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Abstract In earthquake studies, different methods are used

in modeling of the crustal motions. In case of obscurity

data structure, different approaches are needed in solving

motion problems. In this paper, a new spatial algorithm has

been developed which is based on adaptive fuzzy neural

network (AFNN) approach for the prediction of the crustal

motion velocities. In order to find the fuzzy class numbers

regarding the network model formed by the fuzzification of

the studied area, subtractive clustering algorithm is used. In

determining the membership function, utilization of the

variogram function which models the relationship that

depends on distance among spatial data is proposed. The

Marmara Region, Turkey, is used as the case for this study.

In order to evaluate the performance of the approach, the

kriging method is also utilized in the prediction and the

results obtained from both methods are compared based on

the mean-square-error criteria. It is observed that the

AFNN approach yields results which are as effective as

those of kriging. Consequently, it is shown that the AFNN

approach will contribute to earthquake studies.

Keywords Earthquake � Crustal motion velocities � Spatial
prediction � Variogram � Kriging � Fuzzy logic � Adaptive
fuzzy neural network

1 Introduction

Earthquake predicting is one of the difficult issues in the

world. The main purpose of the earthquake studies is to

predict the probability of occurrence of an earthquake in an

area in the most reliable way. There have been many

studies which have tried to work out earthquake mecha-

nisms and many others which developed different earth-

quake parameters. Due to the fact that the stress level

which is the most significant parameter of the earthquake

cannot be directly measured and no observations can be

made inside the earth crust, the earthquake prediction

problems are carried out with difficulty [33]. Monitoring

the crustal motions and observing the changes in the

velocities have a great significance in earthquake predic-

tion. Knowing that the crustal motion velocities result in

earthquake gives an idea about when an energy accumu-

lation, which causes earthquake on a fault in a specific

region, will probably happen; therefore, it is crucial to

follow the crustal motions and to observe the variations in

velocities.

Geodesic deformation networks need to be established

in order to determine the movements and velocities of the

crust. The data obtained from the deformation networks are

located on a regional area. Spatial statistics are used in the

analysis of this data. One of the methods used for spatial

statistics is kriging. Kriging is optimal interpolation based

on regression. Measurements made for earthquake predic-

tions contain uncertainties arising from reasons such as

environmental impacts, insufficiencies in human senses,

malfunctioning of the measuring devices and changes in

the structure of the data. Kriging does not consider the

uncertainty in measurements. Neural networks and fuzzy

systems can be used in earthquake prediction due to their

ability to solve the problems related to these uncertainties.

This paper is based on the Ph.D. thesis of Dr. Nuray Güneri

Tosunoğlu [32].
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Giacinto et al. [15] used neural networks in order to

evaluate the risk of earthquake in regions where the risk is

already existent. Muller et al. [24] classified seismic events

with low magnitude, which had been recorded in France by

seismometer network, as fuzzy. Huang and Leung [17]

suggested using fuzzy neural networks to estimate corre-

lation between earthquake field and magnitude. It has also

been observed that artificial neural networks were effec-

tively used for defining electrical earthquake signals, for

producing response spectrums to artificial earthquakes, for

estimating the density of radon in the soil as a signal of

earthquake, the magnitude of medium intensity earthquake

and the basic motion records of the crust [3, 8, 23, 25, 27].

Bodri [10] evaluated the applicability and benefits of neural

networks for earthquake estimation. Fuzzy methods to

classify strong ground motion records have proven to be

useful [4]. Fuzzy methods are used to predict reservoir-

induced earthquake, to keep the record of strong ground

motions and to predict the following seismic moment

[2, 6, 22, 36]. Baldovino and Dadios [9] showed that the

earthquake simulator system, which they had developed by

fuzzy logic algorithm, had yielded true, reliable and dur-

able results. Aboonasr et al. [1] used fuzzy logical deduc-

tion system in order to define the earthquake potential and

seismic zone of İran-Zagros orogenic belt. Likewise, to

analyze the seismic risk in the city of Kunming in China,

Andric and Lu [7] suggested a new approach which was

dependent on fuzzy logic techniques and probability the-

ory. Ameur et al. [5] used ANFIS to get robust ground

motion prediction model.

