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Abstract Precision trajectory control in modern machin-

ing processes is an important issue for two-axis contour

tracking applications. In this paper, an adaptive fuzzy

sliding mode control (AFSMC) is designed and proposed

for effective and stable control of the industrial X–Y-axis

motion stage. The aim of the control strategy is to apply

fuzzy systems to approximate unknown nonlinear functions

and to use soft fuzzy switching to approximate a discon-

tinuous control signal such that it can alleviate the chat-

tering phenomenon in the presence of unmodeled system

dynamics and external disturbances. Based on our AFSMC

method, the associated robust performance can be con-

ducted effectively for different trajectory tracking. To

ensure parameter boundaries, projection algorithm is uti-

lized for the adaptive control law. The AFSMC adaptation

scheme adjusts the fuzzy parameter vectors based on the

Lyapunov theorem approach, so that the asymptotic sta-

bility of the developed motion system can be guaranteed.

The X–Y linear table system is experimentally investigated

with four typical contours, namely star, circular, four-leaf,

and window reference contours. Simulation and experi-

mental results indicate that the proposed AFSMC achieves

improved tracking capability and reveal that the AFSMC

outperforms other comparison schemes with regard to

model uncertainties and cross-coupling interference.

Keywords Permanent magnet synchronous motor

(PMSM) � Adaptive fuzzy sliding mode control (AFSMC) �
Precision motion control � Trajectory control

1 Introduction

Industrial products are continually pushing for high quality

and reductions in cycle times. As a result, the demand for a

precision X–Y motion system is rapidly increasing in

manufacturing and industrial tools, such as computer

numerical control (CNC) machineries, printed circuit board

equipment, laser/water jet cutting machines, and aerospace/

automotive applications. The micrometer-level motion

system development is becoming increasingly crucial in

satisfying the requirements for high contouring accuracy

and mass manufacturing of miniaturized functional prod-

ucts. Due to compact construction and relative low losses,

the permanent magnet synchronous motor (PMSM) [6] is

widely applied in industrial X–Y stage tools. The PMSM is

the most widely used architecture, yet it has some disad-

vantages, such as reduced accuracy, a complex mechanical

structure, difficult adjustments, and low reliability. More-

over, the servo performance of the two-axis motion stage is

affected by nonlinear friction characteristics, backlash,

unmodeled dynamics, and other time-varying uncertainties.

Various motion control techniques are applied in the X–

Y stage and can be classified into self-tuning PID method

[7], H? optimization technique [8], repetitive control

method [6], cross-coupled control [9], adaptive neural

network control methods [10–12], sliding mode control

techniques [13–15], and intelligent approaches [26–30].

Liu et al. presented the H?-based precision motion system

[8] for high-speed direct-drive positioning mechanisms.

This system investigates a cascaded robust feedback
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control architecture, which includes an inner loop velocity

controller, an outer position control, and an auto-tuning

feedforward compensator. The contour control [9] pre-

sented an integral design method that includes contour

error model, contour control effort distribution, and the

cross-coupled control algorithm. An analysis of experi-

mental results showed that the method improves contour

precision in situations with small tracking errors with and

without disturbance. However, the nonlinear friction and

backlash effects occurred in the position system is the main

obstacle to high-accuracy performance. Intelligent algo-

rithms coupled with sliding mode-based methods [16–20]

achieve outstanding performance by designing suit-

able adaptation rules rather than requiring expert experi-

ence. The fuzzy method is developed to extract linguistic

control rules from experts and can cope with system

parameter changes. Sliding mode control (SMC) is a robust

scheme for controlling uncertain and nonlinear plants

[3, 4]. The integration of fuzzy-based techniques and SMCs

can be an important research focus in X–Y motion indus-

trial applications [16, 17]. The SMC method [16], which

can compensate for unmolded dynamics, was implemented

on an X–Y parallel stage driven by piezoelectric actuators

for accuracy tracking control. A velocity observer was

adopted to estimate the feedback velocity from a measured

position. A recurrent neural network-based SMC

scheme [13] that uses a computed torque structure was

designed for trajectory tracking; this scheme can cope with

system uncertainty in a motion system. Sugeno-type

adaptive fuzzy neural network [17] was employed in a

nonlinear disturbance observer for two-axis precision

motion control. The observer is applied to estimate lumped

disturbance. However, the SMC inherits a discontinuous

control action, and chattering occurs when the system

operates near the sliding surface [18–21]. The adaptive

fuzzy wavelet neural sliding mode controller [22] was

proposed for the nonlinear systems. The adaptive PI con-

troller is used to obtain the smooth control input. However,

only numerical examples [18–22] are realized and provided

to validate the proposed methods and results. The neural

network learning adaptive robust controller [23, 24] was

presented for the industrial linear motor stage because of its

good tracking performance and disturbance rejection abil-

ity. This method is capable of parametric adaptation and

neural network compensation for an actual dynamic per-

manent magnet linear synchronous motor stage under dif-

ferent external disturbances. The adaptive nonlinear

disturbance observer (ANDO) [25] using the double-loop

self-organizing recurrent wavelet neural network

(DLSORWNN) and H? control is developed to control a

two-axis motion control system driven by two-permanent

magnet linear synchronous motor (PMLSM) servo drives.

