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Abstract Thus far, many methods have been suggested to

solve the fuzzy linear programming (FLP) problems with

interval type-2 fuzzy numbers (IT2FNs) ambiguous of kind

Vagueness (uncertainty at the satisfaction level of the

objective function and constraints), while studies on

models of the interval type-2 FLP problems with uncer-

tainty of kind Ambiguity in which all or part of the

parameters are ambiguous (all or part of the coefficients in

FLP problem are IT2FNs) are very limited. In this paper,

first, an interval type-2 FLP problem with uncertainty of

kind Ambiguity was considered generally and all the

coefficients in the problem were interval type-2 triangular

fuzzy numbers. Next, a method for solving it based on the

nearest interval approximation was proposed. Finally, the

method was illustrated using some numerical examples.

Keywords Best–worst cases (BWC) � Fuzzy linear

programming (FLP) � Interval linear programming (ILP) �
Interval type-2 fuzzy number (IT2FN) � Membership

function (MF)

1 Introduction

Many real-world problems are modeled as optimization

problems, which are often ambiguous in all or part of their

parameters. These uncertainties can occur in different parts

of the optimization model ambiguous of kinds of Vague-

ness and Ambiguity. The modeling of Vagueness represents

uncertainty at the satisfaction level of the objective func-

tion and constraints and that of Ambiguity represents

uncertainty at the coefficients in the problem.

After expression of the theory of type-1 fuzzy sets in

1965 and type-2 fuzzy sets in 1975 by Zadeh [23, 24],

another kind namely: the interval type-2 fuzzy set, was

defined [14, 18]. The type-2 fuzzy sets are complex, and

computational operations are more difficult than the

interval type-2 fuzzy sets. Also, the interval type-2 fuzzy

sets present more information and uncertainties than the

type-1 fuzzy sets. Hence, the interval type-2 fuzzy sets are

preferable to other types of fuzzy sets for modeling opti-

mization problems.

Thus far, the idea of using the interval type-2 fuzzy sets

in modeling FLP problems has been more considered

[5–12, 17, 25]. For example, Figueroa [11] enhanced the

Zimmermann method [27] to solve the interval type-2 FLP

problem in which right-hand side values in it are presented

by membership functions (MFs). Moreover, he proposed

many different methods for modeling and solving the

interval type-2 FLP problem obscure of kind Vagueness by

displaying uncertainties by the MFs [6–12]. In these works,

the MFs are applied to represent uncertainty at the satis-

faction level of the objective function and constraints.

Also, Golpayegani et al. [12] presented a new way in two

special cases of interval type-2 FLP problem.

Recently, some ranking functions for solving interval

type-2 FLP problem with uncertainty of kind Ambiguity

were introduced [15–17, 19, 20, 25] in which, by replacing

the crisp numbers by the IT2FNs in problem, they are

converted to the linear programming problem. In this

paper, one new technique was proposed to solve a FLP

problem with uncertainty of kind Ambiguity and all the
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coefficients in the problem are interval type-2 triangular

fuzzy numbers.

2 Preliminaries

In this section, some concepts and prerequisites are intro-

duced to express the proposed method. It should be noted

that the symbols defined here are used to describe the

method and solve numerical examples.

Definition 1 A type-1 fuzzy set, A, which is concerning

with a unique variable, x 2 X is a generalization of a crisp

set. It is defined in the source X and characterized by the

MF lAðxÞ that replaces values in the range [0,1]. Such a set

can be showed as:

A ¼ fðx; lAðxÞÞj 8 x 2 Xg;

type-1 MF, lAðxÞ is bound to be among 0 and 1 for all

x 2 X, and is a two-dimensional function [15–17].

Definition 2 A type-1 fuzzy set, A by the MF lAðxÞ,
defined on the set of the real numbers is called a type-1

fuzzy number when, supx2R lAðxÞ ¼ 1, that is, the type-1

fuzzy set A is normal, lAfkx1 þ ð1� kÞx2g� minflAðx1Þ;
lAðx2Þg, for all k 2 ½0; 1�, that is, the set A is convex and

lAðxÞ is a continuous function by intervals [15–17].

Definition 3 The a-cut of a type-1 fuzzy number A is a

set defined as Aa ¼ fx 2 RjlAðxÞ� ag ¼ ½AðaÞ;AðaÞ�;
where AðaÞ ¼ inf fx 2 RjlAðxÞ� ag, AðaÞ ¼ supfx 2
RjlAðxÞ � ag, where inf and sup are the greatest lower

bound and least upper bound, respectively. For example the

a-cut of a type-1 triangular fuzzy number A is shown in

Fig. 1.

Definition 4 The core of a type-1 fuzzy number, A is a set

defined as CoreðAÞ ¼ fx 2 RjlAðxÞ ¼ 1g [13].

