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Abstract In this paper, the problem of observer-based
adaptive fuzzy decentralized control is studied for uncer-
tain large-scale nonlinear systems with full state con-
straints, input saturation and unmeasurable state.
Compared with the existing literature, the state directly
measurable problem is relaxed, and the systems with full
state constraints and input saturation problem are further
considered. In order to solve the controller design diffi-
culties caused by input saturation and state constraints, the
auxiliary design functions and the barrier Lyapunov func-
tions are employed, respectively. By utilizing adaptive
backstepping technique and Lyapunov stability theorem, an
observer-based adaptive fuzzy decentralized control
approach is developed. It is proved that all the signals of
the closed-loop systems are semi-globally uniformly ulti-
mately bounded and the observer errors are converged on a
small neighborhood of the origin. The tracking errors are
remained in the bounded compact set, and the full state
constraints are not violated. Two practical examples are
given to demonstrate the usefulness of the proposed control
scheme.
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1 Introduction

In past years, nonlinear adaptive control based on back-
stepping technology has received extensive attention. In
early times, these studies [1-3] required that the uncertain
nonlinearities in systems either are known linear function
with unknown parameters, or bounded by known nonlinear
functions. It is well known that if a priori knowledge of the
above structure or the upper bound of these unknown
nonlinearities are not available, then these methods are no
longer applied. Under such restrictions, the unknown
nonlinear functions are identified via adaptive neural net-
work control [4—-6], or adaptive fuzzy control [7-9]. Lit-
erature [6] researched the output feedback control problem
with a class of stochastic nonlinear systems with non-strict
feedback structures and used neural networks’ universal
approximation capability to approximate nonlinear func-
tions. Literature [7] investigated the nonlinear fuzzy
adaptive controller design problems with arbitrary switch-
ing, and the nonlinear function is approximated by fuzzy
logic system. Literature [9] proposed a corresponding
adaptive fuzzy tracking control approach for the uncertain
nonlinear strict feedback systems. In the above studies, the
unknown nonlinearities are approximated to use neural
networks or fuzzy logic systems and combined with
backstepping technique to construct controllers. Recently,
the approximate dependent adaptive control of output
feedback systems has been further developed [10-12].
Although the controller design approaches based on
adaptive fuzzy backstepping technique have made great
progress, the ones are directed to the normal operation of
the nonlinear system. It is known that many control sys-
tems have constraints on their inputs, such as input satu-
ration, hysteresis [13] or dead-zone [14-16]. In fact, the
most important form of constraint is input saturation that is
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widely studied in [17-22]. Among them, literature [17]
researched the adaptive control problem of uncertain non-
linear system with input saturation. And the nonlinear term
is compensated by the Nussbaum function. In order to relax
the requirement that the nonlinear function can be linearly
parameterized in [18]. Subsequently, studies [21] and [22]
further extend the content of [17] to MIMO nonlinear
systems. However, the aforementioned works did not
consider the state constraints. State constraint is also an
important control index. By far, the problem of state con-
straints nonlinear systems has been widely studied, for
example, partial state constraints [23, 24] and full state
constraints [25-30]. By constructing BLF, the states of the
system can be constrained within the given value. Thus,
literature [24] proposed the output constrained uncertain
nonlinear systems with input saturation. In addition to this
constraint method, literature [25] used an one-to-one non-
linear mapping to transform a strict feedback system into a
pure feedback system and eliminated state constraints.
Moreover, studies [26-28] studied the state constrained
controller design problem for pure feedback systems. From
above analysis, the controller design methods are no longer
applicable to the case of the uncertain nonlinear large-scale
systems with full state constraints. Therefore, the control
scheme for the uncertain nonlinear large-scale systems
with full state constraints is developed.

It is well known that uncertain large-scale nonlinear
systems usually need to design decentralized controllers for
each subsystem. Different from centralized -control,
decentralized control is easier to implement, but decen-
tralized controller design is difficult to design, see [31-41]
and the references therein. The method of processing
interconnection terms is given in studies [31-33], where
the uncertainty the interconnected items are replaced by
unknown pth-order polynomial in outputs. Subsequently,
literature [34] used this method to study the decentralized
fault-tolerant control of large-scale nonlinear systems with
actuator failures. In addition, studies [35—41] studied other
constraints of uncertain large-scale nonlinear systems.
Literature [37] investigated decentralized control for non-
linear large-scale systems with unknown dead-zone inputs.
Literature [41] proposed the output constraints problem for
nonlinear interconnected time-delay systems. Observer-
based adaptive fuzzy tracking control for nonlinear systems
with time delays and input saturation is studied in [42].
However, many large-scale systems tend to ignore cusp of
the input saturation, the performance of the closed-loop
systems will be severely degraded, and instability may
occur. On the other hand, the full state constraints of large-
scale systems are complex and rarely studied in the existing
results. Therefore, it is significant work to study the
observer-based adaptive fuzzy decentralized control of
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uncertain large-scale nonlinear systems with full state
constraints, input saturation and unmeasurable state.
Motivated by the aforementioned observations, obser-
ver-based adaptive fuzzy decentralized control for uncer-
tain large-scale nonlinear systems is studied in this paper.
The uncertain terms contain uncertain nonlinear functions
and unmeasurable states, and the constraint terms include
full state constraints and input saturation. The fuzzy logic
systems are utilized to approximate the nonlinear functions,
and the fuzzy observers are designed to estimate the
unmeasurable states in the systems. In contrast to existing
results, the main contributions can be summarized as:

(1) The assumption that the state directly measurable is
relaxed, and the full state constraints problem is
further considered.

(2) The input saturated cusp is replaced by the auxiliary
design functions, which makes the input function
smooth and the BLFs differentiable; then, the full
state constraints of the uncertain large-scale nonlin-
ear systems can be guaranteed by the BLFs.

