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Abstract This paper focuses on the problem of adaptive

fuzzy control for a class of time-varying state constrained

strict-feedback nonlinear systems with dead-zone. Based

on the arbitrary approximation of fuzzy logic systems

(FLSs), the unknown nonlinear functions in the system are

approximated by FLSs. Time-varying barrier Lyapunov

functions and a fuzzy observer are designed to dispose the

unmeasured time-varying constrained states in the system.

Furthermore, combining with the adaptive backstepping

method and Lyapunov stability theory, it is testified that the

proposed control strategy can ensure system stability and

all the signals in the closed-loop system are semi-global

uniformly ultimately bounded. Finally, the simulation

results are given to demonstrate the effectiveness of the

proposed method.

Keywords Nonlinear systems � Adaptive fuzzy control �
Fuzzy state observer � Time-varying state constraints �
Dead-zone

1 Introduction

In recent years, much attention has been raised in devel-

oped linear and nonlinear control approaches for dealing

with stability and control design of nonlinear systems, such

as adaptive control [1–7], fault-tolerant control [8], optimal

control [9], dynamic surface control [10], iterative learning

control [11]. In partcular, adaptive fuzzy control [12–15]

and adaptive neural network control [16–19] have become

two very popular control methods for nonlinear systems,

from which fuzzy logic systems (FLSs) or neural networks

(NNs) are frequently employed to model unknown non-

linearities of the systems because of the arbitrary approx-

imation of FLSs and NNs. To mention a few, an adaptive

fuzzy control method was presented for the strict-feedback

nonlinear systems in [1]. The optimal adaptive fuzzy

control scheme was designed in [20] for a class of

unknown nonlinear discrete-time systems with dead-zone.

In [16], the problem of adaptive NN output feedback

control was addressed for the nonlinear discrete-time sys-

tems with unknown control directions. The authors in [9]

developed an adaptive fuzzy decentralized optimal control

scheme for a class of nonlinear strict-feedback large-scale

systems. In [21], an adaptive fuzzy tracking control design

problem was addressed for single-input single-output

(SISO) uncertain nonlinear systems in nonstrict-feedback

form. The problem of adaptive NN tracking control for

robotic manipulators with dead-zone was investigated in

[22] . The authors in [17] devised an adaptive NN output

feedback controller for a class of discrete-time nonlinear

systems. In [23], FLS was utilized to estimate an unknown

nonlinear function, and the control problem of uncertain

fractional-order nonlinear systems was addressed. The

authors in [24] presented an adaptive fuzzy backstepping
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decentralized control method for nonlinear large-scale

systems.

On the other hand, the state and output constrained

problems frequently appear in many practical systems

[25–28]. Thus, it’s necessary to design an appropriate

control method to deal with the constrained problems. For

example, the authors in [29] first introduced the BLFs for a

nonlinear strict-feedback system with output constraints.

By utilizing BLFs techniques, the authors in [30] presented

an extremum-seeking control scheme for the constrained

states. The control problem of nonlinear systems with

partial state constraints was addressed by using BLFs in

[31]. An adaptive NN tracking control strategy was con-

structed in [27] to deal with state constraints in a strict-

feedback nonlinear system with Nussbaum gain. For non-

linear pure-feedback systems with the full state constraints,

an adaptive control scheme was developed in [32]. Par-

ticularly, the time-varying state constraints are more

complicated and common than aforementioned constants

constraints. Tee et al. in [28] introuduced an asymmetric

time-varying barrier Lyapunov function (TVBLF), which

is utilized in the process of controller design for strict-

feedback nonlinear systems. By utilizing NNs and TVBLF

technique in [33], an adaptive NN control problem was

handled for uncertain time-varying state constrained

robotics systems. The tracking control problem in [34] was

addressed for a class of nonlinear multi-input multi-output

(MIMO) unknown time-varying delay systems with full

state constraints.