This system is successful development and has a good

dynamic performance of an X–Y table when uncertainties

occur. The adaptive universe-based fuzzy control method

[26, 27] was proposed to achieve global asymptotic model-

free trajectory-independent tracking of a marine vehicle.

Wang et al. [28–30] presented the universal adaptive fuzzy

control scheme for practical tracking control of a class of

nonlinear system with unknown dynamics. The above

studies consistently verify that the adaptive and intelligent

structures with nonlinear approximation ability can

improve control performances.

In this research, the AFSMC strategy is proposed for

precision trajectory tracking for the X–Y stage.

The AFSM method takes advantage of both SMC and

fuzzy control to enhance the control performance. The

unknown system functions are approximated using fuzzy

systems and the fuzzy switching technique is applied to

mitigate chattering. By replacing the switching part of

traditional part of SMC with fuzzy controller, the chatter-

ing is attenuated. The projection algorithm is also

employed for adaptive law to ensure the parameter

boundaries. The system stability of the motion stage can be

guaranteed by applying Lyapunov theory. The biaxial

motion stage is tested with four contours, namely (1) star,

(2) four-leaf, (3) window, and (4) circular reference con-

tours. Simulation and experimental results demonstrate that

the developed controller provides improved tracking per-

formances with regard to model uncertainties.

This paper is organized as follows. The system archi-

tecture of X–Y stage is introduced in Sect. 2. The proposed

AFSMC design is described in Sect. 3. Section 4 provides

the simulation and experimental results. Lastly, briefly

conclusion is given in Sect. 5.

2 System Architecture

The mechanical dynamic equation [10, 13] of the single-

axis stage with the friction model is given by

Mi€xi þ Bi _xi þ FLi þ FfiðviÞ ¼ Fei ð1Þ

where i ¼ x; y(x and y denote the axis), xi is the platform

displacement, Mi denotes the mass of the motion table,

with Mi ¼ Min þ DMi, value Min is the nominal value of Mi

and DMi is the uncertainty of Mi. Bi is the viscous friction

coefficient, with Bi ¼ Bin þ DBi, value Bin is the nominal

value of Bi, and DBi is the uncertainty of Bi. FLi is the

external disturbance term, including loading and cross-

coupled interference due to the two-axis mechanism in the

stage. FfiðviÞ is the friction force, and vi is the linear

velocity of the X (Y-)-axis. Fei is the electromagnet-driven

force. Considering Coulomb friction, viscous friction, and

Stribeck effect, the friction force can be formulated as

follows:
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FfiðviÞ ¼ FCisgnðviÞ þ ðFSi � FCiÞe � vi=vSið Þ2½ �sgnðviÞ
þ KVivi ð2Þ

where FSi denotes the static friction coefficient, FCi rep-

resents the Coulomb friction coefficient, vsi denotes the

Stribeck velocity coefficient, Kvi represents the viscous

friction coefficient, and sgnð�Þ is the mathematical sign

function. The mathematical model of the stator voltage

equations [9–12, 23] in the d–q reference frame is given as:

Vqi ¼ Rsiiqi þ xsiUdi þ Lqi
diqi

dt
ð3Þ

Vdi ¼ Rsiidi � xsiUqi þ Ldi
didi

dt
ð4Þ

with

Uqi ¼ Lqiiqi; Udi ¼ Ldiidi þ Ufi

where Vqi, Vdi, iqi, and idi are the d–q-axis voltages and

currents, respectively. Rsi indicates the stator resistance,Ldi
and Lqi denote the d–q-axis stator inductance, respectively.

Ufi denotes the permanent magnet flux linkage, and xsi is the

inverter frequency. The electromagnetic torque is given as

Tei ¼
3

2
Pb Udiiqi � Uqiidi

� �
ð5Þ

where Pb is number of pole pairs. The electromagnet-dri-

ven force [13] is expressed by

Fe ¼ Ktiq ð6Þ

where Kt is the force constant. The motion controls of X-

and Y-axes are actuated separately, and all the subscripts i

are neglected for simplicity in the following sections. The

mechanical model of the X–Y table is rewritten as

€x ¼ An _xþ BnFe þ Cn FL þ Ff ðvÞ
� �

ð7Þ

with

An ¼ �BM�1; Bn ¼ M�1; Cn ¼ �M�1

where An, Bn, and Cn are the nominal parameters of the

dynamic system. In practical conditions, the actual system

model changes when the drive system operates under dif-

ferent environments. We consider the effects of load dis-

turbance, parameter uncertainty, and cross-coupling

interference here. The equivalent mechanical dynamics can

be represented as

€x ¼ ðAn þ DAnÞ _xþ ðBn þ DBnÞFe þ ðCn

þ DCnÞ FL þ Ff ðvÞ
� �

¼ An _xþ BnFe þ Da ð8Þ

with

Da ¼ DAn _xþ DBnFe þ ðCn þ DCnÞ FL þ Ff ðvÞ
� �

where DAn, DBn, and DCn are the uncertainties of the

mechanical system parameters, respectively. Da denotes

the system uncertainty, which is bounded.

The experimental setup for the implementation of the

proposed X–Y stage system is depicted in Fig. 1a. In the

study, our proposed control algorithm was implemented by

MATLAB/Simulink tool on a Pentium G2030 computer.

