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Abstract In many real games, two players’ payoffs are not

exactly opposite and players often have some constraints or

preference on their strategies. Such kinds of games are

called constrained bi-matrix games (CBGs) for short.

Based on dual programming theory, two linear program-

ming models are developed for solving any CBG. Then, a

classic example of bi-matrix games called the Rock-scis-

sors-cloth game with considering players’ preference on

strategies is used to show the validity of the proposed

models and method. Furthermore, we investigate on the

CBGs with payoffs represented by intuitionistic fuzzy

numbers, which are simply called intuitionistic fuzzy

CBGs in which both the ambiguity of the payoffs and the

constraints of the strategies are taken into account. At last,

the effectiveness of the proposed models and method is

demonstrated with a numerical example of the company

development strategy choice problem.

Keywords Intuitionistic fuzzy numbers (IFNs) � Bi-matrix

games (BGs) � Constrained bi-matrix games (CBGs) �
Mathematical programming

1 Introduction

The bi-matrix games (BGs) are an important type of two

person nonzero-sum non-cooperative games. Many

researchers have studied the matrix games [1–4], BGs

[5–7], fuzzy matrix games [8–11], fuzzy BGs, [12–17] and

fuzzy optimization algorithm [18–20]. However, since

some practical limitations such as resources and funds, not

all (mixed) strategies are feasible for players or players

have different preferences on the choice of certain strate-

gies in most real game problems. It means that there are

some restrictions or preferences for players in choosing

strategies. Such kinds of non-cooperative games are called

constrained games which are first introduced by Charnes

[21, 22]. It proved out that constrained matrix games can

get equilibrium solutions by solving a pair of dual linear

programming models. Several papers are devoted to

research the constrained matrix games [23] and fuzzy

constrained matrix games [24, 25]. Different from the lit-

erature [23–25] on the matrix games, we focus on inves-

tigating the BGs. The BGs are remarkably different from

the matrix games since the payoffs of BGs are not zero-

sum. This means players have different objectives and can

define their own payoffs based on their knowledge on the

game and their respective goals. This leads to a great dif-

ference on research mechanism between BGs and the

matrix games. So far as we know, there are only two papers

about the constrained bi-matrix games (CBGs). Fir-

ouzbakht et al. [26] studied the CBGs with only one linear

constraint on strategies of players. By a quadratic pro-

gramming model, the Nash equilibrium solution is

obtained. Meng and Zhan [27] proposed two methods for

BGs with restrictions. But first of all, both methods need to

find all vertices of the strategy sets of two players. This is

often very difficult, especially when there are many

strategies and many constraints on strategies for players.

The method of CBGs proposed in this paper can overcome

aforementioned shortcomings.

In fact, a universal and feasible method to solve CBGs

has not been proposed yet. Additionally, in many real
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games, since information ambiguity and the complexity of

the actual games, players often have some uncertainty in

judging the situations. And players often allow a certain

degree of flexibility on constraints. In this case, using fuzzy

sets [28] to indicate the players’ payoffs in each situation is

more realistic. The fuzzy set uses a single scale which is

called the membership function to represent the degree of

membership to the fuzzy set, while the degree of non-

membership is equal to 1 minus the degree of membership.

Since Zadeh [28] introduced the fuzzy set, several famous

extensions and their fuzzy rules have been developed, such

as intuitionistic fuzzy (IF) sets (IFSs) [15, 16, 29], type-2

fuzzy sets [30], fuzzy multisets [31], interval-valued fuzzy

sets [32], and interval-valued IF sets [32]. Since the IFS

consists of degrees of membership, non-membership, and

indeterminacy by three functions. The uncertain informa-

tion can be expressed more accurately and comprehen-

sively by using IFSs. Therefore, the IFSs have widely

studied and applied. The IF numbers (IFNs) [16] which are

defined on the real number set are special kinds of IFSs.

The IFNs can express more detail on ambiguous concepts

and information than the fuzzy numbers. Then, it seems to

be suitable for using IFNs to express the players’ degrees

of flexibility on situations. Therefore, in this paper, the

CBGs with payoffs expressed by IFNs are also studied.