In this study, we aimed to predict the crustal velocities

with the help of AFNN approach. AFNN is a kind of

artificial neural network based on Takagi–Sugeno fuzzy

inference system. The combination of fuzzy inference

systems and neural network learning can help to improve

the performance of the earthquake prediction.

In AFNN approach, firstly fuzzy clustering is used for

the fuzzification of the studied area. For the fuzzification,

membership function is used. Membership function is a

function that specifies the degree to which a given input

belongs to a set [34]. Depending on the type of membership

function, different types of fuzzy sets will be obtained. One

of the main difficulties in fuzzy set theory has been with the

meaning and measurement of membership functions [11].

In this study, since the data are spatial and their distances to

each other are important, it is proposed to select the vari-

ogram function as membership function in order to identify

this factor in fuzzy logic. The variogram provides a

description of the distance-dependent relation between the

variables [14].

According to suggested algorithm, fuzzy rules are

obtained from the network. Based on these rules, predic-

tions of motion velocities at unobserved points are

calculated. In order to evaluate the performance of the

approach, suggested AFNN is compared with kriging in

terms of functionality. To makeit clearer, the structure of

this study is given in Fig. 1.

For the data analysis, spatial prediction techniques are

utilized since the data on the velocities of the crustal

motions are collected from a spatial region. This technique

is presented in Sect. 2 of this study. And the rest of the

paper is organized as follows. AFNN Inference System will

be explained in Sect. 3. Section 4 discusses algorithm

based on AFNN. An application on the prediction of the

crustal motion velocities in Marmara Region, Turkey will

be presented in Sect. 5. Comparison of the results is given

in Sect. 6, and the discussion is given in Sect. 7.

2 Spatial Prediction

The values of spatial variables are evident only in the

sampled locations of the study area. When the calculation

of the unknown values in the unsampled locations is nee-

ded, the known values in the sampled locations are utilized.

Calculation of spatial variables in an unsampled location is

called prediction [14, 31].

Variogram function is used in spatial prediction. The

variogram function, 2c hð Þ, is used to characterize the dis-

tance-dependent relation between two random variables

whose distance between is h and provided that Z(x) is

spatial variable, it is defined as follows:

2c hð Þ ¼ Var Z xð Þ � Z x þ hð Þð Þ ¼ E Z xð Þ � Z x þ hð Þ½ � 2

ð1Þ

For the determination of the variogram, first the esti-

mation of semi-variogram obtained from the sampling is

calculated as follows:

ĉðhÞ ¼ 1

2NðhÞ
XNð hÞ

i¼1

ðzðxiÞ � zðxi þ hÞÞ2 ð2Þ

In Eq. (2), NðhÞ shows the number of pairs seperated by

lag h. zðxiÞ and zðxi þ hÞ are the values for the locations xi

and xi þ h, respectively [14, 16, 18, 28, 29]. Obtaining

semi-variogram values against each of the h distances, they

Prediction 

Fig. 1 Structure of the study
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will be transferred on the graph and a function adoption is

implemented [18, 31]. The most widely used variogram

models in the literature are normal, exponential, global,

nugget effect, linear, algorithmic, quadratic, proportional

quadratic, cubic, power model, wave model and pentagonal

models. Variogram function has five defined parameters:

C0—nugget effect, C—structural variations, C0 ? C—

threshold and a—structural distance [31].

Spatial prediction is calculated through the equation

below:

ẑðx0Þ ¼
XN

i¼1

wizðxiÞ ð3Þ

In Eq. (3), ẑðx0Þ is the prediction value for the location

x0; zðxiÞ are the values of the variables observed at each xi

location; wi are the weight values corresponding to each

zðxiÞ and N is the number of points to be used in the pre-

diction of ẑðx0Þ [14, 18]. The weight values given in

Eq. (3) were predicted.

Kriging is the determination of weight values in a given

prediction in Eq. (3) in a way that the estimation of mean

error is zero and the variance is the minimum [31, 35].

