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Abstract This paper is fretful about an adaptive fuzzy

model-based controller (AFMBC), which is studied and

implemented for class of nonlinear discrete-time system

with dead zone. Due to immeasurable states and the pres-

ence of symmetric/non-symmetric dead zones, design of

controller becomes more challenging. AFMBC is design

for approximation of such nonlinear system to a relative

degree of accuracy, which can be used for adaptation of

nonlinear discrete-time systems with or without the pres-

ence of symmetric/non-symmetric dead zones. AFMBC

employs as a reference model which is useful to closed-

loop pure feedback form of fuzzy controller. AFMBC

provides approximation of immeasurable states and mini-

mizes effects of unknown bounded disturbances in the

system. Based on Lyapunov method, it is proved that

proposed scheme for discrete-time nonlinear systems is

asymptotically stable. Hence, not only stability of proposed

system is assured, but it is also shows that tracking error of

model lies in closed neighbourhood of zero after sufficient

number of iterations, i.e. tracking error ðeðtÞ ! 0 as

t ! 1Þ. The feasibility of the AFMBC is demonstrated by

well-known direct current (DC) motor example and other

nonlinear discrete-time problem through simulation.

Keywords AFMBC � Discrete-time nonlinear systems �
Dead zone � Lyapunov method

1 Introduction

Famous Stone–Weierstrass theorem says that any real

function f ðxÞ on a closed and bounded set can be uniformly

approximated via some set of basis functions f ðx; aÞ where
a 2 Xk and Xk � Rk to a certain/arbitrary degree of accu-

racy [1]. The exact mathematical model of plant or

industrial systems is not always possible to design and

solve. Due to uncertain nature of these industrial systems,

soft computing techniques employ on such type of systems.

Neural networks (NN) and fuzzy logic systems (FLS) are

example of such cases. In a finite-dimensional normed

vector space, an uncertain nonlinear system can be

approximated to a certain extent with artificial neural net-

work (ANN) [2–4]. Approximation of nonlinear model is a

more challenging comparison to linear model, and these

challenges increase in the presence of dead zone or boun-

ded disturbances. Adaptive techniques are passable to use

for handling approximation of these unwanted uncertain-

ties arising in the plant/system. Fuzzy model-based con-

troller and adaptive neural network are adequate to be used

for handling these uncertainties. Certain specific adaptive

techniques like FLS and NN [5–9] for approximation of

multiple-input multiple-output (MIMO) with actuator

nonlinearities, multiple-input single-output (MISO) and

single-input single-output (SISO) nonlinear systems were

discussed. But, the above said systems does not deal about
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immeasurable states and dead-zone effects, which affects

the many physical system, and its presence may give the

instability of systems [10].

Last few years, many researchers work in the area of

adaptive computational techniques for approximation of

discrete-time nonlinear systems [11, 12]. Based on FLS and

ANN model, many nonlinear control systems have been

developed with uncertainty [13, 14]. Consequently, adap-

tive intelligent control design for pure feedback systems

[15] and fuzzy counter propagation network for uncertain

nonlinear discrete-time systems was implemented [16, 17].

Neural network has been widely used for approximation of

unknown systems [18, 19], and many control systems like

back-stepping control [20–23], sliding mode control

[24, 25] and control using flexible computing [26] have

been designed by progressing attention among researchers.

Unwanted disturbances like dead zone, hysteresis, backlash

and bounded difference frequently occur in every field of

engineering. Various soft computing techniques like neural

network, fuzzy logic and hybrid approaches (neuro-fuzzy)

method have been modelled and implemented for control

of discrete-time systems in various domains. The adaptive

control model was developed [27–29] for some real

applications, which have more practically used in indus-

tries. In addition, some NN and FLS applications were

given for an active suspension vehicle [30], heat-exchanger

pilot plant [31], air-conditioning systems [32] a flexible

crane output constraint system [33] and control of non-

holonomic chained systems [34].

Above-mentioned applications do not take into account

the effect of input nonlinearities such as backlash, hys-

teresis and dead zone. The existence of these nonlinearities

may affect that the system becomes unstable. Some adap-

tive trajectory control techniques [35–41] for unmanned

surface vehicles, fully actuated marine surface vehicles and

complex surface vehicle system have been designed for

nonlinear system with symmetric/non-symmetric dead

zones; for example, motion control system with dead-zone

compensation and dynamic surface control for servo sys-

tems with unknown were developed [17, 42, 43]. An

adaptive critic-based neural network [44] has been inves-

tigated for pure feedback systems. Adaptive systems like

fuzzy tracking control and ANN were developed for fully

unknown parametric dynamics with uncertainties and

uncertain nonlinear systems [45–47] for nonlinear stirred

tank reactor with the presence of unknown disturbances.