Such kinds of non-cooperative games are simply called

intuitionistic fuzzy constrained bi-matrix games (IFCBGs).

An effective method is proposed to obtain the equilibrium/

optimal strategies (ESs) and equilibrium values (EVs) of

the IFCBGs.

In summary, the main contributions of this paper have

the following three aspects. (1) Considering that the players

often have some constraints or preference on strategies and

the payoffs of each situation are not exactly opposite, we

investigate the CBGs. (2) Considering that the players

often allow a certain degree of flexibility on constraints and

the players often are not able to evaluate exactly the pay-

offs due to imprecision or lack of available information, we

further study the IFCBGs. (3) We put forward practical and

effective models and methods for the CBGs and IFCBGs.

This paper is organized as follows. Section 2 describes

the CBG problems and gives the definition of the equilib-

rium solution (including ESs and EVs) which can be

obtained by solving our proposed two linear programming

models. Section 3 compares and analyzes the Rock-scis-

sors-cloth game with and without constraints. In Sect. 4,

two IF mathematical programming models are established

to get equilibrium solutions of the IFCBGs. In Sect. 5, we

use an example to verify rationality of the proposed models

and method. Conclusion is given in Sect. 6.

2 Notation of the CBGs and Programming Models

In realistic game problems, players may have preferences

in the choice of strategies. And due to the limitations of the

real environments such as limited resources and insuffi-

cient funds, there are constraints on strategies for players.

Therefore, it is important and necessary to study the BGs

with constraints, i.e., CBGs.

There are players I and II, whose pure strategy sets are

denoted by S1 ¼ fd1; d2; . . .; dmg and

S2 ¼ fr1; r2; . . .; rng, respectively. When player I chooses

any pure strategy di 2 S1 and player II chooses any pure

strategy rj 2 S2, i.e., at the situation ðdi; rjÞ, the payoffs of

the two players are expressed as aij and bij, respectively.

Then, the payoffs of the two players under all situations

can be expressed as matrices A ¼ ðaijÞm�n and

B ¼ ðbijÞm�n, respectively. The vectors of mixed strategies

are denoted as x ¼ ðx1; x2; . . .; xmÞT
and

y ¼ ðy1; y2; . . .; ynÞT
, where xiði ¼ 1; 2; . . .;mÞ and yjðj ¼

1; 2; . . .; nÞ are probabilities for two players choosing their

pure strategies, respectively. And the mixed strategies xi
and yj are affiliated with the sets of strategies (convex

polyhedron) which are determined by some equations and

inequalities. Let X ¼ fxjETx� c; x� 0g be player I’s

strategy constrained set, where c ¼ ðc1; c2; . . .; cpÞT
,

E ¼ ðeilÞm�p, and p is a positive integer. Let Y ¼
fyjFy� d; y� 0g be player II’s strategy constrained set,

where d ¼ ðd1; d2; . . .; dqÞT
, F ¼ ðfkjÞq�n, and q is a posi-

tive integer.

The mixed strategy x should satisfy
Pm

i¼1

xi ¼ 1, which

can be represented by
Pm

i¼1

xi � 1 and �
Pm

i¼1

xi � � 1. Thence,

the system of inequalities ETx� c contains both
Pm

i¼1

xi � 1

and �
Pm

i¼1

xi � � 1. That is, ETx� c contains
Pm

i¼1

xi ¼ 1.

Analogously, the player II’s mixed strategy y should satisfy
Pn

j¼1

yj ¼ 1. And the constraint Fy� d contains
Pn

j¼1

yj ¼ 1.

Without loss of generality, assume that two players,

respectively, choose optimal strategies from the constraint

sets X and Y so as to maximize his/her own payoffs. Then,

the expected payoffs of the two players are U ¼ xTAy ¼

Pm

i¼1

Pn

j¼1

xiaijyj and V ¼ xTBy ¼
Pm

i¼1

Pn

j¼1

xibijyj, respectively.