(3) An adaptive fuzzy decentralized controller is pro-
posed for uncertain large-scale nonlinear systems
with full state constraints, input saturation and
unmeasurable state.

Finally, it is proved that all the signals of the closed-loop
systems are SGUUB and the observer errors are converged
on a small neighborhood of the origin. The tracking errors
are remained in the bounded compact set, and the full state
constraints are not violated.

2 Preliminaries and Problem Statement
Assumption

2.1 System Descriptions

Consider the following uncertain large-scale nonlinear
systems, which consist of N interconnected subsystems:

X1 =fir(xi1) +xi2 + A1 (9)
Xip = fia(Xin) +Xiz + Ai2(Y)

xi,n,'—l :fim,’—l (ﬁi,n,-fl) + Xin; + Ai,n,—l (-)_))
Xim = fim (Xin,) + wi(vi(1)) + Ai, ()
Yi = Xi1

where x;; = [x,-ﬁl,...,x,vJ-]T eW, i=1,2,..,N, j=
1,2,...,n; are the state vectors, y = [yy,.. .,yN]T e RV is
the systems output. fi;(x;;) € R are unknown smooth
functions. The output y; must be retained in the set
[vi| < keij(output constraints), Vz > 0, where k;; are positive
constants. v;(¢) are the controller input to be designed,
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u;(v;(1)) denotes the systems input subject to saturation
type nonlinearly. A;;(¥) € R are uncertain smooth func-
tions represents the connection between the ith subsystem
and other subsystems. In the paper, only the output y; is
measurement. #;(v;(¢)) is described by

ui(vi(1)) = sat(vi(1)) = {‘S}i%gEVi(t))uiM;

[vi(2)] > uina
vi(t)| <wim

(2)

where u;); is the bound of u;. From the above formula (2),
the relationship can be obtained and there is a sharp point
at |v;(f)| = u. Because there is a sharp point, the adaptive
backstepping technology cannot be directly used. The
auxiliary design functions are used to replace the input
saturation as follows:

vi(t euM — e UM
gi(vi(l‘)) = Ujpy X tanh( l( )> = Uim O] (3)

Uim eum + e M

Then, sat(v;(¢)) in (2) can be written as

sat((1) = g0(0)) + o) = g () )

(4)

where p;(v;) = sat(v;(r)) — gi(vi(¢)) is a bounded functions
whose bound can be expressed as

pi(vi)| = [sat(vi(r)) — &i(vi(1))| <wipa (1 — tanh(1)) = D;
(5)

Note that in the section 0 < |v;| <u;y the bound p;(v;)
increases from 0 to D; as |v;| changes from O to u;, and
outside this range the bound p;(v;) decreases from D; to 0.
Figure 1 shows approximation of the saturation function,
where u;; = 3. In paper [24], a functional image of the
saturation input and an auxiliary function is given, when
the upper limit of saturation is 5.

sat(vl)
b o
‘I
iy

-20 -15 -10 -5 0 5 10 15 20
vi()

Fig. 1 Saturation(red solid line: sat(v;); blue dot line: smooth g;(v;))

Thus, system (1) can be rewritten as

X; = AioXi+ Y Bisf (i) + Ai(¥) +Bin (:(vi(1) + 0, ()
j=1
yi=ClX; (6)

T

where Xi= X1, Xin]

AG) = A (), - A )]

[0,...,0, 1,0,...,0]".

-1
The following assumptions are given to facilitate the
design of the controller of the systems.

Assumption 1
A;;j(y) satisfy

pij N

I GIED DI 1 (7)
1

k=1 I=

[37] The nonlinear interconnected terms

where A;;(¥) are unknown except that they are bounded by
an unknown p; jth-order polynomial in outputs and qg., is an
unknown constant.

Assumption 2 It is assumed that the reference signal y; 4

and its kth order derivatives yEﬁ},izl,L...,N,k:
1,2,...,n; satisfy [|yig| <apo and |yf£,)|§aik where

ai, di1, - - ., Aj; are positive constants.

Assumption 3 Assume that functions f;; satisfy the glo-
bal Lipschitz condition, there exists known constant L;;
such that the following inequalities hold

lﬁj()_ci.j) _fi;i()—ei,j” <L | Xij —)_Zu l,i=1,...,N,

j: 1,...,”,‘.

(8)

Remark 1 In order to design the adaptive controller, the
processing of interconnected terms is studied in studies
[31, 34]. An unknown pth-order polynomial is designed as
an upper bound to replace the uncertain interconnect term.
In the article, the same method is used to handle the
interconnect items. And the auxiliary design functions are
used to remove the cusp of the input saturation.

2.2 Fuzzy Logic Systems
Due to the uncertainty of the existence of nonlinear func-
tions, the fuzzy logic systems (FLS) are introduced. Con-

struct fuzzy logic systems with the following form of if—
then rules:
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R?: if x; is F{ and x, is F3 and ...
Bl g=1,2,...,1. where x=[xp, .. .,x,,]T and y are the fuzzy
logic system input and output, respectively. Fuzzy sets F
and B?, associated with the fuzzy functions uz(x;) and

and x, is FZ, then y is

Uge (), respectively. 1 is the rules number. Through sin-
gleton function, center average defuzzification and product
inference, the FLS can be formulated as

Z;:I yq [T Hps (xi)
Z’q:1 (H?:l M (xi))

where y, = maxyegitp (y)-
It
KCND DI} PTE)
[y17y27" yl]T [01702""’0]T and

o(x) = [ 1(2), .-, @,(x)], then FLS (9) can be rewritten as

y(x) = 0 p(x).