Observer-based fuzzy output feedback control [48] was

proposed for SISO nonlinear system with input nonlin-

earities, and later on, this idea has been extended for

MIMO [49]. However, at the present stage, no effective

methods work for discrete-time nonlinear systems with

disturbances like backlash, hysteresis and dead zone.

Motivated by aforementioned work, our study is focused

on adaptive fuzzy model-based control of discrete-time

nonlinear systems with immeasurable states and dead-zone

nonlinearity. Lyapunov function has been used to prove

that system is asymptotically stable and tracking error

converges on a compact set in neighbourhood of zero. The

contribution of this paper is focused on an adaptive control

method for discrete-time systems with input nonlinearities,

if no prior knowledge is available about the system. To

design such fuzzy model, some basis functions for higher

dimensional spaces are used to approximate nonlinear

functions. Further, it is proved that designed system is

asymptotically stable. This paper will help for approxi-

mation of discrete-time nonlinear systems with distur-

bances like dead zone. The viability and efficiency of

proposed method are shown by two simulation results.

Remaining part of the paper is organized as follows.

Section 2 contains problem formulation and system

description with some basic lemmas/theorems and defini-

tions. Adaptive fuzzy-based model and Lyapunov function-

based stability analysis are described in Sect. 3. Section 4

contains the simulation examples of nonlinear systems, and

Sect. 5 contains conclusion of paper followed by the future

work.

2 Problem Formulation

Consider general form of nonlinear discrete-time systems

with input nonlinearities like dead zone [5, 50]:

a1ðt þ 1Þ ¼ a2ðtÞ
. . .

anðt þ 1Þ ¼ f ðaðtÞÞ þ gðaðtÞÞ þ CðtðtÞÞ þ dðtÞ
yðtÞ ¼ a1ðtÞ

8
>>><

>>>:

ð1Þ

where aðtÞ ¼ ½a1ðtÞ; a2ðtÞ; . . .; anðtÞ�T is a n� 1, column

state vector s.t. tuples of aðtÞ are known as immeasurable

states; yðtÞ 2 R is output of the system; f ðaðtÞÞ and gðaðtÞÞ
are smooth nonlinear functions dðtÞ is unknown bounded

differences; CðtðtÞÞ is the dead zone and tðtÞ is the input to
dead zone. Dead zone CðtðtÞÞ can be defined as:

CðtðtÞÞ ¼
mr tðtÞ � brð Þ : tðtÞ� br
0 : �bl � tðtÞ� br
ml tðtÞ þ blð Þ : tðtÞ� � bl

8
<

:
ð2Þ

where mr and ml are right and left slope of dead zone,

respectively; br and bl are right and left break points,

respectively, and all are positive constant. The dead zone

can be represented as:

CðtðtÞÞ ¼ mðtÞtðtÞ þ bðtÞ ð3Þ

where
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mðtÞ ¼
mrtðtÞ : tðtÞ[ 0

mltðtÞ : tðtÞ� 0

(

ð4Þ

bðtÞ ¼
�mrbr : tðtÞ� br
�mðtÞtðtÞ : �bl � tðtÞ� br
mlbl : tðtÞ� � bl

8
<

:
ð5Þ

It is obvious to know that m
_ ¼ minfmr;mlg and

m
^ ¼ maxfmr;mlg. The objective of this paper is to find the

approximate solution of nonlinear discrete-time system

[Eq. (1)] using AFMBC, so that (1), all the signals obtained

via AFMBC are bounded and (2) the system output con-

verges reference signal yrðtÞ, where yrðtÞ is bounded (3)

also, AFMBC is asymptotically stable. Discrete-time sys-

tem with dead zone is making stable using FLS’s and NN’s

[7–13]. In this paper, we focus on adaptive controller based

on fuzzy logic techniques for immeasurable states and

discrete-time nonlinear systems. Many practical applica-

tions or problems can be converted into form of Eq. (1), as

shown in Example 2.

Assumption 1 Let us suppose that f ðaðtÞÞ and gðaðtÞÞ are
nonzero and bounded s.t. 0\ f ðaðtÞÞk k� �f and

0\ gðaðtÞÞk k� �g, where �f and �g are positive constants.

2.1 System Description

In this section, we studied some basic definitions of func-

tions, lemma and theorems related to nonlinear function

approximation [1, 5, 6, 11]. Let us define some basic

definitions:

Definition 1 Let C ¼ f ðx; aÞ : a 2 Xk; k� 1
� �

be a class

of functions of the form f ðx; aÞ where a 2 Xk and Xk � Rk

may be uniformly approximated on X by set of functions C
if for any e[ 0 there exist some f ðxÞ 2 C such that

supx2X f ðxÞ � FðxÞj j\ 2. Also is said to be f ðxÞ step

function if it takes only a finite number of distinct values,

with each values assigned in one or more non-overlapping

intervals and class of step functions is denoted by Cs.