Players often follow the decision principle of ‘‘taking the

worst case and starting from the best.’’ Therefore, player I

will choose strategy x� 2 X that satisfies
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min
y2Y

x�TAy ¼ max
x2X

min
y2Y

xTAy: ð1Þ

Similarly, player II chooses strategy y� 2 Y that satisfies

min
x2X

xTBy� ¼ max
y2Y

min
x2X

xTBy: ð2Þ

In fact, if B ¼ �A, then the CBGs degenerate to con-

strained matrix games [23–25]. In other words, our pro-

posed method for solving CBGs can also be applied to

solve constrained matrix games.

Definition 1 [17] If ðx�; y�Þ 2 X � Y satisfies the condi-

tions as follows:

x�TAy� ¼ min
y2Y

x�TAy ¼ max
x2X

min
y2Y

xTAy

and

x�TBy� ¼ min
x2X

xTBy� ¼ max
y2Y

min
x2X

xTBy

for any mixed strategies x 2 X and y 2 Y . Then, x� and y�

are called ESs, U� ¼ x�TAy� and V� ¼ x�TBy� are called

EVs of the two players, respectively.

Theorem 1 If ðx�; z�Þ and ðy�; s�Þ are feasible solutions

of the two linear programming models as follows:

max dTz
� �

FTz�ATx

ETx� c

x� 0

z� 0

8
>>><

>>>:

ð3Þ

and

max cTs
� �

Es�By

Fy� d

y� 0

s� 0

8
>>><

>>>:

ð4Þ

respectively. Then, x� and y� are ESs, U� ¼ dTz� ¼
x�TAy� and V� ¼ cTs� ¼ x�TBy� are EVs of players I and

II, respectively.

Proof Assume that the vector x ðx 2 XÞ of mixed

strategies for player I is a given parameter. Then,

min
y2Y

fxTAyg is a function of x, i.e., the optimal solution of

min xTA
� �

y
� �

Fy� d

y� 0

� ð5Þ

is a function of the parameter x 2 X. Based on the dual

programming theory, the dual programming model of

Eq. (5) is

max dTz
� �

FTz�ATx

z� 0

(
ð6Þ

where z ¼ ðz1; z2; . . .; zqÞT
is a vector of the dual variables.

And the objective values of Eqs. (5) and (6) are identical.

Therefore, the ES x� and EV U� of player I are equivalent

to the optimal solution and optimal value of the linear

programming model as follows:

max dTz
� �

FTz�ATx

ETx� c

x� 0

z� 0

8
>>><

>>>:

which is just about Eq. (3).

Analogously, assume that the vector yðy 2 YÞ of mixed

strategies for player II is a given parameter. Then,

min
x2X

fxTAyg is a function of y, i.e., the optimal solution of

minfxTðByÞg

ETx� c

x� 0

(
ð7Þ

is a function of the parameter y 2 Y . The dual program-

ming of Eq. (7) is obtained as follows:

max cTs
� �

Es�By

s� 0

� ð8Þ

where s ¼ ðs1; s2; . . .; spÞT
is a vector of the dual variables.

And the objective values of Eqs. (7) and (8) are identical.

Therefore, the ES y� and EV V� of player II are equivalent

to the optimal solution and optimal value of the linear

programming as follows:

max cTs
� �

Es�By

Fy� d

y� 0

s� 0

8
>>><

>>>:

which is just about Eq. (4). Thus, Theorem 1 has been

proved.

It is proven that any BG has at least one Nash equilib-

rium solution in mixed strategy sense [33]. However, due

to the fact that there are constraints on strategies of players

for CBGs, the feasible domain of the player’s strategies

may be an empty set when the constraints are too strict or

too much. In turn, the CBGs may not have an equilibrium

910 International Journal of Fuzzy Systems, Vol. 21, No. 3, April 2019

123



solution. Thus, we conclude that not all CBG problems

have equilibrium solutions.

In this methodology, we can get the ESs and EVs of

players for the CBGs by two linear programming models.

Compared with the existing method [26, 27], the method

proposed in this section is more effective in terms of

breadth of applications and simplicity of calculation. The

reason is as follows. The method [26] only studied the BGs

with one linear constraint. The authors [27] established a

nonlinear programming model for the CBGs, but they need

to find all vertices of the strategy sets of two players, which

is often a very difficult task.

