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Abstract This paper addresses the issue of adaptive fuzzy

tracking control in the case of strict-feedback nonlinear

time-delay systems with full-state constraints. Design

procedures of the state controller are provided based on the

fuzzy systems which are adopted to identify the totally

unknown package nonlinear functions and avoid burden-

some computations properly. The main novelty of this

paper is the delicate selection of tan-type barrier Lyapunov

functions and Lyapunov–Krasovskii functionals to deal

with state constraints and time-delay terms. The successful

construction of an original simpler controller allows that

the output tracking errors converge to a sufficiently small

neighborhood of the origin, while the constraints on the

system states will not be violated during operation. Finally,

a benchmark example is given to demonstrate the effec-

tiveness of the design scheme.

Keywords Adaptive fuzzy control � Time-delay systems �
Full-state constraints � Tan-type barrier Lyapunov

functions

1 Introduction

It is no doubt that time-delay system has received consid-

erable attention, and its research has been one of the active

subjects in the field of nonlinear control because it widely

exists and is inevitable in most real-world systems; see

[1–5] and the references therein. Specifically, owing to the

lack of unified method applicable to nonlinear control

design, there are still many important and interesting

control problems for time-delay nonlinear systems

remaining unsolved. Fortunately, ever since the introduc-

tion of backstepping method into adaptive fuzzy control

and Lyapunov–Krasovskii functionals, numerous interest-

ing results on nonlinear time-delay systems have been

achieved. For instance, an approximation-based adaptive

fuzzy control method with only one adaptive parameter

was presented in [6] for a class of strict-feedback nonlinear

systems with unmodeled dynamics, dynamic disturbances,

and unknown time delays. As for a class of stochastic

nonlinear time-delay systems with a nonstrict-feedback

structure, the problem of approximation-based adaptive

fuzzy tracking control was studied in [7]. What is more, [8]

studied the problem of adaptive output tracking control for

a class of nonlinear systems subject to unknown time-delay

and input saturation. If there are MIMO strict-feedback

nonlinear systems with unknown time-varying delays,
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unmeasured states and input saturation, a hybrid fuzzy

adaptive output feedback control approach was proposed in

[9]. In a different direction, an adaptive indirect fuzzy

sliding mode controller was designed in [10] for networked

control systems subject to time-varying network-induced

time delay. Yi et al. [11] investigated the adaptive fuzzy

output feedback control problem for a class of nonstrict-

feedback time-delay systems subject to full-state con-

straints. The studies [12–16] and the references therein also

made significant contributions to the research of time-delay

system.

On the other hand, constraints are everywhere for

physical systems in the face of limitation of mathematical

tools and methods. To guarantee the stability of various

kinds of systems with the state or output constraints,

numerous results have been proposed. For example, [17]

and [18] investigated the adaptive neural tracking control

problem for a class of DC motor systems with the full-state

constraints and an uncertain n-link robot with full-state

constraints, respectively. An adaptive neural network

control method was investigated in [19] for a class of

uncertain nonlinear strict-feedback systems with full-state

constraints. Based on BLF-based backstepping, the control

design for strict-feedback systems with constraints on the

states was addressed in [20]. An finite-time adaptive con-

trol approach was designed in [21] for stochastic nonlinear

systems with full-state constraints and parametric uncer-

tainties. In a different direction, [22] studied the problem of

output feedback control for a class of nonlinear systems

with the full-state constraints. A composite adaptive fuzzy

output feedback control approach was proposed in [23] for

a class of strict-feedback nonlinear systems with unmea-

sured states and input saturation. Besides, [24–27] and the

references therein reported several control strategies for

nonlinear systems with the state or input constraints.

However, to the best of our knowledge, there exist a few

results of adaptive fuzzy control for nonlinear systems

simultaneously subject to the full-state constraints and time

delays, which motivates this paper.

In this paper, the problem of adaptive fuzzy tracking

control for a class of strict-feedback nonlinear time-delay

systems with full-state constraints is studied. Compared with

existing results on adaptive fuzzy control for nonlinear sys-

tems, the novelties and main contributions of this work are

highlighted from three aspects: The simultaneous existence

of the full-state constraints and time delays makes the design

of controller very difficult. Correspondingly, the tan-type

barrier Lyapunov functions and Lyapunov–Krasovskii

functionals are introduced to deal with state constraints and

time-delay terms, respectively. Fuzzy systems are adopted to

identify the completely unknown package nonlinear func-

tions and avoid the heavy computations at the same time.

