
An Ensemble Fuzzy Approach for Inverse Reinforcement
Learning

Wei Pan1 • Ruopeng Qu1 • Kao-Shing Hwang2 • Hung-Shyuan Lin2

Received: 11 April 2018 / Revised: 24 July 2018 / Accepted: 31 July 2018 / Published online: 20 August 2018

� Taiwan Fuzzy Systems Association and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Abstract In reinforcement learning, a reward function is a

priori specified mapping that informs the learning agent

how well its current actions and states are performing.

From the viewpoint of training, reinforcement learning

requires no labeled data and has none of the errors that are

induced in supervised learning because responsibility is

transferred from the loss function to the reward function.

Methods that infer an approximated reward function using

observations of demonstrations are termed inverse rein-

forcement learning or apprenticeship learning. A reward

function is generated that reproduces observed behaviors.

In previous studies, the reward function is implemented by

estimating the maximum likelihood, Bayesian or informa-

tion theoretic methods. This study proposes an inverse

reinforcement learning method that has an approximated

reward function as a linear combination of feature expec-

tations, each of which plays a role in a base weak classifier.

This approximated reward function is used by the agent to

learn a policy, and the resultant behaviors are compared

with an expert demonstration. The difference between the

behaviors of the agent and those of the expert is measured

using defined metrics, and the parameters for the approx-

imated reward function are adjusted using an ensemble

fuzzy method that has a boosting classification. After some

interleaving iterations, the agent performs similarly to the

expert demonstration. A fuzzy method is used to assign

credits for the rewards in respect of the most recent

decision to the neighboring states. Using the proposed

method, the agent approximates the expert behaviors in

fewer steps. The results of simulation demonstrate that the

proposed method performs well in terms of sampling

efficiency.

Keywords Inverse reinforcement learning � Fuzzy �
Reward feature

1 Introduction

The objective of inverse reinforcement learning (IRL) is to

learn a task using an approximation of an unknown reward

by observing an expert demonstration [1, 2]. Many IRL

methods offer frameworks for estimating a reward func-

tion, which is then used to derive an optimal policy [3, 4].

A Bayesian model provides a higher reward to the states

that are close to the goal so there is greater adaptability to

changes of task, such as the assignment of a new target or

variations in parameters [5, 6]. A fuzzy comprehensive

evaluation method is proposed to extract the features uti-

lized in fuzzy Bayesian reinforcement learning and clas-

sifies the situations into a set of features. The factors

defined for them can be used to calculate the weights [7].

These methods learn a mapping by observing an input to

state values/costs using margin maximization techniques

and minimize the cost function using gradient descent or

game-theoretic approach [8]. The residual gradient fuzzy

reinforcement learning algorithm uses the residual gradient

algorithm with fuzzy actor–critic structure to tune the input

and output parameters of its function approximation sys-

tems [9]. The maximum entropy algorithm [10, 11] uses a

Markov decision process (MDP) model to calculate a

probability distribution for the state actions. These IRL

& Kao-Shing Hwang

hwang@ccu.edu.tw

1 School of Computer Science, Northwestern Polytechnical

University, Xi’an, China

2 Department of Electrical Engineering, National Sun Yat-Sen

University, Kaohsiung, Taiwan

123

Int. J. Fuzzy Syst. (2019) 21(1):95–103

https://doi.org/10.1007/s40815-018-0535-y

http://crossmark.crossref.org/dialog/?doi=10.1007/s40815-018-0535-y&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s40815-018-0535-y&domain=pdf
https://doi.org/10.1007/s40815-018-0535-y

methods assume that a MDP model of a system is either

given a priori or can be accurately learned using the

demonstrated trajectories, in terms of a state space. Nev-

ertheless, the IRL concept by matching of a defined feature

expectation is ambiguous. Each policy can be optimal for

many reward functions, and many policies lead to the same

feature counts.