After the weights are determined, the prediction value for a

given location in the study area is calculated through

Eq. (3). In Kriging algorithm, for every new point the

weight calculation needs to be repeatedly made [18].

3 AFNN Inference System

Fuzzy inference system is a calculation system based on

fuzzy set theory and fuzzy if–then rules. Fuzzy if–then rule

is as follows:

Rk : If x 2 Ak then y 2 Bk; k ¼ 1; 2; . . .;K ð4Þ

where Rk, k is rule; Ak and Bk are fuzzy sets defined by

membership functions; x is linguistic input variable; y is

linguistic output variable. The section between ‘‘if and

then’’ statements shows the input information (premise),

and the section following the then statement shows the

output information (consequent) [12, 30]. AFNN system is

put forward by Jang [20]. In AFNN system, a relationship

is established between the input and output variables in the

if–then rule by utilizing learning skills of artificial neural

networks and fuzzy rules are determined by means of this

relationship. System is a feed-forward network with five

layers which are connected to each other by direction links

and part of which consists of adaptive neurons. Adaptive

neurons have certain parameters. Values of these parame-

ters are determined by means of learning [19, 20]. Fuzzy

adaptive network structure with two inputs and two rules is

given in Fig. 2. Operation of network is given below

[12, 20]:

Layer 1 Fuzzy sets concerning fuzzy if–then rules are

shown by F1, F2, F3 and F4. Neurons located in this layer

are adaptive, and output value of h neuron is defined as

follows, membership function of Fh being lFh
:

f1;h ¼ lFh
ðx1Þ; for h ¼ 1; 2

f1;h ¼ lFh
ðx2Þ; for h ¼ 3; 4

ð5Þ

Layer 2 Neurons located in this layer are demonstrated

as Kl (l = 1, …, 4), and they are fixed neurons. Each

neuron has two input signals coming from Layer 1. Kl is

defined as the multiplied of these input signals, and neural

functions of this layer are expressed as follows:

f2;1 ¼ w1 ¼ lF1
ðx1Þ � lF3

ðx2Þ
f2;2 ¼ w2 ¼ lF1

ðx1Þ � lF4
ðx2Þ

f2;3 ¼ w3 ¼ lF2
ðx1Þ � lF3

ðx2Þ
f2;4 ¼ w4 ¼ lF2

ðx1Þ � lF4
ðx2Þ

ð6Þ

Layer 3 Neurons located in this layer are fixed neurons

shown by Nl (l = 1,…,4). Output value of this layer is the

normalization of outputs of Layer 2 and neural function is

defined as:

f3;l ¼ �wl ¼ wl

P4
t¼1 wt

; l ¼ 1; . . .; 4 ð7Þ

Layer 4 Neurons located in this layer are adaptive neu-

rons of whose neural functions are expressed as follows:

f4;l ¼ �wl � Ŷ l; l ¼ 1; . . .; 4 ð8Þ

Ŷ l is the consequent of a fuzzy if–then rule and is defined

as follows:

Ŷ l ¼ cl
0 þ cl

1x1 þ cl
2x2 ð9Þ

ci
l coefficients in Eq. (9) are fuzzy numbers expressed as

ci
l = (ai

l, bi
l) (i = 0, 1, 2; l = 1, …, 4), and they show con-

sequent parameters.

Layer 5 The single neuron located in this layer is the

fixed neuron that calculates the overall output and is cal-

culated as follows:

f5;1 ¼ foutput ¼ Ŷ ¼
X4

l¼1

�wl � Ŷ l ¼
P4

l¼1 wlflP4
l¼1 wl

ð10Þ

The aim of AFNN is to achieve the relationship between

the input–output data pairs given. This required model is

obtained by a learning algorithm. In order to measure the

performance of AFNN, different error measures are used.

The error measure is defined as the difference between the

outputs of the model obtained and the outputs of the target.
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The training of the network is terminated when this error

criterion is less than a prespecified small error.

Different methods are used for the premise and conse-

quent parameters in the training of AFNN. Backpropaga-

tion is used for the training of premise parameters, and

likelihood linear programming is used for the training of

consequent parameters [13, 20, 21].