The control signals and feedback signals are processed by

the digital/analog (D/A) converter card and encoder inter-

face card, respectively. The sampling frequency used in the

experimentation was set for 1 kHz and the controlled

PMSM motor are 400 W. The developed stage system is

260 mm and 350 mm of travel in X- and Y-axes, respec-

tively. Mercury II 5000 Series encoders are installed to

provide the high-precision requirement in the position

feedback loop. Figure 1b shows the drive system of the

PMSM actuated stage. The system is implemented by using

the AC servo drive Melservo-J2S-Super Series manufac-

tured by Mitsubishi Co. The drive system can provide three

operation modes, namely position control, speed control,

and torque control modes, and is applicable to a wide range

of fields, including precision positioning, smooth speed

control of machine tools, industrial machines, line control,

and tension control. Given that it considers system

parameter uncertainty and external disturbances, including

friction force, cross-coupling, and load effect, the X–

Y stage equipment is a second-order nonlinear system in

practical applications. The fuzzy SMC-type controller is

designed to actuate the PMSM-driven system for precision

motion control.

3 Proposed AFSMC Method

Figure 2 illustrates the architecture of our proposed

AFSMC for a single-axis motion system. The mathematic

model of the PMSM-driven system in Eq. (8) is derived

and rewritten as a general second-order dynamic system:

€x ¼ f ðxÞ þ gðxÞ þ dðtÞ ð9Þ
y ¼ x ð10Þ

where x is the stage X- or Y-axis displacement variable, and

x ¼ x1 x2½ �T¼ x _x½ �T2 R2 is the state vector of the

system, which we assume to be available for measurement.

We assume that the upper bound of the disturbance is D,

i.e., dðtÞj j �D. The control objective is to design a control

law u so that the state x can track a desired reference tra-

jectory ym in the presence of model uncertainty and

external disturbance. The output tracking error is defined as

e ¼ ym � y ¼ ym � x, and the tracking error vector is

E ¼ e; _e½ �T¼ e1; e2½ �T . The sliding surface is defined as
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sðEÞ ¼ �KTE ¼ �ðk1eþ _eÞ ð11Þ

with

K ¼ ½k1; 1�T

where k1 is positive constant, K is the coefficient vector of

the Hurwitz polynomial. The continuous differentiable

Lyapunov function is defined as

V ¼ 1

2
s2ðEÞ ð12Þ

The differential operator is used in Eq. (12), that is,

_V ¼ s � _s ¼ s � �k1 _e� €eð Þ ¼ s � �k1 _e� €ym þ €xð Þ
¼ s � �k1 _e� €ym þ f ðxÞ þ gðxÞuþ dð Þ

ð13Þ

If f ðxÞ and gðxÞ are known in advance, then the ideal

sliding control law u is defined as

u ¼ ueq � usw ¼ 1

gðxÞ �f ðxÞ þ k1eþ €ym � gDsgnðsÞ
� �

¼ 1

gðxÞ �f ðxÞ þ k1eþ €ym � up
� �

ð14Þ

with ueq ¼ 1

gðxÞ �f ðxÞ þ k1eþ €ym
� �

; usw ¼ 1
gðxÞ uP; up ¼

gDsgnðsÞ; gD ¼ Dþ g; sgnðsÞ ¼
1 s[ 0

0 s ¼ 0

�1 s\0

8
<

:
, where

ueq is the equivalent control input, usw is the hitting

(switching) control input term, and gD and g are positive

constants. The control law u above is substituted into

Eq. (13); then,

Fig. 1 a Photograph of the two-axis PMSM-driven motion stage, b the AC servo drive system of the stage

+

-

AFSMC  Eq. (18)
Dynamic Stage 
System Model 

Adaptation Law 
Eq. (19), (20), (21)

Sliding 
Surface
Eq. (11)

Linear Encoder

Initial value

Fig. 2 Block diagram of the proposed AFSMC for nonlinear motion stage
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_V ¼ s � �k1 _e� €ym þ f ðxÞ � f ðxÞ þ k1eþ €ym � gDsgnðsÞ þ d
� �

� � g sj j
ð15Þ

By using the control law, the state can always approach

the sliding surface and hit it. In the actual system, the

functions f ðxÞ and gðxÞ are usually unknown. Therefore,

applying the control law in Eq. (14) to the X–Y motion

system is difficult. Thus, the switching control usw can lead

to the chattering phenomenon, which is undesired in con-

ventional SMC control. To solve these difficulties, the

AFSM controller is constructed by introducing the fuzzy

switching controller to overcome the mentioned

challenges.