A notable exception is the projection algorithm,

whereby the trajectories that are generated by the learning

agent are compared with the demonstrated trajectories

using state features, in order to minimize the worst-case

loss in the value of the learned policy. This guarantees that

the correct reward function is learned if the feature counts

are properly estimated. The algorithms regard an IRL

problem as an approximation of a linear combination

function with constraints. Using the orthogonal projection

method to calculate the weights for the linear reward

function, the method estimates the linear combination

function and derives an optimal policy faster and with less

effort [2]. From the viewpoint of supervised learning, this

type of IRL uses supervised learning techniques to acquire

the reward function. Supervised learning uses labeled data

to approximate a mapping between inputs and outputs. If

labeled data (features) are used to derive a reward function,

an agent must explore the features space and derive an

optimal action policy. The human reinforcement learning

links direct policy evaluation and human reinforcement to

autonomous robots, accordingly shaping the reward func-

tion by combining both reinforcement signals [12].

Besides, the architecture of adaptive heuristic critic com-

bined with action bias allows agents to solve the problem

of continuous action system [13]. Unfortunately, it is likely

for this simple method to become trapped by problems or

failures [6].

Using ensemble learning techniques, the proposed

approach inputs the compared trajectories for IRL into a

boosting classification problem and provides a faster and

more flexible method of adjusting the weights of the

approximated reward function comparing with the afore-

mentioned methods [14, 15]. Besides, in order to improve

the performance of RL algorithm, fuzzy-based methods

were proposed for tuning the learning rate [16, 17]. In this

paper, the proposed approach also uses a fuzzification

technique to accelerate the updating process. The remain-

der of this paper is organized as follows. Section 2 briefly

introduces the relative research background, including

reinforcement learning, inverse reinforcement learning and

the boosting classifier. The proposed ensemble inverse

reinforcement learning technique that uses boosting and

fuzzification techniques is introduced in Sect. 3. In Sect. 4,

the simulation results for a labyrinth and a robotic soccer

are used to demonstrate the validity of the proposed

method. The final section draws conclusions.

2 Background

2.1 Inverse Reinforcement Learning

In some IRL algorithms, the reward function is represented

by a linear combination of useful features as [14]:

RðsÞ ¼ x � /ðsÞ ð1Þ

where /ðsÞ ¼ /1ðsÞ; /2ðsÞ; . . .; /kðsÞ½ �T is a function

mapping from a state space to a feature vector that is

predefined as 0 or 1, k is the number of features in the

reward function, and xðsÞ ¼ x1; x2; . . .; xk½ � is an

unknown vector to be tuned during the learning process.

The value function of policy p is shown below. The

expected discounted accumulated feature value is defined

as a vector of feature expectations in Eq. (3):

Es0 �D Vpðs0Þ½ � ¼E
X

1
t¼0c

tRðstÞ pj
h i

¼E
X

1
t¼0c

tx � /ðstÞ pj
h i

¼x � E
X

1
t¼0c

t/ðstÞ pj
h i

ð2Þ

lðpÞ ¼ E
X

1
t¼0c

t/ðstÞ pj
h i

ð3Þ

IRL estimates a reward function that allows the agent to

generate the same trajectory as the demonstrated trajectory

using a policy under this approximate reward function.

2.2 Boosting Classifier

Ensemble methods are learning algorithms that construct a

set of classifiers and then classify new data points by taking

a weighted vote of their predictions. Some common

ensemble methods use Bayesian averaging and error-cor-

recting output coding. Boosting algorithms, which correct

the error in output coding, and convert weak learners to

proficient learners, improve the accuracy of prediction in a

machine learning model when they are combined with a

learning algorithm. A boosting algorithm constructs a

strong classifier that is a linear combination of weak clas-

sifiers with adaptive weights for training data, as defined

below, where at denotes the weight of the selected weak

classifier at iteration t, and ht(x) denotes the output of the

selected weak classifier at iteration t using training data x.

FT xð Þ ¼
XT

t¼1

atht xð Þ ð4Þ

At each iteration, t, the boosting algorithm selects a

weak classifier and adjusts weight at for this weak classifier

to minimize the sum of training error, Et, for the boosted

classifier that is defined in Eq. (5). |X| denotes the number

of samples in the training dataset, Ft-1(x) is the boosted

96 International Journal of Fuzzy Systems, Vol. 21, No. 1, February 2019

123

classifier that constructed by iteration t-1, and E(F) denotes

some error function.

