

� �k

þ 0:4

4

� �k
!

þmax
1:1

4

� �k

;
1:9

4

� �k

;
0:4

4

� �k

;
0:4

4

� �k
( )! Þ1=k

If k ¼ 1, then the hybrid NPN-Hamming distance

between NPN1 and NPN2 is:

dhgh NPN1;NPN2ð Þ ¼ 1

2
� 0:2375þ 0:475ð Þ ¼ 0:3563

If k ¼ 2, then the hybrid NPN-Euclidean distance

between NPN1 and NPN2 is:

de NPN1;NPN2ð Þ ¼ 1

2
� 0:0803þ 0:2256ð Þ

� �1=2

¼ 0:3911

3.2 Distance and Similarity Measures Between Two

Collections of NPNLTSs

In Sect. 3.1, we consider the distance and similarity mea-

sures of NPNLTSs over one single aspect. However, in

many real applications such as multi-attribute decision

making, the alternatives are often evaluated with respect to

different attributes, and the weighting information of the

attributes is also very important. Therefore, all aspects and

the corresponding weights need to be considered. Since the

evaluation information of the alternatives is often repre-

sented by several collections of NPNLTSs, in this sub-

section, we mainly study the generalized distance and

similarity measures between two collections of NPNLTSs,

and the corresponding Hamming distance and Euclidean

distance can be obtained when the parameters k ¼ 1 and

k ¼ 2, respectively.

3.2.1 Distance and Similarity Measures Between Two

Collections of NPNLTSs in Discrete Case

Let OS ¼ fsaja ¼ 0; 1; 2; . . .; sg and IS ¼ fnbjb ¼
0; 1; 2; . . .; 1g be OLTS and ILTS in the NLTS. For two

collections of NPNLTSs NPN1 ¼ NPN11;NPN12; . . .;f
NPN1mg and NPN2 ¼ NPN21;NPN22; . . .;NPN2mf g with

the associated weighting vector x ¼ x1;x2; . . .;xmð ÞT ,
where 0�xj � 1 and

Pm
j¼1 xj ¼ 1, the generalized

weighted distance measure between NPN1 and NPN2 is

defined as:
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and the generalized weighted NPN-Hausdorff distance

measure is defined as:

dgwh NPN1;NPN2ð Þ¼
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where k[ 0.

Similarly, we can derive some hybrid weighted distance

measures via combining the above distance measures. For

example, the generalized hybrid weighted distance is as

follows:
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where k[ 0.

3.2.2 Distance and Similarity Measures Between Two

Collections of NPNLTSs in Continuous Case

Let x 2 a; b½ �, and the weight of x be x xð Þ, where x xð Þ 2
0; 1½ � and

R b
a
x xð Þdx ¼ 1. Let OS ¼ fsaja ¼ 0; 1; 2; . . .; sg

and IS ¼ fnbjb ¼ 0; 1; 2; . . .; 1g be OLTS and ILTS in the

NLTS. For two collections of NPNLTSs NPN1 ¼
NPN11;NPN12; . . .;NPN1mf g and NPN2 ¼ NPN21;f

NPN22; . . .;NPN2mg over the element x, in analogy to the

above analysis, we introduce the generalized continuous

weighted distance measures between two collections of

NPNLTSs NPN1 and NPN2, shown as follows,

respectively:
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where k[0.If x xð Þ¼1= b�að Þ;8x2 a;b½ �, then the above

equation reduces to the generalized continuous normalized

distance measures between two collections of NPNLTSs:

dgcn NPN1;NPN2ð Þ

¼ 1

b� a

Zb
a

1

#OL�#IL

X#OL

k¼1

X#IL

l¼1

0
@

OL
kð Þ
1 xð Þ � OL

kð Þ
2 xð Þ




 



sþ 1

þ p
kð Þ
1 xð Þ � p

kð Þ
2 xð Þ




 


þ IL
lð Þ
1 xð Þ � IL

lð Þ
2 xð Þ




 



1þ 1

þ v
lð Þ
1 xð Þ � v

lð Þ
2 xð Þ




 



0
@

1
A,4

0
@

1
A

k

dx

1
CA

1=k

where k[ 0.

The generalized continuous weighted distance measures

between two collections of NPNLTSs NPN1 and NPN2 is

dgcwh NPN1;NPN2ð Þ

¼
Zb
a

x xð Þ max
k¼1;2;...;#OL
l¼1;2;...;#IL

0
@

OL
kð Þ
1 xð Þ�OL

kð Þ
2 xð Þ




 



sþ1

þ p
kð Þ
1 xð Þ�p

kð Þ
2 xð Þ




 


þ IL
lð Þ
1 xð Þ�IL

lð Þ
2 xð Þ




 



1þ1

þ v
lð Þ
1 xð Þ�v

lð Þ
2 xð Þ




 



0
@

1
A,4

0
@

1
A

k

dx

1
CA

1=k

where k[ 0.