Definition 2 Let C1 be a class of functions said to be

universal approximation of class of functions of class C2 if

for each f ðxÞ 2 C2 may be uniformly approximated by C1.

Lemma 1 Class of step functions Cs is universal

approximation of set of scalar-valued continuous functions

f ðxÞ 2 Ccb defined on a compact set X ¼ ½a; b�. If f ðxÞ is

continuous on compact set X, therefore f ðxÞ is uniformly

continuous on X, so for given e[ 0, 9 a d[ 0 s.t.

f ðxÞ � f ðyÞj j\ e whenever x� yj j\d.

Proof Let f ðxÞ is continuous function on X, then f ðxÞ is
uniformly continuous. Therefore, for given e[ 0, there

exists a d[ 0 such that whenever x� yj j\d, then

f ðxÞ � f ðyÞj j\e. Divide the interval X into k non-over-

lapping intervals of equal lengths, i.e. h ¼ ðb� aÞ=k as

follows:

I1 ¼ ½a; aþ h�, I2 ¼ ðaþ h; aþ 2h�,. . .,Ik ¼ ðb� h; b�.
Choose sufficiently large k s.t. h\d for given e[ 0; so that

magnitude of the difference between any two values of f ðxÞ
in Ik is less than e. Define a step function sðxÞ ¼ f ðaþ
ðr � 1ÞhÞ on x 2 ðaþ ðr � 1Þh; aþ rh�. Since the value of
step function on an interval is simply the value of f ðxÞ at
left end points of the interval, f ðxÞ � f ðyÞj j\ e.

Theorem 1 If f 2 Ccb be a nonlinear function, then 9
fuzzy membership functions which act as basis become

universal approximations for f :

Theorem 2 Fuzzy model-based systems containing basis

functions as / : R ! ½0; 1� are universal approximation for

f 2 Ccb.

Proof Since X is a compact set, and f ;/ are continuous

on X, there are x0 2 X, y0 2 X, satisfying f x0ð Þ =
W

x2X f xð Þf g;/ y0ð Þ ¼
W

x2X g xð Þf g. If f x0ð Þ � / y0ð Þj j � e,
we have f x0ð Þ � / y0ð Þ� � e or f x0ð Þ � / y0ð Þ� e.

To the first case of above equation, considering

f y0ð Þ� f x0ð Þ, we obtain

f y0ð Þ � / y0ð Þ� f x0ð Þ � / y0ð Þ� � e
) f y0ð Þ � / y0ð Þj j � e;

which contradicts the assumption f x0ð Þ � / y0ð Þj j � e; since
x0ð Þ� f y0ð Þ, it follows that
f x0ð Þ � / x0ð Þ� f x0ð Þ � / y0ð Þ� e;) f x0ð Þ � / x0ð Þj j � e;

which also contradicts assumption f x0ð Þ � / y0ð Þj j � e.
Thus, f x0ð Þ � / y0ð Þj j � h does not hold, that is,

�e\f x0ð Þ � / y0ð Þ\e, so | f x0ð Þ � / x0ð Þ | \e, i.e.
W

x2X f xð Þf g �
W

x2X / xð Þf g
�
�

�
�\e.

3 Description of Adaptive Fuzzy Model

To develop the framework of adaptive fuzzy model pre-

sented in Fig. 1, for the approximation of nonlinear dis-

crete-time systems, the generalization of fuzzy model is

based on many linguistic rules. To track the reference

signal proposed model based on the following task (1)

Track set point trajectory (2) immeasurable states or

uncertainty of system parameters and (3) uncertainty due to

disturbances. Before going to formulation of fuzzy model-

based controller, we present the basic terminology of fuzzy

logic.
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3.1 Fuzzy Logic

Fuzzy logic is a multivalued logic which makes use of

linguistic variables, fuzzy sets and membership functions.

Linguistic variable is used to define different fuzzy sets and

membership functions are some curves that use to assign

input domain to fuzzy set ranges over [0, 1]. The fuzzy rule

constitutes the database and rule base, which is known as

knowledge base. Fuzzy If–Then rules are as follows:

IF X1 is M1 AND X2 is M2 THEN Y ¼ aX1 þ bX2 þ c is N

where X1, X2 and Y are linguistic variable ranges over M1,

M2 and N, respectively. IF part of the rule is known as

antecedent and THEN part is known as consequent. Fuzzy

inference system comprises of some functional blocks as

shown in Fig. 2.