Therefore, the virtual and real control signals of the proposed

scheme can be achieved simpler and easier. Only one

parameter estimation is considered for the adaptive con-

troller used; therefore, the dynamic order of the designed

controller is minimum, which avoids the over-parametriza-

tion estimate phenomenon. In addition, the proposed control

scheme can also work for systems when there is no state

constraint, because the tan-type BLF can reduce to standard

quadratic ones in this case.

This paper is organized as follows. After the introduc-

tion section, the problem statement and some preliminary

results are introduced in Sect. 2. The control design

schemes are given in Sect. 3. To verify the effectiveness of

the proposed methodology, a numerical example is pre-

sented in Sect. 4. Finally, Sect. 5 concludes the paper.

2 Problem Statement and Preliminary Results

Consider the following strict-feedback nonlinear systems

with full-state constraints

_xiðtÞ¼ gið�xiðtÞÞxiþ1ðtÞþ fið�xiðtÞÞþhið�xiðt� siÞÞþdiðt;xÞ;
i¼ 1; . . .;n�1;
_xnðtÞ¼ gnðxðtÞÞuþ fnðxðtÞÞþhnð�xðt� snÞÞþdnðt;xÞ;
y¼ x1;

8
>><

>>:

ð1Þ

where �xi ¼ ½x1; . . .;xi�T 2Ri, i¼ 1; . . .;n, x¼ ½x1;x2; . . .;xn�T 2
Rn and y2R are system state vector and output, respec-

tively, gið�xiÞ 6¼ 0 is a known smooth nonlinear function,

fið�xiÞ and hið�xiðt� siÞÞ are unknown continuous functions,

diðt;xÞ is a bounded time-varying disturbance and u is the

control signal to be designed. All the states are constrained

in the compact set as

Xx :¼ fxi 2 R; jxiðtÞj � kci ; i ¼ 1; . . .; ng; ð2Þ

where kci are known positive constants. Given a reference

trajectory yr, the control objective is to design a fuzzy

controller in the form as follows:

uðtÞ ¼ uðxðtÞ; ĤðtÞ; yrÞ;
_̂HðtÞ ¼ KðxðtÞ; ĤðtÞ; yrÞ; Ĥð0Þ ¼ Ĥ0;

(

such that the system output y tracks the desired trajectory

yr; all the signals in the closed-loop system are bounded,

and the state constraint requirements are not violated,

where ĤðtÞ represents the estimate of an unknown posi-

tive constant H which will be specified later. Sometimes,

the arguments of the functions will be omitted or sim-

plified, whenever no confusion can arise from the context.

For instance, we sometimes denote a function f(t) by

simply f.

First, the following fuzzy systems are employed to

approximate the unknown functions.
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IF-THEN rules: Ri: If x1 is Fi
1 and � � � and xn is Fi

n,

THEN y is Bi; i ¼ 1; . . .; n.

The fuzzy systems can be formulated as:

yðxÞ ¼
PN

i¼1 Ui

Qn
j¼1 lFi

j
ðxjÞ

PN
i¼1½
Qn

j¼1 lFi
j
ðxjÞ�

:

where lFi
j

is fuzzy membership function. Let

piðxÞ ¼
Qn

j¼1 lFi
j
ðxjÞ

PN
i¼1½
Qn

j¼1 lFi
j
ðxjÞ�

;

where PðxÞ ¼ ½p1ðxÞ; p2ðxÞ; . . .; pNðxÞ�T and

U ¼ ½U1; . . .;UN �T . Then, the fuzzy systems can be

rewritten as follows:

yðxÞ ¼ UTPðxÞ:

Lemma 1 [28] f(x) is a continuous function defined on a

compact set X, for any given constant e[ 0; there exists a

fuzzy system UTPðxÞ such that

supx2X j f ðxÞ � UTPðxÞ j � e:

To reduce the number of adaptive laws, define H as:

H ¼ max
n
k Ui k2

o
; i ¼ 1; . . .; n;

where Ui is the unknown parameter vector in the fuzzy

system. Next, the following transformations are introduced:

z1 ¼ x1 � yr;

zi ¼ xi � x�i�1; i ¼ 2; . . .; n;

�

ð3Þ

where zi 2 R is the virtual state tracking error, x�i 2 R is the

virtual controller satisfying jx�i j\x�i0, and x�i0 is a positive

constant which will be specified later. To achieve the

desired control objective, we make the following

assumptions:

Assumption 1 For 1� i� n, there exists an unknown

positive function lið�xiðtÞÞ such that jdiðt; xÞj � lið�xiðtÞÞ.