If x xð Þ ¼ 1= b� að Þ; 8x 2 a; b½ �, then the generalized

continuous normalized distance measures between two

collections of NPNLTSs NPN1 and NPN2 is obtained:
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where k[ 0.

Naturally, a generalized hybrid continuous weighted

distance between two collections of NPNLTSs NPN1 and

NPN2 is shown below:
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where k[ 0.

Let x xð Þ ¼ 1= b� að Þ; 8x 2 a; b½ �, a generalized hybrid

continuous normalized distance measure between two

collections of NPNLTSs NPN1 and NPN2 is:
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where k[ 0.
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3.2.3 Ordered Weighted Distance and Similarity Measures

Between Two Collections of NPNLTSs

Since the ordered weighted distance can alleviate or

intensify the influence of unduly large or small deviations

on the aggregation results by assigning them low or high

weights, it is very useful in realistic decision-making

problems. Therefore, in this subsection, we mainly con-

sider the ordered weighted distance measures with the

context of NPNLTSs.

Motived by Liao [13], the generalized ordered weighted

distance between two collections of NPNLTSs NPN1 and

NPN2 can be obtained as follows:
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where k[ 0 and r jð Þ : 1; 2; . . .;mð Þ ! 1; 2; . . .;mð Þ is a

permutation such that:
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and the generalized ordered weighted NPN-Hausdorff

distance measure is defined as:
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where k[0 and _r jð Þ: 1;2;...;mð Þ! 1;2;...;mð Þ is a permu-

tation such that:
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Certainly, we can derive some hybrid ordered weighted

distance measures via combining the above distance mea-

sures. For example, the generalized hybrid ordered

weighted distance is:
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where k[0 and €r jð Þ: 1;2;...;mð Þ! 1;2;...;mð Þ is a permu-

tation j¼1;2;...;mð Þ such that:

1

#OL�#IL

X#OL

k¼1

X#IL

l¼1

OL
kð Þ
1€r jð Þ � OL

kð Þ
2€r jð Þ




 



sþ 1

þ p
kð Þ
1€r jð Þ � p

kð Þ
2€r jð Þ




 


þ IL
lð Þ
1€r jð Þ � IL

lð Þ
2€r jð Þ




 



1þ 1

þ v
lð Þ
1 €r jð Þ � v

lð Þ
2€r jð Þ




 



0
@

1
A,4

0
@

1
A

k

þ max
k¼1;2;...;#OL
l¼1;2;...;#IL

OL
kð Þ
1 €r jð Þ

�OL
kð Þ
2 €r jð Þ




 



sþ1

þ p
kð Þ
1 €r jð Þ�p

kð Þ
2 €r jð Þ




 


þ IL
lð Þ
1 €r jð Þ

�IL
lð Þ
2 €r jð Þ




 



1þ1

þ v
lð Þ
1 €r jð Þ�v

lð Þ
2 €r jð Þ




 



0
@

1
A,4

0
@

1
A

k

� 1

#OL�#IL

P#OL

k¼1

P#IL

l¼1

OL
kð Þ
1 €r jþ1ð Þ

�OL
kð Þ
2 €r jþ1ð Þ




 



sþ1

þ p
kð Þ
1 €r jþ1ð Þ

�p
kð Þ
2 €r jþ1ð Þ




 


þ IL
lð Þ
1 €r jþ1ð Þ

�IL
lð Þ
2 €r jþ1ð Þ




 



1þ1

þ v
lð Þ
1 €r jþ1ð Þ

�v
lð Þ
2 €r jþ1ð Þ




 



0
@

1
A,4

0
@

1
A

k

þ max
k¼1;2;...;#OL
l¼1;2;...;#IL

OL
kð Þ
1 €r jþ1ð Þ

�OL
kð Þ
2 €r jþ1ð Þ




 



sþ1

þ p
kð Þ
1 €r jþ1ð Þ

�p
kð Þ
2 €r jþ1ð Þ




 


þ IL
lð Þ
1 €r jþ1ð Þ

�IL
lð Þ
2 €r jþ1ð Þ




 



1þ1

þ v
lð Þ
1 €r jþ1ð Þ

�v
lð Þ
2 €r jþ1ð Þ




 



0
@

1
A,

4

0
@

1
A

k

4 A Decision-Making Approach Based
on the Proposed Distance Measures

Multi-attribute decision making is characterized in terms of

a process of selecting best alternative from a set of alter-

natives with respect to some attributes in our daily life. In

this section, we propose an approach based on the proposed

distance measures to handle the multi-attribute decision-

making problems with NPNLTSs.