Definition 5 A type-2 fuzzy set, ~A, is defined as ~A ¼
fððx; uÞ; l ~Aðx; uÞÞj8x 2 X; 8u 2 Jx � ½0; 1�g, and 0�
l ~Aðx; uÞ� 1, where Jx is the primary membership of

x. When the elements of a type-2 fuzzy set ~A are contin-

uous, ~A can be represented as:

~A ¼
Z
x2X

Z
u2Jx

l ~Aðx; uÞ
ðx; uÞ ¼

Z
x2X

R
u2Jx

l ~Aðx;uÞ
u

� �

x
;

where
R R

denotes the union for all x and u in feasible

region. For discrete spaces,
R

is replaced by
P

[18, 20, 25].

Definition 6 In definition 5, when l ~Aðx; uÞ ¼ 1; 8x 2
X; u 2 Jx � ½0; 1� , ~A is called interval type-2 fuzzy set.

Definition 7 Uncertainty in the primary memberships of

a type-2 fuzzy set ~A consists of a bounded region called the

footprint of uncertainty, that is, FOU=[x2XJx . The foot-

print of uncertainty of ~A is bounded by two MFs: a lower

MF (LMF) l ~A
and an upper MF (UMF) l ~A. Thus, an

interval type-2 fuzzy set is bounded by two type-1 fuzzy

sets. Moreover, the interval type-2 fuzzy set is called the

IT2FN when its UMF and LMF are type-1 fuzzy numbers.

It is noteworthy that ~A has embedded type-1 fuzzy sets (Ae)

as well; therefore, there is an infinite amount of Ae enclosed

into the footprint of uncertainty of ~A [15–20].

Definition 8 The core of the IT2FN ~A ¼ ½A;A� is

Coreð~AÞ ¼ ½minCoreðAÞ;maxCoreðAÞ� when

/ 6¼ CoreðAÞ � CoreðAÞ, where / is the empty set and l ~A

and l ~A are lower and upper MFs of ~A, respectively.

Definition 9 Interval type-2 triangular fuzzy number, ~A is

defined on interval ½�a; â�, its lower MF and upper MF take

the value equal to h 2 ½0; 1� in a and h 2 ½0; 1� in a,

respectively, where �a� �a� a� â� â and �a� a� â. Thus,

the interval type-2 triangular fuzzy number, ~A is notated as

~A ¼ ðA;AÞ ¼
�
ð�a; a; â; hÞ; ð�a; a; â; hÞ

�
and its MFs are:

l ~A
ðxÞ ¼

h
x� �a

a� �a
�a� x� a

h
â� x

â� a
a� x� â

0 x� �a; x� â;

8>>>>>>><
>>>>>>>:

and

l ~AðxÞ ¼

h
x� �a

a� �a
�a� x� a

h
â� x

â� a
a� x� â

0 x� �a; x� â:

8>>>>>>>><
>>>>>>>>:

Fig. 1 The a-cut of a type-1 triangular fuzzy number A
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A graphical representation of the interval type-2 triangular

fuzzy number, ~A defined over a 2 R, its footprint of

uncertainty, Coreð~AÞ and Ae, is shown in Fig. 2 [16, 17].

In the following, the concept of the nearest interval

approximation of the type-1 fuzzy numbers was intro-

duced, that is, a type-1 fuzzy number approximated with a

closed interval. Then, in particular, this concept was used

for a type-1 triangular fuzzy number and the closed interval

was found for it.

One of the applications of every existing defuzzification

methods is to solve single- or multi-objective type-1 and

interval type-2 FLP problems. In the general interval type-2

FLP problems, all coefficients and numbers used are

interval type-2 fuzzy numbers. So far, many methods, such

as ranking or ordering methods and approximation tech-

niques are proposed to solve the FLP problems, and each

method has its own advantages and disadvantages; hence, it

would be a difficult task to decide which one is the best.

Thus, the decision maker should choose the defuzzification

method for any particular problem, each time. In fact, well-

defined methods that are more preferable than many

existing methods are sought. Fuzzy set theory allows one to

effectively model and transform imprecise information.

However, sometimes a given interval type-2 fuzzy set has

to be approximated by a crisp one. If a defuzzification

operator such as ranking or ordering methods which

replaces an interval type-2 fuzzy set by a single number is

used, too many important information are generally lost.

Since an interval approximation is an extension of

approximation as a crisp number and it is more acceptable,

if an interval type-2 fuzzy set is replaced by a closed

interval, less significant information is lost. The distinction

among defuzzification methods is only possible by count-

ing the number of proven well-defined properties for them.