3.1 Fuzzy Inference System

The fuzzy method is applied to approximate the uncertain

control law or an unknown system function [2, 5]. The

estimating functions of f ðxÞ and gðxÞ in Eq. (9) are intro-

duced. The fuzzy approximator consists of a set of fuzzy

IF–Then rules in which the lth rule is of the form

Rl : IF x1 is Al
1; and x2 is Al

2 THEN yO is hl; for l

¼ 1; 2; . . .;M

where x1 and x2 are the input variables, and yO is the output

variable. ðAl
1;A

l
2Þ and hl are the associated fuzzy inference

sets, l is the rule index number, and M is the total number

of rules. The fuzzy system with product inference engine,

singleton fuzzier, Gaussian membership function, and

center average defuzzifier is said to be a universal

approximator and can be used as an adaptive fuzzy con-

troller for nonlinear motion stage systems. With the design

of a fuzzy system with singleton fuzzification, product

inference, and a center average defuzzifier [2, 3], the out-

puts of the two fuzzy systems are

f̂ ðxjhf Þ ¼ hTf nðxÞ ð16Þ

ĝ xjhg
� �

¼ hTgnðxÞ ð17Þ

with

lliAi
ðxiÞ ¼ exp �ðxi � miÞ2

.
r2
i

h i
for i ¼ 1; 2

where hf and hg are the parameter vectors, nðxÞ is the

regressive vector, and lliAi
xið Þ is the fuzzy membership

function of the linguistic variable xi. mi denotes the mean

value, and ri denotes the variance of Gaussian function.

3.2 Stability Analysis AFSMC method

The fuzzy systems f̂ xjhf
� �

and ĝðxjhgÞ are designed to

approximate system f ðxjhf Þ and gðxjhgÞ, respectively. The

fuzzy system ûpðsjhpÞ is used to approximate the switching

control input up. The adaptive control law [3, 4] can be

represented as

u ¼ 1

ĝðxjhgÞ
�f̂ ðxjhf Þ þ k1eþ €ym � ûpðsjhpÞ
� �

ð18Þ

with

ûpðsjhpÞ ¼ hTpwðsÞ

where hp is an adjustable parameter vector and wðsÞ is the

regression vector. The adaptation control law can be

designed and selected as follows:

_hf ¼ r1snðxÞ ð19Þ
_hg ¼ r2snðxÞu ð20Þ
_hp ¼ r3swðsÞ ð21Þ

where r1, r2, and r3 are the positive adjusting constants.

The soft fuzzy switch ûp is used to replace the crisp

switching uP to avoid the chattering.

To ensure that the adaptive parameters are bounded, the

above control law can be modified by the projection

algorithm [3, 4]. The parameters Mf , Mg, and Mp are the

pre-specified boundaries of the estimated parameters of hf ,
hg, and hp, respectively. The vector-modified methods are

represented as

1. For vector hf , the following adaptive law can be

utilized:

_hf ¼
r1snðxÞ ðjhf j\Mf Þ or ðjhf j ¼ Mf and shTf nðxÞ � 0 Þ
Pf r1snðxÞ½ � ðjhf j ¼ Mf and shTf nðxÞ [ 0 Þ

(

ð22Þ

with

Pf r1snðxÞ½ � ¼ r1snðxÞ � r1shfh
T
f nðxÞjhf j

�2

where Mf is the selected boundary for the vector hf and

Pf �½ � is the projection operation.

2. For vector hg, if the element hgi ¼ e occurs, then the

following adaptive law can be used:

_hgi ¼
r2snðxÞuðtÞ ðsniðxÞu\0Þ
0 ðsniðxÞu � 0Þ

�
ð23Þ

where niðxÞ is the ith element in nðxÞ. Otherwise, the

following adaptive law can be adopted:
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_hg ¼
r2snðxÞu ðjhgj\MgÞ or ðjhgj ¼ Mg and shTf nðxÞu � 0 Þ
Pg r2snðxÞu½ � ðjhgj ¼ Mg and shTgnðxÞu [ 0 Þ

(

ð24Þ

with

Pg r2snðxÞuðtÞ½ � ¼ r2snðxÞu� r2shgh
T
gnðxÞujhgj

�2

where Mg is the selected boundary for the vector hg.

3. For vector hp, the following adaptive law can be

applied:

_hp ¼
r3swðsÞ ðjhpj\MpÞ or ðjhpj ¼ Mp and shTpwðsÞ � 0 Þ
Pp r3swðsÞ½ � ðjhpj ¼ Mp and shTpwðsÞ \ 0 Þ

(

ð25Þ

with

Pp r3swðsÞ½ � ¼ r3swðsÞ � r3shph
T
pwðsÞjhpj

�2

where Mp is the selected boundary for the vector hp.
We derive and analyze the system stability as follows:

Theorem 1 Consider the class of nonlinear motion sys-

tem of the form Eqs. (9) and (10). The control law (14) is

applied to the system, the functions f̂ ðxÞ, ĝðxÞ, and ûpðsÞ
are estimated by adaptive models, and the parameter

vectors are adapted by the adaptive laws (19), (20), and

(21). The closed-loop system signals are bounded, and the

tracking error converges to zero asymptotically.