4 Suggested Algorithm for Spatial Prediction

The main problem in a spatial prediction is to obtain the

best prediction of a spatial variable at an unsampled

location. To obtain the prediction value for the unsampled

location, the observation values of the sampled locations

are used. In order to exemplify this problem, a sample

prediction problem is given in Fig. 3. The objective here is

to obtain the prediction value for the location q with the

help of the observation values of the other five locations.

The value seen in Fig. 3 for the location q1 covers the

area determined around the location q1 as well. The size of

this area, however, is fuzzy. It is thought that this fuzziness

should be taken into account in the predictions to be made.

But classical spatial statistics methods do not consider the

uncertainty. For this reason, AFNN approach is suggested

to be used in this prediction problem.

In prediction through AFNN, the independent variables to

constitute the inputs of the network are the values of the

latitude and the longitude. Spatial prediction with AFNN

starts with the determination of sub-cluster numbers of the

independent variables and the membership function. Firstly,

the study area should be divided into sub-clusters by cluster

analysis. Cluster analysis divides data into sub-clusters that

are meaningful or useful. There are different methods for

cluster analysis. In this study, subtractive clustering algorithm

is used. Afterward, the study area should be converted into a

fuzzy area. This is known as fuzzification. Fuzzification is the

process of changing a real scalar value into a fuzzy value.

Membership functions are used in the fuzzification. There are

different forms of membership functions such as triangular,

trapezoidal, piecewise linear or Gaussian [19]. In the deter-

mination of the membership function, a function that models

the distance-dependent relation between the variables is

suggested. This study is made on spatial variables. For this,

variogram function is found to be suitable.

The fuzzy model is constituted based on the Sugeno

fuzzy logic method. The fuzzy rules are defined in Table 1.

In Table 1, Ci (i = 1,…, m) is the sub-clusters for lon-

gitude and Dj (j = 1,…, n) is the sub-clusters for latitude,

the x1 is longitude value, and x2 is latitude value. Y outputs

show the values of spatial variables such as the radon

concentration, the intensity of the earthquake and crustal

motion velocities. Ŷ l (l = 1, …, n 9 m) values are the

Fig. 2 Structure of fuzzy adaptive network with two inputs and two rules [12]

Fig. 3 A sample prediction problem
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outputs corresponding to each rule. For each of the

n 9 m number of rules, the unknown ci
l (i = 0, 1, 2,

l = 1, …, n 9 m) values need to be found.

The algorithm for the determination of most suit-

able values of the ci
l coefficients and the premise parame-

ters is defined as follows:

Step 1 With the use of subtractive clustering algorithm,

number of fuzzy sub-clusters is obtained.

Step 2 Variogram model suitable for the structure of the

data is determined.

Step 3 The variogram model determined in Step 2 will

be selected as the membership function.

Table 1 Fuzzy rules Rules If…then Model

R1 If longitude C1 and latitude D1 then Ŷ1 ¼ c10 þ c11x1 þ c12x2

… … … … … …
Rn If longitude C1 and latitude Dn then Ŷn ¼ cn

0 þ cn
1x1 þ cn

2x2

Rn?1 If longitude C2 and latitude D1 then Ŷnþ1 ¼ cnþ1
0 þ cnþ1

1 x1 þ cnþ1
2 x2

… … … … … …
Rn9m If longitude Cm and latitude Dn then Ŷnxm ¼ cnxm

0 þ cnxm
1 x1 þ cnxm

2 x2

Fig. 4 Flow chart of algorithm
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Step 4 Depending on the number of the fuzzy sub-

clusters and the value range of the independent variables

determined in the first step, the premise parameters are

determined.

Step 5 For every cluster that each of the independent

variables belongs to, the value of the membership level is

determined. With the use of this membership levels, the

weights that are the outputs of the second layer of the

adaptive network are obtained. The weights obtained are

normalized and the output of the third layer of the adaptive

network is obtained.

With the use of the weight values obtained from the

third layer, consequent parameter set is determined.