In this paper, the proposed technique is based on the

nearest interval approximation which possesses many

desired properties like continuity, monotonic and linearity

[13].

Suppose A is a type-1 fuzzy number and ½AðaÞ;AðaÞ� is
its a-cut. The closed interval CðAÞ ¼ ½C;C� is the nearest

interval approximation to A, where C ¼
R 1

0
AðaÞda; C ¼R 1

0
AðaÞda [13].

Theorem 1 The nearest interval approximation for the

type-1 triangular fuzzy number A ¼ ð�a; �a; âÞ is �aþ�a
2
; âþ�a

2

� �
.

Proof The MF of the type-1 triangular fuzzy number

A can be described in a following manner:

lAðxÞ ¼

l
A
ðxÞ ¼ x� �a

�a� �a
�a� x\�a

1 x ¼ �a

lAðxÞ ¼
â� x

â� �a
�a\x� â

0 x� �a; x� â

8>>>>>>>>>>>><
>>>>>>>>>>>>:

The set of the a-cuts of a type-1 triangular fuzzy number

A is obtained as ½AðaÞ;AðaÞ� ¼ ½�aþ að�a� �aÞ; âþ að�a�
âÞ�; thus, with the help of the nearest interval approxima-

tion concept for it, the proof can be completed as follows:

CðAÞ ¼
Z 1

0

AðaÞda;
Z 1

0

AðaÞda
� �

¼
Z 1

0

ð�aþ að�a� �aÞÞda;
Z 1

0

ðâþ að�a� âÞÞda
� �

¼ �aþ �a

2
;
âþ �a

2

� �

h

In the general ILP problem, all the parameters (the

objective function, technological coefficients and the

resource values) are closed intervals. Therefore, the ILP

problem can be modeled as follows:

max z ¼ R½cj; cj�xj
s:t: R½aij; aij�xj � ½bi; bi�; i ¼ 1; 2; . . .;m

xj � 0; j ¼ 1; 2; . . .; n;

ð1Þ

where cj; cj; bi; bi; aij and aij are real numbers.

Many methods have been introduced to solve the ILP

problem [1–4, 21, 22, 26]. As a basic method, we introduce

the best–worst cases (BWC) method [21] which solves it

with the conversion of the ILP problem into the two sub-

models, namely the best and the worst sub-models. Infact,

the BWC method was proposed to solve ILP model (1) by

formulating two sub-models as the best sub-model:

maxfzjRaijxj � bi ; 8xj � 0g and the worst sub-model:

maxfzjRaijxj � bi ; 8xj � 0g.

Fig. 2 The interval type-2 triangular fuzzy number ~A ¼ ðA;AÞ
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Theorem 2 The objective function value of any arbitrary

characteristic model of ILP model (1) belongs to the

interval of the objective function values of the BWC method

[21].

Next, an IT2FN becomes an interval number with the

proposed technique based on the nearest interval approxi-

mation, and the interval type-2 FLP problem becomes an

equivalent problem, that is, the ILP problem. Hence, to

solve the interval type-2 FLP problem, the equivalent

problem obtained by the proposed technique was con-

structed and solved, and can easily be solved with BWC

method for ILP problems.

3 The FLP Problem with IT2FNs

In this section, an interval type-2 FLP problem with

uncertainty of kind Ambiguity was first considered which

all the coefficients in it were of interval type-2 triangular

fuzzy numbers. Then, the middle model was introduced

and solved by replacing the Core of the interval type-2

triangular fuzzy numbers instead of themselves in the

problem. Moreover, it was transformed into the FLP

problem with characteristic type-1 fuzzy numbers and with

the help of the nearest interval approximation, it was

converted into the ILP problem. Finally, the optimal

solution and the optimal value were obtained by using the

BWC method twice. In the following, the proposed method

is described step by step in details:

Consider the interval type-2 triangular FLP problem

with uncertainties in right-hand sides of the constraints and

the coefficients of both objective function and constraints

as follows:

max ~z ¼ R~cjxj

s:t: R~aijxj � ~bi; i ¼ 1; 2; . . .;m

xj � 0; j ¼ 1; 2; . . .; n;

ð2Þ

where ~cj, ~bi and ~aij are IT2FNs.

The minimized and maximized point of the Core of the

above interval type-2 triangular fuzzy numbers in problem

2 are equal; thus one middle model is solved as:

max �z ¼ Rcjxj
s:t: Raijxj � bi; i ¼ 1; 2; . . .;m

xj � 0; j ¼ 1; 2; . . .; n;

ð3Þ

by solving linear programming problem 3, �xjopt and �zopt are

obtained. Since an interval type-2 triangular fuzzy number

is composed of the infinite union of the characteristic type-

1 triangular fuzzy numbers, the traditional embedded type-

1 triangular fuzzy numbers are used for all the interval

type-2 triangular fuzzy numbers of problem 2. Therefore, it

is converted into the following characteristic type-1 trian-

gular FLP problem,

max ze ¼ Rcej xj
s:t: Raeijxj � bei ; i ¼ 1; 2; . . .;m

xj � 0; j ¼ 1; 2; . . .; n;

ð4Þ

where cej 2 FOUð~cjÞ, bei 2 FOUð~biÞ and aeij 2 FOUð~aijÞ are
the embedded type-1 triangular fuzzy numbers.