Assumption 2 For the unknown nonlinear smooth func-

tions hið�xiðtÞÞ, there exist unknown positive functions

qijð�xiðtÞÞ, such that

hið�ziðtÞ þ �x�i�1ðtÞÞ�
Xi

j¼1

jzjðtÞjqijð�ziðtÞÞ;

where �zi ¼ ½z1; . . .; zi�T , �x�i�1 ¼ ½x�0; . . .; x�i�1�
T
, x�0 ¼ yr.

Assumption 3 The desired signal yr is bounded, i.e.,

jyrj � y0, and its time derivatives up to the n-th order are

continuous and bounded; meanwhile y0\kci .

Remark 1 The above assumptions are all reasonable.

Assumption 1 is common in conventional results. For the

Assumption 2, the similar ones can be seen in [29, 30]. In

particular, the qij is need to be known in [30]. The

requirement on signal of Assumption 3 relies widely on

backstepping control [31, 32]. To design the desired con-

troller, the standard backstepping technique requires that

the reference signal has to be continuous and derivable.

y0\kci in Assumption 3 is always true in practice for the

requirement of output tracking control. A similar assump-

tion is presented in the literatures [33].

Next, the following tan-type BLFs are introduced

V�
i ¼

k2
bi

p
tan

pz2
i

2k2
bi

 !

; jzið0Þj\kbi ; i ¼ 1; . . .; n;

where zi 2 Xz :¼ fzi 2 R; jzij\kbig with kb1
¼ kc1

�
y0 [ 0 and kbi ¼ kci � x�i�10 [ 0, i ¼ 2; . . .; n. Define

vzi ¼ zi

cos2ð
pz2
i

2k2
bi

Þ
. In fact, kci ! 1 implies kbi ! 1, and

tan
�

pz2
i

2k2
bi

�
� pz2

i

2k2
bi

can be obtained. With this in mind, the

following equation can be further obtained

lim
kbi!1

k2
bi

p
tan

pz2
i

2k2
bi

 !

¼ 1

2
z2
i ;

this implies that the tan-type BLF reduces to standard

quadratic ones when there is no constraint. Compared with

the log-type BLF employed in [30, 34], using the tan-type

BLF to deal with state constraints is a general approach that

can also work for systems without state constraints.

3 Adaptive Fuzzy Control

3.1 Control Design

Step 1: Define a candidate BLF as

V1 ¼ V�
1 þ

Xn

i¼1

Z t

t�si

Wi1ðz1ðsÞÞdsþ
1

2
~H

2
;

where ~H ¼ H� Ĥ and the positive function Wi1ðz1ðtÞÞ are

specified later. Taking the derivative of V1 with respect to

time, one has

_V1 ¼vz1
g1x2 þ f1ðx1Þ þ h1ðx1ðt � s1ÞÞ þ d1 � _yrð Þ

þ
Xn

i¼1

Wi1ðz1ðtÞÞ �
Xn

i¼1

Wi1ðz1ðt � siÞÞ � ~H _̂H:

ð4Þ

In view of Assumptions 1 and 2, the following inequalities

hold
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vz1
d1 �

v2
z1
l2

1ðx1Þ
2a2

11

þ a2
11

2
; ð5Þ

vz1
h1ðx1ðt � s1ÞÞ� v2

z1
þ 1

2
z2

1ðt � s1Þq2
11ðz1ðt � s1ÞÞ: ð6Þ

To cancel the unknown time-delay term h1ðx1ðt � s1ÞÞ in

(4), Wi1ðz1ðtÞÞ is chosen as:

Wi1ðz1ðtÞÞ ¼
1

2
ðn� iþ 1Þz2

1ðtÞq2
i1ðz1ðtÞÞ: ð7Þ

Substituting (5)–(7) into (4) results in

_V1 � vz1

 

g1ðx1Þx�1 þ f1ðx1Þ þ
vz1

2
þ vz1

l2
1ðx1Þ

2a2
11

� _yr

þ 1

2

Xn

i¼1

ðn� iþ 1Þcos2 pz2
1

2k2
b1

 !

z1ðtÞq2
i1ðz1ðtÞÞ

!