With the use of the consequent parameter set, the

models belonging to the fuzzy rules are defined as:

Ŷ l ¼ cl
0 þ cl

1x1 þ cl
2x2 ð11Þ

Using the models constituted and the weights �wl deter-

mined in Step 5, the estimation values are calculated as

follows:

Ŷ ¼
Xm

l¼1

�wl � Ŷ l ð12Þ

Errors for each observation are calculated and the

amount of errors for the model is calculated in:

ê ¼ 1

N

XN

k¼1

yk � ŷkð Þ2 ð13Þ

Table 2 Descriptive statistics for crustal velocity

Direction n Min. Max. Mean SD

North 73 - 13.52 4.92 - 3.86 4.46

East 73 - 24.01 - 19.2 - 16.02 6.84

313029282726

42,0

41,5

41,0

40,5

40,0

39,5

39,0

38,5

Fig. 5 Locations of the data

Fig. 6 Sample and model variogram. a North direction and b east direction
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Provided / is the amount of error prespecified by the

decision maker, if ê\/, then go to Step 8. If ê�/, then go

to Step 6.

Step 6 The backpropagation error that is used in the

updating of the premise parameter set is calculated and the

premise parameter is updated. The updating formula is

Dq ¼ �g
o yk � ŷkð Þ2

oq
ð14Þ

where q is a parameter of the lth neuron at layer r and g is

the learning rate.

Table 3 Parameters of

variogram model
Direction C Parameters

C0 a

North 40.5 0.3 2.19

East 75.3 4.3 1.05

Table 4 Premise parameters Premise parameters Longitude Latitude

Clust1 Clust2 Clust3 Clust4 Clust1 Clust2 Clust3 Clust4

Center 26.08 27.68 29.27 30.86 39.01 39.95 40.89 41.83

Deviation 0.67 0.67 0.67 0.67 0.39 0.39 0.39 0.39

Fig. 7 Training data. a North direction and b east direction

Fig. 8 Subtractive clustering window
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Step 7 Go to Step 4.

Step 8 The algorithm is stopped. The consequent

parameter set is set as the parameter for the model to be

established. The center and the deviation values, too, cor-

respond to the premise parameter set.

Figure 4 shows the flow chart of algorithm.

5 Application on the Prediction of the Crustal
Motion Velocities in Marmara Region, Turkey

For the application, the global positions of the crustal

motion velocities and the measurement values corre-

sponding to these positions that are available in the study of

Reilinger et al. [26] are used. After the 1999 earthquakes in

Turkey, many national and international research projects
Fig. 9 ANFIS model structure

Fig. 10 Result of training. a North direction. b east direction

Table 5 The center and deviation values for the north direction

Longitude Latitude

Clust1 Clust2 Clust3 Clust4 Clust1 Clust2 Clust3 Clust4

Center

Initial 26.08 27.68 29.27 30.86 39.01 39.95 40.89 41.83

Final 26.08 27.42 28.39 30.83 38.95 39.68 40.76 41.35

Deviation

Initial 0.67 0.67 0.67 0.67 0.39 0.39 0.39 0.39

Final 0.64 0.29 0.32 0.27 0.39 0.27 0.27 0.37
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have been started in Turkey and it has been aimed to obtain

many more parameters about the regional geography. For

this reason, the study area is determined to be the region

between the latitudes 39�–42� and longitudes 26�–31�
which covers the Marmara Region and the surroundings.

The 73 values within this region constituted the data set

(Fig. 5).

As the motion velocities are given in two directions as

northward and eastward, the analyses are made separately

for the north and the east directions. Some descriptive

statistics about the crustal motion velocities are seen in

Table 2.