Now, by using the nearest interval approximation of the

type-1 triangular fuzzy numbers of problem 4, it becomes

equivalent to the following ILP problem,

max ze ¼ R½�cej ; ĉej �xj
s:t: R½�aeij; âeij�xj � ½�bei ; b̂ei �; i ¼ 1; 2; . . .;m

xj � 0; j ¼ 1; 2; . . .; n;

ð5Þ

where �cej 2 ½�cej ; �c
e

j �; ĉej 2 ½ĉej ; ĉ
e

j �; �aeij 2 ½�aeij; �a
e

ij�; âeij 2 ½âeij; â
e

ij�;
�bei 2 ½�bei ; �b

e

i �; b̂ei 2 ½b̂ei ; b̂
e

i �.
Also, with Theorem 2, the best and worst sub-models of

the ILP problem 5 are obtained as follows:

max ẑ ¼ Rĉej xj

s:t: R�aeijxj � b̂ei ; i ¼ 1; 2; . . .;m

xj � 0; j ¼ 1; 2; . . .; n;

ð6Þ

and

max �z ¼ R�cej xj

s:t: Râeijxj � �bei ; i ¼ 1; 2; . . .;m

xj � 0; j ¼ 1; 2; . . .; n;

ð7Þ

respectively.

It is clear that the problems 6 and 7 are ILP models.

Hence, their sub-models are obtained by reusing Theo-

rem 2 for them. The best–best and the best–worst models

obtained for 6 are:

1. The best–best model

max ẑ ¼ Rĉ
e

j xj

s:t: R�aeijxj � b̂
e

i ; i ¼ 1; 2; . . .;m

xj � 0; j ¼ 1; 2; . . .; n;

ð8Þ

by solving linear programming problem 8, x̂jopt and

ẑopt are obtained.

2. The best–worst model

max ẑ ¼ Rĉej xj

s:t: R�a
e

ijxj � b̂
e

i ; i ¼ 1; 2; . . .;m

xj � 0; j ¼ 1; 2; . . .; n;

ð9Þ

by solving linear programming problem 9, x̂jopt and ẑopt
are obtained. In addition, the worst-best and the worst-

worst models obtained for 7 are:
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3. The worst-best model

max �z ¼ R�c
e

j xj

s:t: Râeijxj � �b
e

i ; i ¼ 1; 2; . . .;m

xj � 0; j ¼ 1; 2; . . .; n;

ð10Þ

by solving linear programming problem 10, �xjopt and

�zopt are obtained.

4. The worst-worst model

max �z ¼ R�cej xj

s:t: Râ
e

ijxj � �b
e

i ; i ¼ 1; 2; . . .;m

xj � 0; j ¼ 1; 2; . . .; n;

ð11Þ

also, by solving linear programming problem 11, �xjopt and

�zopt are obtained.

Therefore, the interval type-2 triangular fuzzy numbers

~xjopt ¼
�
ð�xjopt; �xjopt; �xjoptÞ; ðx̂jopt; �xjopt; x̂joptÞ

�
and ~zopt ¼�

ð�zopt; �zopt; �zoptÞ; ðẑopt; �zopt; ẑoptÞ
�

are optimal solution and

optimal value for problem 2, respectively.

In recent decades, many ranking methods are defined to

solve FLP problems and all existing coefficients and

numbers in problem are of type-1 fuzzy numbers or

IT2FNs. In these ranking methods for each fuzzy number

in the problem, a crisp number is assigned, and the problem

becomes a crisp problem, which is simply solved, although

much information is lost from the main problem. More-

over, some approximation methods to solve FLP problems

are defined and all existing coefficients and numbers in the

problem are type-1 fuzzy numbers. These approximation

methods are the generalization of ranking methods,

because each type-1 fuzzy number is assigned by a closed

interval and the FLP problem is converted to an ILP

problem. So far, no approximation method for solving the

FLP problems in which each interval type-2 fuzzy number

in the problem is assigned to a closed interval, has been

presented; so, the proposed technique has a new and dif-

ferent nature. Therefore, it can be regarded as a general-

ization of previous modes.