Lemma 1 [33] Let f(x) be a continuous function defined
on a compact set Q. Then for any constant ¢ > 0, there
exists an FLS such as

suplf(x) — 07 o (x)| < &

xeQ

y(x(1)) = (9)

Let and  denote 0=

(10)
2.3 Fuzzy State Observer Design

Since the state of the systems is unmeasurable, fuzzy state
observer is designed to estimate the state of the systems
and define the ideal parameter vector 0;7. as

07, =arg min [sup [, ; (x;.110;1) —fi1 (xi1)|],

0i1€U;

Hz*J =arg Amln/ [Sllp lfl ( 1,]|0lJ) (xt,/)”

ij€U;;

where x;; € ;| and )_E[JEQ;J. U.. and QLJ

i are compact

sets for 0 j and X, ;, respectively.

2
By Lemma 2.1, the nonlinear functions can be approx-
imated by the following FLSs:

fl,j( lj|01J) (]1)

Define the fuzzy minimum approximation errors as
g1 =fia(xin) = fir(eaal07y), ey =fij(&) —fi;(207;)-
Where X;; = [%i1,. .., % J]T are the estimation of the state
X;;- Assume that there exists a constant ¢;; such that

0F.0:;(%:;)

i
leigl < ;.
The corresponding fuzzy observer is designed as

. nj
Xi =AX: + ZBiin,j(/ﬁi,jwt',j) + Kiyi + Bin&i(vi(t))
=
b, =CI'X;
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—ki

~ T .

xi,n,-] , Aj = : In,—l >
—kin -+ O

where X; = [%;1,%i2,. ..,

K,‘ = [k,'71 g - ey kiﬂJT.

The observer gain matrix K; is choose such that A; is a
Hurwitz matrix. Thus, given a positive definite matrix Q; =
Q! > 0 there exists a positive define matrix P; = P >0

such that
ATPi+ PA; = —Q; (13)

According to (6) and (12), the observer errors can be
obtained as

. n; _
Xi=AXi+ ZBM@;‘TJ%J@[J‘) + & + Af; + Biy,p;(vi) + Ai(P)
=1

(14)
where )N(i =X, — X’i are the observer errors, EiJ = Hlfj — 9,-J,
& = [ei1,- 8i,n,-}T’ Af; = [AfiJ’Afi,za ce Afi,n,]T and
Afi,j :fi,i(li.j) _ﬁj@i,j)'

Remark 2 Because the states are unmeasured, fuzzy
observer is used to estimate the state of the systems. The
saturated input saturation value should be appropriate, too
large to make the observation inaccurate, too small to

~ ~T
achieve the design effect. Equations f;;(%;;]0:;) = 0;,0;;
()_Zl-d-) and ﬁJ()_E,-JW;*J) = 91.*JT<piJ()_EiJ) similar to (11) can be
obtained.

The candidate Lyapunov function Vj is considered as

N
1~ ~
Vo=> <§ XiTP[X[)

i=1

(15)

The time derivative of V|, along with (15) is

N

. 1~ -

Vo= E {EXiT(AzTPi + PiAi) X
p

+XIp;

n; _
Z BiJHiT,;(Pi,/@iJ) + & + Af; + Bin pi(vi) + Ai(Y)
j=1

}

(16)

By using Young’s inequality 2ab <a? + b%, Cauchy—

Schwarz inequality (3°7_, axby)* < S0_ (ax)> S0_ (bi)*

and(3°7, i) <2327 (Jai|)*, Assumptions 1, 3 and the
fact o (%) @;;(%:,) < 1.
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The following inequalities can be obtained as Zi1 =Yi — Yid
~ Z,":)E,‘_'—O(,",l(l.:l2...N,j:2...l’l,'—1) (21)
X'p,> B0 <L PyIx o T
jz J l]qol,](—l,]) i) max( )” ” Zim :fiﬁnl — g1 — hi
1 (1)
here 7; will be given at the end.
+=N000,,< = Xi|1>+=16; W ; o
Z Js 2" max (P X ” I Step i, 1 : From (1), (21) and x;» = X2 + %i2, the fol-
N N lowing equations can be obtained as
1 . .. _ .
> XTPA( EZ P)||1 X Gn =Yi = Yia = fir(ia) + xi2 + i (¥) = Vi
I - (18) =éi1+ 07, i (xin) + Koo+ 2o + o1 + A (5) — Vi
+ 303 a (Il + ) (22)

i=1 k=1

)N(iTP,'B,»,,.pi(v,-) + }?TPZAf + )?ZTP,{J,
v (12
< <2 mdx ZL )HXIH (19)

_Diz Dhas2
+ 1D + 315

where Amax (P;) represents the maximum eigenvalue of the
matrix Pi, Aé[ = [5,‘717 ceey Aéi‘n,.]T, Zi,l =YVi— yi,d’ p =
max{p;j|]l <i<N,1<j<m} is a known integer,
_ N n; 2
qik = pN2#-! Py Zj:l((ﬁ,i,i) .
Substituting (17)—(19) into (16) yields

N
. 1
2 2
Vo< { Aol Xill* + 5 ||9|| +—H A7+ S 1Dl
i=1

P
3 (Il + )} (20)
k=1

where 20 = 3 Amin(Qi) — 3 Zmax (Pi) — 3301, L.

2 “max

Remark 3 The actual system will always have too large or
too small input to make the system unable to work prop-
erly, so input saturation is very important in practice.
However, the problem of input saturation is not considered
in [31-37]. There are few papers on input saturation, which
is also the main contribution of this paper.

3 Control Design and Stability Analysis

In this section, by utilizing adaptive backstepping tech-
nique and Lyapunov stability theorem, an observer-based
adaptive fuzzy decentralized control approach is
developed.