3 A Numerical Example of the CBGs

In this section, Rock-scissors-cloth game [23] which is one

of the classic BGs is taken as an example to show the

validity of the method proposed in Sect. 2. The payoff

matrices of the two players in the Rock-scissors-cloth game

are as follows:

A ¼
1 2 0

0 1 2

2 0 1

0

@

1

A; B ¼
1 0 2

2 1 0

0 2 1

0

@

1

A

The two players of the Rock-scissors-cloth game with-

out constraints on strategies have only one equilibrium

mixed strategy, i.e., x� ¼ ðx1; x2; x3ÞT ¼ ð1=3; 1=3; 1=3ÞT

and y� ¼ ðy1; y2; y3ÞT ¼ ð1=3; 1=3; 1=3ÞT
. Now suppose

that player I prefers rock. In this case, the Rock-scissors-

cloth game becomes a CBG. Assuming that x1 � 0:5. Then,

the two players’ strategy spaces are given as follows:

X ¼ x1; x2; x3ð ÞTjx1 � 0:5; x1 þ x2 þ x3 ¼ 1; x1 � 0;
n

x2 � 0; x3 � 0g

and

Y ¼ y1; y2; y3ð ÞTjy1 þ y2 þ y3 ¼ 1; y1 � 0; y2 � 0; y3 � 0
n o

According to the proposed method in Sect. 2, Eqs. (3)

and (4) can be rewritten as follows:

maxfz1 � z2g
z1 � z2 � x1 þ 2x3

z1 � z2 � 2x1 þ x2

z1 � z2 � 2x2 þ x3

x1 � 0:5

x1 þ x2 þ x3 ¼ 1

x1; x2; x3; z1; z2 � 0

8
>>>>>>>><

>>>>>>>>:

ð9Þ

and

maxf0:5s1 þ s2 � s3g
s1 þ s2 � s3 � y1 þ 2y3

s2 � s3 � 2y1 þ y2

s2 � s3 � 2y2 þ y3

y1 þ y2 þ y3 ¼ 1

y1; y2; y3; s1; s2; s3 � 0

8
>>>>>><

>>>>>>:

ð10Þ

respectively.

Lingo software is a simple tool for solving linear pro-

gramming problems. Lingo has a built-in language for

building optimized models that can easily express large-

scale problems and uses Lingo’s efficient solver to quickly

solve and analyze results. Lingo software requirements for

computer hardware are inter i486 or higher processor,

16 MB or more memory and enough hard disk free space.

Using the simplex method through Lingo software to

solve Eqs. (9) and (10), we get that the ESs and EVs of the

two players are x� ¼ ð1=2; 1=3; 1=6ÞT
, U� ¼ dTz� ¼ 5=6,

y� ¼ ð1=3; 0; 2=3ÞT
, and V� ¼ cTs� ¼ 7=6, respectively.

This is to say, when player I prefers stone with the prob-

ability being greater than or equal to 0.5, the ESs of the

Rock-scissors-cloth game are that the player I chooses

rock, scissors, and cloth strategies with the probability of

1=2, 1=3, and 1=6, respectively, and the player II chooses

stone, scissors, and cloth strategies with the probability of

1=3, 0, and 2=3, respectively. It is seen that this result is

logically consistent with actual situation.

The solutions obtained by the proposed models and

method for the Rock-scissors-cloth game with preference

(or constraint) are consistent with the solutions [27] get by

a bilinear programming model. However, the method [27]

needs to find all vertices of the convex sets of X and Y . This

is often particularly difficult, especially for complicated

CBGs. Obviously, our proposed models and method of the

CBGs are more simple and effective.

4 IFCBGs

Generally, it is difficult for players to accurately estimate

the payoffs of all situations. Describing the payoffs by real

numbers is not consistent with practical problems. There-

fore, in this section, we study the IFCBGs.

Assume that matrices ~A ¼ ð~aijÞm�n and ~B ¼ ð~bijÞm�n are

payoffs of the two players, where ~aij ¼ \ðaij; aij; �aijÞ;
waij ; uaij [ and ~bij ¼ \ðbij; bij; �bijÞ;wbij ; ubij [ are IFNs.