1. Fuzzification interface is transforming the crisp values

into linguistic variables.

2. Decision-making unit is performing the interface on

different fuzzy IF–THEN rules.

3. Combination of database and rule base is known as

knowledge base, where database defines different

fuzzy membership functions and rule base comprises

different IF–THEN rules.

4. Defuzzification interface is transforming the fuzzy

values to crisp values.

In this paper, fuzzy model-based approximation has

been developed using inference engine, and whole system

dynamics can be represented by subjective mean of linear

sub-systems. The nonlinear characteristic has been

extracted and resolved via sector nonlinearities. For a

nonlinear system, two ways to construct fuzzy model: (1) It

can be obtained by use of system identification algorithms

or (2) derive the mathematical equations for nonlinear

systems to weighted sum of linear systems. Adaptive fuzzy

model consists of a number of linguistic rules, i.e. fuzzy

IF–THEN rules base consisting two parts (1) antecedents

represent a subset of model variables into fuzzy sets and (2)

consequents of each rule are a functional representation

[35, 36]. Nonlinear system dynamics can be represented by

weighted sum of linear sub-systems. The proposed model

Fig. 1 Framework of adaptive fuzzy model

Fuzzification Defuzzification

Knowledge Base

Decision Making Unit

Data Base Rule Base

Crisp 
Value

Crisp 
Value

Fig. 2 Block diagram of fuzzy inference system
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is based on rule base and input–output relation of nonlinear

systems. Input of nonlinear system depends on the initial

condition, e.g. a1ð0Þ ¼ 0, a2ð0Þ ¼ 0, and output of system

is reference signal.

3.2 Fuzzy Rule Model

Let r be the number of fuzzy IF–THEN rules, to represent

nonlinear system and ith rule is described as follows:

rule 1 : IF g1ðzðtÞÞ is M1
1 AND. . .AND grðzðtÞÞ is Mr

1 THEN
_zðtÞ ¼ A1zðtÞ þ B1uðtÞ

y1ðtÞ ¼ CT
1
zðtÞ

(

rule 2 : IF g2ðzðtÞÞ is M1
2 AND. . .AND grðzðtÞÞ is Mr

2 THEN
_zðtÞ ¼ A2zðtÞ þ B2uðtÞ

y2ðtÞ ¼ CT
2 zðtÞ

(

. . .

rule i : IF g1ðzðtÞÞ is M1
i AND. . .AND grðzðtÞÞ is Mr

i THEN
_zðtÞ ¼ AizðtÞ þ BiuðtÞ

yiðtÞ ¼ CT
i zðtÞ

(

;

where Ai 2 Rn�n, Bi 2 Rn�m and Ci 2 R1�n with zð0Þ ¼ 0

as initial condition, for all i ¼ 1; 2; . . .; n and M j
i
; j ¼

1; 2; . . .; r are fuzzy sets and state vector zðtÞ 2 Rn, input

vector uðtÞ 2 Rm, also ðAi;BiÞ are known as system and

input matrix pair and z1ðtÞ; . . .; zrðtÞ are fuzzy variables.

3.3 Fuzzy Controller

The control algorithm uses adaptive fuzzy model with state

vector zðtÞ and input vector uðtÞ; then, the whole system

dynamics are represented as:

_zðtÞ ¼ R
r

i¼1
wiðzðtÞÞ AizðtÞ þ BiuðtÞð Þ ð6Þ

where

wi zðtÞð Þ ¼
P
n

l¼1
lMi

l
glðzðtÞÞ

R
r

k¼1
P
n

l¼1
lMk

l
glðzðtÞÞ

; 8i ð7Þ

lMi
l
ðglzðtÞÞ be the membership function corresponding to

fuzzy set Mi
l . It is assumed that wi zðtÞð Þ� 0 where i ¼

1; 2; . . .; n and
Pr

i¼1 wi zðtÞð Þ ¼ 1.

Similarly, another fuzzy model can be described using

number of fuzzy rules for fuzzy controller; the jth rule is

defined as:

rule j : IF f1ðzðtÞÞ is N1
j AND. . .AND fpðzðtÞÞ is Np

j

THEN uðtÞ ¼ GjzðtÞ; and xð0Þ ¼ 0
ð8Þ

where N
q
j is fuzzy set corresponding to jth rule and function

fqðzðtÞÞ and Gj 2 Rm�n; j ¼ 1; 2; . . .; p;

where

uðtÞ ¼ R
p

j¼1
mjðzðtÞÞGjðzðtÞÞ ð9Þ

and mjðzðtÞÞ� 0; 8j R
p

j¼1
mjðzðtÞÞ ¼ 1

mjðzðtÞÞ ¼
P
n

l¼1
lN j

l
ðglzðtÞÞ

R
r

k¼1
P
n

l¼1
lNk

l
ðglzðtÞÞ

; 8j ð10Þ

lNi
l
ðflzðtÞÞ be the membership function corresponding to

fuzzy set Ni
l .