The n;-step adaptive fuzzy backstepping output feed-
back control design is based on the following change of
coordinates:

Choose the Lyapunov function candidate as

k2, 1
=Vo+ lo bil — 07 0, +o
’ Z{ gkizl - 2121 2%‘, ke 2pB; i }
(23)

where log > i p defined as a BLF in literature [28], Vi1 and

bz] / 1
p; are positive design constants. 7; = y; — y; and j; is the

estimate of x;. The purpose of designing y; =
max; << p{qi + n:qix } is only for stability analysis.
The derivative of V| is

4 V(’+Z{k2
bil
VO+Z{/C%1

+A10) -

2 le+

il

1
0;,0;
u“‘*W“}

2 [ﬁl"’gll (le(le)+x12+212+fxrl

11
1
yld]"‘))’ 011911+ﬁ 71/1

(24)

By using Young’s inequality, i.e.,
inequality relationship is satisfied

the following

||x,2|| (25)

N P
me+zz%mmmem
i=1 k=1
(26)
= pN2%-1

kit + kan iz < [lkarl|* +5 IIS, P+

ZkzlAtl

wh}sre kyj = kz#z, (j=1) and qx
Zl:l(‘llf,l,i) .
Substituting (25), (26) into (24) yields
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N
1
2 2
s Y] alXE 45 1B + 5 161+ 51
i=1

i

p
2k 2k

3 g+ ) (Dl e 1) + 3 et P 5 ool

k=1
— X 222]{“&1”2,( +k11 3 7tl +9 Pi l(xll)

i — Zi 2 Z i1,
+ (K = z1) 7 Z 24(z)* ! +zn o — )}i,d:|

k=1

1~ z
+ - 01 (ka1 1951 (xi1) — 0i1)

i1

1 S 2% 2%k A
+ i ﬁizz (zi1)™ — %

.Bi k=1

(27)

~ 2 > 2 2
where 1 |[%;al|* < 31|X;[|* and 4[], 1> < 4 Jlef . A
Choose the virtual control o; 1, the adaptive function 0; |
and y; as follows:

7
_Zkzil

)4
(B =2 2 @™ 28)
k=1

- HiT,l @i1(Xi1) + Yig

%1 = — Ti1%i,1

95,1 =— 6:’,1@5,1 + k17101 (xi1) (29)

) p

==+ By 2 @)* (30)
=

where 7,1 >0, 0;; >0 and 7; >0 are the design
parameters.
Substituting (28)—(30) into (27) results in

N
V< Z{
i=1
- 2% 2%
+> (i + q1a) (\yldH + [lzi I ) *A,ZZZkllzzlll
k=1

] ~
—IIG;IIZ + M

1
_7k~ Ttlk”tlztl+kzllZ12+T9,1911+ﬁ7 /{z}

4 zil i )
(31)

where 2;; = /0 — 4 and M;; = |l&f||> + 1 || Dif|.
This inequality relationship is obviously obtained as
1
kzilzi,2 < Zkzzil + Z,‘%z (32)

Thus, (31) can be rewritten as

@ Springer

N

.S 1~
< Z{ — it |1l 5 10:° + M,

i=1

p

2k 2k
+ > (au+ que) (il + i)
k=1

il 57 % G~ .
+—0; 9-.1+—X-X}
Vi1 B g™

P
— 1 Y 2|z l*

k=1

—TiikaiZin + 7

(33)

Step i,j(j =2,...,n; — 1) : The derivative of z;; is
Bjj-1 Zﬁj(&ﬂéu') + Xije1 Fkij(vi — i) — dijo

= é,?j@,,-m,z) + 0l ,,>

Otij_1 : Oij_1 ; Ocij_1 (k) Ooij_i .
—§j ,—§j : e,w—§j Lyl - Sy,
OX;k ! =1 00 ¢ =) i Oy, Y

Zij =Xij —

quDl/(xt,/) + Zij+1 + %ij + kj'x’ 1

k=1 @yi’d
(34)
Thus, (34) can be rewritten as
Zij = Zijr1 T %ij + QiTJ(PiJ()_Eiﬂ - Q;T,jﬁﬂu()_eiﬂ + H,j

oo (35)
— a;1(311+x12+A11()+011(p’1(xll))

2 ~ ~ i—1 Oojj_y A
050 E) + kiFa =0 T
[ Oo;, 0. o
jkll aflelkgtk Zk 1 “”yld) a’](x12+911¢z1
(ﬁi,l))a(izza"'vni_l)'

Consider the following Lyapunov function candidate as

Vi=V; 1+Z{ log 17— 5351',1} (36)

The time derivative of V, along with (35), (36) is
1] ~. =
V V 1+ Z Z,] —_ OZ] Oi.j
bl] Zu Vij

=V + Z{kﬂy [Zi#l +ouj = 0750:(E;) + Hiy

i

where H;j

bl/ 1
2 + Y
bt] Gy iy

60{, N
6)]) 1 (i1 +Xip + A1 (9) + 9;1‘/71',1()61',1))]
+ 7 011:/ (kzﬁyij(piJ(XiJ) — éi,j)
ij

(37)

By using Young’s inequality, i.e., the following

inequalities can be obtained as

605,-;, 1 60(,»; 2
- ke < 3 (M) P+l OW

@oc,- i—1 ~ 1 Goci i— 2 1,
— ki~ 2 < 5( ™ 1) (key)” +5 I Tal® (39)
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N N 2
oty j _ 0ot j—
ka '1 Aii(y) < Z ( 6; 1> (kzp)?

i=1 Vi 3 (40)
b 2k 2k

+ 3> e (Ivial™ + lzea )
i=1 k=1

k Oij15 1 ( )<1 00t j-1 2(k ?

Iy, = Ty ) (41)
L~ ~

+§6£10[‘,1

T < M + L, -

ai0i9ij(&ij) < 5 (kai)” + 5 001

Substituting (38)—(42) into (37) yields
N
. ) - 1 ~
B CIR T TR

+ Z i + (G — Dauac) (||y,d||2k + Hz,l\\”) — ZZZkHz, ||

M“ H

3 que (il + ) +1520,3,

k=1

=1 o R _
- Z Tiim zlmzlm + Z i e?jmé)im + = Z 0 ,m

n=1 = m 2
aoc,;j,I 2
+ k| Zijer + 0aj + Hij+2( —5 ke
Vi

1 z; i .