Table 6 The center and

deviation values for the east

direction

Longitude Latitude

Clust1 Clust2 Clust3 Clust4 Clust1 Clust2 Clust3 Clust4

Center

Initial 26.08 27.68 29.27 30.86 39.01 39.95 40.89 41.83

Final 26.00 27.58 29.11 30.98 38.85 40.10 40.98 41.63

Deviation

Initial 0.67 0.67 0.67 0.67 0.39 0.39 0.39 0.39

Final 0.51 0.56 0.58 0.36 0.09 0.77 0.14 0.55

Table 7 Fuzzy rules for north

direction
Rules If … and … then Model

R1 If x1 2 C1 and

x2 2 D1

then ŷ1 ¼ �0:1973� 0:1958 x1 � 0:0065 x2

R2 If x1 2 C1 and

x2 2 D2

then ŷ2 ¼ �0:0546� 0; 1841 x1 � 0:0017 x2

R3 If x1 2 C1 and

x2 2 D3

then ŷ3 ¼ �0:1052� 0:1231x1 � 0:0038x2

R4 If x1 2 C1 and

x2 2 D4

then ŷ4 ¼ 0:171þ 0:2633x1 þ 0:0064x2

R5 If x1 2 C2 and

x2 2 D1

then ŷ5 ¼ �0:174� 0:2394x1 � 0:0062x2

R6 If x1 2 C2 and

x2 2 D2

then ŷ6 ¼ �0:0670� 0:1637x1 � 0:0038x2

R7 If x1 2 C2 and

x2 2 D3

then ŷ7 ¼ �0:0346� 0:1331x1 � 0:0028x2

R8 If x1 2 C2 and

x2 2 D4

then ŷ8 ¼ �0:0109� 0:0128x1 � 0:0006x2

R9 If x1 2 C3 and

x2 2 D1

then ŷ9 ¼ �0:0749� 0:1141x1 � 0:0029x2

R10 If x1 2 C3 and

x2 2 D2

then ŷ10 ¼ 0:0236� 0:1022x1 � 0:0030x2

R11 If x1 2 C3 and

x2 2 D3

then ŷ11 ¼ �0:0886þ 0:1334x1 þ 0:006x2

R12 If x1 2 C3 and

x2 2 D4

then ŷ12 ¼ �0:117þ 0:0502x1 þ 0:0006x2

R13 If x1 2 C4 and

x2 2 D1

then ŷ13 ¼ 0:4077þ 0:5231x1 þ 0:0132x2

R14 If x1 2 C4 and

x2 2 D2

then ŷ14 ¼ �0:0821� 0:1642x1 � 0:0035x2

R15 If x1 2 C4 and

x2 2 D3

then ŷ15 ¼ 0:1319� 0:14x1 � 0:0046x2

R16 If x1 2 C4 and

x2 2 D4

then ŷ16 ¼ 0:1121þ 0:0898x1 þ 0:0023x2
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5.1 Kriging Application

To compute prediction in kriging method GS? (Gswin7),

Surfer (Version 8.2) is used. First of all, variogram model

needs to be determined. Sample variograms are calculated

independently from the direction considering the locations

of the data. Therefore, average variogram is taken into

account in variogram modeling.

The calculated sample variograms and the revised model

variograms are shown in Fig. 6a for north direction and in

Fig. 6b for east direction.

When the graphs are examined, it is observed that the

distribution graph looks like normal distribution for both

directions. According to this, for both of the variables,

normal distribution model is accepted as the variogram

model. The normal distribution model is as follows:

cðhÞ ¼ C0 þ C 1� exp
�h2

a2

� �� �
ð15Þ

The model parameters are calculated and given in

Table 3. After the determination of the variogram model,

prediction is computed in kriging method. The predictions

are obtained by computing the weights defined in Eq. (3).

The accuracy of the predictions is verified with the use

of cross-validation technique. As for the cross-validation,

each one of the 73 locations within the data cluster has

been taken out from the data cluster in turns and kriging

prediction is performed on that location with the help of the

other data values. With the calculation of the difference

between the prediction values and the measured values, the

error values are obtained (Table 4).

