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Abstract In this paper, the technique for order preference

by similarity to an ideal solution (TOPSIS) method is

extended to solve multiple attribute group decision making

(MAGDM) problems under intuitionistic fuzzy environ-

ment. The input data involve assessment information about

the alternatives, the weights of the decision makers (DMs)

provided by the experts, and weights of the multiple

attributes. Here, we generalize the TOPSIS method under

the realm of both the intuitionistic fuzzy set (IFS) and

interval valued intuitionistic fuzzy set (IVIFS), taking into

consideration different variations of weights of the attri-

butes provided by the DMs depending upon their psy-

chology, subjectivity and cognitive thinking. The

assessment information and attributes weights are aggre-

gated over each decision maker’s weight using weighted

arithmetic and weighted geometric operators. The score

functions, namely, the advantage and disadvantage scores

are implemented to capture the preferences of the DMs in

the context of reliability of information. These score

functions are based on the positive contribution of the

parameters of IFS, i.e. membership, non-membership and

hesitation degrees, evaluating the performance of each

alternative with the rest on the given attributes. The per-

formance degree of each alternative is then determined to

select the preferable alternative using strength and

weakness scores as a function of the obtained attribute

weight vector. Numerical illustrations in the form of an

investment decision making problem are demonstrated in

the context of both the IFS and IVIFS, taking different

forms of attribute weight information so as to better reflect

the working of the proposed methodology. Further, the

methodology is compared with some existing works and

major highlights of the proposed work are presented.

Keywords Multiple attribute group decision making �
Intuitionistic fuzzy set � Interval valued intuitionistic fuzzy

set � TOPSIS � Attributes weights

1 Introduction

Decision making can be defined as a process of finding a

way to use one process to control another process. In

multiple criteria (or attribute) decision making (MCDM/

MADM) problem, a decision maker selects or ranks

alternatives after qualitative and/or quantitative assessment

of finite set of interdependent or independent attributes.

The increasing complexity of the socio-economic envi-

ronment makes it less and less possible for a single deci-

sion maker (DM) to consider all relevant aspects of a

problem.

As a result, many decision making processes, in the real-

world, take place in group settings. The increased interest

in shared decision making derives from a number of dif-

ferent factors, for example, informed consent, mutual

benefits, cooperative agendas, bonus, etc. Moving from a

single DM setting to the group setting introduces a great

deal of complexity in the MAGDM process. However,

preference information in real-world situations can be

assessed easily in a qualitative way which is vague
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possessing imprecise knowledge rather than completely

known quantitative information. In such cases, ambiguity

caused by vague or imprecise preference information is a

big challenge for DMs. This fact was a great motivation for

researchers to extend MAGDM techniques in fuzzy

environment.

Thus, fuzzy set theory, introduced by Zadeh [1], has

been used and adopted as a means of representing and

manipulating data that was not precise, but rather fuzzy.

Fuzzy MADM methods are proposed to solve problems

which involve fuzzy data. Bellman and Zadeh [2] were the

first to utilize fuzzy set theory concepts to decision making

problems. Zimmermann [3] among others treated the fuzzy

MADM method as a two-phase process. The first phase

requires finding the fuzzy utilities (fuzzy final ratings) of

alternatives. The second phase requires applying fuzzy

ranking methods to determine the ranking order of alter-

natives, and thus, fuzzy MAGDM (FMAGDM) methods

were developed in order to encompass shared decision

making [4].

The fuzziness as well as hesitation of the expert’s sub-

jective assessments which are not accounted for are mod-

elled or reflected though IFS. The choice of using IFS in

this study is based on the fact that, it is more capable than

traditional fuzzy sets to handle vagueness and uncertain

information in practice. Unlike the traditional fuzzy set

theory, IFS, as introduced by Atanassov [5, 6] is charac-

terized by membership and non-membership degree, such

that the sum of membership and non-membership degree is

less than or equal to one, keeping room for hesitation or

uncertainty. In some cases, determining precisely the exact

value of the attribute in terms of membership, non-mem-

bership and hesitation degree is difficult and as a result of

this, their values are considered as intervals, thereby the

coining of the term called IVIFS by Atanassov and

Gargov [7].

Consider that DMs or experts usually come from dif-

ferent specialty fields and thus each DM has unique char-

acteristics with respect to knowledge, skills, experience

and personality, which implies that each DM may have

different influence in the overall decision result. That is, the

weights of DMs can be different. Also, since each attribute

is different and has its own utility, every attribute also has

its own grade of importance provided by the DM in the

decision making process. Thus, in the process of MAGDM,

attributes weights can take various forms such as com-

pletely known, subjective information, partially known or

completely unknown weights depending upon the nature,

psychology, expertise, state of mind, knowledge, technical

know-how, topic of interest, etc., of DMs. The DM can be

sure about the utility value of each attribute and hence able

to impart an exact importance degree in the form of crisp

weights, whether equal or unequal, depending upon the

case may be. The form of attributes weights can be of

subjective evaluation such as intuitionistic fuzzy number

(IFN) or interval valued intuitionistic fuzzy number

(IVIFN) or any other variation of fuzzy set or IFS. Due to

factors like time pressure, lack of knowledge or data or the

expert’s limited expertise about the problem domain, etc.,

the information about attributes weights can be incomplete

or partially known. For instance, the DM might pay more

attention to the importance of some attributes, i.e. specify

some preference relation on weights of attributes according

to his/her knowledge, experience and judgement. Such

information of attributes weights is incomplete. Usually

incomplete information of attributes weights can be

obtained according to partial preference relation on weights

given by the DM and has several different forms of

structures [8–10]. These incomplete weight information

structures may be expressed in the following five basic

relations among attributes weights such as (i) weak rank-

ing, (ii) strict ranking, (iii) ranking of differences, (iv)

ranking with multiples and (v) interval form [11]. Also,

there may exist a situation when there is no weight infor-

mation available, and one of the most eminent methods is

the entropy method to determine objective weights. An

entropy-based object weighting scheme determines the

weight for a set of attributes by quantifying the amount of

information within the decision matrix and based on

evaluation values. Hence, the bigger the entropy is, the

smaller the weight assigned to an attribute and vice versa.

TOPSIS is a multiple criteria decision analysis method

introduced by Hwang and Yoon [12], which is based upon

the concept that it simultaneously considers the distance to

both positive ideal solution (PIS) and negative ideal solu-

tion (NIS) to rank the alternatives. The PIS is identified

with a hypothetical alternative that has the best values

among all considered attributes, whereas the NIS is iden-

tified with a hypothetical alternative that has the worst

attribute values. For instance, the PIS maximizes the ben-

efit attribute and minimizes the cost attribute, whereas the

NIS maximizes the cost attribute and minimizes the benefit

attribute. The procedure by Hwang and Yoon [12] for

implementing TOPSIS technique is as follows: After

forming an initial decision matrix, the procedure starts by

normalizing the decision matrix. This is followed by

building the weighted normalized decision matrix and thus,

determining the PIS and NIS and hence, calculating the

separation measures for each alternative in the next step.

The procedure ends by computing the relative closeness

coefficient and thus the set of alternatives are ranked and

the most preferable one is selected. Here, in our approach,

the inclusion of multiple DMs is inculcated which is crucial

as the state of the decision problem changes, both auton-

omously and as a consequence of the DMs action. Second,

it suggests that even once an individual’s risk orientation is
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fixed, individual or group DMs can be purposefully

selected on the basis of their outcome histories and risk

propensity to influence the likelihood that more or less

risky decisions will be made because the economic cost of

a bad decision is indeed an element of risk. After aggre-

gating over DMs weight, the aggregated matrix is nor-

malized. Attributes weights are aggregated over DMs

weights depending upon the information supplied for

attributes weights. Further, advantage and disadvantage

scores are found which are more realistic and reasonable

instead of hypothetical ideal benchmarks which are too

impractical to be achieved in the non-ideal unrealistic

decision making environment. There scores are further

weighted over attributes weights and hence aggregated to

find closeness coefficient in order to rank the alternatives

and choose the preferable one.

There is quite less research on TOPSIS taking multiple

DMs under the realm of intuitionistic fuzzy (IF) environ-

ment. For instance, TOPSIS method is extended under the

arena of MAGDM problems using IFS as spotted in the

following literature. Su et al. [13] investigated the dynamic

IF–MAGDM problem and employs IF-TOPSIS method to

calculate the individual relative closeness coefficient of

each alternative for each DM in order to obtain the indi-

vidual ranking of alternatives. Aikhuele and Turan [14]

proposed a new approach based on IF-TOPSIS model,

applied using the exponential related function for the

computation of the separation measures from the IF–PIS

and IF–NIS, thereby finding the preferable alternative.

Boran et al. [15] proposed TOPSIS method combined with

IFS to select appropriate suppliers in group decision

making environment. Liu et al. [16] introduced a new

modified TOPSIS method, named IF hybrid TOPSIS

approach to determine the risk priorities of failure modes

identified in failure mode and effect analysis. Rouyen-

degh [17] proposed a unification of fuzzy TOPSIS and data

envelopment analysis (DEA) to select the units with most

efficiency and provide a full ranking in the DEA context

for all units by aggregating individual opinions of DMs for

rating the importance of attributes and alternatives.

Yue [18] proposed the TOPSIS-based group decision

making methodology under IF setting. Büyüközkan and

Güleryüz [19] provided an effective MCDM approach with

group decision making to evaluate different smart phone

alternatives according to consumer preferences using IF-

TOPSIS. Li [20] extended the TOPSIS for solving

MAGDM problems under Atanassov IF environment.

Furthermore, quite less research is being carried on

applying IVIFS in the extended TOPSIS method as a group

decision making problem. For instance, an extended

TOPSIS method for group decision making with IVIFNs is

proposed to solve the partner selection problem under

incomplete and uncertain information environment in [21].