In many control systems, only partial information of the

states is available and some of them can be unmeasured

directly, which requires us to design a state observer to

estimate these unmeasured states. Initially, under the con-

dition of using H1 control technique and Takagi–Sugeno

(T–S) fuzzy model, many researchers have dedicated much

effort to develop the observer-based adaptive fuzzy control

methods for uncertain nonlinear systems subject to

unmeasured state variables. Then, the control method had

been further developed and widely used to stabilize non-

linear systems, like T–S fuzzy systems [35–37] , discrete-

time fuzzy systems [38] and nonlinear systems in diverse

forms [39–42] . Some main results are listed below. In [38],

recent results on multi-instant observer design for discrete-

time T–S fuzzy systems were generalized by designing a

ranking-based switching approach. In [43], the problem of

adaptive fuzzy control was disposed by designing an

observer for uncertain nonlinear systems with unmodeled

dynamics. In [40], an adaptive fuzzy output feedback

control scheme was developed by utilizing a fuzzy filter

state observer for SISO strict-feedback nonlinear systems,

unknown dead-zone and unmeasured states were consid-

ered in the system. The authors in [44] dealt with the

problem of observer design for T–S fuzzy models and

studied continuous-time and discrete-time two cases

simultaneously. An adaptive robust fuzzy output feedback

controller was developed for nonlinear strict-feedback

SISO systems with unknown dead-zone and the dynamics

uncertainties in [45]. Wang et al. in [41] proposed an

adaptive fuzzy control design method for nonlinear non-

strict-feedback system with input delay. In [46], the fault-

tolerant control problem was addressed for a stochastic

nonstrict-feedback nonlinear system with input quantiza-

tion and unmeasured states. A valid data-based NCC

(VDNCC) algorithm is proposed in [47] for eliminating the

effect of the void area. In [48], the problem of a nonlinear

switched T–S fuzzy system with actuator saturation and

time delay was handled by proposing a state observer-

based output feedback controller. However, how to inte-

grate an observer and the TVBLF into the designing pro-

cess simultaneously to achieve the desired system

performance is still an interesting yet challenging problem,

which motivates this paper.

On the basis of the aforementioned descriptions, this

paper proposes an observer-based adaptive fuzzy control

method for a class of time-varying state constrained strict-

feedback nonlinear systems with dead-zone. The main

contributions of this paper are summarized as follows: (1)

A fuzzy state observer is constructed to counteract the

effect of unmeasurable states. Then, an observer-based

fuzzy controller is designed to guarantee the stability of

closed-loop system. (2) The TVBLF is introduced to

restrict all state variables to the specified time-varying

regions and ensures all the signals in the system are

bounded. (3) Dead-zone input, which frequently appears in

the practical systems and leads to undesirable effect, is

handled in the design process. Finally, some stimulation

results are provided to indicate the effectiveness of the

proposed control scheme.

Notation For the readability, the following notations will

be used throughout this paper. Rn represents the real n-

dimensional space, kmax Qð Þ and kmin Qð Þ are the largest and
smallest eigenvalues of positive-definite matrix Q,

respectively. j � j denotes the absolute value for a scalar.

jj � jj denotes the 2-norm for a matrix or a vector. AT stands

for the transpose of Hurwitz matrix A.

The remainder of this paper is organized as follows.

Section 2 presents system description and preliminaries.

An adaptive fuzzy observer is designed in Sect. 3. In

Sect. 4, the main results are provided. The simulation

results are given in Sect. 5 to depict the effectiveness of the

proposed control strategy. Finally, Sect. 6 concludes this

paper.
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2 System Description and Preliminaries

Consider the following SISO strict-feedback nonlinear

system:

_xi ¼ xiþ1 þ fi Xið Þ þ di; i ¼ 1; 2; . . .; n� 1;

_xn ¼ uþ fn Xð Þ þ dn

y ¼ x1

8
><

>:
ð1Þ

where X ¼ x1; . . .; xn½ �T2 Rn is the state vector, y 2 R is the

system output. fi Xið Þ i ¼ 1; 2; . . .; nð Þ are the unknown

nonlinear smooth functions, di ði ¼ 1; 2; . . .; nÞ are external
disturbances of the system bounded by jdi tð Þj � d�i ði ¼
1; . . .; nÞ; where d�i are positive constants. Let Xi ¼
x1. . .xi½ �T and assume that xi i� 2ð Þ are unmeasured. The

states in this study are constrained in predefined compact

sets, i.e., jxi tð Þj\kci tð Þ; 8t� 0; where kci tð Þ i ¼ 1; 2; . . .; nð Þ
are positive-valued time-varying constraints. u tð Þ ¼
D v tð Þð Þ is the system dead-zone input, which can be

written as

u tð Þ ¼ D v tð Þð Þ ¼
hr v tð Þ � mr½ �; v tð Þ�mr

0; � ml\v tð Þ\mr

hl v tð Þ þ ml½ �; v tð Þ� � ml

8
><

>:

ð2Þ

where hr and hl are right and left slopes, hr ¼ hl ¼ h.

mr [ 0 and ml [ 0 are the break points, respectively. Then,

the dead-zone model (2) can be represented as

D v tð Þð Þ ¼ hv tð Þ þ m tð Þ ð3Þ

where

m tð Þ ¼
�hmr; v tð Þ�mr

�hv tð Þ; � ml\v tð Þ\mr

hml; v tð Þ� � ml

8
><

>:

and it’s obvious that m tð Þj j � �m ¼ max hmr; hmlf g.

Remark 1 It should be mentioned that many practical

systems can be transformed or expressed as the model (1),

such as hydraulic servo-system [49], the robotics system

[33] and crane system [50].

Rewriting (1) in state space form as

_X ¼ AX þ Kyþ
Xn

i¼1

Bi fi Xið Þ þ di½ � þ Bu ð4Þ

where

A ¼
�k1

..

.
I

�kn 0 . . . 0

2

6
6
4

3

7
7
5;K ¼

k1

..

.

kn

2

6
6
4

3

7
7
5;

B ¼
0

..

.

1

2

6
4

3

7
5;Bi ¼ 0 . . . 1 . . . 0½ �T

and A is a strict Hurwitz matrix. Then, there exists a pos-

itive-definite matrix satisfying

ATPþ PA ¼ �2Q ð5Þ

FLS [51] in this study will be applied to approximate the

unknown smooth functions, and it is described as follows.