For easy calculation, assume that all ~aij and ~bij are TIFNs

[34, 35]. Their membership functions and non-membership

functions can be expressed as follows:
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l~aijðxÞ ¼

0 ðx\aijÞ
ðx� aijÞw~aij=ðaij � aijÞ ðaij � x\aijÞ
w~aij ðx ¼ aijÞ
ð�aij � xÞw~aij=ð�aij � aijÞ ðaij\x� �aijÞ
0 ðx[ �aijÞ

8
>>>><

>>>>:

ð11Þ

and

v~aijðxÞ ¼

1 ðx\aijÞ
½aij � xþ u~aijðx� aijÞ�=ðaij � aijÞ ðaij � x\aijÞ
u~aij ðx ¼ aijÞ
½x� aij þ u~aijð�aij � xÞ�=ð�aij � aijÞ ðaij\x� �aijÞ
1 ðx[ �aijÞ;

8
>>>>>><

>>>>>>:

ð12Þ

respectively, where w~aij and u~aij satisfy 0�w~aij � 1,

0� u~aij � 1, and 0�w~aij þ u~aij � 1.

Due to the fact that players often cannot accurately

estimate the payoffs in each situation, the values of the

IFCBGs are not strictly equal to dTz in Eq. (6) and cTs in

Eq. (7). The players may allow some violations on the

constraints FTz ~� ~A
T
x and Es ~� ~By, where symbol ‘‘ ~� ’’

denotes a relaxed version of ‘‘� .’’ There is a double

fuzziness that is fuzzy constraints and fuzzy payoffs.

Therefore, the ESs x�, y�, and EVs U�, V� of the IFCBGs

are equal to the optimal solutions and optimal values of

Eqs. (13) and (14) as follows:

max dTz
� �

FTz� ~A
T
x� IFð1 � tÞ~p

ETx� c

x� 0

z� 0

8
>>>><

>>>>:

ð13Þ

and

max cTs
� �

Es� ~By� IFð1 � tÞ~q
Fy� d

y� 0

s� 0

8
>>><

>>>:

ð14Þ

respectively, where ~p ¼ ð~p1; ~p2; . . .; ~pnÞT
, ~q ¼ ð~q1; ~q2; . . .;

~qmÞT
, and all elements of vectors ~p and ~q are TIFNs that are

approximately equal to zero which express the maximum

violations that the players may permit on constraints. The

parameter tð0� t� 1Þ is a real number. Symbol ‘‘� IF’’ is a

relation for comparison of IFNs.

There are many ranking methods of IFNs [34–38]. In

order to facilitate the application to the actual game

problems, the mean-area ranking method is chosen to deal

with the TIFNs in Eqs. (13) and (14). For any TIFN

~a ¼ \ða; a; �aÞ;wa; ua [ , the mean-area ranking method

[34] is defined as follows:

Skð~aÞ ¼ 2aþ aþ �að Þ kw~a þ ð1 � kÞ 1 � u~að Þ½ �=4 ð15Þ

where k 2 ½0; 1� is a weight. Then, by ranking index Skð~aÞ,
the IF mathematical programming models (13) and (14)

can be converted into the following mathematical

programming:

max dTz
� �

FTz� Sk ~A
� �T

x� IFð1 � tÞSk ~pð Þ
ETx� c

x� 0

z� 0

8
>>>><

>>>>:

ð16Þ

and

max cTs
� �

Es� Sk ~B
� �

y� IFð1 � tÞSk ~qð Þ
Fy� d

y� 0

s� 0

8
>>><

>>>:

ð17Þ

respectively.

For a given kðk 2 ½0; 1�Þ, solving Eqs. (16) and (17), we

can get optimal solutions ðx�ðtÞ; z�ðtÞÞ, ðy�ðtÞ; s�ðtÞÞ, and

optimal values dTz�ðtÞ, cTs�ðtÞ, respectively.

Theorem 2 If ðx�ðtÞ; z�ðtÞÞ and ðy�ðtÞ; s�ðtÞÞ ( k 2 ½0; 1�)
are feasible solutions of Eqs. (16) and (17), respectively,

then x�ðtÞ and y�ðtÞ are ESs, U�ðtÞ ¼ dTz�ðtÞ and V�ðtÞ ¼
cTs�ðtÞ are EVs of the two players for IFCBGs,

respectively.