4 Numerical Examples

In this section, two examples are presented for illustration

and checking the efficiency of the proposed method. In the

first example, the FLP problem with interval type-2 sym-

metric triangular fuzzy numbers (which is the simplest

problem of its kind) is considered and then, it is solved

with full details, step by step. In the next example, the

assumption of symmetry was excluded and the new FLP

problem is completely analyzed. Finally, in both examples,

the optimal solution and optimal values are obtained as

interval type-2 triangular fuzzy numbers.

Example 1 Consider the FLP problem with the interval

type-2 symmetric triangular fuzzy numbers as:

max ~z ¼ ~c1x1 þ ~c2x2

s:t: ~a11x1 þ ~a12x2 � ~b1

~a21x1 þ ~a22x2 � ~b2

x1; x2 � 0;

ð12Þ

where

~c1 ¼
�
ð1; 1:5; 2Þ; ð0:5; 1:5; 2:5Þ

�

¼
�
ð�c1; c1; ĉ1Þ; ð�c1; c1; ĉ1Þ

�
;

~c2 ¼
�
ð2; 3; 4Þ; ð1; 3; 5Þ

�

¼
�
ð�c2; c2; ĉ2Þ; ð�c2; c2; ĉ2Þ

�
;

~a11 ¼
�
ð0:5; 1; 1:5Þ; ð0; 1; 2Þ

�

¼
�
ð�a11; a11; â11Þ; ð�a11; a11; â11Þ

�
;

~a12 ¼
�
ð3; 4; 5Þ; ð2; 4; 6Þ

�

¼
�
ð�a12; a12; â12Þ; ð�a12; a12; â12Þ

�
;

~b1 ¼
�
ð9; 11; 13Þ; ð7; 11; 15Þ

�

¼
�
ð�b1; b1; b̂1Þ; ð�b1; b1; b̂1Þ

�

; ~a21 ¼
�
ð3; 4; 5Þ; ð2; 4; 6Þ

�

¼
�
ð�a21; a21; â21Þ; ð�a21; a21; â21Þ

�
;

~a22 ¼
�
ð1:5; 2:5; 3:5Þ; ð0:5; 2:5; 4:5Þ

�

¼
�
ð�a22; a22; â22Þ; ð�a22; a22; â22Þ

�
;

~b2 ¼
�
ð8; 12; 16Þ; ð4; 12; 20Þ

�

¼
�
ð�b2; b2; b̂2Þ; ð�b2; b2; b̂2Þ

�
:

All the IT2FNs in problem 12 were considered as the

characteristic type-1 fuzzy numbers, and with the help of

their nearest interval approximation, problem 12 was

converted into the following ILP problem:
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max ze ¼ �c1 þ �c1
2

;
ĉ1 þ �c1

2

� �
x1 þ

�c2 þ �c2
2

;
ĉ2 þ �c2

2

� �
x2

s:t:
�a11 þ �a11

2
;
â11 þ �a11

2

� �
x1 þ

�a12 þ �a12
2

;
â12 þ �a12

2

� �

x2 �
�b1 þ �b1

2
;
b̂1 þ �b1

2

" #
�a21 þ �a21

2
;
â21 þ �a21

2

� �
x1

þ �a22 þ �a22
2

;
â22 þ �a22

2

� �
x2 �

�b2 þ �b2
2

;
b̂2 þ �b2

2

" #

x1; x2 � 0;

ð13Þ

where ĉj 2 ½ĉj; ĉj�, �aij 2 ½�aij; �aij�, b̂i 2 ½b̂i; b̂i�, �cj 2 ½�cj; �cj�,
âij 2 ½âij; âij�, �bi 2 ½�bi; �bi�.

With Theorem 2, the best sub-model will be:

max ẑ ¼ ĉ1 þ �c1
2

� 	
x1 þ

ĉ2 þ �c2
2

� 	
x2

s:t:
�a11 þ �a11

2

� 	
x1 þ

�a12 þ �a12
2

� 	
x2 �

b̂1 þ �b1
2

�a21 þ �a21
2

� 	
x1 þ

�a22 þ �a22
2

� 	
x2 �

b̂2 þ �b2
2

x1; x2 � 0;

ð14Þ

where ĉj 2 ½ĉj; ĉj�, �aij 2 ½�aij; �aij�, b̂i 2 ½b̂i; b̂i�,
and the worst sub-model is as follows:

max �z ¼ �c1 þ �c1
2

� 	
x1 þ

�c2 þ �c2
2

� 	
x2

s:t:
â11 þ �a11

2

� 	
x1 þ

â12 þ �a12
2

� 	
x2 �

�b1 þ �b1
2

â21 þ �a21
2

� 	
x1 þ

â22 þ �a22
2

� 	
x2 �

�b2 þ �b2
2

x1; x2 � 0;