Park et al. [22] extended the TOPSIS method to solve

MAGDM problems in interval valued intuitionistic fuzzy

(IVIF) environment in which all the preference information

provided by the DMs is presented as IVIF decision

matrices and the information about attributes weights is

partially known. Tan [23] investigated the extension of

TOPSIS, a multi-criteria IVIF decision making technique

to a group decision environment, where interdependent or

interactive characteristics among criteria and preference of

DMs are taken into account and dealt with. Zhang and

Xu [24] developed a soft computing technique based on

maximizing consensus and fuzzy TOPSIS in order to solve

IVIF–MAGDM problems from two aspects of decision

data. Izadikhah [25] proposed an extended TOPSIS method

for group decision making with IVIFNs to solve the sup-

plier selection problem under incomplete and uncertain

information environment.

In a similar vein, this study is, therefore, presenting a

new approach based on an IF-TOPSIS model under group

decision making. That is, TOPSIS method is extended

under MAGDM paradigm under the influence of both IFS

and IVIFS, while taking all the four variations of attributes

weights in the said approach such as completely known

crisp weights, subjective evaluations in the form of IFN as

well as IVIFN, incompletely known partial weights and the

case of completely unknown weights.

1.1 Focus of the Paper

In this paper, we examine the IF–MAGDM problems

wherein TOPSIS method has been extended under IF set-

ting, viz. utilizing IFS as well as IVIFS. Since we are

dealing under the domain of MAGDM problems, multiple

DMs provide input data in the form of assessment infor-

mation, attributes weights and DMs weights by the expert

judges in the framework of both IFS and IVIFS. Varied

possible cases for attributes weights information have been

inculcated in the decision making process, viz. completely

known weights, uncertain subjective evaluations in the

form of IFN as well as IVIFN, incompletely known partial

weights or completely unknown weights. Crisp DMs

weights are obtained in order to aggregate judgement val-

ues by different DMs into a cumulative assessment deci-

sion matrix as well as composite weight matrix

encompassing the grades of importance of various DMs

reflecting the expertise and technical know-how in their

own domains using weighted arithmetic (WA) and

weighted geometric (WG) operators, respectively under the

realm of IFS and IVIFS. Further, advantage and disad-

vantage scores are employed to analyse the performance

estimation of each alternative with the rest on the given

attribute. This leads to strength and weakness scores to be

evaluated corresponding to each alternative as a function of
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the weight vector which are henceforth incorporated into

the performance degrees to ascertain the ranking order of

the alternatives under question.

1.2 Major Distinguishing Features of the Proposed

Approach

1. The role of multiple DMs is being considered here,

which is crucial as the state of the decision problem

changes, both autonomously and as a consequence of

the DMs actions. Second, it suggests that even once an

individual’s risk orientation is fixed, individual or

group DMs can be purposively selected on the basis of

their outcome histories and risk propensity to influence

the likelihood that more or less risky decisions will be

made because the economic cost of a bad decision is

indeed an element of risk.

2. In this paper, besides the membership and non-

membership degrees, the hesitancy degree is also

treated at its independent level of importance in the

whole methodology and ranking of the alternatives is

done on the basis of trade-off values of all the three

parameters in the whole process. Comprehending

hesitation can provide a significant universal insight

into human awareness and behaviour. Whatever we do

or observe others doing occurs in a temporal frame of

reference and hence involves some degree of hesita-

tion. In this paper, we take into account the triplet, viz.

membership degree, non-membership degree and

hesitation margin which is not yet fully considered in

the research pertaining to MAGDM problems includ-

ing TOPSIS as an MCDM method involving IFS as

well as IVIFS.

3. Instead of obtaining ideal benchmarks in the form of

PIS as well as NIS in MAGDM problems undertaking

TOPSIS methodology [14, 16], this methodology,

instead considers advantage as well as disadvantage

scores which symbolize the performance evaluation (in

terms of distance) of each alternative with the rest on

multiple attribute assessment, where the respective

scores explain how advantageous or disadvantageous

an alternative in question is as compared to rest of the

alternatives on given attributes taking into account all

the three parameters of IF concept, viz. the member-

ship degree, non-membership degree and hesitation

degree.

4. To the best of our knowledge, there is hardly any

literature on MAGDM employing extended TOPSIS

method in the realm of both IFS as well as IVIFS that

takes into consideration various cases of attributes

weights such as completely known weights informa-

tion, uncertain subjective evaluations in the form of

IFN as well as IVIFN, incompletely known partial

weights or completely unknown weights. The proposed

approach is more wholesome and efficient as compared

to the literature on MAGDM.

5. When compared with [14], the proposed approach may

be considered a better contribution because of the

understated reasons. In [14], idealistic benchmarks are

used while finding IF–PIS as well as IF–NIS which is

too impractical to be achieved in an uncertain decision

making world unlike the proposed approach where

advantage and disadvantage scores of alternatives are

obtained signifying how much better or worse an

alternative is as compared to all other alternatives on

the given attribute. Also, the effect of ideal IF–PIS and

IF–NIS would reflect in the separation measures used.

Furthermore, the weights of DMs in [14] are consid-

ered as completely known, reflecting certainty and too

much surety in any practical uncertain decision making

process. The entropy formula used for the calculation

of attributes weights in the proposed approach is more

efficient as compared to the one listed in [14] which

has its own drawbacks [26]. Also, the whole method-

ology doesn’t take into consideration the inclusion of

the third parameter of IFS, viz. the hesitation degree in

the approach listed in [14], but in some of the steps

only. In the end, single variation of attribute weight

information is considered in the process described in

[14]. Thus, the proposed procedure can be adopted to a

particular situation such as the one used in [14],

however, the same is not true about the latter.

6. When compared with [16], the proposed approach may

be considered a better contribution because of the

underlying points. In [16], to start with the whole

process, the weights of the DMs are taken as

completely known, reflecting too much surety and

conviction in a DM’s opinion which seems impractical

in any practical uncertain decision making process.

Also, idealistic benchmarks are used while finding IF–

PIS as well as IF–NIS which are too unrealistic to be

achieved mostly in an uncertain practical decision

making process, unlike the proposed approach where

advantage and disadvantage scores of alternatives is

obtained signifying how much better or worse an

alternative is as compared to all other alternatives

taking multiple attribute evaluation. Also, the effect of

ideal IF–PIS and IF–NIS would reflect in the separa-

tion measures used. Furthermore, the methodology

listed in [16] doesn’t take into consideration the

inclusion of the third parameter of IFS, viz. the

hesitation degree, which brings a significant universal

insight into human awareness and behaviour. In the

end, just one variation of attribute weight is considered

in the methodology discussed in [16]. Thus, although,

the proposed approach can be adapted to a particular
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situation such as the one in [16], but the same is not

true about the latter.

1.3 Organization of the Paper

This paper is organized as follows. Section 2 describes the

prerequisites enveloping the basic definitions, arithmetic

operations as well as aggregation operators over IFS and

IVIFS, respectively. Section 3 discusses the extended

TOPSIS-based methodology for MAGDM process using

IFNs in Sect. 3.1 and IVIFNs in Sect. 3.2. Numerical

illustrations of the proposed approach are demonstrated in

Sect. 4 with an application of an investment decision

making problem illustrated using IFNs in Sect. 4.1 and

using IVIFNs in Sect. 4.2. Section 5 presents the compar-

ison analysis with other works followed by concluding

remarks in Sect. 6.

2 Prerequisites

In this section, the fundamental definitions and concepts of

IFS as well as IVIFS theory are presented along with the

arithmetic operations as well as aggregation operators

which will be required in the subsequent sections.

Atanassov [5] introduced IFS, an extension of classical

fuzzy set proposed by Zadeh [1], which is a suitable way to

deal with vagueness. The IFS can be defined as follows.

Definition 1 [1] Let Z be a non-empty universe of dis-

course. Then an IFS a in Z is given by

a ¼ f\z; laðzÞ; maðzÞ[ j z 2 Zg;

where laðzÞ : Z ! ½0; 1� and maðzÞ : Z ! ½0; 1� are degrees

of membership and non-membership of an element z 2 Z,

respectively, with the condition 0� laðzÞ þ maðzÞ� 1. For

each a in Z, paðzÞ ¼ 1 � laðzÞ � maðzÞ; z 2 Z, is called the

intuitionistic index of z to a. It represents the degree of

indeterminacy or hesitation of z to a. For each

z 2 Z; 0� paðzÞ� 1.

For an IFS, ðlaðzÞ; maðzÞ; paðzÞÞ is called an IFN and

each IFN can be simply denoted as a ¼ ðla; ma; paÞ, where

la 2 ½0; 1�; ma 2 ½0; 1�; pa 2 ½0; 1�, and la þ ma þ pa ¼ 1.

Definition 2 [27] Let a ¼ ðla; ma; paÞ and b ¼ ðlb; mb; pbÞ
be any two IFNs. The following operational laws over IFNs

are stated as follows:

ðiÞ aþ b ¼ ðla þ lb � lalb; mamb; 1 � la � lb � mamb þ lalbÞ;
ðiiÞ a� b ¼ ðlalb; ma þ mb � mamb; 1 � ma � mb � lalb þ mambÞ;
ðiiiÞ ka ¼ ð1 � ð1 � laÞ

k; mka; ð1 � laÞ
k � mkaÞ; k� 0;

ðivÞ ak ¼ ðlka; 1 � ð1 � maÞk; ð1 � maÞk � lkaÞ; k� 0;

ðvÞ �a ¼ ðma; la; paÞ;

where �a denotes the compliment or negation of IFN a.

Two operators, namely, intuitionistic fuzzy weighted

arithmetic (IFWA) and intuitionistic fuzzy weighted geo-

metric (IFWG) are defined for aggregating intuitionistic

fuzzy information as given in [28]. Note that the obtained

aggregated value using IFWA or IFWG operator is also an

IFN.