Et ¼
XXj j

i¼1

E Ft�1 xið Þ þ atht xið Þð Þ ð5Þ

2.3 The AdaBoost Algorithm and the Concept

of Dissimilarity

AdaBoost is an abbreviation for adaptive (adjust the error

rate) and boost (improve the classification accuracy). It is

implemented in the framework of boosting algorithm

[18, 19]. AdaBoost calculates the adjustment parameter a
using the error rate of each classifier and combines the

weak classifiers into a strong classifier [20]. Figure 1 shows

a simple schematic diagram of AdaBoost. The classifiers

decide to which category the data belong, and the param-

eter, a, defines the classifiers’ credibility. By combining the

classifiers and the parameter, a, data are classified

sequentially.

The original AdaBoost algorithm and the AdaBoost.M1

algorithm are slightly different. AdaBoost.M1 updates the

weights via a training process. The input data have m

points, x1, x2, …, xm. Each point corresponds to classifi-

cation labels y1, y2, …, ym, yk[{1,2,…,g}. After i iterations,

the value for the weight of sample xk[{x1,x2,…,xm} is

expressed as Di(k). The initialized weight values are all the

same at 1/m. After training, the values of the weights for

correct classifications are reduced and the weights for

incorrect classifications are increased. If hi represents the

classifier that is selected at the ith iteration and hi(xk) = yk
denotes that the output is not the same as actual yk, the

classification is incorrect. The samples are individually

checked in the classifier to determine the correctness of

each classification. The error rate Ei is added all of the

weight values of the incorrectly classified samples, as

shown in formula (6). The parameter, ai, is defined in

formula (7).

Ei ¼
X

k:hiðxkÞ6¼yk

DiðkÞ ð6Þ

ai ¼ ln
1� Ei

Ei

� �
ð7Þ

The larger the error rate Ei, the smaller is the parameter

ai and the less reliable is the classifier.

The iterative and regularized formulation of Di(k) is

depicted as:

Zi ¼
X

m

Diþ1ðkÞ

Diþ1ðkÞ ¼
DiðkÞ
Zi

�
1 if yk 6¼ hiðxkÞ
e�ai if yk ¼ hiðxkÞ

� � ð8Þ

3 Proposed Method

IRL establishes a reward function, R, which can generate a

policy that is similar to the expert’s policy. The difference

between the expert’s behaviors and the agent’s behaviors is

used to update the reward function over many iterations.

When the reward function has been adjusted, the agent

learns a policy that is similar to the expert’s behavior.

3.1 Ensemble Techniques for Inverse

Reinforcement Learning

If an ensemble method is used for inverse reinforcement

learning, the feature expectations defined in (9) are regar-

ded as a set of week classifiers and the trajectories acquired

from demonstrations are used as class labels for the train-

ing sample, i.e., the desired outputs. To calculate the

coefficients for the weak classifiers, the proposed approach

uses the framework of an ensemble method for IRL, to

determine the importance of the distribution of features that

causes policy value errors in a search for iterative policy

[21, 22]. Therefore, the parameters for a linear combination

of feature functions are updated using the importance dis-

tribution as the step size and the errors as the direction for

each iteration. In other words, the proposed method uses

the difference between the expert behaviors and the agent

behaviors to determine the degree of importance for fea-

tures and adjusts the weights for the weak classifier. During

successive learning iterations, the parameters for the linear

combination of the reward function are updated as:

xiþ1 ¼ xi þ Diþ1 � Dli ð9Þ

where xi is the value of the weight, i is the number of

iterations, and D is the ensemble voting weight, as previ-

ously defined before. The difference between the expert

trajectory and that which is generated using the learned

policy that is based on the transiently approximated reward

function is Dlt ¼ l pEð Þ � l ptð Þ. l(pE) is the target

feature expectation vector for the corresponding sample

inputs from the demonstration, and l(pt) is the contem-

porary feature expectation vector, which is acquired from

Data Result

Classifier 1

Classifier 2

…

Classifier n

Fig. 1 A schematic diagram of an AdaBoost

W. Pan et al.: An Ensemble Fuzzy Approach for Inverse… 97

123

the policy that uses a transiently approximated reward

function at iteration t.