Rl: If x1 is Fl
1, x2 is Fl

2; . . .; xn is Fl
n, then y is Gl, l ¼

1; 2; . . .;N; where x ¼ x1; . . .; xn½ �T2 Rn represents the

input of the system, y denotes the output of the system. Fl
i

and Gl stand for fuzzy sets in R. The number of fuzzy rules

is N.

According to [51], the FLS can be described as

y xð Þ ¼
PN

l¼1 �yl
Qn

i¼1 lFl
i
xið Þ

PN
l¼1

Qn
i¼1 lFl

i
xið Þ

h i ð6Þ

where �yl ¼ maxy2R lGl yð Þ denotes the point which makes

membership function lGl yð Þ achieve its maximum value

and suppose lGl yð Þ ¼ 1. The fuzzy basis functions are

nl ¼
Qn

i¼1 lFl
i
xið Þ

PN
l¼1

Qn
i¼1 lFl

i
xið Þ

h i

Then, the FLS (6) can be rewritten as

y xð Þ ¼ UTn xð Þ ð7Þ

where UT ¼ �y1; . . .; �yNð Þ ¼ U1; . . .;UNð Þ and n xð Þ ¼
n1 xð Þ;½ . . .; nN xð Þ�T:
The control goal of this paper is to design an adaptive

fuzzy controller and parameter adaptive functions such that

all the signals in the closed-loop system are semi-global

uniformly ultimately bounded (SGUUB), the tracking error

of the system can reach a small enough neighborhood of

zero concurrently and the state constraints are never

violated.

The following lemmas and assumptions are needed in

this paper.

Lemma 1 [52] There exists a continuous function F xð Þ
defined on compact set X. Then, for any positive constant e,
a FLS (7) is designed such that

sup
x2X

jF xð Þ � UTn xð Þj � e ð8Þ
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Based on Lemma 1, the unknown nonlinear smooth func-

tions in (1) can be approximated by the following FLS as

fi Xijhið Þ ¼ hTi ui Xið Þ; 1� i� n ð9Þ

Denote X̂i ¼ x̂1; x̂2; . . .x̂nð ÞT as the estimation of

Xi ¼ x1;x2; . . .xn
� �T

, then one has

f̂ i X̂ijhi
� �

¼ hTi ui X̂i

� �
; 1� i� n ð10Þ

Define the optimal parameter vector h�i as

h�i ¼ arg min
hi2Wi

sup
Xi2Hi1; X̂i2Hi2

jf̂ i X̂ijhi
� �

� fi Xið Þj
" #

ð11Þ

where Wi, Hi1 and Hi2 are compact sets for hi, Xi and X̂i,

respectively. Let ei and di be the minimum fuzzy approx-

imation error and fuzzy approximation error, respectively.

The expressions are as follows:

ei ¼ fi Xið Þ � f̂ i X̂ijh�i
� �

; di ¼ fi Xið Þ � f̂ i X̂ijhi
� �

Lemma 2 [33] For the existing bounded smooth function

kbðtÞ, if z tð Þ satisfies jz tð Þj\kbðtÞ, the inequality

log
k2
b

k2
b
�z2

� �
\ z2

k2
b
�z2

can be proved.

Assumption 1 [1] There are unknown positive constants

e�i and d�i ði ¼ 1; 2; . . .; nÞ, such that jjeijj � e�i , jjdijj � d�i .

Denote xi ¼ ei þ di and d
0

i ¼ di þ di: Furthermore,

jxij �x�
i and jd0

ij � d
0�
i hold.

Assumption 2 [28] yrðtÞ and its jth derivatives y
ðjÞ
r ðtÞ

j ¼ 1; . . .; nð Þ are assumed to satisfy jyðjÞr ðtÞj �Bj,

y
r
\yrðtÞ� �yr � kc1 tð Þ, where y

r
; �yr;B0, B1; . . .;Bn are

positive constants and y
r
�B0\kc1 tð Þ, �yr �B0\kc1 tð Þ.

Assumption 3 [31] There are constants Kci [ 0

i ¼ 0; 1; . . .; nð Þ such that the time-varying constraint kc1 tð Þ
and its time derivatives satisfy 0\kc1 tð Þ�Kc0 and

jk jð Þ
c1 tð Þj �Kcj ðj ¼ 1; . . .; nÞ, 8t� 0.

3 Fuzzy State Observer Design

Considering that system states x2; . . .; xn cannot be mea-

sured, a state observer should be designed to estimate the

unmeasured states. A nonlinear fuzzy state observer is

designed for (1) as

_̂x1 ¼ x̂2 þ f̂ 1 X̂1jh1
� �

� k1 x1 � x̂1ð Þ
_̂xi ¼ x̂iþ1 þ f̂ i X̂ijhi

� �
� ki x1 � x̂1ð Þ

..

.