Definition 3 Let X ¼ fx1; x2; . . .; xng be a universe of

discourse and aj ¼ ðlaðxjÞ; maðxjÞ; paðxjÞÞ for j ¼ 1; 2; . . .; n

be a collection of IFNs. Let IFWA: Xn ! X, if

IFWAxða1; a2; . . .; anÞ

¼
Xn

j¼1

xjaj ¼ x1a1 � x2a2 � � � � � xnan

¼ 1 �
Yn

j¼1

ð1 � lajÞ
xj ;
Yn

j¼1

ðmajÞ
xj ;
Yn

j¼1

ð1 � lajÞ
xj �

Yn

j¼1

ðmajÞ
xj

 !
;

where X is a set of all IFNs, x ¼ ðx1;x2; . . .;xnÞT is the

weight vector of aj; j ¼ 1; 2; . . .; n satisfying xj 2 ½0; 1�
and

Pn
j¼1 xj ¼ 1, then the above-defined function is called

an IFWA operator.

Also, let IFWG: Xn ! X, if

IFWGxða1; a2; . . .; anÞ

¼
Xn

j¼1

a
xj

j ¼ ax1

1 	 ax2

2 	 � � � 	 axn

n

¼
Yn

j¼1

ðlajÞ
xj ; 1 �

Yn

j¼1

ð1 � majÞ
xj ;
Yn

j¼1

ð1 � majÞ
xj �

Yn

j¼1

ðlajÞ
xj

 !
;

where X is a set of all IFNs, x ¼ ðx1;x2; . . .;xnÞT is the

weight vector of aj; j ¼ 1; 2; . . .; n satisfying xj 2 ½0; 1�
and

Pn
j¼1 xj ¼ 1, then the above defined function or

operator is termed as an IFWG operator.

Atanassov and Gargov [7] introduced the notion of

IVIFS as a generalization of IFS to deal with ambiguity

[27] which is characterized by membership and non-

membership degree in interval form and can be defined as

follows.

Definition 4 Let X be a non-empty universe of discourse

and D[0, 1] denote the subset of all closed subintervals of

the interval [0, 1], then an IVIFS A over X is an expression

represented by
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A ¼ f\x; ~lAðxÞ; ~mAðxÞ[ jx 2 Xg;

where the intervals ~lAðxÞ and ~mAðxÞ denote the degree of

belongingness and non-belongingness, respectively of the

element x to the set A and ~lAðxÞ : X ! D½0; 1� and ~mAðxÞ :
X ! D½0; 1� under the condition 0� supð~lAðxÞÞþ
supð~mAðxÞÞ� 1. For each x 2 X, ~lAðxÞ and ~mAðxÞ are closed

intervals whose lower and upper bounds can be written as

lLAðxÞ; lUA ðxÞandmLAðxÞ; mUA ðxÞ, respectively. Thus, an IVIFS

A can be re-expressed as

A ¼ f\x; ½lLAðxÞ; lUA ðxÞ�; ½mLAðxÞ; mUA ðxÞ�[ jx 2 Xg;

where 0� lLAðxÞ� lUA ðxÞ� 1, 0� mLAðxÞ� mUA ðxÞ� 1,

0� lUA ðxÞ þ mUA ðxÞ� 1.

In addition, the IVIF index ~pAðxÞ of an element x be-

longing to an IVIFS A is defined as an indeterminacy or

hesitation degree of an IVIFS A in X. It is represented by

~pAðxÞ ¼ ½pLAðxÞ; pUA ðxÞ� where pLAðxÞ ¼ 1 � lUA ðxÞ � mUA ðxÞ,
pUA ðxÞ ¼ 1 � lLAðxÞ � mLAðxÞ.

For simplicity purposes, ð½lLAðxÞ; lUA ðxÞ�; ½mLAðxÞ; mUA ðxÞ�;
½pLAðxÞ; pUA ðxÞ�Þ is called an IVIFN, where ½lLAðxÞ; lUA ðxÞ� 

D½0; 1�; ½mLAðxÞ; mUA ðxÞ� 
 D½0; 1� and ½pLAðxÞ; pUA ðxÞ� 

D½0; 1� such that lUA ðxÞ þ mUA ðxÞ� 1.

Clearly, if ~lAðxÞ ¼ lLAðxÞ ¼ lUA ðxÞ, ~mAðxÞ ¼ mLAðxÞ ¼
mUA ðxÞ and ~pAðxÞ ¼ pLAðxÞ ¼ pUA ðxÞ, then the given IVIFS

A is reduced to an ordinary IFS a.

Definition 5 Let A ¼ ð½lLAðxÞ; lUA ðxÞ�; ½mLAðxÞ; mUA ðxÞ�;
½pLAðxÞ; pUA ðxÞ�Þ, and B ¼ ð½lLBðxÞ; lUB ðxÞ�; ½mLBðxÞ; mUB ðxÞ�;
½pLBðxÞ; pUB ðxÞ�Þ be any two IVIFNs. The following opera-

tional laws over IVIFNs are stated as follows:

ðiÞ Aþ B ¼ ð½lLA þ lLB � lLAl
L
B; l

U
A þ lUB � lUAl

U
B �;

½mLAmLB; mUA mUB �; ½1 � lUA � lUB � mUA m
U
B þ lUAl

U
B ;

1 � lLA � lLB � mLAm
L
B þ lLAl

L
B�Þ;

ðiiÞ A� B ¼ ð½lLAlLB; lUAlUB �; ½mLA þ mLB � mLAm
L
B; m

U
A

þ mUB � mUA m
U
B �; ½1 � mUA � mUB � lUAl

U
B þ mUA m

U
B ;

1 � mLA � mLB � lLAl
L
B þ mLAm

L
B�Þ;

ðiiiÞ kA ¼ ð½1 � ð1 � lLAÞ
k; 1 � ð1 � lUA Þ

k�; ½ðmLAÞ
k; ðmUA Þ

k�;
½ð1 � lUA Þ

k � ðmUA Þ
k; ð1 � lLAÞ

k � ðmLAÞ
k�Þ; k� 0;

ðivÞ Ak ¼ ð½ðlLAÞ
k; ðlUA Þ

k�; ½1 � ð1 � mLAÞ
k; 1 � ð1 � mUA Þ

k�;
½ð1 � mUA Þ

k � ðlUA Þ
k; ð1 � mLAÞ

k � ðlLAÞ
k�Þ; k� 0;

ðvÞ �A ¼ ð½mLA; mUA �; ½lLA; lUA �; ½pLA; pUA �Þ:

Definition 6 [29] Let X ¼ fx1; x2; . . .; xng be a universe

of discourse and Aj ¼ ð½lLAðxjÞ; lUA ðxjÞ�; ½mLAðxjÞ; mUA ðxjÞ�;
½pLAðxjÞ; pUA ðxjÞ�Þ for j ¼ 1; 2; . . .; n be a collection of

IVIFNs. Let IVIFWA: Xn ! X, if

IVIFWAxðA1;A2; . . .;AnÞ

¼
Xn

j¼1

xjAj ¼ x1A1 � x2A2 � � � � � xnAn

¼ 1 �
Yn

j¼1

ð1 � lLAj
Þxj ; 1 �

Yn

j¼1

ð1 � lUAj
Þxj

" #
;

 

Yn

j¼1

ðmLAj
Þxj ;

Yn

j¼1

ðmUAj
Þxj

" #
;

Yn

j¼1

ð1 � lUAj
Þxj �

Yn

j¼1

ðmUAj
Þxj ;

Yn

j¼1

ð1 � lLAj
Þxj �

Yn

j¼1

ðmLAj
Þxj

" #!
;

where X is a set of all IVIFNs, x ¼ ðx1;x2; . . .;xnÞT is

the weight vector of Aj; j ¼ 1; 2; . . .; n satisfying xj 2
½0; 1� and

Pn
j¼1 xj ¼ 1, then the above defined function is

called an Interval valued intuitionistic fuzzy weighted

arithmetic (IVIFWA) operator.

Also, let IVIFWG: Xn ! X, if

IVIFWGxðA1;A2; . . .;AnÞ

¼
Xn

j¼1

A
xj

j ¼ Ax1

1 	 Ax2

2 	 � � � 	 Axn

n

¼
Yn

j¼1

ðlLAj
Þxj ;

Yn

j¼1

ðlUAj
Þxj

" #
;

 

1 �
Yn

j¼1

ð1 � mLAj
Þxj ; 1 �

Yn

j¼1

ð1 � mUAj
Þxj

" #
;

Yn

j¼1

ð1 � mUAj
Þxj �

Yn

j¼1

ðlUAj
Þxj ;

Yn

j¼1

ð1 � mLAj
Þxj �

Yn

j¼1

ðlLAj
Þxj

" #!
;

where X is a set of all IVIFNs, x ¼ ðx1;x2; . . .;xnÞT is

the weight vector of Aj; j ¼ 1; 2; . . .; n satisfying xj 2
½0; 1� and

Pn
j¼1 xj ¼ 1, then the above defined function or

operator is termed as an Interval valued intuitionistic fuzzy

weighted geometric (IVIFWG) operator.

The definition of an IVIFN is preserved in the aggre-

gation results obtained after the operation of IVIFWA and

IVIFWG operator over IVIFN.

3 Extended TOPSIS Methodology for MAGDM
Under IF Environment

In this section, we present an extended TOPSIS method to

solve MAGDM problems in which the preference infor-

mation provided by DMs are expressed as IF matrices as

well as IVIF matrices and the matrix elements are char-

acterized by IFNs and IVIFNs. Four variations of attributes

weights are taken, viz. completely known, subjective

evaluation, incomplete partial information and completely

unknown weight information under the scenario of IF as

well as IVIF setting. The group decision making method-

ology can be described as follows:
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Suppose that there exists a discrete set of alternatives

K ¼ fA1;A2; . . .;Amg to be assessed on n attributes deno-

ted by C ¼ fC1;C2; . . .;Cng and let D ¼ fD1;D2; . . .;Dlg
be the set of DMs. In the process of decision making, the

DM usually needs to provide his/her assessment informa-

tion over alternatives. Especially, in real-life situations, the

DM may provide his/her preferences over alternatives to a

certain degree, but it is possible that he/she is not certain

about it and would be partially sure and sceptical. Thus, it

is very suitable for the DM to estimate judgement under the

IF environment which represents the membership degree,

non-membership degree and hesitancy degree, respec-

tively, of the alternative Ai 2 K with respect to the attribute

Cj 2 C given by the DM Dk 2 D for the fuzzy concept of

excellence. Therefore, we can elicit a decision matrix eX
k ¼

ðakijÞðm�nÞ provided by the DM under IF scenario. Assume

that l DMs and n attributes have been given respective

weights by the experts and n attributes are assigned weights

by the DMs using appropriate IFNs. The MAGDM prob-

lem considered is how to choose the best alternative from

the alternative set K.