Equations (1) and (9) define the optimum weight value

x� as a set of linear combinations. The proposed ensemble

method for determining the values of parameters using this

method is listed in Algorithm 1 [2]. The algorithm shows

the step for updating the value of x and for finding the

value of l in IRL methods. Ei represents the error rate,

which is calculated by adding all of the categorization

errors. The error rate is used to adjust each element of the

value of the weight. If the error rate is high, the value of the

weight is decreased. If the error rate is small, the value of

the weight is increased.

3.2 Inverse Reinforcement Learning Using

Dissimilarity

Since the ensemble method requires many learning itera-

tions, this paper proposes an ensemble method that uses

dissimilarity to adjust the value of x in the vicinity of a

specific future using batch learning [23]. In the first step,

the weight for the reward is generated at a random value,

x0, to calculate the expected characteristic value li using
the policy pi which is generated by Eq. (1) in the IRL. The

characteristic expected value lE is the expert behavior.

Comparing li with lE, the following three conditions

are possible:

1. An element in li is larger than that in the correspond-

ing position in lE, which means that the route that is

learned by the agent passes earlier than the expert

route.

2. An element in li is smaller than that in the corre-

sponding position in lE, which means that the route

that is learned by agent passes later than the expert

route.

3. All elements in li are as the same as those in the

corresponding position in lE, which means that the

route that is learned by the agent passes at the same

time as the expert route.

The difference between the agent’s behaviors and

expert’s behaviors is calculated as:

Dli ¼ lE � li ð10Þ

This paper uses the concept of dissimilarity to update

the learning rate for the elements in xi. Because the goal is

to emulate the expert exactly, adjustments are made using

the dissimilarity between the expert’s and the agent’s paths.

The relevant equation is:

Sj ¼

ffi
D1;e1

�D1;a1

D1;range

� �2

þ � � � þ Dj;ej
�Dj;aj

Dj;range

� �2

þ � � � þ Dn;en�Dn;an

Dn;range

� �2

n

vuut

ð11Þ

where Sj means the reward features, j = 1, 2,…, n. Dj,e is

the experts’ weight in dimension i, Dj,a represents the

learning agent’s weight in dimension i, and Dj,range repre-

sents the maximum range of the weights in dimension i.

Equation (11) allows the agent’s behaviors to emulate

the expert’s using fewer learning iterations. The weight for

the reward is:

xiþ1 ¼ xi þ Siþ1 � Dli ð12Þ

If the dissimilarity Si is high, the weight for the reward

must be significantly adjusted, and if it is low, little

adjustment is required.

3.3 IRL with Fuzzification

In IRL, the policy updates the reward feature xi using

Eq. (12). The value for Dli represents the difference

between the expert’s and the agent’s behaviors. The

learning process is illustrated in Fig. 2.

IRL adjusts the weight for the reward xi, which is based

on li. This is then used to establish a new policy. The

learning agent uses the policy to learn behaviors. To

accelerate learning further, fuzzification and dissimilarity

are used to learn the expert’s behaviors quickly. An

example of a robotic soccer game, which is shown in

Fig. 3, is used to illustrate the implementation of dissimi-

larity and fuzzification of the state space. In a robotic

soccer game, the state space is composed of the two-di-

mensional one-spanned angle between the robot and the

ball and the distance between the robot and ball. The

dimension of the angle is divided into four portions, {(0�,

98 International Journal of Fuzzy Systems, Vol. 21, No. 1, February 2019

123

90�), (90�, 180�), (180�, 270�), (270�, 360�)}, and the

distance is partitioned into four ranges, {(0, 1), (1, 2), (2,

3), (2, 3)}, so the cardinality of state space is 16; that is,

there are 16 discrete states. Triangular membership func-

tions are used for fuzzification, as shown in Fig. 4. If the

current sensory input is (1.3�, 99�), the weight of the cur-

rent state containing (1.3�, 99�) is updated with the sum of

the weights for the active vicinity: the top left four grids on

the table in Fig. 5; i.e., 0.08 9 x1 ? 0.12 9 x2?