Proof For the IFCBGs, there are two fuzziness: One is

the violation on the constraints, and the other is the fuzzy

payoffs. Then, based on fuzzy games and Eqs. (3) and (4)

of the CBGs, we can obtain the ESs and EVs of the

IFCBGs by the fuzzy programming models (i.e., Eqs. (13)

and (14)). Next, we use one of the fuzzy optimization

methods to transform the fuzzy optimization model into

Eqs. (13) and (14) through the defuzzification function

such as Eq. (15). Therefore, we can get the ESs and EVs of

the IFCBGs by Eqs. (13) and (14) as described in

Theorem 2.

5 A Numerical Example of the IFCBGs

There are two companies, which are called players I and II,

respectively. For improving the competitiveness of com-

panies, the two players have two strategies: introducing the

senior talent d1 or r1, introducing the advanced equipment

912 International Journal of Fuzzy Systems, Vol. 21, No. 3, April 2019
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d2 or r2. When player I takes pure strategies d1 and d2, she/

he needs to invest 7 million and 5 million dollars,

respectively. Due to lack of funds, the player I can invest

up to 6.5 million dollars. That is to say, the player I has a

constraint condition: 7x1 þ 5x2 � 6:5 when choosing strat-

egy. Similarly, the player II needs to invest 4 million and

6.5 million dollars when she/he takes pure strategies r1 and

r2, respectively. However, due to lack of funds, the player

II can invest up to 5.5 million dollars. Namely, the player II

has a constraint condition: 4y1 þ 6:5y2 � 5:5 when select-

ing strategies. This is a typical IFCBG. According to the

above description of the game, the constrained strategy sets

of the two players are given as follows:

X ¼ xj7x1 þ 5x2 � 6:5; x1 þ x2 ¼ 1; x1 � 0; x2 � 0f g

and

Y ¼ yj4y1 þ 6:5y2 � 5:5; y1 þ y2 ¼ 1; y1 � 0; y2 � 0f g;

respectively. Due to the complexity of the market envi-

ronment and the uncertainty of information, it is difficult

for players to give accurate sales of products under each

situation. Then, TIFNs are suitable for representing the

uncertainty. The payoff matrices of players are given as

follows:

A ¼ \ð5; 6; 8Þ; 0:8; 0:1[ \ð2:5; 4; 6Þ; 0:4; 0:3[
\ð2; 4; 5Þ; 0:5; 0:4[ \ð4; 5:5; 7Þ; 0:6; 0:2[

� �

;

and

B ¼ \ð4; 5:5; 7Þ; 0:7; 0:1[ \ð3; 4; 6Þ; 0:7; 0:2[
\ð2:5; 3:5; 5Þ; 0:5; 0:3[ \ð5; 6; 7Þ; 0:8; 0:1[

� �

where the element \ð5; 6; 8Þ; 0:8; 0:1[ in the matrix A is

the payoffs of player I under situation ðd1; r1Þ. Other ele-

ments in the matrices A and B can make similar

explanations.

According to the situation in the above actual example,

we can get the coefficient matrices and vectors of the

constraints as follows:

E ¼ �7 1 �1

�5 1 �1

� �

; FT ¼ �4 1 �1

�6:5 1 �1

� �

and

c ¼ ð�6:5; 1;�1ÞT; d ¼ ð�5:5; 1;�1ÞT

Let players choose ~p1 ¼ ~p2 ¼ \ð0:19; 0:2; 0:21Þ; 0:6;

0:2[ and ~q1 ¼ ~q2 ¼ \ð0:05; 0:1; 0:15Þ; 0:7; 0:1[ ,

respectively.