Fuzzy model-based control system is given by

_zðtÞ ¼ R
r

i¼1
wiðzðtÞÞ AizðtÞ þ Bi R

p

j¼1
mjðzðtÞÞGjzðtÞ

� �

_zðtÞ ¼ R
r

i¼1
R
p

j¼1
wiðzðtÞÞmjðzðtÞÞ Ai þ BiGj

� �
zðtÞ

ð11Þ

Remark 1 Let us assume that f ðaÞ is discrete-time func-

tion defined on a compact set X; then, there exist fuzzy

logic systems in the form of Eq. (11), we have

f ðaÞ � zðaÞk k\e where e[ 0. Then, f ðaÞ can be written as

f ðaÞ = f ðaÞ ¼ g	ðaÞ þ e	ðaÞ, where g	 represents optimal

fuzzy parameter vector s.t. e	ðaÞ is error close to zero and

9; two positive constants �g and �e satisfy g	k k� �g and

e	k k� �e.

Definition 3 (Lyapunov function) A function V : Rn ! R

defined on a compact set X � Rn with continuous partial

derivatives is known as Lyapunov function for nonlinear

system if it satisfies the following conditions (1) VðaÞ is

positive definite and (2) _VðaÞ is negative definite 8a 2 X.

Definition 4 (Asymptotically stable) A system is said to

be asymptotically stable if 9 a Lyapunov function VðaÞ if
_VðaÞ� 0, 8a 2 X.

Theorem 3 A fuzzy model-based control for nonlinear

discrete-time system represented by Eq. (8) or Eq. (11) is

asymptotically stable if there exists constant scalar s.t.

sj [ 0 and bj satisfying mj � sjwj þ bj � 0; there exist

matrices Hij ¼ HT
ji
2 Rn�n, Eij ¼ ET

ji
2 Rn�n, Kj ¼ Kj 2

Rn�n and Vij ¼ Vij 2 Rn�n s.t. H\0 and E\0 given by

H ¼

H11 H12 � � � H1p

H21

..

.

H22 � � �

..

.

H2p

..

.

Hp1 Hp2 � � � Hpp

2

6
6
6
4

3

7
7
7
5
and

E ¼

E11 E12 � � � E1p

E21

..

.

E22 � � �

..

.

E2p

..

.

Ep1 Ep2 � � � Epp

2

6
6
6
4

3

7
7
7
5
:

3.4 Stability Analysis of Fuzzy Model

To discuss the stability of proposed adaptive fuzzy model

for the approximation of nonlinear systems, we have to

discuss about stability control based on Lyapunov theory.
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Let us consider fuzzy model-based control system, given in

Eq. (11). Consider Lyapunov function:

VðkÞ ¼ aðkÞTPaðkÞ ð12Þ

P 2 Rn�n is symmetric positive definite matrix. Differ-

entiating Eq. (18), we have

_VðkÞ ¼ _aðkÞTPaðkÞ þ aðkÞTP _aðkÞ

VðkÞ ¼ R
r

i¼1
R
p

j¼1
wimja

TðkÞ ðAi þ BiGjÞTP
�

þ PðAi þ BiGjÞ
�
aðkÞ

VðkÞ ¼ R
r

i¼1
R
p

j¼1
wimjzðkÞT XðAi þ BiGjÞTP

�

þ PðAi þ BiGjÞX
�
zðkÞ

VðkÞ ¼ R
r

i¼1
R
p

j¼1
wimjzðkÞTQijzðkÞ

Hij ¼ X Ai þ BiGj

� �T
Pþ P Ai þ BiGj

� �
X

ð13Þ

Lyapunov stability theory says that fuzzy model-based

controller is asymptotically stable if VðkÞ[ 0 and
_VðkÞ\0. Let X ¼ P�1, zðkÞ ¼ X�1aðkÞ and Gj ¼ NjX

�1

To relax the stability conditions, some slack variables

are introduced by considering the equation given below:

R
r

i¼1
R
r

j¼1
wiðwj � mjÞKi

¼ R
r

i¼1
wi R

r

j¼1
wj � R

r

j¼1
mj

� �

Ki ¼ 0

ð14Þ

R
r

i¼1
R
r

j¼1
wisjwj Vij � Vij

� �
¼ 0 ð15Þ

where Ki [ 0; Ki 2 Rn�n and Ki ¼ KT
i also Vij ¼ VT

ij .