+§kzij+k:il *||XH +*||fS I +BIAX1

1 ~ R :
+ o HiTJ(kziiVi,j(Pi:;(Eilf) - 91‘;7‘)}

rij

(43)

Choose the virtual control «;; and the adaptive law éi j as

3 a(X,' i— 2 Zi2<
%j == TijZij — g ke — Hij = 2( 6;- 1) kzij — kfd (44)
i Zij

O0ij = — O'ijéi,i + kzijyi,j(/)i,j()_ei,j) (45)

where 7;; > 0, 6;; > 0, y;; > 0.
Similar to inequality (32), one can obtained

keijziji1 < Le + 2 (46)

475
Substituting (44)—(46) into (43) yields

N
V< Z{ B+ L1341,

i=1
p
2k 2k
+ ) (g +iquix) <Hy1dH + i l™) _/CzZZZkHZzIH
k=1
1~ ~ 1 J
+‘]T 9?1 95,1 +§Z tm ZT’ m szZl m
m=2
J g 7
+Z lmelTnlel"7+Zt/+l FlXiXi
m=1 ‘im i
(47)

where )uiJ = /Ii.jfl —% and M,‘J = M[_J;] +%||8;<H2

Step i,n; : The time derivative of z;,, along with (12)
and (21) is
Zip = )éi,n,- — Oljp—1 — h; :f:',n,. (Xi |éi,n,-) +gi(v)

. : (48)
+ ki, (i = ;) = Gim—1 — i

From (11) and (44), (48) can be written as

Z.i«,ni :gi(vi) - fli + Ozrn»(Pi,n, ()_Ei.n;) - OZn‘(Pi,n, ()_ei,n,') + Hi:”[
Ou;
- T( ot + Fio + A (3) + 07,051 (xin))

(49)

~ ni—1 0%n—1 2
where l”h 01n (Pln ( H‘l) +kl‘~,nx'xi1 - k=2 i ik

i—1 0ty — n; % k kini—1 (o

fu 29 10 T Lk= 1;<k I]yfd) - 1@ I(x12+0,1€0zl

(%i1))-

Define the dynamic system as
hi = —h;i + (gi(vi) — i) (50)

Consider the following Lyapunov function candidate as

1 k2, 1 ~
V=V,=V,_ 1 0T 0,
: " ! Z{ Og kiini - ZIZJI; i 2Vi,n, b

(51)

Choose actual control input v; and the adaptive law 0i,n,-
as

1 aO(,' ni—1 : Zizn
ithif in in-fikin 7Hin72 — kﬂ'n* —
' Fimin 27 a ( dy; ) ke,
(52)
Oi,ni = —Oip éi.n,’ + kZl'n,’yi.,n,- Pin, ()_Ei,n,-) (53)

where 1;,, >0, 0;,, >0, Ving > 0.
By (51)—(53), the time derivative of V,, can be written as
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N
y y y Zi,n, . 1~ =
V=V, =V, 1+ {kzizzim +—91Tn,01”i}
bin,

i=1 i Ziv"i vi,n,
S . Lise
< S AR+ S+

i=1

. )4
P+ i+ migne) (il + i 1)
k=1
Z 0 Nz m

p
2k
% > 2 el +
ni ni G~ N
- Z Ti,mkzimzi.m + Z ylm G,ngt m + ; 7 71
m=1 m=1 /t,m

k=1

(54)

) 2
where 4, = Aip—1 — % and My, = M, 1 +3€f|"

By using Young’s inequality, the following inequalities
can be obtained as
Oim

07 Oy =207 (05, = 0i) < — 2207 0,
yi,m Yim tm( o 1 )7 2’))”,,[
O;
r,m 0* T0*
zyl,m i,m
(55)
G . E,N ~ 0; ~2
At < =i = T S — 5 A +— 56
gl < g il — 1)< —ap i op (56)

Substituting (55), (56) and y; = max; <k <,{qi + niqiu }
into (54), (54) becomes
ni\~r =~
- 2> 91T1 0[,1

N n; )
V < Z{_/lzln, HXI||2 - Z Ti,mkzimztlm - (20;'11
(57)

Oim -~ ~2
a (2yzm_ > Ime a :B Xi +€l”}
+2[3 Xz + ZZ:l (qik +

where &, => 0 507,707,

m= 127 im
nigix) (max; o ||yiall’ ) +M;,,.
The following theorem is summarized by the above
controller design and stability analysis.

Theorem 1 When uncertain large-scale nonlinear sys-
tems (1) satisfy assumption 2, if the design positive
parameters t;;,0;; and v;; are appropriately chosen to

. _ _ . A k
satisfy ke > %+ kpjy %y = max o (%, 0, vi,Y),s
k=1,2,....j|. The proposed adaptive
scheme composed of the controllers 0, (j =1,...,n; — 1),
v; in (28), (44), (52), and the adaptation laws éij, =
l,...,n;) and ,E, in (29), (45), (53) and (30) can guarantee

(1) The observer errors are converged on a small
neighborhood of the origin and the tracking errors are
remained in the bounded compact set;

(2) All the signals in the closed-loop systems are
SGUUB;

control

@ Springer

(3) The full state constraints are not violated.