3.1 Extended TOPSIS for MAGDM Using IFN

The DM estimate the judgement in the form of IFN as

akij ¼ ðlijk; mijk; pijkÞ; i ¼ 1; 2; . . .; m; j ¼ 1; 2; . . .; n; k ¼
1; 2; . . .; l which represents the membership degree, non-

membership degree and hesitancy degree, respectively of

the alternative Ai 2 K with respect to the attribute Cj 2 C

given by the DM Dk 2 D for the fuzzy concept of excel-

lence. Therefore, we can elicit an IF decision matrix eXk ¼
ðakijÞðm�nÞ given by the DM. Assume that l DMs have been

given respective weights by the experts as bk ¼
ðlk; mk; pkÞ for k ¼ 1; 2; . . .; l and the associated attributes

weights given by the kth DM Dk are expressed as

wjk ¼ ðljk; mjk; pjkÞforj ¼ 1; 2; . . .; n; k ¼ 1; 2; . . .; l.

Step 1. Determine crisp DMs weights kk
Set up a group of DMs to enclose decision making

involving different perspectives. Suppose ratings provided

to each DM by the experts are bk ¼ ðlk; mk; pkÞ;
k ¼ 1; 2; . . .; l. According to the voting model of IFSs, lk,
mk and pk can be interpreted as proportions of the affir-

mative, dissent and abstention in a vote, respectively.

Considering the possibility that in abstention group some

people tend to cast affirmative votes, others are dissenters

and still others tend to abstain from voting, we can divide

the abstention proportion pk into three parts: lkpk, mkpk
and pkpk which express the proportion of the affirmative,

dissent and abstention in the original part of abstention

[30]. Thus, the score function of IFN bk ¼ ðlk; mk; pkÞ
is defined as sk ¼ lk þ lkpk ¼ lkð2 � lk � mkÞ; k ¼ 1;

2; . . .; l. Normalizing the score function sk; k ¼ 1; 2; . . .; l,

the weight of DM kk can be generated as follows:

kk ¼
lkð2 � lk � mkÞPl

k¼1½lkð2 � lk � mkÞ�
ð1Þ

such that
Pl

k¼1 kk ¼ 1.

Step 2. Aggregation of individual assessment over DMs

weights kk
Aggregate the individual evaluation matrices provided

by the DMs in terms of IFN or linguistic variables mapped

to IFNs using IFWA operator over the weight vector kk into

an IF group assessment decision matrix as follows:

aij ¼ IFWAkk ða1
ij; a

2
ij; . . .; a

l
ijÞ

¼
Xl

k¼1

kka
k
ij

¼ 1 �
Yl

k¼1

ð1 � lkijÞ
kk ;
Yl

k¼1

ðmkijÞ
kk ;
Yl

k¼1

ð1 � lkijÞ
kk �

Yl

k¼1

ðmkijÞ
kk

" #

ð2Þ

We’ll get X ¼ ðaijÞm�n.

Step 3. Standardized IF decision matrix

The IF decision matrix is standardized into a uni-di-

rectional matrix so as to encompass both types of attri-

butes, viz. benefit as well as cost attributes as follows:

rij ¼
aij ¼ ðlij; mij; pijÞ; j 2 CB;
�aij ¼ ðmij; lij; pijÞ; j 2 CC:

�
ð3Þ

We’ll get R ¼ ðrijÞm�n ¼ ðlij; mij; pijÞ.
Step 4. Advantage and disadvantage scores

To advance further, advantage score aij and disadvan-

tage score bij of each alternative with respect to a certain

attribute considering the performance of all other alterna-

tives over the same attribute has been defined [31]. The

crisp advantage score aij of an alternative Ai as compared

to all other alternatives i 6¼ t on an attribute Cj signifies as

to how much advantageous or preferable a specific alter-

native is over the rest on the basis of multiple attribute

evaluation, defined as follows:

aij ¼
1

2

X

i 6¼t

maxðlij � ltj; 0Þ þ
X

i 6¼t

maxðmtj � mij; 0Þ
(

þ
X

i 6¼t

maxðptj � pij; 0Þ
) ð4Þ

Similarly, disadvantage score bij of an alternative Ai as

compared to all other alternatives i 6¼ t on an attribute Cj

represents how disadvantageous in a context an alternative

performance is over the rest on the basis of multiple

attribute evaluation, defined as follows:
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bij ¼
1

2

X

i6¼t

maxðltj � lij; 0Þ þ
X

i 6¼t

maxðmij � mtj; 0Þ
(

þ
X

i6¼t

maxðpij � ptj; 0Þ
) ð5Þ

Step 5. Attributes weights

Importance weights of attributes are either provided by the

DMs in the form of completely known information, subjec-

tive evaluation in the form of IFN, incomplete uncertain

partial weights or completely unknown weight information. It

depends upon the DMs perception and psychology and vari-

ous other subjective factors. Here, four variations of attribute

weight information are dealt with as follows:

(i) Completely known weights

The case where the weights of the attributes are pro-

vided as completely known values yields w ¼
ðw1;w2; . . .;wnÞ where wj is the triplet wj ¼ ðlj; mj; pjÞ such

that
Pn

j¼1 wj ¼ 1. Attributes weights, already provided by

the DMs with certainty, whether of equal or unequal

importance can be directly substituted to obtain weighted

strength and weighted weakness in Step 6.

(ii) Subjective evaluation: IFN

Let wk
j ¼ ðlkj ; mkj ; pkj Þ; j ¼ 1; 2; . . .; n; k ¼ 1; 2; . . .; l be the

weight vector assigned to an attributeCj by DMDk in the form

of an IFN so as to contribute in the analysis the individual

importance of each attribute. Since attributes weights pro-

vided by l DMs are subjective in nature, these are aggregated

using IFWG operator over DMs weight kk in order to obtain

unified attribute weight matrix and hence is normalized to

obtain crisp form in Steps (ii)-a and (ii)-b, respectively.

(ii)-a Aggregation of attributes weights over DMs

weights kk
Subjective evaluations of attributes weights are aggre-

gated into collective assessments enveloping DMs impor-

tance in the form of wj; j ¼ 1; 2; . . .; n using IFWG operator

as follows:

wj ¼ IFWGkkðw1
j ;w

2
j ; . . .;w

l
jÞ

¼
Xl

k¼1

ðwk
j Þ

kk

¼ ðw1
j Þ

k1 	 ðw2
j Þ

k2 	 � � � 	 ðwl
jÞ
kl

¼
Yl

k¼1

ðlkj Þ
kk ; 1 �

Yl

k¼1

ð1 � mkj Þ
kk ;
Yl

k¼1

ð1 � mkj Þ
kk �

Yl

k¼1

ðlkj Þ
kk

" #

ð6Þ

We’ll get w ¼ ðw1;w2; . . .;wlÞ such that wj ¼ ðlj; mj; pjÞ.
(ii)-b Normalize subjective weights

Based on the unified attributes weights wj ¼ ðlj; mj;pjÞ,
the normalized subjective weights of each factor can be

calculated using [30] as follows:

�wj ¼
ljð2 � lj � mjÞPn
j¼1½ljð2 � lj � mjÞ�

ð7Þ

such that
Pn

j¼1 �wj ¼ 1. Normalized subjective weights can

thus be used to obtain weighted strength and weighted

weakness further in Step 6.

(iii) Completely unknown weights: IF entropy

It is known that entropy can measure the uncertainty

degree of IFSs. R ¼ ðrijÞm�n ¼ ðlij; mij; pijÞ; i ¼ 1; 2; . . .;m;

j ¼ 1; 2; . . .; n is the standardized IF decision matrix which

includes the overall assessment values of alternative Ai

inclusive of all DMs grades of importance. When weights

of the attributes are completely unknown, we can use the IF

entropy weight method to determine the weights [26].

Define entropy of IFN rij ¼ ðlij; mij; pijÞ as follows:

�Ej ¼ EðrijÞ ¼
1

m

Xm

i¼1

cos
lij � mij

2ð1 þ pijÞ
:p ð8Þ

for j ¼ 1; 2; . . .; n. �Ej indicates the uncertainty degree of

assessment information with respect to attribute Cj. During

the group decision making process, the uncertainty degrees

of the judgement evaluations by the DMs is expected to be

as less as possible. Hence, the bigger �Ej is, the smaller the

weight assigned to an attribute and vice versa. Therefore,

the weights of attributes are obtained as follows:

wj ¼
1 � ejPn

j¼1ð1 � ejÞ
ð9Þ

where ej ¼
�EjPn
j¼1

�Ej

for j ¼ 1; 2; . . .; n. Therefore, com-

pletely unknown attributes weights information, deci-

phered through entropy method is obtained in crisp form as

wj ¼ fw1;w2; . . .;wng, in order to be used further in Step 6.