From (13), (14) and (15), we have

_VðkÞ ¼ R
r

i¼1
R
r

j¼1
wimjzðkÞTHijzðkÞ

þ R
r

i¼1
R
r

j¼1
wi wj � mj

� �
zðkÞTQijzðkÞ

¼ R
r

i¼1
R
r

j¼1
wimjzðkÞTHijzðkÞ

þ R
r

i¼1
R
r

j¼1
wi wj � mj þ sjwj � sjwj

� �
zðkÞTHijzðkÞ

¼ R
r

i¼1
R
r

j¼1
wimjzðkÞTHijzðkÞ

þ R
r

i¼1
R
r

j¼1
wi wj � sjwj

� �
zðkÞTHijzðkÞ

� R
r

i¼1
R
r

j¼1
wi mj � sjwj

� �
zðkÞTHijzðkÞ

þ R
r

i¼1
R
r

j¼1
wisjwjzðkÞT Vij � Vij

� �
zðkÞ

ð16Þ

where scalars sj [ 0; j ¼ 1; 2; � � � ; r define a bj s.t.

mj � sjwj þ bj � 0

These additional scalars and matrices are further

reducing the conservativeness of stability criteria. From

Eq. (16), we have

_VðkÞ ¼ R
r

i¼1
R
r

j¼1
zðkÞT wi þ sjwj � sjwj

� �
HijzðkÞ

þ R
r

i¼1
R
r

j¼1
wi wj � sjwj

� �
zðkÞTHijzðkÞ

� R
r

i¼1
R
r

j¼1
wi mj � sjwj

� �
zðkÞTHijzðkÞ

þ R
r

i¼1
R
r

j¼1
wisjwjzðkÞTVijzðkÞ � R

r

i¼1
R
r

j¼1
wisjwjzðkÞTVijzðkÞ

¼ R
r

i¼1
R
r

j¼1
wiwjzðkÞTsj Hij � Ki � Vij

� �
zðkÞ

þ R
r

i¼1
R
r

j¼1
wi mj � sjwj

� �
zðkÞT Hij � Ki

� �
zðkÞ

þ R
r

i¼1
R
r

j¼1
wiwjzðkÞT Ki þ sjVij

� �
zðkÞ

þ R
r

i¼1
R
r

j¼1
wi bj � bj
� �

zðkÞT Qij � Ki

� �
zðkÞ

¼ R
r

i¼1
R
r

j¼1
wiwjzðkÞT sj Hij � Ki � Vij

� ��

� R
r

k¼1
bk Qik � Kið Þ

�

zðkÞ

þ R
r

i¼1
R
r

j¼1
wi mj � sjwj þ bj
� �

zðkÞT Hij � Ki

� �
zðkÞ

þ R
r

i¼1
R
r

j¼1
wiwjzðkÞT Ki þ sjVij

� �
zðkÞ

ð17Þ

From mj � sjwj þ bj � 0; 8j and xðtÞ; we have ðHij

� KiÞ\0; 8i; j ð18Þ

_VðkÞ� R
r

i¼1
R
r

j¼1
wiwjzðkÞT sj Hij � Ki � Vij

� �
� R

r

k¼1
bk Qik � Kið Þ

� �

zðkÞ

þ R
r

i¼1
R
r

j¼1
wiwjzðkÞT Ki þ sjVij

� �
zðkÞ

¼ R
r

i¼1
w2

i
zðkÞT si Hii � Ki � Viið Þ � R

r

k¼1
bk Hik � Kið Þ

� �

zðkÞ

þ R
r

i¼1
R
i\j

wiwjzðkÞT sj Hij � Ki � Vij

� �
� R

r

k¼1
bk Hik � Kið Þ

�

þ si Hji � Kj � Vji

� �
� R

r

k¼1
bk Hik � Kið Þ

�

zðkÞ

þ R
r

i¼1
w2

i
zðkÞT Ki þ siViið ÞzðkÞ

þ R
r

i¼1
R
i\j

wiwjzðkÞT Ki þ sjVij þ Kj þ siVji

� �
zðkÞ

ð19Þ

Let Hij ¼ HT
ji
2 Rn�n and Eij ¼ ET

ji
2 Rn�n

Hii [ sj Hij � Ki � Vij

� �
� R

r

k¼1
bk Hik � Kið Þ 8i; ð20Þ
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Hij þ HT
ij
[ sj Hij � Ki � Vij

� �
� R

r

k¼1
bk Hik � Kið Þ

þ si Hji � Kj � Vji

� �
� R

r

k¼1
bk Hjk � Kj

� �
8j; and i\j

ð21Þ
Eii [ Ki þ siViið Þ 8i; ð22Þ

Eij þ ET
ij
[ Ki þ sjVij

� �
þ Kj þ siVji

� �
8j; and i\j ð23Þ

Using Eqs. (20), (21), (22) and (23), Eq. (19) becomes

_VðkÞ� zðkÞTðH þ EÞzðkÞ ð24Þ

where ZðkÞ ¼

w1zðkÞ
w2zðkÞ

..