According to Eq. (15), the defuzzification payoff

matrices SkðAÞ and SkðBÞ can be obtained as follows:

SkðAÞ ¼
5:625 � 0:625k 2:89 � 1:24k
2:25 � 0:375k 4:4 � 1:1k

� �

;

and

SkðBÞ ¼
4:95 � 1:1k 2:89 � 1:24k

2:538 � 0:725k 5:4 � 0:6k

� �

Then, using Eqs. (16) and (17), we can construct the

linear programming models with two parameters kðk 2
½0; 1�Þ and tðt 2 ½0; 1�Þ as follows:

maxf�5:5z1 þ z2 � z3g
�4z1 þ z2 � z3 � ð5:625 � 0:625kÞx1 � ð2:25 � 0:375kÞx2 �ð0:16 � 0:04kÞð1 � tÞ
�6:5z1 þ z2 � z3 � ð2:89 � 1:24kÞx1 � ð4:4 � 1:1kÞx2 �ð0:16 � 0:04kÞð1 � tÞ
7x1 þ 5x2 � 6:5

x1 þ x2 ¼ 1

x1; x2; z1; z2; z3 � 0

8
>>>>>><

>>>>>>:

ð18Þ

and

maxf�6:5s1 þ s2 � s3g
�7s1 þ s2 � s3 � ð4:95 � 1:1kÞy1 � ð3:4 � 0:425kÞy2 �ð0:09 � 0:02kÞð1 � tÞ
�5s1 þ s2 � s3 � ð2:538 � 0:725kÞy1 � ð5:4 � 0:6kÞy2 � ð0:09 � 0:02kÞð1 � tÞ
4y1 þ 6:5y2 � 5:5

y1 þ y2 ¼ 1

y1; y2; s1; s2; s3 � 0

8
>>>>>><

>>>>>>:

ð19Þ

respectively, where k represents the players’ preference

information about the membership degrees and non-mem-

bership degrees of TIFNs, t denotes the violation degrees

that the players may permit on constraints.

For different values k and t, we can obtain the ESs and

EVs of the two players through solving Eqs. (18) and (19),

depicted as in Tables 1, 2, and 3.

It is easily seen from Table 1 that for the given values

k ¼ 0 and t ¼ 0, the ES and EV of player I are x� ¼
ð0:75; 0:25ÞT

and U� ¼ dTz� ¼ 4:033, respectively. And

the ES and EV of player II are y� ¼ ð0:45; 0:55ÞT
and

V� ¼ cTs� ¼ 4:193, respectively. The results indicate that

for different values k and t, we can obtain different results.

Therefore, it is necessary to consider the parameters.

Table 1 ESs and EVs of players I and II when k ¼ 0

k ¼ 0

t x� U� y� V�

t ¼ 0 ð0:75; 0:25ÞT 4.033 ð0:45; 0:55ÞT 4.193

t ¼ 0:2 ð0:75; 0:25ÞT 4.001 ð0:45; 0:55ÞT 4.175

t ¼ 0:5 ð0:75; 0:25ÞT 3.953 ð0:45; 0:55ÞT 4.148

t ¼ 0:7 ð0:75; 0:25ÞT 3.921 ð0:45; 0:55ÞT 4.13

t ¼ 1 ð0:75; 0:25ÞT 3.873 ð0:45; 0:55ÞT 4.103
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6 Conclusions

We discussed CBGs which are kinds of BGs in which

players have constraints or preferences on strategies. Two

linear programming models for solving such kinds of

CBGs are presented. We also researched IFCBGs. On this

basis, two IF programming models are proposed to solve

the kinds of IFCBGs. And numerical examples are used to

illustrate the effectiveness of the models and method pro-

posed in this paper. The main contributions of this paper

are threefold. Firstly, we researched the BG problems with

constraints. Secondly, we proposed an effective method for

the CBGs. Compared with the existing work, the models

and method proposed in this paper are more effective in

terms of breadth of applications and simplicity of calcu-

lation. Thirdly, our paper is the first one to investigate the

CBGs with IF information and give practicable models and

method for IFCBGs.

Our models and method are direct and effective for the

CBGs and IFCBGs. However, in this paper, the CBGs

consider only linear constraints. In fact, in many realistic

game problems, the players’ constraints on the strategies

may be nonlinear. Then, the models may be more com-

plicated. The convex optimization algorithm may be an

effective method for the BGs with nonlinear constraints. It

will be investigated on our future work. Additionally,

multi-objective CBGs are also an important and a worth-

while research topic.
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