� 1

2

Xn

i¼1

ðn� iþ 1Þz2
1ðt � s1Þq2

i1ðz1ðt � s1ÞÞ

þ 1

2
z2

1ðt � s1Þq2
11ðz1ðt � s1ÞÞ þ

a2
11

2
þ g1vz1

z2 � ~H _̂H:

ð8Þ

Let �f 1 ¼ f1ðx1Þ þ
vz1l

2
1
ðx1Þ

2a2
11

� _yr þ 1
2

Pn
i¼1ðn� iþ 1Þcos2

ð pz
2
1

2k2
b1

Þz1ðtÞq2
i1ðz1ðtÞÞ. In view of Lemma 1, a fuzzy system

U1P1ðX1Þ can be used to approximate the unknown func-

tion �f 1. For any given e1 [ 0,

�f 1 ¼ UT
1P1ðX1Þ þ d1ðX1Þ;

where d1ðX1Þ� e1 is the approximation error. Based on

Young’s inequality, one can obtain

vz1
�f 1 ¼ vz1

UT
1P1ðX1Þ þ vz1

d1ðX1Þ�
Hv2

z1
PT

1P1

2a2
1

þ a2
1

2
þ
v2
z1

2
þ e2

1

2
;

ð9Þ

where a1 is a positive constant. A virtual controller x�1 and

the first tuning function q1 are designed as:

x�1¼� 1

g1

k1 sin
� pz2

1

2k2
b1

�
cos
� pz2

1

2k2
b1

�

z1

þĤPT
1P1

2a2
1

vz1
þ2vz1

2

0

B
B
B
@

1

C
C
C
A
;

q1¼
PT

1P1

2a2
1

v2
z1
;

8
>>>>>>>><

>>>>>>>>:

ð10Þ

where k1 is a positive gain constant. Then, the inequality

(8) can be finally represented as:

_V1 � � k1 tan
pz2

1

2k2
b1

 !

þ g1vz1
z2 �

Xn

i¼1

ðn� iþ 1Þ

z2
1ðt � siÞ

2
q2
i1ðz1ðt � siÞÞ þ

z2
1ðt � s1Þq2

11ðz1ðt � s1ÞÞ
2

þ ~Hðq1 �
_̂HÞ þ c1;

ð11Þ

where c1 ¼ a2
11

2
þ a2

1

2
þ e2

1

2
.

Step 2: It follows from (1) and (3) that

_z2 ¼ g2ð�x2ðtÞÞx3ðtÞ þ f2ð�x2ðtÞÞ þ h2ð�x2ðt � s2ÞÞ þ d2ðt; xÞ

� ox�1
ox1

_x1 þ
ox�1
oĤ

q1 þ
X1

i¼0

ox�1

oy
ðiÞ
r

yðiþ1Þ
r

 !

¼ g2ð�x2ðtÞÞx3ðtÞ þ f2ð�x2ðtÞÞ þ h2ð�x2ðt � s2ÞÞ þ d2ðt; xÞ

� ox�1
ox1

ðh1ðx1ðt � s1ÞÞ þ d1Þ � k1;

ð12Þ

where k1 ¼ ox�
1

ox1
ðf1 þ g1x2Þ þ ox�

1

oĤ
q1 þ

P1
i¼0

ox�
1

oy
ðiÞ
r

y
ðiþ1Þ
r . Con-

sider the candidate BLF as

V2 ¼ V1 þ V�
2 þ

Xn

i¼2

Z t

t�si

Wi2ð�z2ðsÞÞds:

The time derivative of V2 is

_V2 � _V1 þ vz2
�
g2ð�x2ðtÞÞx3ðtÞ þ f2ð�x2ðtÞÞ þ h2ð�x2ðt � s2ÞÞ þ d2ðt; xÞ

� ox�1
ox1

ðh1ðx1ðt � s1ÞÞ þ d1Þ � k1

�

þ
Xn

i¼2

Wi2ðz2Þ �
Xn

i¼2

Wi2ð�z2ðt � siÞÞ

� � k1 tan
� pz2

1

2k2
b1

�
þ g1vz1

z2

W. Sun et al.: Adaptive Fuzzy Control of Strict-Feedback Nonlinear Time-Delay Systems... 2559

123



�
Xn

i¼1

ðn� iþ 1Þ z
2
1ðt � siÞ

2
q2
i1ðz1ðt � siÞÞ

þ z2
1ðt � s1Þq2

11ðz1ðt � s1ÞÞ
2

þ c1 þ vz2

�
g2ð�x2ðtÞÞx3ðtÞ þ f2ð�x2ðtÞÞ

þ h2ð�x2ðt � s2ÞÞ þ d2ðt; xÞ �
ox�1
ox1

h1ðx1ðt � s1ÞÞ

� ox�1
ox1

d1 � k1

�
þ
Xn

i¼2

Wi2ðz2Þ �
Xn

i¼2

Wi2ð�z2ðt � siÞÞ

þ ~Hðq1 �
_̂HÞ:

ð13Þ

In accordance with Assumptions 1 and 2, the following

inequalities can be obtained:

vz2
d2 �

v2
z2
l2

2ð�x2Þ
2a2

21

þ a2
21

2
; ð14Þ

vz2
h2ð�x2ðt � s2ÞÞ� v2

z2
þ 1

2

X2

j¼1

z2
j ðt � s2Þq2

2jð�zjðt � s2ÞÞ;

ð15Þ

�vz2

ox�1
ox1

h1ðx1ðt�s1ÞÞ�
v2
z2

2

�ox�1
ox1

�2

þ1

2
z2

1ðt�s1Þq2
11ðz1ðt�s1ÞÞ;

ð16Þ

�vz2

ox�1
ox1

d1 �
v2
z2
l2

1ðx1Þ
2a2

22

� ox�1
ox1

�2

þ a2
22

2
: ð17Þ

Choosing Wi2ð�z2ðtÞÞ ¼ 1
2
ðn� iþ 1Þz2

2ðtÞq2
i2ð�z2ðtÞÞ and

substituting (14)–(17) into (13) lead to the following

inequality:

_V2 � vz2

 

g2ð�x2ðtÞÞx�2 þ f2ð�x2ðtÞÞ þ !2 þ vz2
þ vz2

l2
2ð�x2Þ

2a2
21

þ vz2

2

� ox�1
ox1

�2

þ vz2
l2

1ðx1Þ
2a2

22

� ox�1
ox1

�2

� k1

!

þ
X2

j¼2

X2

l¼j

ð2 � lþ 1Þ 1

2
z2
j ðt � slÞq2

ljð�zjðt � slÞÞ
 

�
Xn

l¼j

ðn� lþ 1Þ 1

2
z2
j ðt � slÞq2

ljð�zjðt � slÞÞ
!

þ g2ð�x2ðtÞÞz3vz2
� k1 tan

� pz2
1

2k2
b1

�
þ ~Hðq1 �

_̂HÞ þ c1;

ð18Þ

where !2 ¼ g1cos2
�

pz2
2

2k2
b2

�
=cos2

�
pz2

1

2k2
b1

�
z1 þ 1

2

Pn
i¼2ðn�

iþ 1Þq2
i2ð�z2Þ cos2

�
pz2

2

2k2
b2

�
z2. Let �f 2 ¼ f2ð�x2ðtÞÞ þ !2 þ

vz2l
2
2
ð�x2Þ

2a2
21

þ vz2
2

�
ox�

1

ox1

�2

þ vz2l
2
1
ðx1Þ

2a2
22

�
ox�

1

ox1

�2

� k1. By using of

Lemma1 again, the unknown function �f 2 can be modeled

by the given fuzzy system U2P2ðX2Þ
�f 2 ¼ UT

2P2ðX2Þ þ d2ðX2Þ;

where d2ðX2Þ� e2 is the approximation error. Notice that

vz2
�f 2 ¼ vz2

UT
2P2 þ vz2

d2 �
Hv2

z2
PT

2P2

2a2
2

þ a2
2

2
þ
v2
z2

2
þ e2

2

2
;

ð19Þ

where a2 is a design parameter. The virtual controller x�2
and tuning function q2 are constructed as:

x�2¼� 1

g2

k2 sin
� pz2

2

2k2
b2

�
cos
� pz2

2

2k2
b2

�

z2

þvz2
ĤPT

2P2

2a2
2

þ3vz2

2

0

B
B
B
@

1

C
C
C
A
;

q2¼q1þ
PT

2P2

2a2
2

v2
z2
;

8
>>>>>>>><

>>>>>>>>:

ð20Þ

where k2[0 is a design parameter. By using of the virtual

controller x�2, we get

_V2�
X2

j¼2

 
X2

l¼j

ð2�lþ1Þ1
2
z2
j ðt�slÞq2

ljð�zjðt�slÞÞ

�
Xn

l¼j

ðn�lþ1Þ1
2
z2
j ðt�slÞq2

ljð�zjðt�slÞÞ
!

�
X2

i¼1

kitan
�pz2

i

2k2
bi

�
þ ~H

�
q2�

_̂H
�
þg2ð�x2ðtÞÞz3vz2

þ
X2

i¼1

ci;

ð21Þ

where c2 ¼ a2
21

2
þ a2

22

2
þ a2

2

2
þ e2

2

2
.