Proof The optimal parameters h�f , h�g, and h�p are defined

as follows:

h�f ¼ arg min
hf2Xf

sup
x2R2

f ðxÞ � f̂ ðxjhf Þ
�� ��

� 	
ð26Þ

h�g ¼ arg min
hg2Xg

sup
x2R2

gðxÞ � ĝðxjhgÞ
�� ��

� 	
ð27Þ

h�p ¼ arg min
hp2Xp

sup
s2R

jup � ûpðsj hpÞj
� 	

ð28Þ

where Xf , Xg, and Xp are the constraint sets for vectors hf ,
hg, and hp, respectively. The sets of hf , hg, and hp are

defined as follows:

Xf ¼ fhf 2 Rnjjhf j � Mf g ð29Þ

Xg ¼ fhg 2 Rnj0\e� hg
�� �� � Mgg ð30Þ

Xp ¼ fhp 2 Rmjjhpj � Mpg ð31Þ

where the parameters Mf , e, Mg, and Mp are the pre-spec-

ified values for estimating the bound. Also, the vectors hf ,
hg, and hp are assumed to not approach the upper bound-

aries. We can define the minimum approximation error. It

is given as

x ¼ f ðxÞ � f̂ ðxjh�f Þ þ gðxÞ � ĝðxjh�gÞ

 �

u ð32Þ

The time derivative of the function sðtÞ then becomes

_s ¼ �k1 _eþ €x� €ym ¼ �k1 _eþ f ðxÞ þ gðxÞuþ dðtÞ � €ym

¼ �k1 _eþ f ðxÞ � f̂ ðxjhf Þ þ ðgðxÞ � ĝðxjhgÞÞuþ k1 _e

þ €ym � ûpðsjhpÞ þ dðtÞ � €ym

¼ f̂ ðxjh�f Þ � f̂ ðxjhf Þ � ûpðsjhpÞ

þ ĝðxjh�gÞ � ĝðxjhgÞ

 �

u

þ dðtÞ þ xþ ûpðsjh�pÞ � ûpðsjh�pÞ
¼ uT

f nðxÞ þ uT
gnðxÞuðtÞ þ uT

pwðsÞ þ dðtÞ þ x� ûpðsjh�pÞ
ð33Þ

with uf ¼ h�f � hf , ug ¼ h�g � hg, up ¼ h�p � hp
The Lyapunov function candidate is defined as follows:

V ¼ 1

2
s2 þ 1

r1

uT
f uf þ

1

r2

uT
gug þ

1

r3

uT
pup

� 
ð34Þ

The differential operator is used and it becomes

_V ¼ s _sþ 1

r1

uT
f _uf þ

1

r2

uT
g _ug þþ 1

r3

uT
p _up

¼ suT
f nðxÞ þ

1

r1

uT
f _uf þ suT

gnðxÞuþ
1

r2

uT
g _ug

þ suT
pwðsÞ þ

1

r3

uT
p _up þ s½dðtÞ � ûpðsjh�pÞ� þ sx

� 1

r1

uT
f ½r1snðxÞ þ _uf � þ

1

r2

uT
g ½r2nðxÞuðtÞ þ _ug�

þ 1

r3

uT
p ½r3swðsÞ þ _up� þ sdðtÞ þ sx� ðDþ gÞjsj

� 1

r1

uT
f ½r1snðxÞ þ _uf � þ

1

r2

uT
g ½r2nðxÞuðtÞ þ _ug�

þ 1

r3

uT
p ½r3swðsÞ þ _up� þ sx� gjsj

ð35Þ

with _uf ¼ � _hf , _ug ¼ � _hg, _up ¼ � _hp
The adaptive laws Eqs. (19)–(21) are substituted into

(34). Then, it can be expressed as

_V � sx� gjsj � 0 ð36Þ

From the universal approximation theorem of the fuzzy

system, the minimum approximation error x approaches a

very small value, and it can result in _V � 0. One can state

[3, 4] that all the feedback system signals (s, hf , hg, and hp)
are bounded. The sliding surface error sðEÞ ¼ �KTE and

E is bounded if eð0Þ is bounded. This finding implies that

the reference trajectory ymðtÞ is bounded, and the state xðtÞ
is bounded accordingly. To imply the limt!1 eðtÞj j ¼ 0 and

establish asymptotic convergence, we need to prove
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limt!1 sj j ¼ 0. Suppose we choose gd [ 0. Then, Eq. (36)

is given as

_V � � jxjjsj � gjsj
� � gdjsj

ð37Þ

with gd ¼ ðgþ xj jÞ
Integrating the above equation with respect to time, it

yields

Z t

0

jsðsÞjds� 1

gd
½Vð0Þ � VðtÞ� ð38Þ

Hence, Vð0Þ is bounded, and VðtÞ is nonincreasing and

bounded. We find that s is bounded, which implies s 2 L1
[3, 4, 18, 19]. With the use of Barbalat’s lemma [1], sðEÞ
will converge to zero as t ! 1. Furthermore, this lemma

implies that limt!1 eðtÞj j ¼ 0. Thus, the designed system is

stable, and the error will converge to zero asymptotically.

Therefore, the stability of our developed AFSMC is

guaranteed.