_̂xn ¼ uþ f̂ n X̂njhn
� �

� kn x1 � x̂1ð Þ

8
>>>>><

>>>>>:

ð12Þ

Transform (12) into state space form as

_̂
X ¼ AX̂ þ Kyþ

Xn

i¼1

Bi f̂ i X̂ijhi
� �� �

þ Bu

ŷ ¼ CX̂

ð13Þ

where C ¼ 1. . .0. . .0½ �.
Define e ¼ X � X̂ as the observer error, where

X ¼ ½x1; x2; . . .; xn�T, X̂ ¼ ½x̂1; x̂2; . . .; x̂n�. From (4) and

(13), the observer errors equation can be obtained as

_e ¼ Aeþ
Xn

i¼1

Bi fi Xið Þ � f̂ i X̂ijhi
� �

þ di
� �

¼ Aeþ d

ð14Þ

where e ¼ e1; . . .; en½ �T, d ¼ d
0

1; . . .; d
0

n

h iT
.

4 Controller Design and Stability Analysis

4.1 Controller Design

For the design of the controller, we adopt the backstepping

method and divide the design procedure into n steps.

Firstly, take the following coordinate transformation

zi ¼ x̂i � ai�1; i ¼ 2; . . .; n ð15Þ

where ai�1 is an intermediate control signal, v tð Þ is the

actual controller. The detailed structural steps are emerged

in the following contents.

Step 1 Define the tracking error as

z1 ¼ y� yr ð16Þ

Based on x2 ¼ x̂2 þ e2 and z2 ¼ x̂2 � a1, we obtain

_z1 ¼ _x1 � _yr

¼z2 þ a1 þ e2 þ hT1u1 X̂1

� �
þ ~h

T

1u1 X̂1

� �
þ x1 � _yr

ð17Þ

where ~h1 ¼ h�1 � h1.
Choose the following TVBLF as

V1 ¼
1

2
eTPeþ 1

2
log

k2b1 tð Þ
k2b1 tð Þ � z21 tð Þ þ

1

2c1
~h
T

1
~h1 ð18Þ

where c1 [ 0 is a design constant. Note that a TVBLF is

integrated into the designed Lyapunov function. From (18),

V1 is continuous in the set Xz1 ¼ fz1 : jz1j\kb1ðtÞg. In this
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paper, the states are confined to the specified regions. In the

subsequent design steps, the same technique is adopted to

ensure the time-varying state constraints can be satisfied.

From (12), (14) and (17), differentiating V1 yields

_V1 ¼
1

2
_eTPeþ 1

2
eTP _eþ z1 tð Þ

k2b1 tð Þ � z21 tð Þ _z1

� 1

c1
~h
T

1
_h� z21 tð Þ _kb1 tð Þ

kb1 tð Þ k2b1 tð Þ � z21 tð Þ
� �

¼� eTQeþ eTPdþ z1 tð Þ
k2b1 tð Þ � z21 tð Þ z2 tð Þ þ e2½ �

þ z1 tð Þ
k2b1 tð Þ � z21 tð Þ a1 þ hT1u1 X̂1

� �
� _yr

� �

þ 1

c1
~h
T

1 c1
z1 tð Þ

k2b1 tð Þ � z21 tð Þu1 X̂1

� �
� _h1

� 	

þ z1 tð Þx1

k2b1 tð Þ � z21 tð Þ �
z21 tð Þ _kb1 tð Þ

kb1 tð Þ k2b1 tð Þ � z21 tð Þ
� �

ð19Þ

Design the intermediate control signal a1 and the adaptive

function _h1 as

a1 ¼� c1z1 � hT1u1 X̂1

� �
þ _yr þ

z1 tð Þ _kb1 tð Þ
kb1 tð Þ

� 3

2

z1 tð Þ
k2b1 tð Þ � z21 tð Þ

ð20Þ

_h1 ¼c1
z1 tð Þ

k2b1 tð Þ � z21 tð Þu1 X̂1

� �
� r1h1 ð21Þ

Using (20) and (20), (19) can be rewritten as

_V1 ¼� eTQeþ eTPd� c1
z21 tð Þ

k2b1 tð Þ � z21 tð Þ

þ z1 tð Þ
k2b1 tð Þ � z21 tð Þ z2 tð Þ þ e2½ � þ r1

c1
~h
T

1h1

þ z1 tð Þx1

k2b1 tð Þ � z21 tð Þ �
3

2

z21 tð Þ
k2b1 tð Þ � z21 tð Þ
� �2

ð22Þ

Based on Young’s inequality, one can obtain

eTPdþ z1 tð Þe2
k2b1 tð Þ � z21 tð Þ �

1

2

z21 tð Þ
k2b1 tð Þ � z21 tð Þ
� �2

þ jjejj2 þ 1

2
jjPdjj2

ð23Þ

z1 tð Þ
k2b1 tð Þ � z21 tð Þ z2 tð Þ þ x1½ � � z21 tð Þ

k2b1 tð Þ � z21 tð Þ
� �2

þ 1

2
x�2

1 þ 1

2
z22 tð Þ

ð24Þ

r
c1

~h
T

1h1 � � r1
2c1

jj~h1jj2 þ
r1
2c1

jjh�1jj
2 ð25Þ

Substituting (23), (24) and (25) into (22), (22 ) becomes

_V1 � � kmin Qð Þ � 1ð Þjjejj2 � c1
z21 tð Þ

k2b1 tð Þ � z21 tð Þ

þ r1
2c1

jjh�1jj
2 þ 1

2
jjPdjj2 � r1

2c1
jj~h1jj2

þ 1

2
z22 tð Þ þ 1

2
x�2

1

ð26Þ

Step i 2� i� n� 1ð Þ: Define the error variable zi ¼ x̂i �
ai�1 and based on (12), one has