0.32 9 x5 ? 0.48 9 x6.

There are two possible outcomes when the value for Dli
is calculated over the state space. If Dli is negative, i.e., the
expert’s expected feature lE is smaller than the agent’s

value for li on the state i along the trajectory that is gen-

erated using the currently learned policy, the learning agent

visits this state earlier using its own trajectory than if it is

uses the expert’s trajectory and vice versa. If Dli ¼ 0, the

learning agent and the expert either visit that state during

the same time sequence or neither visits that state. The

algorithm is more complex so the latter is the most com-

mon for an IRL process. There is no reward value of xi,

and time is wasted in RL learning process. The fuzzifica-

tion process allows an agent to update its own xi about

rarely visited states by referring to a neighbor’s experience,

and learning is accelerated.

4 Simulations and Discussion

Three simulations were conducted to demonstrate the

proposed method: a mountain car, a mobile robot in a maze

and a robotic soccer game. The first three experiments

compare the methods for this paper to verify the perfor-

mance: the method used in [3] and the proposed IRL. The

robotic soccer game simulation verifies that using fuzzy

theory for the IRL algorithm improves the reinforcement

learning rate.

4.1 Maze

In this simulation, a robot tries to determine a reward

function, which is used to learn the demonstrator’s strategy

and approach the goal in a maze, as shown in Fig. 6. The

simulation of maze problem shows the performance of the

proposed IRL in discrete environments.

The maze has 20 9 20 grids, which are surrounded by

walls. The yellow part in the maze is starting point for the

mobile robot. The goal is the red rectangle in the maze. The

gray parts represent the obstacles. The robot can move up,

down, left or right. The robot can move only one grid at

one time. The learning rate a was set to 0.7, and the e-
greedy action selection implemented in the simulation, that

the exploration rate, was set to 5%. The other setting of

parameters is listed in Table 1. After learning, the agent

can imitate the expert’s demonstration shown in Fig. 6.

The average iteration round time is listed in Table 2 to

show the proposed IRL efficiency. It takes less time than

the method in [3]. This demonstrates that the proposed

method learns the demonstrated path more quickly. The

proposed IRL’s variance is smaller than its counterpart’s,

so that the proposed IRL is demonstrably more stable.

4.2 Mountain Car

This simulation, a standard testing domain in reinforcement

learning, an under-powered car must drive up a steep hill,

as shown in Fig. 7. Since gravity is stronger than the car’s

engine, even at full throttle, it must learn to leverage

potential energy by driving up the opposite hill before the

car is able to make it to the goal at the top of the rightmost

hill. The dynamic equation is:

xtþ1 ¼ xt þ _xtþ1

_xtþ1 ¼ _xt þ 0:001at � 0:0025 cosð3xtÞ
ð13Þ

where xt is the position of the car and _xtþ1 is its velocity.

The state space for the problem has two dimensions: its

position and its velocity. The position interval is [- 1.2,

0.5], and the velocity interval is [- 0.07, 0.07]. In each

state, three actions are allowed: throttle forward (?1),

throttle reverse (-1) or zero throttles (0). The end of the

simulation is when position C 0.6.

The results in Table 3 show that after 100 rounds, the

proposed IRL takes less time than its counterpart to com-

plete the mountain car simulation. This demonstrates that

the proposed method learns the path that expert
Fig. 2 The learning process of IRL

Fig. 3 An example of a soccer robot

W. Pan et al.: An Ensemble Fuzzy Approach for Inverse… 99

123

demonstrates more quickly. The proposed IRL’s variance

is smaller than its counterpart’s, which demonstrates that

the proposed IRL is more stable.

4.3 Robotic Soccer Game Simulation

The simulation environment is the same as that shown in

Fig. 3. Two-wheeled robot soccer must kick the ball into the

goal in the same way as the expert. As shown in Fig. 8, the

state space includes two dimensions: the angle of 18 ranges

between the robot and ball, and the distance of 10 ranges

between the robot and ball. The robot can move forward and

backward and can rotate clockwise and anti-clockwise.