.

wrzðkÞ

2

6
6
6
6
4

3

7
7
7
7
5
, H ¼

H11 H12 � � � H1p

H21

..

.

H22 � � �

..

.

H2p

..

.

Hp1 Hp2 � � � Hpp

2

6
6
6
4

3

7
7
7
5

and E ¼

E11 E12 � � � E1p

E21

..

.

E22 � � �

..

.

E2p

..

.

Ep1 Ep2 � � � Epp

2

6
6
6
4

3

7
7
7
5

Based on Lyapunov theory, Definitions 3 and 4 show

that VðkÞ[ 0 and _VðkÞ\0, 8aðkÞ 6¼ 0, i.e. system is

asymptotically stable for aðkÞ ! 0 as k ! 1.

4 Simulation Results

To express the effectiveness of proposed adaptive fuzzy

model-based controller, two nonlinear discrete-time sys-

tems with nonlinearity input as dead zone are considered

and discussed. MATLAB 7.13.0 (R2013a) with 1 GB

RAM, Intel Pentium 4, 2.81 GHz processor and 200 GB

hard disc are used for simulation.

Example 1 The proposed approach is used for following

nonlinear system with dead zone:

a1ðt þ 1Þ ¼ a2ðtÞ
a2ðt þ 1Þ ¼ f ðaðtÞÞ þ gðaðtÞÞCðtðtÞÞ þ dðtÞ
yðtÞ ¼ a1ðtÞ

8
><

>:
ð25Þ

where, aðtÞ ¼ ½a1ðtÞ; a2ðtÞ�T ; the system state vector and

unknown functions f ðaðtÞÞ and gðaðtÞÞ are given by:

f ðaðtÞÞ ¼
a2

1
ðtÞ

1þ a2
1
ðtÞ þ a2

2
ðtÞ

gðaðtÞÞ ¼ 0:3

ð26Þ

External bounded disturbance is dðtÞ ¼ 0:1 cosð0:5tÞ
cosða1ðtÞÞ such that 0� dðtÞj j � �b and uðtÞ ¼ CðtðtÞÞ be the
dead zone described as:

CðtðtÞÞ ¼
0:3	ðtðtÞ � 0:5Þ : tðkÞ� 0:5

0 : �0:6� tðtÞ� 0:5

0:2	ðtðtÞ þ 0:6Þ : tðtÞ� � 0:6

8
><

>:
ð27Þ

The adaptive fuzzy model is based on rule base and

input–output relation of nonlinear systems. Input of non-

linear system Eq. (25) depends on the initial condition

a1ð0Þ ¼ 0, a2ð0Þ ¼ 0, and output of system is yðkÞ. The
objective is to design fuzzy controller, such that (i) output

yðkÞ track the reference signal yrðtÞ ¼ 0:25 sinðtTp=2:5Þ þ
0:25 cosðtTpÞ; T ¼ 0:01 to small bounded compact set and

(ii) tracking error lies in the neighbourhood of zero. Let us

choose some fuzzy membership functions for aðtÞ as fol-

lows: l/1
i
ðxiÞ ¼ exp½�ðxi þ 2Þ2=3�, l/2

i
ðxiÞ ¼ exp½�ðxiþ

1Þ2=3�, l/3
i
ðxiÞ ¼ exp½�x2i =3�, l/4

i
ðxiÞ ¼ exp½�ðxi � 1Þ2=3�

and l/5
i
ðxiÞ ¼ exp½�ðxi � 2Þ2=3�.

By using fuzzy model-based controller to the nonlinear

systems with dead zone (27), the simulation curves are

shown in Fig. 3. Figure 3 shows the system tracking tra-

jectories and it reflects that good tracking performance by

proposed model in comparison with neuro-fuzzy and ANN.

Figure 3 shows that tracking error trajectories of AFMBC,

neuro-fuzzy and ANN lies on a compact set.

It can be seen from Table 1 that the different error

parameters are small as compared with neuro-fuzzy and

ANN. It is noticed that from Fig. 4, error obtained via

AFMBC is minimum than neuro-fuzzy and ANN.