_zi ¼ _̂xi � _ai�1

¼x̂iþ1 þ Hi þ ~h
T

i ui X̂i

� �
þ xi � d

0

i

� oai�1

oy
e2 �

oai�1

oy
d

0

1

ð27Þ

where Hi ¼ �kie1 þ hTi ui X̂i

� �
� oai�1

okbi
_kbi � oai�1

o _kbi
€kbi �

Pi�1
k¼1

oai�1

ohk
_hk �

Pi
k¼1

oai�1

oy
k�1ð Þ
r

y kð Þ
r �

Pi�1
k¼1

oai�1

ox̂k
_̂xk � oai�1

oy
x̂2þ½

hT1u1 X̂1

� �
�.

Choose the following TVBLF as

Vi ¼
1

2
log

k2bi tð Þ
k2bi tð Þ � z2i tð Þ þ

1

2ci
~h
T

i
~hi ð28Þ

where ci [ 0 is a design constant.

From (15) and (27), differentiating Vi yields

_Vi ¼
zi tð Þ

k2bi tð Þ � z2i tð Þ _zi tð Þ �
z2i tð Þ _kbi tð Þ

kbi tð Þ k2bi tð Þ � z2i tð Þ
� �

� 1

ci
~h
T

i
_hi

¼ zi tð Þ
k2bi tð Þ � z2i tð Þ ziþ1 þ ai þ Hi þ xi � d

0

i

h

� oai�1

oy
d

0

1 þ e2

� �	

� z2i tð Þ _kbi tð Þ
kbi tð Þ k2bi tð Þ � z2i tð Þ

� �

þ 1

ci
~h
T

i ci
zi tð Þ

k2bi tð Þ � z2i tð Þui X̂i

� �
� _hi

� 	

ð29Þ

Construct the intermediate control signal ai and the adap-

tive function _hi as

ai ¼ � cizi � Hi �
1

2
zi tð Þ k2bi tð Þ � z2i tð Þ

� �

� 3

2

zi tð Þ
k2bi tð Þ � z2i tð Þ þ

zi tð Þ _kbi tð Þ
kbi tð Þ

� oai�1

oy


 �2
zi tð Þ

k2bi tð Þ � z2i tð Þ

ð30Þ

_hi ¼ ci
zi tð Þ

k2bi tð Þ � z2i tð Þui X̂i

� �
� rihi ð31Þ

Using (30) and (31), (29) can be rewritten as
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_Vi ¼� ci
z2i tð Þ