Proof According to the inequalities (38), (42) and
2
log( ”j ) <z i -, one can obtain
bij i

1 < - Qi,niv + Cip, (58)

2in; i, im
where ¢ klﬂ - mln{i - l) 2Tl"172/11(&7_) 2))1111 (20/_”"
—1), @}, (m=2,...,m), Cipy =22 and g,= min{g,,,

Qin:
&in;

Qi2r+ 5 Qin > Ci=min{Ciy, Cia, ..., Cip}, @ = min{gy,

025 -+ On}>, C =min{Cy, Cy,...,Cy}.
So (58) can be rewritten as
V< —oV+C (59)

Multiplying (59) by e? on both sides, followed by inte-
grating from #y to ¢, the following inequalities hold

e?'V 4 0e?'V < Ce

t t
VY dr < / Ce?dt
[ evras | (60)

C C
v < (Vi) - et 4 £
Q @
2 —o(t—1
According to (60), kzkh_v < 2 V(i) =Eeeto +ZC’ and
ZLEZ/E’J <(V(t) — —) ~oli-ay +5 € the following inequal-
Vij

ities are established as

S S i TE
i=1 j=
N n;
i C c
Z Z H01,1|| < \/ZVi_j ( (V(l‘o) — ) e—elt=t) | 2)
i=1 j=1 Q 4
(62)

N

~ C C
> I1Xil* < (V(fO) - E) emetm) ty (63)
i=1

If t — oo, then e~ 20} — 0, it follows from (61), (62),
(63) that there exists 7, when ¢t > T. In (61), there are
X1 =21 +yia and |yig|<an, so can obtain
[xi1| <l|zi1l + |yia| <kpin + aio <keir. It can be known from

the definition of «;;, it is a function of x;1, yi4, Y4 0i1-

Because the boundedness of (9,;1, Zits Xil, Zig, %G1 1S
bounded and satisfies |o; | <. Then,
|zi2| <1 + kpio = keip. Similarly, it can be proved that
|%; ;| <keji(j = 3,...,n;). Therefore, the tracking errors are
remained in the bounded compact set and the full state
constraints are not violated.

From the definition in (60), u; ,, is a function of 9,-,,,i, Xipgs

. o ioa
Zimps Vidoewos yl(.; owing to the boundedness of 0; .., Xi n;» Zin;»

Vids s yEZ), the controller u; ,, is bounded. In (62), there are
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with 07; and 0;; are bounded.
In (63), the observer errors X; ; are also bounded. Therefore,
all the closed-loop signals are SGUUB and the appropriate
choice parameters can make the observer errors are
converged on a small neighborhood of the origin. O

adaptive laws 0;; = 07— 0i;

2
R i 2 from the proof
bij 1/

2
Remark 4 The formula log(-2 )<
bij

can be obtained from Lemma 2 of literature [28]. In
addition, a very important choice comes from the proper
choice of parameters. Choose the design parameters
7:; >0, =1,...,m) and B; >0, in (29), (45), (53) and
(30), which are used for the g-modification. According to
[34], the appropriate choices of y;; and f8; can prevent the

parameters (7,}]- and y; to drift.

Remark 5 In (63), SN, |1 X:||* < i, with p > % > 0. The
observer errors X;; are converged on a small neighborhood
of the origin, so by X;; =ux;; —x;; and x;; =% +
Xij <k i+ u can be known that the system’s full state
constraints are satisfied.

4 Simulation Example

In this section, the effectiveness and the control perfor-
mances of the proposed decentralized control method are
illustrated via the following two examples.

Example 1 Consider two inverted pendulum models
connected by a spring and set an input v; at the base. The
schematic of the two inverted pendulum models is shown
in Fig. 2. It is only assumed that @; are available to the ith
controller fori = 1,2. Let @ = x; 1, ©; = x, 1, @1 = X192,

@2 = x2; then, the inverted pendulum equation can be
described as

Fig. 2 Two inverted pendulums connected by a spring of Example 1

X11(8) =x12(8) + fia(x
X12(t) =ur(v1) +fia(x
yi(t) =x11(1)

11(1) + Ai(yi(2), y2(2))
11(8),x12(8)) + A1 231 (2), ¥2(2))

(64)
X1 (1) =x22(8) + a1 (x2,1 (1)) + Aa 1 (v1(2), 2(2))
K20(1) =ua(v2) +fo2(%2,1 (1), x22(1)) + Aap(y1(2), y2(7))
ya(t) = x2,1 (1)

(65)
wherefy 1 (x1,1) = 0, A1(y1(2),y2(1)) =0, fia(x11,%12) =
(5 - [4{;)5111()61 1), Aa(i(1), 2( )) _Sln(x2,l)7 S
(x21) =0, Aoi(y1(2),32(1)) =0, foo(xar,x22) = (5
— &%) sin(x2.1), A2 (1 (1), 2(0) = —Sln(xl.l)-

Here, ®; and O, are the angular displacements of the
pendulums form vertical. The parameters m; = 2 kg and
my = 2.5 kg are the pendulum end mass, J; =5 kg and
Jr» = 6.25 kg are the moments of inertia, K = 100 N/m is
the spring constant of the connecting spring, » = 0.5 m is
the pendulum height, / = 0.5 m is the natural length of the
spring and g = 9.81m/ s” is the gravitational acceleration.
The distance between the pendulum hinges is defined as
b=0.5m. The given reference tracking signal is
Y14 = sin(t), y24 = sin(r). The states of the systems are
X1 = il <ken =12, 21| = [y2| <kert = 1.2,
|X]72| S 15, ‘xlz‘ S 1.5.

The input functions u;(v;(¢)) are represented in (2),
where u;; = 3,1 = 1,2. According to (11), to construct the
fuzzy logic systems f112(§1,2|(}1,2) = 0{2(/)172()_2172) and
f2,2(§272|922) = é;z(pzﬁz()_iz‘z) are obtained. The design
parameters ki; = 10, kjp = 200, kp; = 5, kypp = 150 are in
the fuzzy observer (12).