4 Experimental Results

The experimental results are presented to illustrate the

tracking capabilities of the developed algorithm for dif-

ferent X–Y contours. Three types of control methods are

compared, namely (a) the conventional FSMC method with

sign function [2], (b) the conventional FSMC method with

saturation function [2], and (c) the proposed AFSMC

method. The membership functions for the fuzzy con-

trollers f̂ ðxÞ and ĝðxÞ are designed as follows:

lNMðxÞ ¼ e½�ððxþp=6Þ=ðp=24ÞÞ2�; lNSðxÞ ¼ e½�ððxþp=12Þ=ðp=24ÞÞ2�;

lZOðxÞ ¼ e½�ðx=ðp=24ÞÞ2�; lPSðxÞ ¼ e½�ððx�p=12Þ=ðp=24ÞÞ2�;

lPMðxÞ ¼ e½�ððx�p=6Þ=ðp=24ÞÞ2�

ð39Þ

where the membership functions span the interval

½�p=6; p=6�. For sliding surface error sðEÞ, three mem-

bership functions of the ûpðsjhpÞ are designed and expres-

sed as

lNMðsÞ ¼ 1 þ eð5ðsþ3ÞÞ
h i�1

; lzoðsÞ ¼ eð�s2ÞlPM; ðsÞ

¼ 1 þ eð5ðs�3ÞÞ
h i�1

ð40Þ

The initial state is selected as xð0Þ ¼ 1; 0½ �T , all initial

values of hf ð0Þ, hgð0Þ, and hpð0Þ are set as zero vectors,

and the sampling frequency of 1 kHz is selected. The

experimental results of our fuzzy control method can verify

the tracking characteristics. Typically, these two perfor-

mance indexes [10, 11] are defined as follows:

1. Average tracking error (ATE), EM:

EM ¼
Xn

k¼1

EðkÞ
n

¼
Xn

k¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2
xðkÞ þ e2

yðkÞ
q

n
ð41Þ

where exðkÞ is the tracking error of X-axis, eyðkÞ is the

tracking error in of Y-axis, and n is the total number of

outline points.

2. Tracking error standard deviation (TESD), ESTD:

ESTD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xn

k¼1

ðEðkÞ � EMÞ2

,

n

vuut ð42Þ

To confirm the improved compensating control strategy,

we use four contour shapes [10, 11], i.e., (a) star, (b) cir-

cular, (3) four-leaf, and (4) window outlines, to evaluate

the performance of control system. With the use of this

contour planning method, Hi, Vi and S denote the X-axis

direction command, Y-axis direction command, and posi-

tion increment, respectively. Table 1 lists the four kinds of

trajectory planning, and Fig. 3 shows the reference

contours.

In the experiments, the learning parameters of three

control method are selected as:

(a) The conventional method (sgn) [2]: r1x ¼ r1y ¼ 0:08,

r2x ¼ r2y ¼ 0:09, gD ¼ 1, k1 ¼ 10.

(b) The conventional method (sat) [2]: r1x ¼ r1y ¼ 0:08,

r2x ¼ r2y ¼ 0:09, gD ¼ 1, k1 ¼ 10, D ¼ 0:05.

(c) The proposed AFSMC method: r1x ¼ r1y ¼ 0:08,

r2x ¼ r2y ¼ 0:09, r3x ¼ r3y ¼ 0:07, k1 ¼ 10,

Mf ¼ Mg ¼ 20, Mp ¼ 80.

These parameters are determined by empirical rules to

achieve the better transient and steady-state response in

simulation and experimentation conditions considering the

requirement of stability. To verify the advancement of our

control strategy, several simulations are done. The system

parameters and Stribeck friction models of the X–Y posi-

tioning table are assumed as follows:

X-axis:Ktx ¼ 0:96 N/A, Mx ¼ 3 	 10�3 N sec2/m,

Bx ¼ 0:1 N sec/m, FLx ¼ 0:1 N, Fcx ¼ 0:15 N, Fsx ¼
0:24 N, Vsx ¼ 10 m/sec.

Y-axis:Kty ¼ 0:96 N/A, My ¼ 2:8 	 10�3 N sec2/m, By

¼ 0:12 N sec/m, FLy ¼ 0:1 N, Fcy ¼ 0:15 N, Fsy ¼ 0:2 N,

Vsy ¼ 5 m/sec.
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4.1 Simulation Results

The simulation results using the conventional SMC meth-

ods [2] and our proposed method are conducted and

compared to verify the tracking performances. The star

contour is first simulated to shows the tracking results in X-

and Y-axes, respectively. A reference star contour with a

side length of 25 mm is utilized for two-dimensional

motion validations. The simulation results of the X-axis

direction response, Y-axis direction response, and motion

trajectory are depicted in Fig. 4a–c. It illustrates that the

proposed AFSMC scheme performs well for trajectory

tracking. On average, the ATE index is 14.188 lm, and the

TESD is 2.824 lm. In the second case, a circular contour

of 50 mm diameter is considered in Fig. 5. The proposed

scheme also behaves well in X-axis displacement response,

Y-axis displacement response, and circle trajectory shown

in Fig. 5a–c. The transient response illustrates the robust-

ness of the AFSMC structure during the curved profile. On

average, the ATE is 28.650 lm, and the TESD is 1.569

lmin the circular case. The third specific application is the

four-leaf trajectory. A reference contour of 7.5 mm curve

radius is illustrated. It shows that the X- and Y-axis position

errors reduce significantly during the tracking process for

biaxial X–Y system in Fig. 6a–c. On average, the ATE

index is 7.371 lm, and the TESD index is 2.288 lmin the

four-leaf contour case. Furthermore, the reference window

contour with curve radius 10 mm is evaluated. Figure 7a

shows the X-axis tracking response, Fig. 7b shows the Y-

axis position response, and Fig. 7c shows the two-dimen-

sional trajectory. The AFSMC architecture can achieve the

better tracking performance and trajectory error decreases

at steady state. On average, the ATE index is 10.83900 lm,

and the TESD of error is 10.655 lm.