k2bi tð Þ � z2i tð Þ �
1

2
z2i tð Þ þ zi tð Þziþ1 tð Þ

k2bi tð Þ � z2i tð Þ

þ zi tð Þxi

k2bi tð Þ � z2i tð Þ �
zi tð Þ

k2bi tð Þ � z2i tð Þ
oai�1

oy
d

0

1

� zi tð Þd
0

i

k2bi tð Þ � z2i tð Þ �
zi tð Þ

k2bi tð Þ � z2i tð Þ
oai�1

oy
e2

� oai�1

oy


 �2
z2i tð Þ

k2bi tð Þ � z2i tð Þ
� �2

� 3

2

z2i tð Þ
k2bi tð Þ � z2i tð Þ
� �2 þ

ri
ci
~h
T

i hi

ð32Þ

Similar to (23)–(25) in Step 1, one can obtain

� zi tð Þ
k2bi tð Þ � z2i tð Þ d

0

i þ
oai�1

oy
e2 þ

oai�1

oy
d

0

1


 �

� 1

2

z2i tð Þ
k2bi tð Þ � z2i tð Þ
� �2 þ jjejj2 þ 1

2
d

0�2
1 þ 1

2
d

0�2
i

þ oai�1

oy


 �2
z2i tð Þ

k2bi tð Þ � z2i tð Þ
� �2

ð33Þ

zi tð Þziþ1 tð Þ
k2bi tð Þ � z2i tð Þ þ

zi tð Þxi

k2bi tð Þ � z2i tð Þ

� 1

2
z2iþ1 tð Þ þ 1

2
x�2

i þ z2i tð Þ
k2bi tð Þ � z2i tð Þ
� �2

ð34Þ

ri
ci

~h
T

i hi � � ri
2ci

jj~hijj2 þ
ri
2ci

jjh�i jj
2 ð35Þ

Substituting (33), (34) and (35) into (32), one has

_Vi � � ci
z2i tð Þ

k2bi tð Þ � z2i tð Þ �
1

2
z2i tð Þ þ 1

2
z2iþ1 tð Þ

þ 1

2
x�2

i þ jjejj2 þ 1

2
d

0�2
1 þ 1

2
d

0�2
i

� ri
2ci

jj~hijj2 þ
ri
2ci

jjh�i jj
2

ð36Þ

Step n Define the error variable zn ¼ x̂n � an�1 and based

on (12), one has

_zn ¼ _̂xn � _an�1

¼ hv tð Þ þ m tð Þ þ Hn þ ~h
T

nun X̂n

� �
þ xn

� d
0

n �
oan�1

oy
e2 �

oan�1

oy
d

0

1

ð37Þ

where Hn ¼ �kne1 þ hTnun X̂n

� �
� oai�1

okbn
_kbn � oai�1

o _kbi
€kbn �

Pn�1
k¼1

oan�1

ox̂k
_̂xk �

Pn�1
k¼1

oan�1

ohk
_hk �

Pn
k¼1

oan�1

oy
k�1ð Þ
r

y kð Þ
r � oan�1

oy
x̂2þ½

hT1u1 X̂1

� �
�.

Choose the following TVBLF as

Vn ¼
1

2
log

k2bn tð Þ
k2bn tð Þ � z2n tð Þ þ

1

2cn
~h
T

n
~hn ð38Þ

where cn [ 0 is a design constant.

Combining (15) with (37), differentiating Vn yields

_Vn ¼
zn tð Þ

k2bn tð Þ � z2n tð Þ _zn tð Þ � z2n tð Þ _kbn tð Þ
kbn tð Þ k2bn tð Þ � z2n tð Þ

� �

� 1

cn
~h
T

n
_hn

¼ zn tð Þ
k2bn tð Þ � z2n tð Þ hv tð Þ þ m tð Þ þ xn � d

0

n

h

þHn �
oan�1

oy
e2 þ d

0

1

� �
� zn tð Þ _kbn tð Þ

kbn tð Þ

	

þ 1

cn
~h
T

n cn
zn tð Þ

k2bn tð Þ � z2n tð Þun X̂n

� �
� _hn

� 	

ð39Þ

Establish the actual controller v and the adaptive function
_hn as

v ¼ 1

h
�cnzn � mðtÞ � 1

2
zn tð Þ k2bn tð Þ � z2n tð Þ

� �
�

�Hn �
zn tð Þ

k2bn tð Þ � z2n tð Þ þ
zn tð Þ _kbn tð Þ
kbn tð Þ

� oan�1

oy


 �2
zn tð Þ

k2bn tð Þ � z2n tð Þ

#

ð40Þ

_hn ¼ cn
zn tð Þ

k2bn tð Þ � z2n tð Þun X̂n

� �
� rnhn ð41Þ

On the basis of (40) and (41), (39) can be rewritten as

_Vn ¼� cn
z2n tð Þ

k2bn tð Þ � z2n tð Þ �
1

2
z2n tð Þ þ zn tð Þxn

k2bn tð Þ � z2n tð Þ

� zn tð Þd0

n

k2bn tð Þ � z2n tð Þ �
zn tð Þ

k2bn tð Þ � z2n tð Þ
oan�1

oy
e2

� z2n tð Þ
k2bn tð Þ � z2n tð Þ
� �2 �

zn tð Þ
k2bn tð Þ � z2n tð Þ

oan�1

oy
d

0

1

þ rn
cn

~h
T

nhn �
oan�1

oy


 �2
z2n tð Þ

k2bn tð Þ � z2n tð Þ
� �2

ð42Þ

Similar to (33)–(35) in the above steps, one can obtain

� zn tð Þ
k2bn tð Þ � z2n tð Þ d

0

n þ
oan�1

oy
e2 þ

oan�1

oy
d

0

1


 �

� 1

2

z2n tð Þ
k2bn tð Þ � z2n tð Þ
� �2 þ jjejj2 þ 1

2
d

0�2
1 þ 1

2
d

0�2
n

þ oan�1

oy


 �2
z2n tð Þ

k2bn tð Þ � z2n tð Þ
� �2

ð43Þ

zn tð Þxn

k2bn tð Þ � z2n tð Þ �
1

2
x�2

n þ 1

2

z2n tð Þ
k2bn tð Þ � z2n tð Þ
� �2 ð44Þ
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rn
cn

~h
T

nhn � � rn
2cn

jj~hnjj2 þ
rn
2cn

jjh�njj
2 ð45Þ

Substituting (43), (44) and (45) into (42) yields

_Vn � � cn
z2n tð Þ

k2bn tð Þ � z2n tð Þ �
1

2
z2n tð Þ þ 1

2
x�2

n þ jjejj2

þ 1

2
d

0�2
1 þ 1

2
d

0�2
n � rn

2cn
jj~hnjj2 þ

rn
2cn

jjh�njj
2

ð46Þ

Choose the whole Lyapunov function candidate as

V ¼
Xn

j¼1

Vj ð47Þ

From (26), (36), (46) and Lemma 2, we can get

_V � � kmin Qð Þ � nð Þjjejj2 �
Xn

j¼1

cj log
k2bj tð Þ

k2bj tð Þ � z2j tð Þ

�
Xn

j¼1

r
2cj

jj~hjjj2 þ
Xn

j¼1

rj
2cj

jjh�j jj
2jj þ

Xn

j¼1

1

2
jjx�2

j

þ
Xn

j¼2

1

2
d

0�2
j þ 1

2
jjPdjj2 þ n� 1ð Þ

2
d

0�2
1

ð48Þ

Thus, the following inequality can be obtained as

_V � � aV þ b ð49Þ

where

a ¼minf2 kmin Qð Þ � nð Þ=kmin Pð Þ; 2ci; rig;