By setting the control parameter t;; =4, 712 = 10,
1 =3, T2 =15, kpi1 =05, kpy =04, ko =k
= 05, ’yLl = '))Lz = ”})2’1 = '})272 = 01, 6171 = 6172 = 0'24’1 =

022, =10, 6, =0, =0.1, f; =, =1, p=2. Then, vir-
tual controllers and the actual control are designed as
following

@ Springer
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7211 AT
g = =4z — 142, 011011 (x1,1)

2

- (025 -2 )i Z 2%(z0.1)* " + cos(1)

k=1
7221

.Y S éT
0.64 — 422, 1021 (X21)

01 = — 3221 —

2
— (016 —23,)7> Z 2%(20,1)*" + cos

k=1
vV = — h[ — 10.2521,2 -

Qaty 1 : 212
—_ o =2 e 3
(ayl > (0.25 - z%‘z) Tz

22
=—hy —15.25 -
2 2 22,2 05— 21%12

_9 aaz,l : 22 +23
oy, ) \025-2,)  ?

and adaptive laws as follows:

H,»

6 :0-1<01A1(x141)#’71z%1— 100,

61,2 :0~1€0142@142)ﬁ— 1001,2

éZJ :0-1€02,1(x2:1)#‘_1%1— 100,

é2-2 =0.1955(%5) ﬁ — 1005,
= —0.17 + iZZk(Zl,I)Zk,

k=1

where H,», H>, and 7; in (35), (49) and (50), i = 1,2.

The initial conditions of states are chosen as x; ;(0) =
0.05 and X172(0) = 03, .XZJ(O) =0.05 and x272(0) = 0.2,
the others initial values are chosen as zeros. The simulation
results are shown in Figures 3, 4, 5, 6,7, 8,9, 10, 11, 12
and 13. Where Figure 3 shows the response trajectories of
control output y; (state variable x;;) and the desired ref-
erence tracking signal y;4. Figures 4 and 5 represented
show the response trajectories of z;; and z;2, respectively.
It is obviously that z;; and z;» are constrained within the
given space with proposed approach. However, if the state
constraint is removed, the tracking error z;; is worse in
Figure 4, and the tracking error z;» cannot be constrained
on a given threshold in Fig. 5. Figures 6 and 7 show the
trajectories of the states of the systems and the states
estimated, respectively. It can be seen from these fig-
ures that the full state constraints are not violated. The
observer errors trajectories are shown in Figs. 8 and 9,
respectively. Figures 10 and 11 show the trajectories of the
control input and input saturation. In order to make the
input saturation function sat(v;) and sat(v;) became the
smooth function, Figs. 12 and 13 given the response tra-
jectories of their the auxiliary functions g;(v;) and ga2(v2),
respectively. From these figures, it is guaranteed that the
controller proposed in this paper can make the systems
stable and the constrained states are not violated.

Example 2 We present in what follows another practical
example illustrating the effectiveness of the technique
proposed. We select a quadruple-tank model from [35] and
[43] describing a large-scale nonlinear systems consisting
of four interconnected water tanks and two pumps through

yl,d = = =y1

Fig. 3 Responses of y; 4, y; of Example 1

@ Springer
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0.6 : : : :
05 = = = mm = = - - -—----———-—-——= - - proposed approach al
0.4 proposed approach without state constraints [
0.3 - = = kb11 f
0.2 - = = kb1 I
_ o1f |
LS e s
0.1 =
-0.2 =
_03} i
-0.41 B
O e = o e o e = e e e e e Em e e e e e e e e e e = -
~0.6 1 1 1 1 1 1 1 1 1
0] 2 4 6 8 10 12 14 16 18 20
t(sec)
0.6 T T I
proposed approach
04 = = = e . s proposed approach without state constraints [
= = = kb21
0.2 - = = —kb21 I
N |2 —
—02f -
04 e = e e = e e e e e e e e e e e e e e e e = == -
-0.6 1 1 1 1 1 1 1 1 1
) 2 4 6 8 10 12 14 16 18 20
t(sec)
Fig. 4 Responses of z;; of Example 1
1 T T T
proposed approach
proposed approach without state constraints
] S e - - = kD12 H
- = = _kb12
3\
<~ or i
-1 Il Il Il Il Il Il Il Il Il
0 2 4 6 8 10 12 14 16 18 20
t(sec)
1 T T T
proposed approach
proposed approach without state constraints
] o - - = kb2 H
- - - —kb22
N
N of ]
-
B =
-1 Il Il Il Il Il Il Il Il Il
(0] 2 4 6 8 10 12 14 16 18 20
t(sec)
Fig. 5 Responses of z;, of Example 1
a selector value, which is connected to two different dhy a o=, a3 \/ﬁ Ya
pumps. The schematic of the quadruple-tank equipment is Qg Vvegm + VL8 + g 4a
shown in Fig. 14. The water flows from tanks 3 and 4 into dh, a el + as \/ﬂ_ n Vb
tanks 1 and 2, respectively, and from these two tanks to a d S 82 S 84 S b (66)
IESErvoir. dh; az 1=
=V +— g,
. . dr S S
A continuous-time state-space model of the quadruple-
. .. dh4 a4 — Ya
tank process system can be derived from first principles P 2ghy + qa

[43] to result in
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1.6

- -
x11 = = = estimate of x11 = = = 1.2 = = = 1.2

1.2
0.8
0.4

—0.4

= estimate of x12 = = = 1.5 = = = 15|

Fig. 7 Responses of x;», Xj» of Example 1

where h; and a; with i = 1,2, 3,4 refer to the water level
and the discharge constant of tank i, respectively, S is the
cross section of the tanks. g; and y; with j = a, b denote the
flow and the ratio of the three-way valve of pump j,
respectively. g is the gravitational acceleration.