ð15Þ

where �cj 2 ½�cj; �cj�, âij 2 ½âij; âij�, �bi 2 ½�bi; �bi�.
Since minimized and maximized points of the Core of

the above interval type-2 triangular fuzzy numbers in

problem 12 are equal, one middle model is solved as:

max �z ¼ c1x1 þ c2x2

s:t: a11x1 þ a12x2 � b1

a21x1 þ a22x2 � b2

x1; x2 � 0;

That is,

max �z ¼ 1:5x1 þ 3x2

s:t: x1 þ 4x2 � 11

4x1 þ 2:5x2 � 12

x1; x2 � 0;

ð16Þ

The optimal solution rounded in three decimal places was

obtained as: �x1opt ¼ 1:519; �x2opt ¼ 2:370 and �zopt ¼ 9:389.

It is clear that all of the coefficients in problems 14 and

15 are intervals. Hence, the best and worst models, 14 and

15, are ILP problems. Again, Theorem 2 was applied for

them, and the sub-models of the best and worst models are

obtained as:

1. The best–best model

max ẑ ¼ ĉ1 þ �c1
2

� 	
x1 þ

ĉ2 þ �c2
2

� 	
x2

s:t:
�a11 þ �a11

2

� 	
x1 þ

�a12 þ �a12
2

� 	
x2 �

b̂1 þ �b1
2

�a21 þ �a21
2

� 	
x1 þ

�a22 þ �a22
2

� 	
x2 �

b̂2 þ �b2
2

x1; x2 � 0;

That is,

max ẑ ¼ 2x1 þ 4x2

s:t: 0:5x1 þ 3x2 � 13

3x1 þ 1:5x2 � 16

x1; x2 � 0;

ð17Þ

2. The best–worst model

max ẑ ¼ ĉ1 þ �c1
2

� 	
x1 þ

ĉ2 þ �c2
2

� 	
x2

s:t:
�a11 þ �a11

2

� 	
x1 þ

�a12 þ �a12
2

� 	
x2 �

b̂1 þ �b1
2

�a21 þ �a21
2

� 	
x1 þ

�a22 þ �a22
2

� 	
x2 �

b̂2 þ �b2
2

x1; x2 � 0;

That is,

max ẑ ¼ 1:75x1 þ 3:5x2

s:t: 0:75x1 þ 3:5x2 � 12

3:5x1 þ 2x2 � 14

x1; x2 � 0;

ð18Þ

3. The worst-best model

max �z ¼ �c1 þ �c1
2

� 	
x1 þ

�c2 þ �c2
2

� 	
x2

s:t:
â11 þ �a11

2

� 	
x1 þ

â12 þ �a12
2

� 	
x2 �

�b1 þ �b1
2

â21 þ �a21
2

� 	
x1 þ

â22 þ �a22
2

� 	
x2 �

�b2 þ �b2
2

x1; x2 � 0;

That is,
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max �z ¼ 1:25x1 þ 2:5x2

s:t: 1:25x1 þ 4:5x2 � 10

4:5x1 þ 3x2 � 10

x1; x2 � 0;

ð19Þ

4. The worst-worst model

max �z ¼ �c1 þ �c1
2

� 	
x1 þ

�c2 þ �c2
2

� 	
x2

s:t:
â11 þ �a11

2

� 	
x1 þ

â12 þ �a12
2

� 	
x2 �

�b1 þ �b1
2

â21 þ �a21
2

� 	
x1 þ

â22 þ �a22
2

� 	
x2 �

�b2 þ �b2
2

x1; x2 � 0;

That is,

max �z ¼ x1 þ 2x2

s:t: 1:5x1 þ 5x2 � 9

5x1 þ 3:5x2 � 8

x1; x2 � 0;

ð20Þ

by solving the four above linear programming problem,

their optimal solution and optimal value rounded in three

decimal places are:

x̂1opt ¼ 3:454; x̂2opt ¼ 3:758; ẑopt ¼ 21:939; x̂1opt ¼
2:326; x̂2opt ¼ 2:930; ẑopt ¼ 14:326;

�x1opt ¼ 0:909; �x2opt ¼ 1:970; �zopt ¼ 6:061; �x1opt ¼ 0:430;

�x2opt ¼ 1:671; �zopt ¼ 3:772,

respectively. Therefore, by applying the defined method

in the present paper, optimal solution and optimal value,

rounded in three decimal places, for problem 12 are

obtained as the following interval type-2 triangular fuzzy

numbers:

~x1opt ¼
�
ð0:909; 1:519; 2:326Þ; ð0:430; 1:519; 3:454Þ

�
;

~x2opt ¼
�
ð1:970; 2:370; 2:930Þ; ð1:671; 2:370; 3:758Þ

�
;