4.1 A Decision-Making Approach with NPNLTSs

A multi-attribute decision-making problem with NPNLTS

information can be interpreted as follows: Let X ¼
x1; x2; . . .; xnf g be a set of alternatives and C ¼
c1; c2; . . .; cmf g be several attributes with a weighting

vector x ¼ x1;x2; � � � ;xmf gT , where 0�xj � 1 andPm
j¼1 xj ¼ 1 j ¼ 1; 2; . . .;mð Þ. Since a lot of practical

decision-making problems involve the quantitative infor-

mation and qualitative information, for example, when

evaluating a student, the grades as the quantitative infor-

mation and the behaviors as qualitative information are

both needed, and such information can be transformed into

NPNLTSs, then a judgment matrix with NPNLTS infor-

mation can be obtained as follows:

NPN ¼

NPN11 NPN12 � � � NPN1m

NPN21 NPN22 � � � NPN2m

..

. ..
. . .

. ..
.

NPNn1 NPNn2 � � � NPNnm

2
6664

3
7775
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where NPNij ¼ OL
kð Þ
ij pð Þ IL

lð Þ
ij vð Þ

n o
jk ¼ 1; 2; . . .;

n
#OL

pð Þ; l ¼ 1; 2; . . .;#IL vð Þg i ¼ 1; 2; . . .; n; j ¼ 1; 2;ð . . .;mÞ
is a NPNLTS, denoting the degree that the alternative xi
satisfies the attribute cj.

Firstly, we define the bound of a judgment matrix with

NPNLTSs for the sake of the ease of comparison under

different cases:

Definition 9 Let NPN ¼ fOLij pð Þ ILij vð Þ
� 	

g be a matrix

with NPNLTSs, then the lower bound and the upper bound

under different cases are defined as:

Case 1 and Case 2

(1) Lower bound: NPN� ¼ minfOL ið Þ p kð Þ� �
IL vð Þf gg ¼

OL jð Þ p lð Þ� �
IL vð Þf g;OL ið Þ 2 OS and OL ið Þ �OL jð Þ;

p kð Þ � p lð Þ; 8i; k:
(2) Upper bound: NPNþ ¼ maxfOL ið Þ p kð Þ� �

IL vð Þf gg ¼
OL jð Þ p lð Þ� �

IL vð Þf g;OL ið Þ 2 OS and OL ið Þ �OL jð Þ;

p kð Þ � p lð Þ; 8i; k:

Case 3 and Case 4

(1) Lower bound: NPN� ¼ minfOL pð Þ IL ið Þ v kð Þ� �� 	
g ¼

OL pð Þ IL jð Þ v lð Þ� �� 	
; IL ið Þ 2 IS and IL ið Þ � IL jð Þ;v kð Þ

� v lð Þ; 8i; k:
(2) Upper bound: NPNþ ¼ max OL pð Þ IL ið Þ v kð Þ� �� 	� 	
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OL pð Þ IL jð Þ v lð Þ� �� 	

; IL ið Þ 2 IS and IL ið Þ � IL jð Þ;

v kð Þ � v lð Þ; 8i; k:

Next, the notions of the nested probabilistic-numerical

linguistic positive ideal solution xþ and the nested proba-

bilistic-numerical linguistic negative ideal solution x� can

be defined as follows, respectively:

xþ ¼ NPN1þ;NPN2þ; . . .;NPNmþ� 	
and

x� ¼ NPN1�;NPN2�; . . .;NPNm�� 	
where
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OL
kð Þ
ij pð Þ IL lð Þ

ij vð Þ
� 	� 	

; for benefit attribute cj

min
i¼1;2;...;n

NPNij�
¼ min
k¼1;2;...;#OL pð Þ
l¼1;2;...;#IL vð Þ

OL
kð Þ
ij pð Þ IL lð Þ

ij vð Þ
� 	� 	

; for cost attribute cj

8>>><
>>>:

; for j ¼ 1; 2; . . .;m

and

NPNj� ¼

min
i¼1;2;...;n

NPNij�¼ min
k¼1;2;...;#OL pð Þ
l¼1;2;...;#IL vð Þ

OL
kð Þ
ij pð Þ IL lð Þ

ij vð Þ
� 	� 	

; for benefit attribute cj

max
i¼1;2;...;n

NPNijþ
¼ max
k¼1;2;...;#OL pð Þ
l¼1;2;...;#IL vð Þ

OL
kð Þ
ij pð Þ IL lð Þ

ij vð Þ
� 	� 	

; for cost attribute cj

8>>><
>>>:

; for j ¼ 1; 2; . . .;m

Remark 3 The probabilistic-numerical linguistic positive

ideal solution xþ and the nested probabilistic-numerical

linguistic negative ideal solution x� are also NPNLTSs.