(iv) Partially known weights

Here, it is presumed that the relation of weights is

given in the form of incomplete or partial uncertain

information, say H, for instance, the weight of an attribute

changes in an interval or an attribute is more preferable

than another and so on. The incomplete information on

the weights can be divided into the following five forms

as follows:

ðiÞ Weak ranking : fwi �wjg; i 6¼ j:

ðiiÞ Strict ranking : fwi � wj � ag; i 6¼ j:

ðiiiÞ Ranking of differences : fwi � wj �wk � wlg;
i 6¼ j 6¼ k 6¼ l:

ðivÞ Ranking with multiples : fwi � aiwjg; i 6¼ j:

ðvÞ Interval form : fai �wi � ai þ �ig;where ai
and �i are non-negativenumbers:

ð10Þ

These five listed forms are linear inequalities, whereas in

real application, relations between attributes weights might
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be a linear equality. So, incomplete uncertain partial weight

information can be remodelled into incomplete certain

information of three types, whereby it is assumed that

attributes weights can be both linear inequality as well as a

linear equality and can be categorized by H1 [32] as

follows:

Type1 : fw : Aw� b;w[ 0; b� 0g;
Type2 : fw : Aw� b;w[ 0; b� 0g;
Type3 : fw : Aw ¼ b;w[ 0; b� 0g;

ð11Þ

where A is a m� n matrix and w ¼ fw1;w2; . . .;wng. We

seek to obtain w ¼ fw1;w2; . . .;wng 2 H1 such that wj � 0

and
Pn

j¼1 wj ¼ 1.

(iv)-a Since wj’s are not known, we find the optimal

weight vector of attributes with an objective of maximizing

the performance degree of each alternative on multiple

attribute evaluation simultaneously by forming a multiple

objective programming (MOP) problem subject to the

constraints:

ðMOP1Þ max fz1; z2; . . .; zmg
subject to

w ¼ ðw1;w2; . . .;wnÞ 2 H1;

Xn

j¼1

wj ¼ 1;

wj � 0; j ¼ 1; 2; . . .; n:

ð12Þ

(iv)-b Using weighted sum method (WSM) and assigning

equal weights [33], the problem (MOP1) can be remodelled

into a weighted sum problem (WSP1) problem as follows:

ðWSP1Þ max
Xm

i¼1

zi ¼
Xm

i¼1

Pn
j¼1 wjaijPn

j¼1 wjaij þ
Pn

j¼1 wjbij

subject to

w ¼ ðw1;w2; . . .;wnÞ 2 H1;

Xn

j¼1

wj ¼ 1;

wj � 0; j ¼ 1; 2; . . .; n:

ð13Þ

By solving the linear fractional problem (13), we’ll get the

optimal weights as w ¼ fw1;w2; . . .;wng. Thus, by forming

the optimization problem, the case of partially known

attributes weights information is used to obtain completely

known crisp values to be substituted in Step 6 to obtain

weighted strength and weakness scores.

Step 6. Weighted strength and weakness scores

Next, weighted strength is computed as the sum of the

multiplicatives obtained by multiplying the advantage

score of the alternatives on each evaluation attribute with

the aggregated weight of the corresponding attribute to

obtain the strength score or the weighted advantage of each

alternative as follows:

Si ¼
Xn

j¼1

wjaij: ð14Þ

Analogously, the sum of the multiplicatives obtained by

multiplying the disadvantage score of the alternatives on

each attribute with the aggregated weight of the corre-

sponding attribute signifies the weakness score or the

weighted disadvantage of each alternative as follows:

Wi ¼
Xn

j¼1

wjbij: ð15Þ

Step 7. Performance degrees

Merging the strength and weakness score to find the

total performance score Zi corresponding to alternative Ai,

i ¼ 1; 2; . . .;m which ascertains the assessment status of

each alternative and determine the ranking order of the

alternatives in decreasing order based on the overall

assessment, obtained as follows:

Zi ¼
Si

Si þWi

; i ¼ 1; 2; . . .;m: ð16Þ

The step-wise description of the MAGDM approach based

on an extended TOPSIS method using IFNs is presented as

follows.

1. From the IF assessment data provided by DMs,

compute the numeric DMs importance weight degrees

using Eq. (1).

2. The individual assessments of alternatives with respect

to each attribute is aggregated over DMs weights using

Eq. (2).

3. The IF decision matrix D is standardized using Eq. (3)

as R.

4. Calculate advantage and disadvantage scores using

Eqs. (4) and (5), respectively.

5. Variation in weight information of the attributes:

(i) Attributes weights are completely known.

(ii) If weight information of the attributes is given

subjectively, i.e. in the form of IFNs, then

calculate aggregated attributes weights over

DMs weights using Eq. (6) and normalize it

using Eq. (7).

(iii) If there is no information about attributes

weights, calculate entropy values using

Eq. (8) and attributes weights using Eq. (9).

(iv) Partial or incomplete information on attributes

weights in the form of (10), i.e. set H can be

transformed into set H1 using (11). Perfor-

mance degree of each alternative is
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maximized by solving the (MOP1) problem

using (12). It is then converted into a (WSP1)

problem using (13). The calculated weights

after solving the respective optimization

problem are then used to obtain weighted

strength as well as weakness scores.

6. Weighted strength and weighted weakness are calcu-

lated using Eqs. (14) and (15), respectively, by

imparting the obtained attributes weights.

7. Performance degree of each alternative is calculated in

order to rank the alternatives in descending order using

Eq. (16).

3.2 Extended TOPSIS for MAGDM Using IVIFN

The DM estimates the judgement in the form of IVIFNs as

akij ¼ f½tLijk; tUijk�; ½f Lijk; f Uijk�; ½pLijk; pUijk�gm�n; i ¼ 1; 2; . . .;m; j ¼
1; 2; . . .; n; k ¼ 1; 2; . . .; l representing the membership

degree, non-membership degree and hesitancy degree,

respectively, of the alternative Ai 2 K with respect to the

attribute Cj 2 C given by the DM Dk 2 D for the fuzzy

concept of excellence, where ½pLijk;pUijk� ¼ ½1 � tUijk�
f Uijk; 1 � tLijk � f Lijk�. Therefore, we can elicit an IVIF decision

matrix eX
k ¼ ðakijÞðm�nÞ given by l DMs who have been

given respective weights by the experts as bk ¼
ð½lLk ; lUk �; ½mLk ; mUk �; ½pLk ; pUk �Þfor k ¼ 1; 2; . . .; l and the asso-

ciated attribute weight vector given by the kth DM Dk is

expressed as wjk ¼ ð½lLjk; lUjk�; ½mLjk; mUjk�; ½pLjk; pUjk �Þ for j ¼ 1;

2; . . .; n; k ¼ 1; 2; . . .; l.
Step 1. Determine crisp DMs weights kk
DMs are provided importance ratings by the experts

based on their expertise as bk ¼ ð½lLk ; lUk �; ½mLk ; mUk �;
½pLk ; pUk �Þ; k ¼ 1; 2; . . .; l. To reflect their relative impor-

tance in the decision making process, numeric DMs

weights are obtained as follows:

kk ¼
ðlLk þ lUk Þð2 þ pLk þ pUk ÞPl
k¼1ðlLk þ lUk Þð2 þ pLk þ pUk Þ

ð17Þ

such that
Pl

k¼1 kk ¼ 1 being the crisp weight of the kth

DM Dk.

Step 2. Aggregation of individual assessment over DMs

weights kk
Employing DMs weights kk [ 0; k ¼ 1; 2; . . .; l satisfy-

ing
Pl

k¼1 kk ¼ 1 in order to unify the individual judge-

ments by l DMs using IVIFWA operator is defined as

follows:

aij ¼ IVIFWAkkða1
ij; a

2
ij; . . .; a

l
ijÞ

¼
Xl

k¼1

kka
k
ij

¼ 1 �
Yl

k¼1

ð1 � tLijkÞ
kk ; 1 �

Yl

k¼1

ð1 � tUijkÞ
kk

" #
;

(

Yl

k¼1

ðf LijkÞ
kk ;
Yl

k¼1

ðf UijkÞ
kk

" #
;
Yl

k¼1

ð1 � tUijkÞ
kk �

Yl

k¼1

ðf UijkÞ
kk ;

"

Yl

k¼1

ð1 � tLijkÞ
kk �

Yl

k¼1

ðf LijkÞ
kk

#)

ð18Þ

We’ll get X ¼ ðaijÞm�n ¼ ð½tLij; tUij �; ½f Lij ; f Uij �; ½pLij; pUij �Þ.
Step 3. Standardized IVIF decision matrix

Since the decision problems might consist of both ben-

efit as well as cost attributes, there is a need to standardize

the corresponding matrix in order to make it uni-dimen-

sional as follows:

rij ¼
aij ¼ ð½tLij; tUij �; ½f Lij ; f Uij �; ½pLij; pUij �Þ; j 2 CB;

�aij ¼ ð½f Lij ; f Uij �; ½tLij; tUij �; ½pLij; pUij �Þ; j 2 CC:

�
ð19Þ

The standardized IVIF decision matrix R ¼ ðrijÞm�n is

obtained where rij ¼ ð½lLij; lUij �; ½mLij; mUij �; ½pLij; pUij �Þ is an

element of obtained neutralized matrix R.

Step 4. Advantage and disadvantage scores

To advance further, advantage score aij and disadvan-

tage score bij of each alternative with respect to a certain

attribute considering the performance of all other alterna-

tives over the same attribute has been defined [16] as

follows:

aij ¼
1

4

X

i 6¼t

maxðlLij � lLtj; 0Þ þ
X

i 6¼t

maxðlUij � lUtj ; 0Þ
(

þ
X

i 6¼t

maxðmLtj � mLij; 0Þ þ
X

i6¼t

maxðmUtj � mUij ; 0Þ

þ
X

i 6¼t

maxðpLtj � pLij; 0Þ þ
X

i 6¼t

maxðpUtj � pUij ; 0Þ
)

ð20Þ

and

bij ¼
1

4

X

i 6¼t

maxðlLtj � lLij; 0Þ þ
X

i 6¼t

maxðlUtj � lUij ; 0Þ
(

þ
X

i 6¼t

maxðmLij � mLtj; 0Þ þ
X

i6¼t

maxðmUij � mUtj ; 0Þ

þ
X

i 6¼t

maxðpLij � pLtj; 0Þ þ
X

i 6¼t

maxðpUij � pUtj ; 0Þ
)

ð21Þ
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Step 5. Attributes weights

Here, as described in the previous subsection, all four

variations of weight information of attributes are consid-

ered, viz. completely known, subjective evaluation in the

form of IVIFN, incomplete partially known or completely

unknown weight information depending upon the DMs

expertise and various subjective factors. The varied cases

are discussed below:

(i) Completely known weights

The case where the attributes weight are provided as

completely known yields w ¼ ðw1;w2; . . .;wnÞ where wj ¼
ðlj; mj; pjÞ such that

Pn
j¼1 wj ¼ 1. Attributes weight,

already in crisp form provided by the DMs, whether of

equal or unequal importance can be directly substituted to

obtain weighted strength and weighted weakness in Step 6.