The proposed AFSMC is implemented and its perfor-

mance is compared to the former FSMC methods [2]

shown in Table 2. The position errors are 15.262 lm of

ATE index and 4.334 lm of the associated TESD index.

These results indicate that our developed system improved

the disturbance rejection performances and provided better

transient response and tracking error closer to the trajectory

path. Thus, our approach achieves a better architecture to

adaptive fuzzy control in positioning systems.

4.2 Experimental Results

To verify the practicality of the proposed AFSMC system,

an experimental test is conducted. Each direction response

of star outline with a side length of 25 mm is measured and

experimented as shown in Fig. 8a and b. This shows that

the AFSMC structure adjusts the drive system and achieves

Table 1 Four types of

trajectory planning
Trajectory type Segment functions

Star contour Segment a: Hi ¼ Hi�1 þ S, Vi ¼ Vi�1

Segment b: Hi ¼ Hi�1 � 0:809 � S, Vi ¼ Vi�1 � 0:588 � S
Segment c: Hi ¼ Hi�1 þ 0:309 � S, Vi ¼ Vi�1 þ 0:951 � S
Segment d: Hi ¼ Hi�1 þ 0:309 � S, Vi ¼ Vi�1 � 0:951 � S
Segment e: Hi ¼ Hi�1 � 0:809 � S, Vi ¼ Vi�1 þ 0:588 � S

Circle contour Segment: ui ¼ ui�1 þ Du, Hi ¼ R1 cosui, Vi ¼ R1 sinui

R1 is the circle radius, and ui is the angle in the circle

Four-leaf contour Segment a: Hi ¼ Gx1 þ R2 cosðuiÞ, Vi ¼ Gy1 þ R2 sinðuiÞ, ðui : 3p=4 ! p=4Þ
Segment b: Hi ¼ Gx2 þ R2 cosðuiÞ, Vi ¼ Gy2 þ R2 sinðuiÞ, ðui : �p=4 ! �5p=4Þ
Segment c: Hi ¼ Gx3 þ R2 cosðuiÞ, Vi ¼ Gy3 þ R2 sinðuiÞ,ðui : p=4 ! �3p=4Þ
Segment d: Hi ¼ Gx4 þ R2 cosðuiÞ, Vi ¼ Gy4 þ R2 sinðuiÞ, ðui : 3p=4 ! �p=4Þ
Segment e: Hi ¼ Gx1 þ R2 cosðuiÞ, Vi ¼ Gy1 þ R2 sinðuiÞ, ðui : �3p=4 ! �5p=4Þ
R2 is the curve radius in the four-leaf contour

Window contour Segment a: Hi ¼ Gx1 þ R3 cosðuiÞ, Vi ¼ Gy1 þ R3 sinðuiÞ, ðui : 3p=4 ! 2pÞ
Segment b: Hi ¼ Hi�1 þ S, Vi ¼ Vi�1

Segment c: Hi ¼ Gx2 þ R3 cosðuiÞ, Vi ¼ Gy2 þ R3 sinðuiÞ, ðui : p ! p=2Þ
Segment d: Hi ¼ Hi�1, Vi ¼ Vi�1 þ S

Segment e: Hi ¼ Gx3 þ R3 cosðuiÞ, Vi ¼ Gy3 þ R3 sinðuiÞ, ðui : p=2 ! 0Þ
Segment f: Hi ¼ Hi�1 � S, Vi ¼ Vi�1

Segment g: Hi ¼ Gx4 þ R3 cosðuiÞ, Vi ¼ Gy4 þ R3 sinðuiÞ, ðui : 0 ! �p=2Þ
Segment h: Hi ¼ Hi�1, Vi ¼ Vi�1 � S

R3 is the curve radius in the window contour
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Fig. 3 Reference contours for planar motion, a star outline, b circular outline, c four-leaf outline, and d window outline (unit: lm)

Table 2 Simulated results of contour tracking error

Trajectory contour The conventional method (sgn) [2] The conventional method (sat) [2] The proposed AFSMC method

Average tracking error (ATE) EM (lm)

Star contour 44.546 47.849 14.188

Circular contour 41.211 42.973 28.650

Four-leaf contour 10.530 10.542 7.371

Window contour 22.654 23.624 10.839

Average 29.735 31.247 15.262

Tracking error standard deviation (TESD) ESTD (lm)