More specifically, according to Definition 9, it can be taken

as special NPNLTSs with only one OPLTS under Case 1

and Case 2, and the number of OPLTSs will be sþ 1 under

Case 3 and Case 4.

For the sake of selecting the best alternative, motivated

by the TOPSIS method [20], we can calculate the distance

between each alternative xi and the nested probabilistic-

numerical linguistic positive ideal solution xþ, and the

distance between each alternative xi and the nested prob-

abilistic-numerical linguistic negative ideal solution x�,
respectively. As we can see, the smaller the distance

d xi; x
þð Þ, the better the alternative; while the larger the

distance d xi; x
�ð Þ, the better the alternative. Obviously,

these distances can be calculated by using the proposed

distance measures in Sect. 4. In order to make full use of

distance information, we take both d xi; x
þð Þ and d xi; x

�ð Þ
into consideration simultaneously and use the satisfaction

degree given by Liao [13] as follows:

Definition 10 [13] A satisfaction degree of a given

alternative xi with respect to the attribute cj is defined as:

g xið Þ ¼ 1� hð Þd xi; x
�ð Þ

hd xi; xþð Þ þ 1� hð Þd xi; x�ð Þ

where the parameter h denotes the risk preferences of the

DM: h[ 0:5 means that the DM is pessimist, while h\0:5

means the DM is optimist and h ¼ 0:5 means that the DM

is neutral. And the value of the parameter h should be

provided by the DM in advance.

Remark 4 For any h 2 0; 1½ �, d xi; x
þð Þ 2 0; 1½ � and

d xi; x
�ð Þ 2 0; 1½ �; i ¼ 1; 2; � � � ;m, it can be easy to see that

0� g xið Þ� 1 and the higher the satisfaction degree, the

better the alternative. We can calculate the satisfaction

degrees by different measures proposed in Sect. 3.

4.2 Application Flow

Based on the discussion above, a decision-making

approach can be established. In the following, the algo-

rithm of the whole process with NPNLTS information is

presented as follows:

Algorithm

Input: The NPNLTS matrix NPN ¼ fOL pð Þ
IL vð Þf ggn�m; the weight vector x ¼ x1;x2; . . .;xmð ÞT

and the parameter h of risk preferences.

Output: The satisfaction degrees g xið Þ i ¼ 1; 2; . . .;mð Þ
of alternatives.

Step 1. Select the nested probabilistic-numerical lin-

guistic positive ideal solution xþ and the negative ideal

solution x� from NPN ¼ fOL pð Þ IL vð Þf ggn�m. Go to

Step 2.
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Step 2. Choose the appropriate distance measure with

NPNLTSs according to the types of decision-making

problem. Go to Step 3.

Step 3. Calculate the satisfaction degrees g xið Þ i ¼ 1; 2;ð
. . .;mÞ of alternative by Definition 10. Go to Step 4.

Step 4. Rank the alternatives Ai i ¼ 1; 2; . . .;mð Þ and

select the optimal alternative. Go to Step 5.

Step 5. End.

To understand Algorithm clearly, the application flow

for decision-making problems based on the proposed dis-

tance measures with NPNLTSs can be described in Fig. 3.

5 A Case Study

In order to illustrate the effectiveness and reliance of the

approaches with the proposed distance measures, in the

following, we consider a multi-attribute decision-making

problem concerning the evaluation of the treatment plans

and make some comparisons and analyses about the pro-

posed distance measures.

5.1 Problem Description

Since the imperfection of the public medical management

system, public problems such as high medical cost, few

channels and low coverage are troubling the people’s

livelihood. For example, famous hospitals are over-

crowded, and community hospitals are neglected, and

patients’ medical procedures are cumbersome. All these

problems are caused by poor medical information, polar-

ization of medical resources, and incomplete medical

supervision mechanism. These problems have become an

important factor affecting the harmonious development of

society. Wise Information Technology of 120 (WIT 120)

makes use of self-service and interactive mode and uses

computer-assisted decision making to improve the effi-

ciency and accuracy of treatment evaluation. The aim of

WIT 120 is to allow patients to enjoy safe, convenient and

high-quality medical services with a relatively short wait-

ing time and basic medical expenses, and to fundamentally

solve the problem of ‘‘difficult and expensive medical

services,’’ and truly achieve the goal of ‘‘health for all,

health for all.’’

When people suffer from major illness, due to the

uncertainty of information and the urgency of time, doctors

usually cannot make comprehensive judgments about the

illness immediately. However, through the platform of

WIT 120, patients can input information such as symptoms

and medical history. Then, the system will give the best

treatment after machine learning. To select the best

medical treatment plan, four crucial factors need to be

considered:

• Operable coefficient The implementations of treatment

are related to the safety of the patient. Thus, it is

necessary to choose an operable and feasible treatment.