@ Springer

variables x1; = ¢4(hy — h9),
—h)), xp=hy—hS, w

ﬁ (¢a —¢°) and u, = ﬁ (g» — ¢0). We obtain the fol-

Defining the deviation

0 ~
Xip=hs — Ry, x21 = (M

lowing decentralized model (see [35] for details):
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0.08

0.06 |-
0.04 |-
0.02

-0.02-
-0.04 -
-0.06 -

ell

_0.08 I I I I I
0

t(sec)

0.05

0.04 |-
0.03 1
0.02
0.01

—-0.01
-0.02-
-0.03-
-0.04 -

_0.05 I I I I I
0

t(sec)

Fig. 8 Responses of ¢;; of Example 1

t(sec)

t(sec)

Fig. 9 Responses of ¢;, of Example 1

. ¢ .
X1,1 =X12 — T4x1,1 X2.1
c2
. 1
X2 =u1(vi) ——x12 (67)
G4

X2

Y1 =X1,1 »

S3
=X22 — /X2
C1
1
=M2(V2) - X22
c3

=X2,1

(68)
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—v1
sat(v1)| |

t(sec)

. 10 Responses of vy, sat(v;) of Example 1

16 18 20

sat(v2)

L L L L L L
0 2 4 6 8 10 12
t(sec)

Fig. 11 Responses of vy, sat(v;) of Example 1

where h? denotes the linearization level of tank i, qjo
denotes the linearization flow of g, ¢; = S/ai\/2h)/g,
i=1,2,3,4. Some important system values are given as
S = 0.06m?, a; =131le *m?, » = 1.507 e *m?,
a3 =9267e>m?, a4 =8.816e>m?, h? = 0.6534 m,
h) =0.6521 m, h}=0.6594m, hY=0.6587 rm m,
. =03, y,=04, q2 = 1.63m?/h, qg =2.0m3/h,
g=9.8m/ s*. More detailed parameters are given in [43]
of Table 1.
Based on the derivation of reference [35] and similar
example 1, the decentralized output feedback controller
and the update laws were designed as

1 0 i 2 Ziz
— ki — Hip — 2(_oc,1) ki — 2

i =— N —
Y 2 dy;

Ti2%i2

P
Bi=—Tid+ B Y 2 (@)™ (70)
k=1

where the Virtual controllers ay; = —7y 1211 — Sky11/4 —
(kpi, — Z1 D >k 2%z, 1)2k +aaxi1/S +y1a  and
w1 = —T2122,1 — Skai /4 (kjoy — .72 Dy 2%
(220)™" Hemai/a + Vo4 Hio =fio(£12) +kipXin —

0 (k Q ~

e N W = BBz +caxia/c) and Hap = foo
~ 0 (k
(£52) + kapXo1 — Loty

Zk 1760 Y2,d —

The given reference tracking signals are y;4 =
0.5sin(0.5¢) + 0.5 sin(t), y2,4 = sin(0.5¢) sin(¢). The states

Qo1 (o

D oo (%22 + Gax21/ <))

5
g1(v1)
4l 3 -
o 7 LN 1
f 25
0 0.4
2 —
1H 4
of 4
-1 .
—2F |
-3+ .
4 -
-5 Il Il Il Il Il Il Il Il
0 2 4 8 10 12 14 16 18 20
t(sec)
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Fig. 12 Responses of g;(v;) of Example 1
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gl

g2(v2)

3k .
—4+ .
_5 1 1 1 1 1 1 1 1
0 2 4 6 8 12 14 16 18 20
t(sec)
Fig. 13 Responses of g,(v2) of Example 1
of the systems are |xii|=|yi|<ke1 =15, [|x1]=

Fig. 14 Johansson’s quadruple-tank process diagram of Example 2

|y2| <k = 1.5, |X1ﬁ2| <2.0, |x272| <2.0. And by setting
the control parameter 7;; =13, 71, =10, 172 =12,
T2 = 10, kbll = 0.6, kb2l = 0.8, k;,lz = 1.1, k;,zz = 1.4,
ulM:3, MQM:2, 51 :6210.1, :Bl :ﬁzi 1, p:2
The simulation results are shown in Figs. 15, 16, 17 and 18
with the initial conditions of states [x;;(0),x1, (0)]" =
(0.1,0.3]",  [%21(0),x22(0)]" = [0.1,0.1]",  [£11(0), %2
(0)]" = [<0.1,0.1]",  [#2,1(0),%22(0)]" = [~0.1,0]", the
others initial values are chosen as zeros.

Figure 15 shows the response trajectories of control
output y; (state variable x;;) and the desired reference
tracking signal y; 4. Figures 16 and 17 show the trajectories
of the states of the systems and the states estimated,
respectively. It can be seen from these figures that the full
state constraints are not violated. Figures 18 and 19 show
the trajectories of the control input and input saturation.
From these figures, it is guaranteed that the controller
proposed in this paper can make the systems stable and the
constrained states are not violated.
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15 20 25 30

t(sec)

x11 = = = estimate of x11 = = = 15 = == _15

Fig. 16 Responses of x; ;, X;; of Example 2

5 Conclusion
In this paper, observer-based adaptive fuzzy decentralized

control has been proposed for a class uncertain large-scale
nonlinear system with full state constraints, input saturation

@ Springer

and unmeasured states. The fuzzy observers have been
designed to estimate the unmeasurable states. The auxiliary
design functions have been used to replace the input sat-
uration, and the BLFs have been used to constrain the full
state  constraints. Finally, by utilizing adaptive
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T T T T T
| Xx12 = = = estimate of x12 = = = 2 ---—2|-
1 1 1 1 1 ]
5 10 15 20 25 30
t(sec)
Fig. 17 Responses of x;,, x;» of Example 2
9 8 :
v v2
sat(v1) sat(v2)
6L 4
4 4
3 J
2 .
() 0 i
-3} 4 -2 7
—al 4
—6| 4
5 5 10 5 20 25 30 8 ! ! . ¢ .
0 5 10 15 20 25 30
t(sec) t(sec)

Fig. 18 Responses of vy, sat(v;) of Example 2

backstepping design technique and Lyapunov stability
theorem, an observer-based adaptive fuzzy decentralized
control approach has been developed. It has been proved
that all the signals of the closed-loop systems are SGUUB,
the tracking error remains in the bounded compact set, and
the constrained states are not violated. Further research is
needed to design adaptive dynamic surface control for
large-scale nonlinear delay systems with the full state
constraints.

Fig. 19 Responses of v,, sat(v;) of Example 2
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