(ii) Subjective evaluation: IVIFN

Suppose the weight vector assigned to attribute Cj by kth

DM Dk takes the form of an IVIFN as wk
j ¼

ð½lLjk; lUjk �; ½mLjk; mUjk �; ½pLjk; pUjk �Þ in order to inculcate the sub-

jective utility of each attribute. Since, weights provided by

l DMs are subjective in nature, these are aggregated using

IVIFWG operator over DMs weights in order to obtain

unified attribute weight matrix and hence is normalized to

obtain crisp weights in Steps (ii)-a and (ii)-b, respectively.

(ii)-a Aggregation of attributes weights over DMs

weights kk
Subjective evaluations of attributes weight are aggre-

gated into a cumulative assessment matrix inculcating DMs

importance as wj; j ¼ 1; 2; . . .; n using IVIFWG operator.

wj ¼ IVIFWGkkðw1
j ;w

2
j ; . . .;w

l
jÞ

¼
Xl

k¼1

ðwk
j Þ

kk

¼ ðw1
j Þ

k1 	 ðw2
j Þ

k2 	 � � � 	 ðwl
jÞ
kl

¼
Yl

k¼1

ðlLjkÞ
kk ;
Yl

k¼1

ðlUjkÞ
kk

" #
;

(

1 �
Yl

k¼1

ð1 � mLjkÞ
kk ; 1 �

Yl

k¼1

ð1 � mUjkÞ
kk

" #
;

Yl

k¼1

ð1 � mUjkÞ
kk �

Yl

k¼1

ðlUjkÞ
kk ;
Yl

k¼1

ð1 � mLjkÞ
kk �

Yl

k¼1

ðlLjkÞ
kk

" #)

ð22Þ

Thus, we get w ¼ ðw1;w2; . . .;wnÞ such that

wj ¼ ð½lLj ; lUj �; ½mlj; mUj �; ½pLj ; pUj �Þ; j ¼ 1; 2; . . .; n.

(ii)-b Normalized subjective weights

Based on the obtained attributes weights

wj ¼ ð½lLj ; lUj �; ½mLj ; mUj �; ½pLj ; pUj �Þ, the normalized subjective

weights can be calculated using the following:

�wj ¼
ðlLj þ lUj Þð2 þ pLj þ pUj ÞPn
j¼1ðlLj þ lUj Þð2 þ pLj þ pUj Þ

ð23Þ

such that
Pn

j¼1 �wj ¼ 1. Normalized subjective weights can

thus be used to obtain weighted strength and weakness

further in Step 6.

(iii) Completely unknown weights: IVIF entropy

We have the standardized IVIF decision matrix R ¼
ðrijÞm� n ¼ ð½lLij; lUij �; ½mLij; mUij �; ½pLij; pUij �Þm�n; i ¼ 1; 2; . . .;

m; j ¼ 1; 2; . . .; n which includes the overall assessment

values of alternative Ai inclusive of all DMs grades of

importance. When attributes weights are completely

unknown, we can use the IVIF entropy weight method to

determine the weights [26]. Define entropy of IVIFN rij ¼
ð½lLij; lUij �; ½mLij; mUij �; ½pLij; pUij �Þ as

�Ej ¼ EðrijÞ ¼
1

m

Xm

i¼1

cos
jlLij � mLijj þ jlUij � mUij j

2½2 þ pLij þ pUij �
:p ð24Þ

for j ¼ 1; 2; . . .; n, where �Ej indicates the uncertainty

degree of assessment information with respect to attribute

Cj. Therefore, the weights of attributes are calculated as:

wj ¼
1 � ejPn

j¼1ð1 � ejÞ
ð25Þ

where ej ¼
�EjPn
j¼1

�Ej

for j ¼ 1; 2; . . .; n. Therefore, com-

pletely unknown attribute weight information, deciphered

through entropy method is obtained in crisp form as wj ¼
fw1;w2; . . .;wng in order to be used further in Step 6.

(iv) Partially known weights

Here, it is presumed that the relation between weights is

given in the form of incomplete or partial uncertain

information, say H, listed as the following five forms:

ðiÞ Weak ranking : fwi �wjg; i 6¼ j:

ðiiÞ Strict ranking : fwi � wj � ag; i 6¼ j:

ðiiiÞ Ranking of differences :

fwi � wj �wk � wlg; i 6¼ j 6¼ k 6¼ l:

ðivÞ Ranking with multiples : fwi � aiwjg; i 6¼ j:

ðvÞ Interval form : fai �wi � ai þ �ig;
where aiand �i are non � negative

numbers:

ð26Þ

It is assumed that attributes weights can be both linear

equality as well as linear inequality and these five listed

forms can be remodelled into incomplete certain information

of three types and thus categorized as H1 [32] as follows:

Type1 : fw : Aw� b;w[ 0; b� 0g
Type2 : fw : Aw� b;w[ 0; b� 0g
Type3 : fw : Aw ¼ b;w[ 0; b� 0g;

ð27Þ
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where A is a m� n matrix and w ¼ fw1;w2; . . .;wng. We

seek to obtain w ¼ fw1;w2; . . .;wng 2 H1 such that wj � 0

and
Pn

j¼1 wj ¼ 1.

(iv)-a Since wj is not known, we need to find the optimal

weight vector of attributes while maximizing the perfor-

mance degree with respect to all the alternatives by

forming a (MOP2) problem subject to the constraints as

follows:

ðMOP2Þ max fz1; z2; . . .; zmg
subject to

w ¼ ðw1;w2; . . .;wnÞ 2 H1;

Xn

j¼1

wj ¼ 1;

wj � 0; j ¼ 1; 2; . . .; n:

ð28Þ

(iv)-b Using WSM and assigning equal weights [33], we

have the following (WSP2) as follows:

ðWSP2Þ max
Xm

i¼1

zi ¼
Xm

i¼1

Pn
j¼1 wjaijPn

j¼1 wjaij þ
Pn

j¼1 wjbij

subject to

w ¼ ðw1;w2; . . .;wnÞ 2 H1;

Xn

j¼1

wj ¼ 1;

wj � 0; j ¼ 1; 2; . . .; n:

ð29Þ

Solving the nonlinear optimization problem (linear frac-

tional problem), we’ll get the optimal weights as

w ¼ fw1;w2; . . .;wng. Thus, by forming the optimization

problem, the case of partially known weight information of

attributes is used to obtain crisp attributes weight to be used

further in Step 6 to find weighted strength and weakness

scores.

Step 6. Weighted strength and weakness scores

Next, weighted strength as well as weighted weakness is

computed as the sum of the multiplicatives obtained by

multiplying the crisp advantage and the disadvantage

scores, respectively, of the alternatives on each evaluation

attribute with the aggregated weights of the corresponding

attributes to obtain the strength score and the weakness

score of each alternative as follows:

Si ¼
Xn

j¼1

wjaij; ð30Þ

and

Wi ¼
Xn

j¼1

wjbij: ð31Þ

Step 7. Performance degrees

Total performance score Zi corresponding to alternative

Ai, i ¼ 1; 2; . . .;m is obtained taking into account both the

strength score and weakness score to find the most

preferable alternative and determining the ranking order of

all the alternatives in descending order based on the overall

assessment as follows:

Zi ¼
Pn

j¼1 wjaijPn
j¼1 wjaij þ

Pn
j¼1 wjbij

; i ¼ 1; 2; . . .;m: ð32Þ

The step-wise description of the MAGDM approach based

on an extended TOPSIS method using IVIFNs is presented

as follows.

1. From the IVIF assessment data provided by DMs,

compute the crisp DMs importance weight using

Eq. (17).

2. The individual assessment of alternatives with respect

to each attribute is aggregated over DMs weights using

Eq. (18).

3. The IVIF decision matrix D is standardized using

Eq. (19) as R.

4. Calculate advantage and disadvantage scores using

Eqs. (20) and (21), respectively.

5. Variation in weight information of the attributes:

(i) Attributes weights are completely known.

(ii) If attributes weight information is given as

subjective evaluations in the form of IVIFNs,

then calculate aggregated attributes weight

over DMs weights using Eq. (22) and nor-

malize it using Eq. (23).

(iii) If there is no information about attributes

weight, calculate entropy values using

Eq. (24) and weights using Eq. (25).

(iv) Partial information on attributes weight in the

form of (26), i.e. set H can be transformed

into set H1 using (27). Performance degree of

each alternative is maximized by solving the

(MOP2) problem using (28). It is then

converted into a (WSP2) problem using

(29). The calculated weights after solving

the respective optimization problem are then

used to obtain weighted strength as well as

weakness scores.

6. Weighted strength and weighted weakness are calcu-

lated using Eqs. (30) and (31), respectively, by

imparting the obtained attributes weights.

7. Performance degree of each alternative is calculated in

order to rank the alternatives in descending order using

Eq. (32).
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In what follows next, we present the solution methodology

in terms of IFNs as well as IVIFNs taking into account all

the four variations of attributes weights information

(Fig. 1).

4 Numerical Illustrations

In this section, computational procedure is demonstrated

with the help of numerical illustrations in terms of the

proposed approach. To validate the applicability of the

Fig. 1 Generalized TOPSIS method for MAGDM problem
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approach in the setting of MAGDM and IFNs, an invest-

ment decision making problem [34] is considered in

Sect. 4.1, whereby the case of partial attribute weight

information is exemplified. Also, an investment group

decision making problem is again considered [35] to

illustrate the applicability in an IVIF setting in Sect. 4.2

whereby attributes weights are taken as completely

unknown.