• Comfort level The treatment process is supposed to

consider the patient’s tolerance level. The more com-

fortable the patient’s experience is, the better the

treatment should be.

• Cost performance Different treatments would cost

different amounts, such as conservative treatment or

surgical treatment. Therefore, Cost is one of the factors

in evaluating treatment.

• Cure rate In the implementations of treatment plan, it is

necessary to consider the cure rate of each treatment.

Under the same circumstance, the higher the cure rate

is, the better the medical treatment should be.

5.2 Solve the Problem

Suppose that five medical treatments x1; x2; x3; x4; x5f g are

put forward to cure the disease. Four attributes

c1; c2; c3; c4f g are considered, including c1: Operable

coefficient, c2: Comfort level, c3: Cost performance, c4:

Cure rate. The weighing vector of these four attributes is

x ¼ 0:2; 0:1; 0:2; 0:5ð ÞT . Given the OLTS and the ILTS as

follows:

OS ¼ s0 ¼ very bad; s1 ¼ bad; s2 ¼ medium;f
s3 ¼ well; s4 ¼ verywellg

IS ¼ n0 ¼ higher cost performance;f
n1 ¼ medium cost performance; n2 ¼ lower cost performanceg

As we can see, the elements of the OLTS and the ILTS

are both ordinal variables, which shows that the problem

belongs to Case 1. In order to get the relevant evaluation

information, the WIT 120 system sets up a decision orga-

nization, which contains a group of DMs to assess the

treatment plan. In the process of evaluation, the DMs

evaluate different treatment plans with NPNLTSs which

contain OPLTSs and INLTSs. More specifically, the DMs

express their linguistic information with respect to the

attributes in the OLTS and then we can further calculate

the corresponding probabilities. In addition, the DMs also

need to discuss the numerical information with respect to

the OLTE in the OLTS to fully illustrate the nested

information, such as hundred-mark system which is a 0-to-

100 index in this example. In the following, a nested

probabilistic-numerical linguistic judgment matrix can be

constructed, shown in Table 2.
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Next, we normalize the NPNLTSs with respect to the

attributes with different alternatives, which can be shown

in Table 3.

From Table 3, it is noted that all the four attributes are

benefit-type attributes. In order to select the desired treat-

ment plan, we first establish the nested probabilistic-nu-

merical linguistic positive ideal solution xþ and the nested

probabilistic-numerical linguistic negative ideal solution

x�, shown in Table 4.

Then, considering the weighing vector about the attri-

butes, we calculate the distance between each alternative xi
and the nested probabilistic-numerical linguistic positive

ideal solution xþ and the distance between each alternative

xi and the nested probabilistic-numerical linguistic negative

ideal solution x�, respectively. Furthermore, the satisfac-

tion degree g xið Þ for each alternative xi can be calculated

by Definition 10. Without loss of generality, we choose

h ¼ 0:5, and the results based on NPN-Hamming distance

measure are:

g x1ð Þ ¼ 0:2682; g x2ð Þ ¼ 0:2496; g x3ð Þ ¼ 0:2876; g x4ð Þ
¼ 0:2760; g x5ð Þ ¼ 0:2910

Therefore, the ranking of alternative medical treatments

is x5 [ x3 [ x4 [ x1 [ x2, and the best medical treatment

is x5.

5.3 Comparative Analysis and Discussion

In order to understand deeply about the proposed distance

measures and show the superiority of the proposed method,

we make some comparisons and analyses through simula-

tion experiments from three aspects:

• The impact of using various decision-making methods.

• The impact of using various distance measures.

• The impact of changing the focal parameters k and h.

Fig. 3 The application flow for decision-making problems with NPNLTSs
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5.3.1 The Impact of Using Various Decision-Making

Methods

In this part, we compare the proposed method with other

three popular decision-making methods presented in

Introduction, which are the TOPSIS method, the VIKOR

method and the ELECTRE method, respectively. Table 5

shows the rankings of the medical treatments by using four

methods above based on Hamming distance measure.

From Table 5, there is a little difference among the

ranking results by using four decision-making methods.

However, all the best medical treatments are x5, and the

rankings are the same by using the proposed method and

the ELECTRE method. Therefore, compared with other

three methods, the ranking result with the proposed method

is effective and reliable.

In the following, we study the average operation time

(AOT) by four methods to deal with decision-making

problems. Suppose that the numbers of alternatives and

experts are denoted as m and k, some simulation experi-

ments are given by using various decision-making methods

based on Hamming distance measure. When m and k are

taken from 3 to 14, the AOTs by four methods after 1000

simulation times can be shown in Figs. 4 and 5,

respectively.