The results in Table 4 show that after 100 rounds, the

proposed IRL requires fewer learning iterations than its

counterpart. Table 4 shows that the proposed IRL also

exhibits a smaller variance for the learning process than its

counterpart, so it is more stable than its counterpart. The

performance of the proposed IRL for behavior learning is

validated in continuous environment, even though it is

more difficult to design the reward function than in a dis-

crete environment.

Fig. 4 The fuzzification example for robotic soccer games where the receptive field receives sensory data (1.3�, 99�)

 Angle

Distance
0°~90° 90 ~180 180 ~270 270 ~360

0~1 1 2 3 4

1~2 5 6 7 8

2~3 9 10 11 12

3~4 13 14 15 16

0.4 0.6

 Angle

Distance
0°~90° 90 ~180 180 ~270 270 ~360

0~1 0.08* 1 0.12* 2 0* 3 0* 4

1~2 0.32* 5 0.48* 6 0* 7 0* 8

2~3 0* 9 0* 10 0* 11 0* 12

3~4 0* 13 0* 14 0* 15 0* 16

Fig. 5 Weighted averages for the updated parameters in defuzzification

100 International Journal of Fuzzy Systems, Vol. 21, No. 1, February 2019

123

4.4 Robotic Soccer Simulation with Fuzzy Theory

The simulation environment is the same as shown in Fig. 2.

This simulation experiment verifies whether the proposed

IRL-fuzzy can learn more quickly the same path as an

expert. Table 5 shows the average number of iterations for

the proposed IRL with and without fuzzy theory after 100,

200, 300, 400 and 500 rounds. It is seen the proposed IRL

with fuzzy theory finds the reward R more quickly and

saves much time.

5 Conclusions

This paper has proposed inverse reinforcement learning

that uses the ensemble and fuzzy logic method. Using an

approximated reward function, the agent learns the policy

akin to the expert’s demonstration. The learned policy that

is derived from the approximated reward function can also

accommodate stronger derivations, even though the agent

may temporarily stray from the expert’s demonstrated

trajectory during exploration. The evolving policy leads the

agent back to the trajectory. The proposed method relies on

the concept of boosting methods for classification. In

addition, a more advanced version of this method, using

fuzzification, is introduced. The proposed fuzzy-based IRL

method adjusts the weight for the reward to decrease the

number of learning iterations. The method is implemented

in robotic soccer simulation to verify the performance.

Table 2 Comparison of Number of Iteration between Two Methods

in Maze

Average iteration round time SD

The counterpart 26.844 3.280

The proposed IRL 23.299 2.582

Fig. 7 Mountain car

Table 4 Comparison of number of iteration between two methods in

robot soccer

Average iteration time SD

The counterpart 85.974 9.956

The proposed IRL 73.722 6.620

Table 1 Parameters of maze

Parameters Values

a 0.7

c 0.9

Exploration rate 5%

Strides 1 grid

Training round 200 round

Training step in one round 50 step

Table 3 Comparison of number of iteration between two methods in

mountain car

Average iteration time SD

The counterpart 74.421 8.203

The proposed IRL 63.672 5.956

Fig. 8 Definition of state space
Fig. 6 The agent’s path after learning

W. Pan et al.: An Ensemble Fuzzy Approach for Inverse… 101

123

Even if a state space is complex, the feature weights are

still updated to ensure more precise correction. Therefore,

this method is particularly well suited for learning sce-

narios in the context of robotics.

Acknowledgements Research in this work was supported by the

Seed Foundation of Innovation and Creation for Graduate Students in

North-western Polytechnical University (No. zz2018166).