4.1 Application Using IFNs

An investment company offers three feasible alternatives

K ¼ fA1;A2;A3g which are evaluated by three DMs with

respect to four attributes: risk (C1), growth (C2), social-

political issues (C3) and environmental impact (C4).

Additionally, it has been assumed that the information on

attributes weights have been provided partially or incom-

pletely by the respective DMs in the form of set H as

follows:

H ¼
(
w ¼ ðw1;w2;w3;w4ÞT j 0:2�w2 � 0:5; w3 ¼ 0:2;

0:2�w4 � 0:6;w4 �w1; w3 � w1 � 0:1;

w3 � w2 �w4 � w1; wj � 0; j ¼ 1; 2; 3; 4;
X4

j¼1

wj ¼ 1

)

Furthermore, suppose that the weights of DMs are IFNs

and are expressed as

f½0:28; 0:58; 0:14�; ½0:25; 0:6; 0:15�; ½0:3; 0:55; 0:15�g:

The IF decision matrices given by DMs Dk; k ¼ 1; 2; 3 can

be obtained in Table 1 in the form of eXk ¼ ðakijÞ3�4 as

follows:

Step 1. Since DMs weights as given by the experts are

given in the form of IFNs, crisp DMs weights kk; k ¼
1; 2; 3 have been obtained using Eq. (1) as

fk1 ¼ 0:335; k2 ¼ 0:302; k3 ¼ 0:363g.

Step 2. Judgement provided by three DMs have been

aggregated utilizing Eq. (2) into a cumulative IF decision

matrix D ¼ ðaijÞ3�4 taking into effect the importance of

individual DMs and are provided in Table 2.

Step 3. Since attribute A2 being the growth factor is a

benefit attribute, and rest all are cost attributes, there is a

need to standardize the IF decision matrix D into R using

Eq. (3) and is given in Table 3.

Step 4. Next, advantage and disadvantage scores have

been obtained using Eqs. (4) and (5) wherein it is calcu-

lated how advantageous an alternative is with respect to all

other alternatives keeping fixed a particular attribute. On

the other hand, disadvantage score analyses as to how

much an alternative is disadvantageous or not preferable in

comparison to the rest of the alternatives with respect to a

particular attribute and is provided in Table 4.

Step 5. Since attributes weights are provided in the form

of incomplete uncertain information as H, thus, it can be

transformed into incomplete certain information using (11)

as H1 and bifurcated into three types as follows:

Type 1: fw2 � 0:2;w4 � 0:2;w4 � w1 � 0;w3 � w2 �
w4þ w1 � 0g

Type 2: fw2 � 0:5;w4 � 0:6;w3 � w1 � 0:1g
Type 3: fw3 ¼ 0:2g
We seek to obtain w ¼ fw1; . . .;w4g 2 H1 such that

wj � 0; j ¼ 1; . . .; 4;
P4

j¼1 wj ¼ 1.

In order to obtain the weight vector, performance degree

of each alternative is maximized subject to partial weights

H1 and by using (12), (MOP1) problem is formed. Then,

using WSM with equal weights, model (MOP1) can be

transformed using (13) into a single objective (WSP1)

problem. Solving the above nonlinear optimization prob-

lem (linear fractional problem) using LINGO [36], the

optimal attributes weights are obtained as

w ¼ f0:3; 0:2; 0:2; 0:3g.

Step 6. What follows next, is the calculation of weighted

strength Si as well as weighted weakness Wi using

Eqs. (14) and (15), encompassing the weight vector w ¼

Table 1 Assessment ðakijÞ3�4

given by DMs Dk; k ¼ 1; 2; 3
D1 C1 C2 C3 C4

A1 ([0.65, 0.25, 0.1]) ([0.58, 0.3, 0.12]) ([0.63, 0.11, 0.26]) ([0.68, 0.21, 0.11])

A2 ([0.69, 0.21, 0.1]) ([0.67, 0.25, 0.08]) ([0.57, 0.16, 0.27]) ([0.61, 0.3, 0.09])

A3 ([0.67, 0.11, 0.22]) ([0.71, 0.16, 0.13]) ([0.62, 0.25, 0.13]) ([0.65, 0.15, 0.2])

D2

A1 ([0.62, 0.1, 0.28]) ([0.65, 0.2, 0.15]) ([0.71, 0.15, 0.14]) ([0.7, 0.25, 0.05])

A2 ([0.74, 0.05, 0.21]) ([0.51, 0.31, 0.18]) ([0.58, 0.3, 0.12]) ([0.65, 0.31, 0.04])

A3 ([0.75, 0.25, 0]) ([0.61, 0.13, 0.26]) ([0.58, 0.25, 0.17]) ([0.75, 0.2, 0.05])

D3

A1 ([0.62, 0.21, 0.17]) ([0.85, 0.1, 0.05]) ([0.56, 0.18, 0.26]) ([0.58, 0.24, 0.18])

A2 ([0.68, 0.22, 0.1]) ([0.7, 0.16, 0.14]) ([0.75, 0.15, 0.1]) ([0.59, 0.1, 0.31])

A3 ([0.65, 0.15, 0.2]) ([0.75, 0.19, 0.06]) ([0.65, 0.15, 0.2]) ([0.68, 0.16, 0.16])
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f0:3; 0:2; 0:2; 0:3g obtained after solving the (WSP1)

problem as listed in Table 5.

Step 7. Performance degrees Zi corresponding to each

alternative Ai are obtained using Eq. (16) as listed in Table 5.

Thus, the investment options are ranked in descending

order of preference as A1 � A3 � A2.

4.2 Application Using IVIFNs

An investment company wants to invest a sum of money in

the best option. There is a panel with four possible alter-

natives to invest the money: A1 (car company), A2 (food

company), A3 (computer company) and A4 (arms com-

pany). The investment company must take a decision

according to the following three attributes: C1 (the risk

analysis), C2 (the growth analysis) and C3 (the environ-

mental impact analysis). Assume that the weight vector of

DMs as given by the experts are given in the form of

IVIFN as f ½0:2; 0:4�; ½0:3; 0:6�; ½0:2; 0:6�Þ; ð½0:2; 0:6�;ð ½0:4;
0:5�; ½0:6; 0:8�Þ; ð½0:4; 0:5�; ½0:6; 0:8�; ½0:3; 0:6�Þg. Addition-

ally, to show the applicability of the proposed approach,

attributes weights have been taken as completely unknown.

Also the four possible alternatives Ai; ði ¼ 1; 2; 3; 4Þ are to

be evaluated under three mentioned attributes using IVIF

information, given by three DMs Dk; ðk ¼ 1; 2; 3Þ, as listed

in Table 6.

Step 1. Since DMs weights as given by the experts are in

the form of IVIFNs, crisp DMs weights kk; k ¼ 1; 2; 3 are

obtained using Eq. (17) as fk1 ¼ 0:24; k2 ¼ 0:388;

k3 ¼ 0:372g.

Step 2. Assessments provided by three DMs are aggre-

gated over their weights kk using Eq. (18) into a unified

IVIF decision matrix D ¼ ðaijÞ4�3 and is provided in

Table 7.

Step 3. Since attributes A1 and A3 being the risk and

environmental impact analysis factor are cost attributes and

A2 being the growth factor is a benefit attribute, so, there is

a need to standardize the IVIF decision matrix D into

R using Eq. (19) and is given in Table 8.

Step 4. Advantage and disadvantage scores of the

alternatives have been obtained using Eqs. (20) and (21)

and are given in Table 9.

Step 5. Since attribute weight information is not pro-

vided by the DM, weights are obtained using the proposed

entropy measures in Eqs. (24) and (25) and are listed in

Table 10.

Table 2 Aggregation of

individual assessment ðaijÞ3�4

over DMs weights kk

aij C1 C2 C3 C4

A1 ([0.63, 0.178, 0.192]) ([0.726, 0.178, 0.095]) ([0.634, 0.144, 0.222]) ([0.654, 0.232, 0.114])

A2 ([0.703, 0.138, 0.159]) ([0.641, 0.227, 0.132]) ([0.649, 0.189, 0.162]) ([0.616, 0.203, 0.181])

A3 ([0.69, 0.158, 0.152]) ([0.699, 0.16, 0.141]) ([0.62, 0.208, 0.172]) ([0.694, 0.167, 0.139])

Table 3 Standardized IF

decision matrix R
aij C1 C2 C3 C4

A1 ([0.178, 0.63, 0.192]) ([0.726, 0.178, 0.095]) ([0.144, 0.634, 0.222]) ([0.232, 0.654, 0.114])

A2 ([0.138, 0.703, 0.159]) ([0.641, 0.227, 0.132]) ([0.189, 0.649, 0.162]) ([0.203, 0.616, 0.181])

A3 ([0.158, 0.69, 0.152]) ([0.699, 0.16, 0.141]) ([0.208, 0.62, 0.172]) ([0.167, 0.694, 0.139])

Table 4 Advantage score

matrix ðaijÞ3�4 and disadvantage

score matrix ðbijÞ3�4

Alternative ðAiÞ aij: Advantage score bij: Disadvantage score

C1 C2 C3 C4 C1 C2 C3 C4

A1 0.096 0.122 0.008 0.113 0.036 0.009 0.116 0.019

A2 0.016 0.004 0.058 0.076 0.075 0.148 0.032 0.069

A3 0.039 0.072 0.087 0.021 0.076 0.079 0.008 0.116

Table 5 Weighted strength,

weighted weakness and

performance degree

Alternative Weighted strength Weighted weakness Performance degree

A1 0.088 0.041 0.681

A2 0.04 0.079 0.336

A3 0.05 0.075 0.4
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Step 6. Weighted strength as well as weighted weakness

taking into effect attributes weights are obtained using

Eqs. (30) and (31) in Table 11.

Step 7. Finally, performance degree is calculated cor-

responding to each alternative using Eq. (32) as given in

Table 11, which concludes that the most preferred invest-

ment option is A3 followed by A1;A2 and A4.