From Figs. 4 and 5, there are apparent difference about

AOT by using four methods when m and k are taken from 3

to 14. As we can see, there are the minimum AOT when

using the proposed method, and the maximum AOT when

using the ELECTRE method. Moreover, in Fig. 4,

increasing the number of alternatives would take more time

than increasing the number of experts. Hence, using the

proposed method to deal with decision-making problems

can obtain more stable results without taking too much

time than the other three methods.

5.3.2 The Impact of Using Various Distance Measures

Next, we mainly discuss the impact of the ranking result

when using various proposed distance measures with

NPNLTSs. In order to compare and analyze the results

clearly with different distance measures, we use the gen-

eralized weighted distance measure, the generalized

weighted NPN-Hausdorff distance measure and the gen-

eralized hybrid weighted distance measure, respectively, to

deal with the same problem in Sect. 5.1. The satisfaction

degrees and the ranking results with different distance

measures can be shown from Tables 6, 7 and 8,

respectively.

As we can see, there is little difference about the ranking

results when using the proposed various distance measures

with the changed parameter k. More specifically, when

k¼ 1 and k¼ 2, the rankings are the same, that isT
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x5 [ x3 [ x4 [ x1 [ x2; and when k¼ 4 and k¼ 6, the

rankings are also the same, that is x5 [ x3 [ x2 [ x4 [ x1;

but when k¼ 10, the slightly changes take place between x2
and x5, x1 and x4, respectively. Therefore, the ranking

results have the strong stability based on different proposed

distance measures.

Furthermore, it is noteworthy that when the focal

parameter k smaller than a certain value, all the best

medical treatments are x5. As the parameter k increases, the
largest growth satisfaction degree is x2. Hence, when

k¼ 10, the best medical treatment is x2. In some way, the

parameter k represents the preferences of the decision

makers, and we will discuss some focal parameters in the

next part.

5.3.3 The Impact of Changing Focal Parameters

Now, we study the impact of changing some focal

parameters in decision-making process. In order to see the

satisfaction degrees of different alternatives when using

various distance measures with the parameter k, we draw

the conclusions directly considering the influence of both

the changed parameter k and the different alternatives

xi i ¼ 1; 2; 3; 4; 5ð Þ, shown from Figs. 6, 7 and 8,

respectively.

From the above figures, there are also some interesting

results:

(1) When using a certain distance measure, the satisfac-

tion degrees are increasing or decreasing with the

parameter k changes. More specifically, when we use

the generalized weighted distance measure and the

generalized hybrid weighted distance measure to

calculate the distances, shown in Figs. 6b and 8b,

respectively, the satisfaction degrees of all the

alternatives are monotonically increasing with the

increase in the parameter k. However, when we use

the generalized weighted NPN-Hausdorff distance

measure to calculate the distances, shown in Fig. 7b,

the satisfaction degrees of x1 and x2 are monoton-

ically increasing, while the satisfaction degrees of

x3; x4 and x5 are monotonically decreasing with the

increase in the parameter k.
(2) It is noted that the alternatives with the largest

increase are x2 with different distance measures,T
a
b
le

4
T
h
e
p
o
si
ti
v
e
id
ea
l
so
lu
ti
o
n
xþ

an
d
th
e
n
eg
at
iv
e
id
ea
l
so
lu
ti
o
n
x�

c 1
c 2

c 3
c 4

xþ
s 4

0
:2
9

ð
Þ
n
0
0
:7

ð
Þ;
n
1
0
:2

ð
Þ;
n
2
0
:1

ð
Þ

f
g

f
g

s 3
0
:5

ð
Þ
n
0
0
:5

ð
Þ;
n
1
0
:4

ð
Þ;
n
2
0
:2

ð
Þ

f
g

f
g

s 3
0
:6
7

ð
Þ
n
0
0
:5

ð
Þ;
n
1
0
:4

ð
Þ;
n
2
0
:2

ð
Þ

f
g

f
g

s 3
0
:4

ð
Þ
n
0
0
:5

ð
Þ;
n
1
0
:4

ð
Þ;
n
2
0
:2

ð
Þ

f
g

f
g

x�
s 0

0
:2
5

ð
Þ
n
0
0ð
Þ;
n
1
0ð
Þ;
n
2
0
:8

ð
Þ

f
g

f
g

s 1
0
:6
2
5

ð
Þ
n
0
0ð
Þ;
n
1
0ð
Þ;
n
2
0
:7

ð
Þ

f
g

f
g

s 0
0
:2

ð
Þ
n
0
0ð
Þ;
n
1
0ð
Þ;
n
2
0
:8

ð
Þ

f
g

f
g

s 0
0
:2

ð
Þ
n
0
0ð
Þ;
n
1
0ð
Þ;
n
2
0
:8

ð
Þ

f
g

f
g

Table 5 Rankings based on four methods

Methods Alternative ranking

The proposed method x5 [ x3 [ x4 [ x1 [ x2

The TOPSIS method [3] x5 [ x3 [ x4 [ x2 [ x1

The VIKOR method [20] x5 [ x4 [ x3 [ x1 [ x2

The ELECTRE method [4] x5 [ x3 [ x4 [ x1 [ x2
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which is the reason that when k ¼ 1; 2; 4; 6,x5 is the

best alternative and x2 is the second-best alternative;

however, when k ¼ 10,x2 is at the top of the figures.