Example 2 To further demonstrate the effectiveness of

proposed model, consider nonlinear system as DC motor,

which described and transformed into nonlinear discrete-

time system as follows:

_q1 ¼ q2

Jq2 þ f _q1 þ Tf þ dðtÞ ¼ u

y ¼ q1

8
><

>:
ðtÞ ð28Þ

where q1 is motor angular position; J is the known inertia;

f unmeasured viscous and Tf nonlinear friction; dðtÞ ¼
0:05 sin t is the bounded disturbance uðtÞ or CðtðtÞÞ is

motor torque. Let us define new variables a1 ¼ q1 and

a2 ¼ q2; corresponding difference equation of (28) is

written as:

a1ðt þ 1Þ ¼ a2ðtÞ 	 DT
a2ðt þ 1Þ ¼ a2ðtÞ þ ½ðuðtÞ � f ða2ðtÞÞ � Tf � dðtÞ
y ¼ a1ðtÞ

8
><

>:
Þ=J�DT

ð29Þ
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Objective is that to design controller for system (29)

such that output y is driven to track reference signal,

yrðtÞ ¼ 0:3 sinð0:5tp=50þ p=4Þ. Initial condition for sys-

tem (29) is a1ð0Þ ¼ �1, a2ð0Þ ¼ 1. Fuzzy model-based

controller to the nonlinear systems with dead zone (27), the

simulation curves are shown in Fig. 5. From Fig. 5, it is

clear that good tracking trajectory has been obtained and

Fig. 5 shows that tracking error lies in the neighbourhood

of zero.

It can be seen from Table 2 that the different error

parameters are small as compared with neuro-fuzzy and

ANN. It is noticed that from Fig. 6, error obtained using

AFMBC is minimum in comparison with neuro-fuzzy and

ANN.

5 Conclusion

An adaptive fuzzy model-based controller is proposed for

approximation of class discrete-time nonlinear system or a

dynamical system which is transformed to nonlinear dis-

crete-time system with dead-zone nonlinearities. AFMBC

0 200 400 600 800 1000 1200 1400 1600 1800 2000
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

Time Step k

Original AFMBC Neuro Fuzzy ANN

Fig. 3 Reference signal yrðkÞ (black dashed) and AFMBC, Neuro-fuzzy and ANN (blue, green and red dashed line), respectively

0200400600800100012001400160018002000
0

0.005

0.01

0.015

Time Step k

M
S

E

AFMBC Neuro Fuzzy ANN

Fig. 4 Error trajectories via AFMBC, Neuro-fuzzy and ANN (blue, green and red dashed line), respectively, show that error bounded in

½0; 7� 10�3�

Table 1 Calculated various

errors for Example 1
Models Different error calculation

MAE SSE MSE RMSE NMSE BFR

ANN 11.772 8.5738 0.58075 2.92811 0.4646 89.3045

Neuro-fuzzy 11.021 7.9026 0.4287 2.8112 0.3214 92.2206

AFMBC 7.9026 0.1161 0.0040 0.3408 0.0316 97.8445
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is focused to measure immeasurable states and approxi-

mation of unknown functions. AFMBC is employed on

FLS-based controller of unknown functions with external

bounded disturbances. AFMBC is also useful to approxi-

mate the physical problem like DC motor (which is

transform to discrete form). Stability of AFMBC is studied

and analysed by Lyapunov theory and shown that system is

asymptotically stable. Figures 3, 4, 5 and 6 show that

simulation results obtained using AFMBC give better

results in comparison with neuro-fuzzy and ANN.

Trajectories of actual signal are much closer to the

AFMBC output; different error parameters are also dis-

cussed and shown that tracking errors lie in the bounded

neighbourhood of zero with sufficient number of iterations.

Two examples have been illustrated that AFMBC gives

good approximation. In future, noncanonical and stochastic

nonlinear systems will be used for approximation using

some adaptive techniques.

0 100 200 300 400 500 600 700 800 900 1000
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

Time Step k

Original AFMBC Neuro Fuzzy ANN

Fig. 5 Reference signal yrðkÞ (black dashed) and AFMBC, Neuro-fuzzy and ANN (blue, green and red dashed line), respectively

Table 2 Calculated various

errors for Example 2
Models Different error calculation

MAE SSE MSE RMSE NMSE BFR

ANN 8.0974 0.4047 0.40486 2.0192 0.3034 92.9151

Neuro-fuzzy 5.3548 0.1844 0.18443 0.4295 0.1139 95.4732

AFMBC 1.2474 0.0103 0.01258 0.1013 0.0020 98.9324

0 100 200 300 400 500 600 700 800 900 1000
0

0.002

0.004

0.006

0.008

0.01

0.012

Time Step k

AFMBC Neuro Fuzzy ANN

Fig. 6 Error trajectories via AFMBC, Neuro-fuzzy and ANN (blue, green and red dashed line), respectively, show that error bounded in

½0; 4:5� 10�3�
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