References

1. Zhifei, S., Joo, E.M.’’ A review of inverse reinforcement learning

theory and recent advances. In: 2012 IEEE Congress on Evolu-

tionary Computation, Brisbane, QLD, pp. 1–8 (2012)

2. Hwang, K.S., Chiang, H.Y., Jiang, W.C.: Adaboost-like method

for inverse reinforcement learning. In: 2016 IEEE International

Conference on Fuzzy Systems (FUZZ-IEEE), Vancouver, BC,

pp. 1922–1925 (2016)

3. Abbeel, P., Ng, A.Y.: Apprenticeship learning via inverse rein-

forcement learning. In: Proceedings of the 21st International

Conference on Machine Learning, pp. 1–8 (2004)

4. Natarajan, S., Kunapuli, G., Judah, K., Tadepalli, P., Kersting, K.,

Shavlik, J.: Multi-agent inverse reinforcement learning. In: 2010

Ninth International Conference on Machine Learning and

Applications, Washington, DC, pp. 395–400 (2010)

5. Sutton, R.S., Barto, A.G.: Reinforcement learning: an introduc-

tion. IEEE Trans. Neural Netw. 9(5), 1054 (1998)

6. Ollis, M., Huang, W.H., Happold, M.: A Bayesian approach to

imitation learning for robot navigation. In: 2007 IEEE/RSJ

International Conference on Intelligent Robots and Systems, San

Diego, CA, pp. 709–714 (2007)

7. Shi*, H., Lin, Z., Zhang, S., Li, X., Hwang, K.-S.: An adaptive

decision-making method with fuzzy Bayesian reinforcement

learning for robot soccer. Inf. Sci. 436–437, 268–281 (2018)

8. Michini, B., Walsh, T.J., Agha-Mohammadi, A.A., How, J.P.:

Bayesian nonparametric reward learning from demonstration.

IEEE Trans. Robot. 31(2), 369–386 (2015)

9. Awheda, M.D., Schwartz, H.M.: A residual gradient fuzzy rein-

forcement learning algorithm for differential games. Int. J Fuzzy

Syst. 19, 1058 (2017). https://doi.org/10.1007/s40815-016-0284-

8

10. Syed, U., Schapire, R.: A game-theoretic approach to appren-

ticeship learning. In: Advances in Neural Information, Processing

Systems, Vol. 20 (NIPS’08), pp. 1449–1456 (2008)

11. Ziebart, B., Bagnell, A., Dey, A.: Modeling interaction via the

principle of maximum causal entropy. In: Proceedings of the

Twenty-Seventh International Conference on Machine Learning

(ICML’10), pp. 1255–1262 (2010)

12. Hwang, K.S., Lin, J.L., Shi, H., et al.: Policy learning with human

reinforcement. Int. J. Fuzzy Syst. 18, 618 (2016). https://doi.org/

10.1007/s40815-016-0194-9

13. Hwang, K.S., Hsieh, C.W., Jiang, W.C., Lin, J.L.: A reinforce-

ment learning method with implicit critics from a bystander. In:

Advances in Neural Networks—ISNN 2017, pp. 363–270

14. Ng, A.Y., Russell, S.: Algorithms for inverse reinforcement

learning. In: Proceedings of the 17th International Conference on

Machine Learning, pp. 663–670 (2000)

15. Vapnik, V.N.: Statistical Learning Theory. Wiley, London (1998)

16. Shi, H., Li, X., Hwang, K.-S., Pan, W., Genjiu, X.: Decoupled

visual servoing with fuzzy Q-learning. IEEE Trans. Ind. Inf.

14(1), 241–252 (2018)

17. Pan, W., Lyu, M., Hwang, K-Sh, Ju, M.-Y., Shi, H.: A neuro-

fuzzy visual servoing controller for an articulated manipulator.

IEEE Access 6(1), 3346–3357 (2018)

18. An, T.K., Kim, M.H.: A new diverse AdaBoost classifier. In:

2010 International Conference on Artificial Intelligence and

Computational Intelligence, Sanya, pp. 359–363 (2010)

19. R.E. Schapire (2002) The boosting approach to machine learning

an overview. In: MSRI Workshop on Nonlinear Estimation and

Classification, Dec. 19, 2001, pp. 1–23 (2002)

20. Eibl, G., Pfeiffer, K.P.: How to make AdaBoost.m1 work for

weak base classifiers by changing only one line of the code. In:

Processing of the 13th European Conference on Machine

Learning Helsinki, pp. 72–83 (2002)