Therefore, from this point of view, we can regard the

parameter k as a DM’s risk attitude; thus, the

proposed distance measures can give the DMs more

choices to decide their risk preferences by the

parameter k.

Without loss of generality, the value of the parameter h
is equal to 0.5. In the following, we further consider the

influence of the satisfaction degrees with the changed

parameter h by using different distance measures. There-

fore, we use the generalized weighted distance measure,

the generalized weighted NPN-Hausdorff distance measure

and the generalized hybrid weighted distance measure,

respectively, to calculate the distances with the values of

the parameter h from 0 to 1 and the calcula-

tion step is 0.001, which can be shown from Figs. 9a, 10

and 11a. In order to see the difference clearly by using

different distance measures with the changed parameter k,
we draw the satisfaction degrees with the parameter h from

0.5 to 0.6 and the calculation step is 0.0001, shown from

Figs. 9b, 10 and 11b, respectively.

From the above figures, some interesting phenomena are

also presented.

(1) If we use a certain distance measure with the value

of the parameter h from 0 to 1, shown in Figs. 9a, 10

and 11a, respectively, the surfaces almost coincide

with the five different values of the parameter k; that
is to say, overall, the differences of the satisfaction

degrees are very small with the changed parameter k.
However, when the value of the parameter h limits

the scope, such as from 0.5 to 0.6, shown from

Figs. 5b, 6 and 7b, respectively, it shows the

difference of the satisfaction s with the different

values of the parameter k.
(2) The differences of the satisfaction degree results are

different compared with the above proposed distance

measures. More specifically, the difference by using

the generalized weighted distance measure is larger

than using the generalized weighted NPN-Hausdorff

distance measure. Hence, from another point of

view, the parameter h can be also regarded as the

risk preference of the DM.

(3) Combined with the figures and Definition 10, we can

see that the larger the parameter h is, the more

optimistic the DM is, on the contrary, the more

Table 6 The satisfaction

degree results with the

generalized weighted distance

measure

x1 x2 x3 x4 x5 Rankings

k¼ 1 0.2682 0.2496 0.2876 0.2760 0.2910 x5 [ x3 [ x4 [ x1 [ x2

k¼ 2 0.2712 0.2611 0.2896 0.2776 0.2931 x5 [ x3 [ x4 [ x1 [ x2

k¼ 4 0.2769 0.2810 0.2935 0.2809 0.2971 x5 [ x3 [ x2 [ x4 [ x1

k¼ 6 0.2818 0.2956 0.2967 0.2840 0.3007 x5 [ x3 [ x2 [ x4 [ x1

k¼ 10 0.2893 0.3139 0.3011 0.2888 0.3063 x2 [ x5 [ x3 [ x1 [ x4

Table 7 The satisfaction

degree results with the

generalized weighted NPN-

Hausdorff distance measure

x1 x2 x3 x4 x5 Rankings

k¼ 1 0.2929 0.2816 0.3221 0.3042 0.3249 x5 [ x3 [ x4 [ x1 [ x2

k¼ 2 0.2943 0.2894 0.3213 0.3039 0.3246 x5 [ x3 [ x4 [ x1 [ x2

k¼ 4 0.2965 0.3042 0.3196 0.3033 0.3240 x5 [ x3 [ x2 [ x4 [ x1

k¼ 6 0.2980 0.3158 0.3179 0.3028 0.3234 x5 [ x3 [ x2 [ x4 [ x1

k¼ 10 0.3002 0.3296 0.3149 0.3020 0.3222 x2 [ x5 [ x3 [ x4 [ x1

Table 8 The satisfaction

degree results with the

generalized hybrid weighted

distance measure

x1 x2 x3 x4 x5 Rankings

k¼ 1 0.2814 0.2667 0.3062 0.2926 0.3093 x5 [ x3 [ x4 [ x1 [ x2

k¼ 2 0.2845 0.2773 0.3080 0.2941 0.3113 x5 [ x3 [ x4 [ x1 [ x2

k¼ 4 0.2894 0.2964 0.3104 0.2957 0.3145 x5 [ x3 [ x2 [ x4 [ x1

k¼ 6 0.2930 0.3094 0.3115 0.2978 0.3165 x5 [ x3 [ x2 [ x4 [ x1

k¼ 10 0.2975 0.3256 0.3116 0.2992 0.3184 x2 [ x5 [ x3 [ x4 [ x1
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pessimistic the DM is. Therefore, when the DMs

deal with the multi-attribute decision-making prob-

lems with the nested probabilistic-numerical linguis-

tic information, they can choose the risk preference

in three aspects, which are the distance measure, the

parameter k and the parameter h.