Table 6 Assessment ðaijkÞ4�3

given by DMs Dk; k ¼ 1; 2; 3
D1 C1 C2 C3

A1 ([0.3,0.5], [0.2,0.4], [0.1,0.5]) ([0.4,0.5], [0.2,0.3], [0.2,0.4]) ([0.4,0.6], [0.1,0.3], [0.1,0.5])

A2 ([0.3,0.4], [0.4,0.6], [0,0.3]) ([0.2,0.3], [0.4,0.6], [0.1,0.4]) ([0.2,0.3], [0.5,0.6], [0.1,0.3])

A3 ([0.4,0.6], [0.2,0.3], [0.1,0.4]) ([0.4,0.6], [0.1,0.3], [0.1,0.5]) ([0.2,0.4], [0.4,0.5], [0.1,0.4])

A4 ([0.3,0.5], [0.3,0.4], [0.1,0.4]) ([0.4,0.6], [0.2,0.4], [0,0.4]) ([0.5,0.7], [0.1,0.2], [0.1,0.4])

D2

A1 ([0.2,0.3], [0.5,0.6], [0.1,0.3]) ([0.5,0.7], [0.1,0.2], [0.1,0.4]) ([0.5,0.7], [0.1,0., [0.1,0.4])

A2 ([0.3,0.4], [0.3,0.5], [0.1,0.4]) ([0.3,0.5], [0.2,0.4], [0.1,0.5]) ([0.3,0.5], [0.3,0.4], [0.1,0.4])

A3 ([0.4,0.6], [0.3,0.4], [0,0.3]) ([0.3,0.5], [0.2,0.4], [0.1,0.5]) ([0.2,0.3], [0.5,0.7], [0,0.3])

A4 ([0.5,0.6], [0.2,0.3], [0.1,0.3]) ([0.5,0.7], [0.1,0.2], [0.1,0.4]) ([0.6,0.8], [0.1,0.2], [0,0.3])

D3

A1 ([0.3,0.5], [0.3,0.5], [0,0.4]) ([0.4,0.7], [0.2,0.3], [0,0.4]) ([0.6,0.7], [0.1,0.2], [0.1,0.3])

A2 ([0.5,0.7], [0.1,0.2], [0.1,0.4]) ([0.5,0.6], [0.2,0.4], [0,0.3]) ([0.4,0.6], [0.2,0.3], [0.1,0.4])

A3 ([0.3,0.5], [0.2,0.4], [0.1,0.5]) ([0.4,0.6], [0.2,0.3], [0.1,0.4]) ([0.1,0.2], [0.6,0.8], [0,0.3])

A4 ([0.2,0.4], [0.3,0.5], [0.1,0.5]) ([0.4,0.6], [0.2,0.3], [0.1,0.4]) ([0.5,0.6], [0.2,0.3], [0.1,0.3])

Table 7 Aggregation of individual assessment ðaijÞ4�3 over DMs weights kk

aij C1 C2 C3

A1 ([0.263,0.43], [0.332,0.509], [0.061,0.405]) ([0.441,0.661], [0.153,0.256], [0.083,0.406]) ([0.519,0.679], [0.1,0.22], [0.101,0.381])

A2 ([0.382,0.536], [0.214,0.371], [0.092,0.404]) ([0.362,0.501], [0.236,0.441], [0.058,0.402]) ([0.318,0.501], [0.292,0.396], [0.103,0.391])

A3 ([0.365,0.565], [0.234,0.373], [0.061,0.401]) ([0.363,0.564], [0.169,0.335], [0.101,0.468]) ([0.164,0.291], [0.507,0.679], [0.03,0.329])

A4 ([0.354,0.509], [0.256,0.389], [0.102,0.389]) ([0.441,0.642], [0.153,0.275], [0.083,0.406]) ([0.541,0.715], [0.129,0.233], [0.053,0.329])

Table 8 Standardized IVIF decision matrix R

aij C1 C2 C3

A1 ([0.332,0.509], [0.263,0.43], [0.061,0.405]) ([0.441,0.661], [0.153,0.256], [0.083,0.406]) ([0.1,0.22], [0.519,0.679], [0.101,0.381])

A2 ([0.214,0.371], [0.382,0.536], [0.092,0.404] ([0.362,0.501], [0.236,0.441], [0.058,0.402]) ([0.292,0.396], [0.318,0.501], [0.103,0.391])

A3 ([0.234,0.373], [0.365,0.565], [0.061,0.401]) ([0.363,0.564], [0.169,0.335], [0.101,0.468]) ([0.507,0.679], [0.164,0.291], [0.03,0.329])

A4 ([0.256,0.389], [0.354,0.509], [0.102,0.389]) ([0.441,0.642], [0.153,0.275], [0.083,0.406]) ([0.129,0.233], [0.541,0.715], [0.053,0.329])

Table 9 Advantage score matrix ðaijÞ4�3 and disadvantage score matrix ðbijÞ4�3

Alternative ðAiÞ aij: Advantage score bij: Disadvantage score

C1 C2 C3 C1 C2 C3

A1 0.348 0.223 0.018 0.005 0.007 0.655

A2 0.01 0.042 0.377 0.179 0.303 0.28

A3 0.03 0.059 1.094 0.154 0.193 0

A4 0.066 0.195 0.063 0.114 0.017 0.617
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5 Comparison with Other Works

To further exhibit the efficiency of the proposed approach,

we compare the results and methodology by analysing the

case with some similar computational approaches such as

by Aikhuele and Turan [14] and Liu et al. [16].

1. Comparison with Aikhuele and Turan [14]

We solved the MAGDM problem applying the IF-

TOPSIS model for failure detection presented in [14]

with appropriate modifications. Though [14] consid-

ered multiple DMs, but the weight vector of DMs were

taken as completely known single numeric value which

reflects too much certainty in the uncertain decision

making scenario. Also, the numerical illustration

considered in [14] cites DMs weights as equal which

is less common and impractical because it is unlikely

that the outlook of the DMs are same as far as

knowledge or perspective is concerned in order to be

labelled with indifference in judgement; whereas the

ranking order of the alternatives obtained in the

illustration presented in [14] through the proposed

approach is the same as that obtained in [14] itself, that

is, PM2 [PM4 [PM3 [PM1. Also in [14], idealistic

benchmarks are used while finding IF–PIS as well as

IF–NIS, which are too impractical to be achieved in

uncertain real-world decision making and which also

reflects its effect in the separation measures used

unlike the proposed approach where advantage and

disadvantage scores of alternatives are found. Further-

more, the entropy method listed in [14] has drawbacks

as listed in [26]. Thus, the proposed procedure can be

adopted to a particular situation such as the one used in

[14]; however, the same is not true about the latter.

2. Comparison with Liu et al. [16]

In order to compare with [16], we solved the failure

mode and effect analysis approach presented therein

using our methodology with appropriate modifications.

In [16], DMs are assigned crisp weights to reflect their

differences in performance which implies too much

certainty and surety in a practical uncertain decision

making process. In [16], we came across the ranking

order for the first five alternatives, for instance, out of

sixteen as FM10 [FM13 [FM12 [FM8 [FM3,

whereas if the illustration is solved by the proposed

approach, ranking order comes out to be

FM8 [FM3 [FM10 [FM12 [FM13. The prospec-

tive reasons for the change in ranking order can be

attributed to employing advantage and disadvantage

scores rather than the application of ideal benchmarks

which are too idealistic to be achieved in an unreal-

istic, non-idealistic decision making process, thereby

affecting the calculation of separation measures used

too. The proposed methodology saw the usage of all

the three parameters of IFN, viz. membership degree,

non-membership degree as well as hesitation degree

whereas in [16], hesitation parameter is truncated in

the decision making process. Although the proposed

approach can be adapted to a particular situation such

as the one in [16], but the same is not true about the

latter.

6 Conclusions

In this paper, TOPSIS method has been generalized

encompassing the MAGDM parameters into the picture

with the application of intuitionistic fuzziness in the

background. The paper highlights the said methodology in

the presence of IFS as well as IVIFS. Multiple DMs are

incorporated so as to include multiple sources of subjective

influence with DMs weights taken subjectively in the form

of IFN and IVIFN, reflecting a realistic assessment by the

experts. Different variations of attributes weight informa-

tion are considered such as completely known weight

information, uncertain subjective evaluations in the form of

IFN or IVIFN, incompletely known partial weights and

completely unknown weights. Advantage and disadvantage

scores are used for assessing the performance evaluation of

alternatives. The selection of the best alternative is done

based on relative comparison of performances of the

alternatives among each other rather than measuring the

performance of each alternative using some hypothetical

benchmarks or peers. In this paper, besides the membership

Table 10 Entropy �Ej and attributes weights wj

Attribute Cj Entropy �Ej Weight wj

C1 0.986 0.325

C2 0.945 0.332

C3 0.89 0.342

Table 11 Weighted strength, weighted weakness and performance

degree

Alternative Weighted

strength

Weighted

weakness

Performance

degree

A1 0.193 0.228 0.459

A2 0.146 0.255 0.365

A3 0.404 0.114 0.779

A4 0.108 0.254 0.298
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and non-membership degrees, the hesitancy degree is also

treated at its independent level of importance and the

ranking of the alternatives is done on the basis of trade-off

values of all three parameters of IFN or IVIFN. Further-

more, potential applications of the proposed approach are

examined and demonstrated with a numerical illustration in

the realm of IFNs where the attributes weights are given

incomplete or partially and another illustration with input

data in the form of IVIFNs where the attributes weights are

completely unknown. Examples have been employed to

compare the experimental results of the proposed approach

with the ones obtained by the methods presented in [14]

and [16]. Also, highlights of the said approach are

emphasized. Finally, it can be concluded that the procedure

proposed in this study, provides a better alternative method

for choosing an alternative in a MAGDM problem as it

allows for the fuzziness and the hesitation of the DMs

subjective assessments to be reflected and modelled in the

evaluation with the consideration of variations in attributes

weights information. For future research, we would like to

extend the proposed MAGDM problem with all variations

in DMs weights so as to further generalize it. Also, we

would like to use granular computing techniques to pro-

pose simpler methods as far as computational work is

concerned for dealing with MAGDM problems.
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