21. Auer, P.: Using confidence bounds for exploitation-exploration

trade-offs. J. Mach. Learn. Res. 3, 397–422 (2002)

22. Browne, C.B., et al.: A survey of monte carlo tree search meth-

ods. IEEE Trans. Comput. Intell. AI Games 4(1), 1–43 (2012)

23. Nicolescu, M., Jenkins, O.C., Olenderski, A.: Learning behavior

fusion estimation from demonstration. In: ROMAN 2006—the

15th IEEE International Symposium on Robot and Human

Interactive Communication, Hatfield, pp. 340–345 (2006)

Wei Pan is an Associate Pro-

fessor in the School of Com-

puter Science at Northwestern

Polytechnical University,

China, and visiting scholar of

Electrical Engineering Depart-

ment at National Sun Yat-sen

University, Taiwan. He received

his Ph.D. degree from North-

western Polytechnical Univer-

sity, China, in 2008. His

research interests include intel-

ligent robots, machine learning,

decision support systems and

multi-agent systems.

Table 5 Comparison of

number of iteration between the

proposed IRL with and without

fuzzy theory

100 rounds

Iteration time

200 rounds

Iteration time

300 rounds

Iteration time

400 rounds

Iteration time

500 rounds

Iteration time

The proposed IRL 278.6 195.69 156.29 109.91 74.77

The proposed IRL-fuzzy 213.66 153.11 128.88 88.19 69.98

102 International Journal of Fuzzy Systems, Vol. 21, No. 1, February 2019

123

https://doi.org/10.1007/s40815-016-0284-8
https://doi.org/10.1007/s40815-016-0284-8
https://doi.org/10.1007/s40815-016-0194-9
https://doi.org/10.1007/s40815-016-0194-9

Ruopeng Qu received the B.S.

degree in computer science and

technology from the School of

Computer Science, Northwest-

ern Polytechnical University,

China, in 2012. He is currently

pursuing the master’s degree

with the School of Computer

Science in the same field. His

research interests include intel-

ligent robots, machine learning

and decision support system.

Kao-Shing Hwang (M’93–

SM’09) is a professor of Elec-

trical Engineering Department

at National Sun Yat-sen

University and an adjunct pro-

fessor of the Department of

Healthcare Administration and

Medical Informatic, Kaohsiung

Medical University, Taiwan. He

received the M.M.E. and Ph.D.

degrees in Electrical and Com-

puter Engineering from North-

western University, Evanston,

IL, USA, in 1989 and 1993,

respectively. He had been with

National Chung Cheng University in Taiwan from 1993 to 2011. He

was the Deputy Director of Computer Center (1998–1999), the

chairman of the Electrical Engineering Department (2003–2006) and

the director of the Opti-mechatronics Institute of the University

(2010–2011). He has been a member of IEEE since 1993 and a Fellow

of the Institution of Engineering and Technology (FIET). His research

interest includes methodologies and analysis for various intelligent

robot systems, machine learning, embedded system design and ASIC

design for robotic applications.

Hung-Shyuan Lin received the

M.S. degree in electrical engi-

neering from National Sun Yat-

sen University, Kaohsiung,

Taiwan, in 2016. He was a

research assistant in the Intelli-

gent Robotics Information Sys-

tem (IRIS) Laboratory, National

Sun Yat-sen University. His

research interests include

machine learning, robotics,

neural networks and embedded

systems.

W. Pan et al.: An Ensemble Fuzzy Approach for Inverse… 103

123

	An Ensemble Fuzzy Approach for Inverse Reinforcement Learning
	Abstract
	Introduction
	Background
	Inverse Reinforcement Learning
	Boosting Classifier
	The AdaBoost Algorithm and the Concept of Dissimilarity

	Proposed Method
	Ensemble Techniques for Inverse Reinforcement Learning
	Inverse Reinforcement Learning Using Dissimilarity
	IRL with Fuzzification

	Simulations and Discussion
	Maze
	Mountain Car
	Robotic Soccer Game Simulation
	Robotic Soccer Simulation with Fuzzy Theory

	Conclusions
	Acknowledgements
	References