Step k ð3� k� n� 1Þ: Similar to step 2, if we consider

the candidate BLF as

Vk ¼ Vk�1 þ V�
k þ

Xn

i¼k

Z t

t�si

Wikð�zkðsÞÞds;

where Wikð�zkðtÞÞ ¼ 1
2
ðn� iþ 1Þz2

kðtÞq2
ikð�zkðtÞÞ, the virtual

controller x�k and the tuning function qk are chosen as:
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x�k¼� 1

gk

kk sin
� pz2

k

2k2
bk

�
cos
� pz2

k

2k2
bk

�

zk
þvgkĤPT

k Pk

2a2
k

þ3vzk
2

0

B
B
B
@

1

C
C
C
A
;

qk¼qk�1þ
PT
k Pk

2a2
k

v2
z2
:

8
>>>>>>>><

>>>>>>>>:

ð22Þ

Then, the derivative of Vk leads to the following:

_Vk �
Xk

j¼1

 
Xk

l¼j

ðk � lþ 1Þ 1

2
z2
j ðt � slÞq2

ljð�zjðt � slÞÞ

�
Xn

l¼j

ðn� lþ 1Þ 1

2
z2
j ðt � slÞq2

ljð�zjðt � slÞÞ
!

�
Xk

i¼1

ki tan
� pz2

i

2k2
bi

�
þ ~H

�
qk �

_̂H
�

þ gkð�xkðtÞÞzkþ1vzk þ
Xk

i¼1

ci:

ð23Þ

Step n: From (1) and (3), the time derivative of zn is

_zn ¼ gnuþ fn þ h2ðxnðt � snÞÞ þ dn

�
Xn�1

i¼1

ox�n�1

oxi
_xi þ

ox�n�1

oĤ
qn�1 þ

Xn�1

i¼0

ox�n�1

oy
ðiÞ
r

yðiþ1Þ
r

 !

¼ gnuþ fn þ h2ðxnðt � snÞÞ

þ dn �
Xn�1

i¼1

ox�n�1

oxi
ðhið�xiðt � siÞÞ þ diÞ � kn�1

ð24Þ

where kn�1 ¼
Pn�1

i¼1

ox�
n�1

oxi
ðfi þ gixiþ1Þ þ ox�

n�1

oĤ
qn�1 þ

Pn�1
i¼0

ox�
n�1

oy
ðiÞ
r

y
ðiþ1Þ
r . Choose the BLF as:

Vn ¼ Vn�1 þ V�
n þ

Z t

t�sn

Wnnð�znðsÞÞds:

Then, the derivative of Vn is

_Vn � vzn

 

gnð�xnðtÞÞuþ fnðxnðtÞÞ þ hnðxnðt � snÞÞ

þ dn �
Xn�1

i¼1

ox�n�1

oxi
ðhið�xiðt � siÞÞ þ diÞ � kn�1

!

þ _Vn�1 þWnnð�znÞ �Wnnð�znðt � snÞÞ

�
Xn�1

j¼1

 
Xn�1

l¼j

ðn� lÞ 1

2
z2
j ðt � slÞq2

ljð�zjðt � slÞÞ

�
Xn�1

l¼j

ðn� lþ 1Þ 1

2
z2
j ðt � slÞq2

ljð�zjðt � slÞÞ
!

�
Xn�1

i¼1

ki tan
� pz2

i

2k2
bi

�
þ gn�1vzn�1

zn þ cn�1

þWnnð�znðtÞÞ �Wnnð�znðt � snÞÞ þ ~Hðqn�1 �
_̂HÞ

þ vzn

�
gnuþ fn þ h2ðxnðt � snÞÞ

þ dn �
Xn�1

i¼1

ox�n�1

oxi
ðhið�xiðt � siÞÞ þ diÞ � kn�1

�
:

ð25Þ

With Assumptions 1 and 2 in mind, one can immediately

arrives at

vzndn �
v2
zn
l2
nðxnÞ

2a2
n1

þ a2
n1

2
; ð26Þ

vznhnðxnðt�snÞÞ�v2
zn
þ1

2

Xn

j¼1

z2
j ðt�snÞq2

njð�zjðt�snÞÞ; ð27Þ

� vzn
ox�n�1

oxi
hiðxiðt � siÞÞ

�
v2
zn

2

� ox�n�1

oxi

�2

þ 1

2

Xi

j¼1

z2
j ðt � siÞq2

ijðziðt � siÞÞ; ð28Þ

�vzn
ox�n�1

oxi
di �

v2
zn
l2
nðxnÞ

2a2
n2

ox�n�1

oxi

� �2

þ a2
n2

2
: ð29Þ

Choosing WnnðznðtÞÞ ¼ 1
2
z2
nðtÞq2

nnð�znðtÞÞ and substituting

(26)–(29) into (25) render

_Vn � vzn

 

gnðxnðtÞÞuþ fnðxnðtÞÞ þ !n þ vzn þ
vznl

2
nðxnÞ

2a2
n1

þ vzn
2

� ox�n�1

oxi

�2

þ vznl
2
nðxnÞ

2a2
n2

� ox�n�1

oxi

�2

� kn�1

!