Star contour 5.057 3.916 2.824

Circular contour 4.150 3.958 1.569

Four-leaf contour 1.825 1.797 2.288

Window contour 23.714 23.640 10.655

Average 8.686 8.327 4.334
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Fig. 4 Position responses of simulations. a X-axis direction response,

b Y-axis direction response, c star trajectory

Fig. 5 Position responses of simulations. a X-axis direction response,

b Y-axis direction response, c circular trajectory
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Fig. 6 Position responses of simulations. a X-axis direction response,

b Y-axis direction response, c four-leaf trajectory

Fig. 7 Position responses of simulations. a X-axis direction response,

b Y-axis direction response, c window trajectory
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Fig. 8 Position responses of experiments. a X-axis direction

response, b Y-axis direction response, c star trajectory

Fig. 9 Position responses of experiments. a X-axis direction

response, b Y-axis direction response, c circular trajectory
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Fig. 10 Position responses of experiments. a X-axis direction

response, b Y-axis direction response, c four-leaf trajectory Fig. 11 Position responses of experiments. a X-axis direction

response, b Y-axis direction response, c window trajectory
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small steady-state error in a dynamic environment. As

shown in Fig. 8c, it is obvious that the dynamic tracking

capability of the proposed AFSMC is outstanding and

better. The robust control property of the developed system

can be observed clearly. The errors of developed system

can decrease significantly and reach to 12.866 lm of ATE

index and 11.076 lm of TESD index.

The responses of circular outline with a diameter of

50 mm are measured as shown in Fig. 9a and b, respec-

tively. Because of the self-tuning AFSMC control strategy,

the system provides the better characteristics for curve

contour in both axes. The experiment on the circular

tracking trajectory is illustrated in Fig. 9c. The curve

contour operation is more complicated than that of straight

line movement. It is obvious that steady-state response is

also better under the occurrence of system parameter

variation. The position errors are 12.652 lm of ATE index

and 6.70 lm of the associated TESD index.

The four-leaf contour is plotted in Fig. 3c, with the

motion divided into five parts. The R2 ¼ 7:5 mm is the

curve radius in the four-leaf contour. The experiments on

the four-leaf tracking responses and associated four-leaf

trajectory are illustrated in Figs. 10a–c. The trajectory

response is smooth even at a curve segment and corner

point. The transient and steady responses show the

improved compensating strategy of the developed system

under parameter variations and external disturbances. The

position errors are 16.965 lm of ATE index and

13.703 lm of the associated TESD index for four-leaf

contour tracking.

The window trajectory is designed in Fig. 3d, with the

motion divided into eight parts. R3 = 10 mm is the radius

of the curve in the window contour. The experiments on

the window tracking responses and associated trajectory

are illustrated in Figs. 11a–c. The transient response is fast,

and the steady-state error is alleviated. The developed

adaptive dynamic system can perform asymptotically

stable tracking of different moving trajectories with robust

control performance. The position errors reach to

60.403 lm of ATE index and 32.572 lm of the associated

TESD index for window contour tracking.

Table 3 presents the tracking error comparisons of our

AFSMC method and traditional FSMC methods with sign

and saturation function. It includes the performance mea-

sures of the ATE and the TESD for the star, circular, four-

leaf, and window reference profiles. The developed system

demonstrated more effective performances, showing a

27.15% improvement in ATE index and a 29.77%

improvement in the TESD index, compared with the tra-

ditional FSMC method with sign function. The proposed

AFSMC method also achieved a 26.81% improvement in

the ATE index and a 28.33% improvement in the TESD

index compared with the traditional FSMC method with

saturation function. It indicates that the proposed AFSMC

system obtains the lowest ATE and TESD indexes. Thus,

this architecture is beneficial in actuating the two-axis

table in the presence of model uncertainties and distur-

bances for different reference contours. In summary, the

proposed AFSMC approach offers the desired tracking

performances while ensuring the robustness of the feed-

back system.

5 Conclusion

The AFSMC method was successfully developed and

investigated in the industrial X–Y-driven motion stage for

trajectory tracking applications. The control structure has

the advantage of generating fuzzy rules adaptively without

relying on a priori knowledge about the stage models. The

Table 3 Experimental results of contour tracking error

Trajectory contour The conventional method (sgn) [2] The conventional method (sat) [2] The proposed AFSMC method

Average tracking error (ATE) EM (lm)

Star contour 15.615 15.025 12.866

Circular contour 13.787 13.805 12.652

Four-leaf contour 27.917 27.453 16.965

Window contour 83.924 84.286 60.403

Average 35.310 35.142 25.721

Tracking error standard deviation (TESD) ESTD (lm)

Star contour 13.080 13.051 11.076

Circular contour 8.198 8.018 6.70

Four-leaf contour 20.639 21.376 13.703

Window contour 49.280 46.928 32.572

Average 22.799 22.343 16.012
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robust indirect AFSMC scheme is designed to process

system uncertainty and mitigate the chattering condition.

The unknown disturbance and nonlinear friction effect are

also considered in the plant model. Four contour trajecto-

ries, namely star contour, circular contour, four-leaf con-

tour, and window contour, are tested to illustrate the

robustness of the developed system. It is shown that the

adaptive indirect control method can deal with chattering

and significantly alleviate contour errors in experiments.

On average, it can achieve 26.98% and 29.05% improve-

ment in ATE and TESD, respectively, compared with the

two conventional FSMC strategies. It also shows that the

proposed AFSMC scheme can provide superior tracking

capability for two-axis contour control in the presence of

model uncertainties and external disturbances. Finally, the

main contribution of our research is the successful devel-

opment and experiment of the AFSMC system to control

the X–Y table system with four different contours. In the

future, we aim to construct and implement a motion con-

troller using microcontroller or DSP platform such that the

proposed AFSMC strategy can be widely realized and

utilized in industrial applications.
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