b ¼
Xn

j¼1

r
2cj

jjh�j jj
2 þ

Xn

j¼1

1

2
jjx�2

j jj þ
Xn

j¼2

1

2
d

02
j

þ 1

2
jjPdjj2 þ n� 1ð Þ

2
d

0�2
1 :

4.2 Stability Analysis

Theorem 1 For the nonlinear system (1) with time-

varying state constraints and dead-zone, if its initial con-

dition satisfies xi 0ð Þ functions (20), (31) and (41), the

proposed control approach can ensure that the tracking

error to be small enough, the full state constraints don’t

violate the predefined limits and all the closed-loop signals

are SGUUB. The system error variables zi tð Þ and the

observer error e will be in the compact sets Xz ¼
fzij jzi tð Þj �D1; i ¼ 1; . . .; ng and fjej �D2g; respectively,
where D1 and D2 will be introduced later.

Proof Multiplying e�at on both sides of the inequality

(49), we have

d

dt
Veatð Þ� beat ð50Þ

Integrating d Veatð Þ� beat over 0; t½ � yields

0�V tð Þ� V 0ð Þ � b

a

� 	

e�at þ b

a
ð51Þ

Since a[ 0 and b[ 0, (51) becomes

0�V tð Þ�V 0ð Þe�at þ b

a
ð52Þ

Then, we have

1

2
log

k2bi tð Þ
k2bi tð Þ � z2i tð Þ � V 0ð Þ � b

a

� 	

e�at þ b

a
ð53Þ

1

2
e2 �V 0ð Þe�at þ b

a
ð54Þ

Further, the following inequalities hold

jzi tð Þj � kbi tð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� e�2 V 0ð Þ�b
a½ �e�2b

a

q

¼ D1
ð55Þ

jej �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 V 0ð Þe�at þ b

a


 �s

¼ D2 ð56Þ

If V 0ð Þ ¼ b
a
, then, jzi tð Þj � kbi tð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e�2b

a

p
holds. If

V 0ð Þ 6¼ b
a
, it can be concluded that given any

D1 [ kbi tð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e�2b

a

p
, there exists T� such that for

8t[ T�, jzi tð Þj �D1 holds. As t ! 1,

jzi tð Þj � kbi tð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e�2b

a

p
. This implies that

jzi tð Þj � kbi tð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e�2b

a

p
i ¼ 1; . . .; nð Þ. We can see that

zi tð Þ can be made arbitrarily small by selecting the design

parameters appropriately.

Since jz1 tð Þj�D1 � kb1 tð Þ and jyr tð Þj �B0, it’s obvious

that jx1 tð Þj � jz1 tð Þj þ jyr tð Þj � kb1 tð Þ þ B0. Define

kb1 tð Þ þ B0 ¼ kc1 tð Þ, it has jx1 tð Þj� kc1 tð Þ. Apparently,

there is a constant �ai [ 0 so that jaij � �ai. Furthermore,

jxi tð Þj � jej þ jzi tð Þj þ jaij �D2 þ kbi tð Þ þ �ai ¼ kci tð Þ
i ¼ 2; . . .; nð Þ holds. Thus, the time-varying state con-

straints cannot violate the predefined limits.

According to the above proof, all the closed-loop signals

are SGUUB. This completes the proof. h

Remark 2 Compared with the previous results in [18] and

[21], the designed control method is more suitable for the

practical application. Inspired by the Ref. [1], the state

observer is constructed, from which we can see that this

method is simple and convenient to apply.

Remark 3 In this research, we have presented an obser-

ver-based adaptive fuzzy control strategy for time-varying

state constrained strict-feedback nonlinear systems with

dead-zone. Apparently, the developed control method can

also be extended to MIMO nonlinear systems. In that case,
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we selected the TVBLFs as 1
2
log

k2
bi;jðtÞ

k2
bi;j

ðtÞ�z2
i;jðtÞ

ði ¼ 1; . . .;m;

j ¼ 1; . . .; niÞ. Then with minor changes of lemmas and

assumptions, the similar result can be achieved.