�
Xn�1

i¼1

ki tan
� pz2

i

2k2
bi

�
þ ~Hðqn�1 �

_̂HÞ þ c1;

ð30Þ
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where !n ¼ gn�1cos2
�

pz2
n

2k2
bn

�
=cos2

�
pz2

n�1

2k2
bn�1

�
zn�1 þ 1

2
ðn�

iþ 1Þq2
inð�znÞcos2

�
pz2

n

2k2
bn

�
zn . Let �f n ¼ fnðxnðtÞÞ þ !nþ

vznl
2
nðxnÞ

2a2
n1

þ vzn
2

�
ox�

n�1

oxi

�2

þ vznl
2
nðxnÞ

2a2
n2

�
ox�

n�1

oxi

�2

� kn�1. According

to Lemma 1, for any given e2 [ 0, there is a fuzzy system

U2P2ðX2Þ such that

�f n ¼ UT
nPnðXnÞ þ dnðXnÞ;

where dnðXnÞ� en is the approximation error. Notice

vzn
�f n ¼ vznU

T
nPn þ vzndn �

Hv2
zn
PT
nPn

2a2
n

þ a2
n

2
þ
v2
zn

2
þ e2

n

2
;

ð31Þ

where an [ 0 is a design parameter, the controller u and

adaptive law
_̂H are constructed as:

u¼� 1

gn

kn sin
� pz2

n

2k2
bn

�
cos
� pz2

n

2k2
bn

�

zn
þ vznĤPT

nPn

2a2
n

þ 3vzn
2

0

B
B
B
@

1

C
C
C
A
;

_̂H¼ qn�1 þ
PT
nPn

2a2
n

v2
zn
� cĤ¼

Xn

i¼1

PT
i Pi

2a2
i

v2
zi
� cĤ;

8
>>>>>>>><

>>>>>>>>:

ð32Þ

where kn[0 is a design parameter. By substituting (31)–

(32) into (30) and using c ~H ^H� � c
2
~H

2 þ c
2
H2, there holds

_Vn � � b
Xn

i¼1

tan
pz2

i

2k2
bi

 !

þ ~H
2

 !

þ c�Vn þ c; ð33Þ

where b ¼ minfkip
k2
bi

; c
2
g, i ¼ 1; . . .; n and

c ¼
Pn

i¼1 ci þ
c
2
H2.

3.2 Main Results

Theorem 1 Consider uncertain nonlinear time-delay

systems (1) with the full-state constraints (2), a combined

control law proposed in (32), the following properties are

guaranteed:

(1) All the signals in the closed-loop system are

bounded.

(2) The full-state constraints are not violated.

(3) The tracking error z1 converges to a sufficiently

small neighborhood of the origin.

Proof In light of (33), one deduces that

Vn �ðVnð0Þ � c
b
Þe�bt þ c

b
. Therefore, Vn is bounded; from

the definition of Vn, it concludes that both
k2
bi

p tan
�

pz2
i

2k2
bi

�
and

~H are bounded, and then, it can also be obtained that

jzij\kbi and ĤðtÞ are bounded. Assumption 2 shows

jx1j � jz1j þ jyrj\kb1
þ y0 ¼ kc1

. x�1 is a continuous func-

tion, and all variables in x�1 are bounded. Hence, x�1 is

bounded; that is, jx�1j � x�10. By the transformations (3) and

boundedness of z2 and x�1, it can be obtained that

jx2j � jz2j þ jx�1j\kb2
þ x�10 ¼ kc2

. Taking the same

manipulations, it can be proved that jxij � kci . As a result,

all the signals in the closed-loop system are bounded and

the full-state constraints are not violated. In addition,

1
2
z2

1 �
k2
b1

p tan
�

pz2

2k2
b1

�
�ðVnð0Þ � c

b
Þe�bt þ c

b
. Therefore, z1

will be exponentially convergent to the set jz1j �
ffiffiffiffi
2c
b

q

.