~zopt ¼
�
ð6:061; 9:389; 14:326Þ; ð3:772; 9:389; 21:939Þ

�
:

Example 2 Consider the following FLP problem with the

interval type-2 triangular fuzzy numbers:

max ~z ¼ ~c1x1 þ ~c2x2

s:t: ~a11x1 þ ~a12x2 � ~b1

~a21x1 þ ~a22x2 � ~b2

x1; x2 � 0;

ð21Þ

where

~c1 ¼
�
ð0:5; 1:2; 3Þ; ð0:2; 1:2; 3:2Þ

�

¼
�
ð�c1; c1; ĉ1Þ; ð�c1; c1; ĉ1Þ

�
;

~c2 ¼
�
ð1; 3; 4:5Þ; ð0:5; 3; 5Þ

�

¼
�
ð�c2; c2; ĉ2Þ; ð�c2; c2; ĉ2Þ

�
;

~a11 ¼
�
ð0:5; 0:95; 1:6Þ; ð0:45; 0:95; 2Þ

�

¼
�
ð�a11; a11; â11Þ; ð�a11; a11; â11Þ

�
;

~a12 ¼
�
ð1; 3:65; 3:7Þ; ð0:95; 3:65; 3:8Þ

�

¼
�
ð�a12; a12; â12Þ; ð�a12; a12; â12Þ

�
;

~b1 ¼
�
ð2; 3; 6Þ; ð1; 3; 7Þ

�

¼
�
ð�b1; b1; b̂1Þ; ð�b1; b1; b̂1Þ

�
;

~a21 ¼
�
ð0:9; 2:7; 2:9Þ; ð0:7; 2:7; 4Þ

�

¼
�
ð�a21; a21; â21Þ; ð�a21; a21; â21Þ

�
;

~a22 ¼
�
ð0:6; 1:85; 2Þ; ð0:55; 1:85; 2:5Þ

�

¼
�
ð�a22; a22; â22Þ; ð�a22; a22; â22Þ

�
;

~b2 ¼
�
ð1:5; 4:75; 5:75Þ; ð1:25; 4:75; 6Þ

�

¼
�
ð�b2; b2; b̂2Þ; ð�b2; b2; b̂2Þ

�
:

The traditional embedded type-1 triangular fuzzy numbers

were used for all the interval type-2 triangular fuzzy

numbers of problem 21. Thus, problem 21 can be con-

verted into the following characteristic type-1 triangular

FLP problem:

max ze ¼ Rcej xj
s:t: Raeijxj � bei ; i ¼ 1; 2;

xj � 0; j ¼ 1; 2;

ð22Þ

where cej ¼ ð �cej ; �cej ; ĉej Þ, bei ¼ ð �bei ; �bei ; b̂ei Þ and aeij ¼
ð �aeij; �aeij; âeijÞ are the embedded type-1 triangular fuzzy

numbers.

Now, the nearest interval approximation of the above

type-1 fuzzy numbers was applied. Then, problem 21 was

reduced to the following ILP problem:
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max ze ¼ �c1 þ �c1
2

;
ĉ1 þ �c1

2

� �
x1 þ

�c2 þ �c2
2

;
ĉ2 þ �c2

2

� �
x2

s:t:
�a11 þ �a11

2
;
â11 þ �a11

2

� �
x1 þ

�a12 þ �a12
2

;
â12 þ �a12

2

� �
x2

�
�b1 þ �b1

2
;
b̂1 þ �b1

2

" #
�a21 þ �a21

2
;
â21 þ �a21

2

� �
x1

þ �a22 þ �a22
2

;
â22 þ �a22

2

� �
x2 �

�b2 þ �b2
2

;
b̂2 þ �b2

2

" #

x1; x2 � 0;

ð23Þ

where ĉj 2 ½ĉj; ĉj�, �aij 2 ½�aij; �aij�, b̂i 2 ½b̂i; b̂i�, �cj 2 ½�cj; �cj�,
âij 2 ½âij; âij�, �bi 2 ½�bi; �bi�.