5 Simulation Results

Consider the following nonlinear system

_x1 ¼ 0:1x21 � x2

_x2 ¼ 0:2 sinðx1Þx2 þ x1 þ 2u

y ¼ x1

8
><

>:
ð57Þ

where x1, x2 are the system states and y is the system

output, uðtÞ represents system dead-zone input which is

expressed as

uðtÞ ¼ DðvðtÞÞ ¼
0:4ðvðtÞ � 0:05Þ; vðtÞ� 0:05

0; � 0:06\vðtÞ\0:05

0:4ðvðtÞ þ 0:06Þ; vðtÞ� � 0:06

8
><

>:

Choose the following fuzzy membership functions as

llF1
ðx̂1Þ ¼ exp � x̂1 þ lð Þ2

2

" #

;

llF2
ðx̂1; x̂2Þ ¼ exp � x̂1 þ lð Þ2

2

" #

� exp � x̂2 þ lð Þ2

2

" #

:

Define fuzzy basis functions as

u1jðx̂1Þ ¼
llF1

ðx̂1Þ
P4

j¼�5 l
2jþ1
F1

ðx̂1Þ þ l0F1
ðx̂1Þ

;

u2jðx̂1; x̂2Þ ¼
llF2

ðx̂1; x̂2Þ
P4

j¼�5 l
2jþ1
F2

ðx̂1; x̂2Þ þ l0F2
ðx̂1; x̂2Þ

where l ¼ 0, � 1, � 3, � 5, � 7, � 9.

To carry out this simulation, the desired reference signal

is given as yrðtÞ ¼ 0:07 cosð0:5ðt � 1ÞÞ. The design

parameters in this simulation are selected as k1 ¼ k2 ¼ 1;

c1 ¼ c2 ¼ 1; c1 ¼ 2, c2 ¼ 2; 2; 2; 2½ �T, r1 ¼ 2; r2 ¼ 6. The

initial values for the system states and adaptive law are

given as x1ð0Þ ¼ 0:13; x2ð0Þ ¼ 1:43; x̂1ð0Þ ¼ 0:13; x̂2ð0Þ ¼
1:43 and h1ð0Þ ¼ 0:1; h2ð0Þ ¼ 0:1; 0:1; 0:1; 0:1½ �T. The

time-varying constrained functions kci ði ¼ 1; 2Þ are

defined as kc1 ¼ 0:07 cos 0:5ðt � 1Þð Þ þ 0:2,

kc2 ¼ 0:07 cos 0:5ðt � 1Þð Þ þ 1:55.

With the above given parameters, the relevant simula-

tion results are shown in Figs. 1, 2, 3, 4, 5, 6, 7, 8 and 9.

The trajectories of system output y and given reference

signal yrðtÞ are plotted in Fig. 1. Figure 2 describes the

trajectory of system state x2. From Figs. 1 and 2, it can be

seen that the states are restricted to the predefined regions.

Figures 3 and 4 show the trajectories of the errors z1 and z2,

respectively, which show that the errors are bounded.

Figure 5 displays the trajectories of adaptive parameters h1,
h2. The trajectories of the real controller v and dead-zone

input u are shown in Figs. 6 and 7, respectively. The

responses of states xi and their estimations x̂i i ¼ 1; 2ð Þ are
depicted in Figs. 8 and 9, which reveals that system states

x1, x2 can be estimated effectively by the designed state

observer. Apparently, all the simulation results indicate

that the proposed control method is effective.

Remark 4 It is noticed that the constrained problems are

considered in [25–34] and these results require the states to

be measurable; thus, they cannot be directly adopted to

control the SISO strict-feedback nonlinear systems with

time-varying states constraints. And also, although the

authors in [40, 41, 43] designed the observer to estimate

unmeasured states, they ignored the negative effect of

Fig. 1 Trajectories of state x1 and reference signal yr

Fig. 2 Trajectory of state x2
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Fig. 3 Trajectory of error z1

Fig. 4 Trajectory of error z2

Fig. 6 Trajectory of real controller v

Fig. 5 Trajectories of adaptive parameters h1 and h2

Fig. 7 Trajectory of dead-zone u

Fig. 8 Trajectories of state x1 and its estimation x̂1
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dead-zone and time-varying constraints. Thus it is difficult

to consider two cases concurrently. However, in this paper,

we propose an observer-based adaptive fuzzy control

scheme, which can be effectively applied to the simulation

example.

Remark 5 External disturbances and sensor failures also

occur in practical application. There exist some good

results to address these issues, for example, the authors in

[54] proposed a robust data-driven fault detection scheme.

A robust sensor fault detection observer design method was

presented in [55] for discrete-time T–S systems using

H�=H1 criterion. To further improve the system perfor-

mance, we will consider these problems in our future work.

6 Conclusion

An observer-based adaptive fuzzy control strategy for

SISO time-varying states constrained strict-feedback non-

linear systems subject to dead-zone has been proposed in

this paper. The FLSs are used to approximate the unknown

nonlinear functions in the observer design procedure.

Meanwhile, the TVBLFs are introduced to ensure that all

states are confined to the predefined compact sets. Fur-

thermore, according to the adaptive backstepping control

technique, the derived controller can effectively guarantee

all the signals in the closed-loop system are bounded and

the tracking errors can converge to a small neighborhood of

zero. Simulation results have been given to illustrate the

effectiveness of the proposed control approach.

In our future research, on the basis of arbitrary

approximation property of the FLSs and NNs, we will

extend the results of this paper to address adaptive finite-

time output feedback control problem for stochastic non-

linear large-scale systems subject to more other external

factors.
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