6 Conclusions

In this paper, we have mainly investigated some various

types of distance and similarity measures for NPNLTSs

combined with the basic axioms. A family of distance and

similarity measures for NPNLTSs have been developed

based on the well-known distances, such as the Hamming

distance, the Euclidean distance, the Hausdorff distance

and their generalizations. Then, we have studied the dis-

tance and similarity measures with respect to two collec-

tions of NPNLTSs in three aspects, which are discrete case,

continuous case and the ordered weighted case,
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(a) The satisfaction degree results with different parameters  (b)The satisfaction degree results with different alternatives

Fig. 6 The satisfaction degree results with the generalized weighted distance measure

 
(a) The satisfaction degree results with different parameters  (b) The satisfaction degree results with different alternatives 

Fig. 7 The satisfaction degree results with the generalized weighted NPN-Hausdorff distance measure

 

(a) The satisfaction degree results with different parameters  (b) The satisfaction degree results with different alternatives 

Fig. 8 The satisfaction degree results with the generalized hybrid weighted distance measure
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respectively. Because of the relationship between the dis-

tance measures and the similarity measures for NPNLTSs,

we have focused our attention on the distance measures in

this paper and the corresponding similarity measures can

be obtained naturally. It should be noted that the lengths of

two different NPNLTSs are often different in real appli-

cations, and we have discussed how to extend the shorter

one under various cases until both of them have the same

length to further calculate their distance. Additionally, we

have proposed an approach to deal with multi-attribute

decision-making problems based on the proposed distance

and similarity measures. In order to show the applicability

and the efficiency of the approach with the proposed

distance measures, a case study concerning the evaluation

of the medical treatments has been presented. After some

comparisons and analyses, we have discussed from three

angles including the impact of using various decision-

making methods, various distance measures and the

changed focal parameters. And we have obtained some

interesting results. For example, the parameter k and the

parameter h can reflect the DM’s risk preferences in dif-

ferent aspects. As a result, the proposed distance measures

give the DMs more choices to decide their risk preferences.

There are some interesting topics for further research.

For example, the hybrid weighted distance and similarity

measures between two collections of NPNLTSs can be

Fig. 9 The satisfaction degree results with the generalized weighted distance measure

Fig. 10 The satisfaction degree results with the generalized weighted NPN-Hausdorff distance measure
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investigated. Furthermore, we can apply our distance and

similarity measures to other decision-making methods and

study how to determine the weights in the decision-making

problems.
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9. Garcı́a-Lapresta, J.L., Pérez-Román, D.: Consensus-based clus-

tering under hesitant qualitative assessments. Fuzzy Sets Syst.

292, 261–273 (2016)

10. Grzegorzewski, P.: Distance between intuitionistic fuzzy sets

and/or interval-valued fuzzy sets based on the Hausdorff metric.

Fuzzy Sets Syst. 148, 319–328 (2004)

11. Gou, X.J., Xu, Z.S.: Novel basic operational laws for linguistic

terms, hesitant fuzzy linguistic term sets and probabilistic lin-

guistic term sets. Inf. Sci. 372, 407–427 (2016)

12. Gou, X.J., Xu, Z.S., Liao, H.C.: Hesitant fuzzy linguistic entropy

and cross-entropy measures and alternative queuing method for

multiple criteria decision making. Inf. Sci. 388, 225–246 (2017)

13. Huang, Z.Y., Yu, Y.L., Gu, J., Liu, H.P.: An efficient method for

traffic sign recognition based on extreme learning machine. IEEE

Trans. Cybern. 47(4), 920–933 (2017)

14. Herrera, F., Herrera-Viedma, E.: Linguistic decision analysis:

steps for solving decision problems under linguistic information.

Fuzzy Sets Syst. 115, 67–82 (2000)

15. Herrera, F., Herrera-Viedma, E., Martinez, L.: A fuzzy linguistic

methodology to deal with unbalanced linguistic term sets. IEEE

Trans. Fuzzy Syst. 16, 354–370 (2008)

16. Liao, H.C., Jiang, L.S., Xu, Z.S.: A linear programming method

for multiple criteria decision making with probabilistic linguistic

information. Inf. Sci. 415, 341–355 (2017)

17. Liao, H.C., Xu, Z.S., Zeng, X.J.: Distance and similarity mea-

sures for hesitant fuzzy linguistic term sets and their application

in multi-criteria decision making. Inf. Sci. 271, 125–142 (2014)

18. Liao, H.C., Xu, Z.S., Zeng, X.J., Merigó, J.M.: Qualitative
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