With Theorem 2 the best sub-model is as follows:

max ẑ ¼ ĉ1 þ �c1
2

� 	
x1 þ

ĉ2 þ �c2
2

� 	
x2

s:t:
�a11 þ �a11

2

� 	
x1 þ

�a12 þ �a12
2

� 	
x2 �

b̂1 þ �b1
2

�a21 þ �a21
2

� 	
x1 þ

�a22 þ �a22
2

� 	
x2 �

b̂2 þ �b2
2

x1; x2 � 0;

ð24Þ

where ĉj 2 ½ĉj; ĉj�, �aij 2 ½�aij; �aij�, b̂i 2 ½b̂i; b̂i�,
and the worst sub-model is as follows:

max �z ¼ �c1 þ �c1
2

� 	
x1 þ

�c2 þ �c2
2

� 	
x2

s:t:
â11 þ �a11

2

� 	
x1 þ

â12 þ �a12
2

� 	
x2 �

�b1 þ �b1
2

â21 þ �a21
2

� 	
x1 þ

â22 þ �a22
2

� 	
x2 �

�b2 þ �b2
2

x1; x2 � 0;

ð25Þ

where �cj 2 ½�cj; �cj�, âij 2 ½âij; âij�, �bi 2 ½�bi; �bi�.
Since minimized and maximized points of the Core of

the above interval type-2 triangular fuzzy numbers in

problem 21 are equal, one middle model can be solved as:

max �z ¼ 1:2x1 þ 3x2

s:t: 0:95x1 þ 3:65x2 � 3

2:7x1 þ 1:85x2 � 4:75

x1; x2 � 0;

ð26Þ

The optimal solution rounded in three decimal places was

obtained as �x1opt ¼ 1:456; �x2opt ¼ 0:443 and �zopt ¼ 3:076.

Moreover, the best and the worst models, 24 and 25, are

ILP problems. Again, Theorem 2 was applied. Thus, the

sub-models of best and worst models are:

1. The best–best model

max ẑ ¼ 2:2x1 þ 4x2

s:t: 0:7x1 þ 2:3x2 � 5

1:7x1 þ 1:2x2 � 5:375

x1; x2 � 0;

ð27Þ

2. The best–worst model

max ẑ ¼ 2:1x1 þ 3:75x2

s:t: 0:725x1 þ 2:325x2 � 4:5

1:8x1 þ 1:225x2 � 5:25

x1; x2 � 0;

ð28Þ

3. The worst-best model

max �z ¼ 0:85x1 þ 2x2

s:t: 1:275x1 þ 3:675x2 � 2:5

2:8x1 þ 1:925x2 � 3:125

x1; x2 � 0;

ð29Þ

4. The worst-worst model

max �z ¼ 0:7x1 þ 1:75x2

s:t: 1:475x1 þ 3:725x2 � 2

3:35x1 þ 2:175x2 � 3

x1; x2 � 0;

ð30Þ

by solving the above four linear programming problems,

their optimal solution and optimal value, rounded in three

decimal places, are:

x̂1opt ¼ 2:072; x̂2opt ¼ 1:543; ẑopt ¼ 10:732; x̂1opt ¼
2:030; x̂2opt ¼ 1:302; ẑopt ¼ 9:148;

�x1opt ¼ 0:851; �x2opt ¼ 0:385; �zopt ¼ 1:493; �x1opt ¼ 0:405;

�x2opt ¼ 0:377; �zopt ¼ 0:942,

respectively. Therefore, by applying the defined method in

the present paper, optimal solution and optimal value,

rounded in three decimal places, for problem 21 are

obtained as the following interval type-2 triangular fuzzy

numbers:

~x1opt ¼
�
ð0:851; 1:456; 2:030Þ; ð0:405; 1:456; 2:072Þ

�
;

~x2opt ¼
�
ð0:385; 0:443; 1:302Þ; ð0:377; 0:443; 1:543Þ

�
;

~zopt ¼
�
ð1:493; 3:076; 9:148Þ; ð0:942; 3:076; 10:732Þ

�
:

5 Conclusion

In this paper, the FLP problem with interval type-2 trian-

gular fuzzy numbers obscure of kind Ambiguity is con-

sidered, which all coefficients in it are interval type-2

triangular fuzzy numbers. Besides that, the nearest interval
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approximation of the type-1 triangular fuzzy number is

used to solve the FLP problem with interval type-2 trian-

gular fuzzy numbers. Each interval type-2 triangular fuzzy

number is composed of the infinite union of the charac-

teristic type-1 triangular fuzzy numbers. Therefore, with

the help of the nearest interval approximation, each interval

type-2 triangular fuzzy number in the problem is attributed

to an interval, and the FLP problem with interval type-2

triangular fuzzy numbers turns into the ILP problem, in it

all the coefficients are intervals. Then, with the BWC

method, the optimal value and optimal solution are

obtained. Here, an easy and useful way to solve the FLP

problem with interval type-2 triangular fuzzy numbers was

provided. This method can be generalized to the FLP

problem with interval type-2 non triangular fuzzy numbers.

Moreover, by replacing other solving methods of the ILP

problem with the BWC method, the proposed technique in

this paper to solve the FLP problem, can be examined with

IT2FNs obscure of kind Ambiguity, Vagueness and even

both of them. They may be considered as some new

investigation ideas for researchers and enthusiasts of this

topic.
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