Consequently, the appropriate parameters such as ci and ei
can be selected to make sure that c is small enough and b is

large enough; it guarantees that the tracking error z1 can

converge to a small neighborhood of origin. h

Remark 2 This paper addresses the issue of adaptive

fuzzy tracking control in the case of strict-feedback non-

linear time-delay systems with full-state constraints.

Compared with [19–22], the simultaneous existence of the

full-state constraints and time delays in the system makes

the design of controller very difficult. Since the tan-type

BLF also works when there is no state constraint, compared

with the log-type BLF employed in [30, 34], using the tan-

type BLF to deal with state constraints is a general

approach.

4 Simulation Example

To demonstrate the effectiveness of the proposed control

scheme, the following example is considered:

_x1¼x2þh1x
2
1þsinðx1ðt�s1ÞÞþd1ðtÞ;

_x2¼uþh2x1x2�0:2x1þx2ðt�s2Þcosðx2ðt�s2ÞÞþd2ðtÞ;
y¼x1:

8
><

>:

ð34Þ

In the simulation, s1¼1 and s2¼2, the bounded time-

varying disturbances are d1ðtÞ¼d2ðtÞ¼0:2cost, a refer-

ence signal is given as yr¼0:5cos2t. Suppose that all the

states are strictly constrained in the following compact set:

Xx :¼
n
xiðtÞ 2 R; jxiðtÞj � 1:5

o
; i ¼ 1; 2:

Based on the design procedure in Sect. 2, the virtual and

actual controllers are designed as:
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a1 ¼�
k1 sin

� pz2
1

2k2
b1

�
cos
� pz2

1

2k2
b1

�

z1

þ ĤPT
1P1

2a2
1

vz1
þ 3vz1

2

0

B
B
B
@

1

C
C
C
A
;

u¼�
k2 sin

� pz2
2

2k2
b2

�
cos
� pz2

2

2k2
b2

�

z2

þ ĤPT
2P2

2a2
2

vz2
þ 3vz2

2

0

B
B
B
@

1

C
C
C
A
;

8
>>>>>>>>>>>>><

>>>>>>>>>>>>>:

and adaptive law is chosen as

_̂H ¼
X2

i¼1

PT
i Pi

2a2
i

v2
zi
� cĤ;

where PiðxÞ ¼ ½pi1ðxÞ; pi2ðxÞ; . . .; piNðxÞ�T with

pjiðxÞ ¼
Qn

j¼1
l
Fi
j
ðxjÞ

PN

i¼1
½
Qn

j¼1
l
Fi
j
ðxjÞ�

, vzi ¼ zi

cos2

�
pz2
i

2k2
bi

�, j ¼ 1; 2, i ¼ 1; 2,

z1 ¼ x1 � yr, z2 ¼ x2 � a1.

In the simulation, let h1 ¼ 0:1 and h2 ¼ 0:2, the initial

values are chosen as x1ð0Þ ¼ 0:6, x2ð0Þ ¼ �0:2 and

Ĥð0Þ ¼ 0:1. The parameters are designed as c ¼ 1,

k3 ¼ k2 ¼ 2, a1 ¼ a2 ¼ 1 and kb1
¼ kb2

¼ 1. The results of

the simulation are shown in Figs. 1, 2, 3 and 4. The system

output y and reference trajectory yr are illustrated in Fig. 1.

It can be seen that the output y can primely track the

desired trajectory yr. It is shown in Fig. 2 that all the states

are strictly constrained in fxij � 1:5� xiðtÞ� 1:5g;
i ¼ 1; 2. The input u and parameter updating law Ĥ are all

bounded as shown in Figs. 3 and 4, respectively. Therefore,

it can be concluded that the proposed control scheme can

deal with uncertain nonlinear time-delay systems with state

constraints effectively.

5 Conclusions

This study carries out the adaptive fuzzy tracking control

for a class of strict-feedback nonlinear time-delay systems

with full-state constraints. Based on barrier Lyapunov

functions, the backstepping design method and adaptive

fuzzy control approach, an adaptive tracking controller is

proposed to guarantee that the system tracking errors

converge to a sufficiently small neighborhood of the origin,
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while the constraints on the states of system will not be

violated during operation. Stability analysis of the pro-

posed closed-loop control system is supported by the

Lyapunov stability theory. In this direction, there are still

remaining several problems to be investigated. For exam-

ple, an interesting research problem is how to design an

finite-time adaptive controller for strict-feedback nonlinear

time-delay systems with full-state constraints.
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