The error value for the kriging prediction is calculated

by MSE—mean-square-error criterion, and is found for the

north and the east directions, respectively, as follows:

MSEKriging�n ¼
PN

i¼1 ðYi � ŶiÞ2

N
¼ 3:4286

MSEKriging�e ¼
PN

i¼1 ðYi � ŶiÞ2

N
¼ 5:2120

Table 8 Fuzzy rules for east

direction
Rules If … and … then Model

R1 If x1 2 C1 and

x2 2 D1

then ŷ1 ¼ �0:2876� 0:4228x1 � 0:0108x2

R2 If x1 2 C1 and

x2 2 D2

then ŷ2 ¼ �0:2854� 0:3158x1 � 0:0107x2

R3 If x1 2 C1 and

x2 2 D3

then ŷ3 ¼ 0:196þ 0:3028x1 þ 0:0074x2

R4 If x1 2 C1 and

x2 2 D4

then ŷ4 ¼ 0:3096þ 0:4797x1 þ 0:0118x2

R5 If x1 2 C2 and

x2 2 D1

then ŷ5 ¼ �0:2789� 0:3943x1 � 0:0101x2

R6 If x1 2 C2 and

x2 2 D2

then ŷ6 ¼ �0:0107� 0:494x1 þ 0:004x2

R7 If x1 2 C2 and

x2 2 D3

then ŷ7 ¼ 0:1872þ 0:2807x1 þ 0:0068x2

R8 If x1 2 C2 and

x2 2 D4

then ŷ8 ¼ �0:0244þ 0:0532x1 � 0:0004x2

R9 If x1 2 C3 and

x2 2 D1

then ŷ9 ¼ �0:2658� 0:3619x1 � 0:0093x2

R10 If x1 2 C3 and

x2 2 D2

then ŷ10 ¼ �0:0561� 0:0499x1 � 0:014x2

R11 If x1 2 C3 and

x2 2 D3

then ŷ11 ¼ �0:0657� 0:0669x1 � 0:0021x2

R12 If x1 2 C3 and

x2 2 D4

then ŷ12 ¼ 0; 1669þ 01931x1 þ 0:0048x2

R13 If x1 2 C4 and

x2 2 D1

then ŷ13 ¼ �0:0198� 0:0257x1 � 0:0006x2

R14 If x1 2 C4 and

x2 2 D2

then ŷ14 ¼ �0:3416� 0:3405x1 � 0:0102x2

R15 If x1 2 C4 and

x2 2 D3

then ŷ15 ¼ 0:1428þ 0:1879x1 þ 0:0046x2

R16 If x1 2 C4 and

x2 2 D4

then ŷ16 ¼ 0:3284þ 0:4342x1 þ 0:0107x2
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5.2 Application of AFNN

For the AFNN application, Anfis Editor under fuzzy logic

module of MATLAB software is used. First of all, the data

set is separated into two as training set and test set. 75%

(55 data) of the data is in the training set and 25% (18 data)

is in the test set. The training set is used in the training of

the network, and the test set is used in the measuring the

performance of the training.

Loaded training data under Anfis Editor are shown in

Fig. 7.

Application with the AFNN is shown algorithmically as

follows:

Step 1 The numbers of fuzzy sub-clusters for indepen-

dent latitude and longitude variables are calculated using

subtractive clustering algorithm. Parameters required for

algorithm are selected as squash factor g = 1.25, range of

influence ra = 0.5, accept ratio e ¼ 0:5, reject ratio e ¼
0:15 (Fig. 8).

As a result of the clustering algorithm, the number of

sub-clusters for north and east directions is determined as

four for both of the latitude and longitude variables. Fig-

ure 9 shows the Anfis model structure.

The number of the fuzzy rules to be established as per

the numbers of sub-clusters determined is obtained as

sixteen through multiplying the numbers of the sub-

clusters.

Step 2. For both of the variables, Gaussian distribution

model is selected as the variogram model (Eq. 15).

Step 3. According to Step 2, the membership functions

are taken as Gaussian distribution and

Step 4. For four cluster, premise parameters are

obtained as follows:

Step 5. It is found suitable to perform 500 iterations for

training as a result of preliminary tests realized. / is

selected as 0.001. Training of the network started. If ê�/,
then go to Step 6. Otherwise, go to Step 8.

Step 6. The backpropagation error is calculated by using

Eq. (14), and the premise parameter set is updated with the

training of the network.

Step 7. Go to Step 4.

Step 8. The algorithm is stopped. The result of the

training is given in Fig. 10.

The consequent parameter set is set as the parameter for

the model. The predictions for the center and the deviation

values initially determined and obtained as a result of the

training are given in Tables 5 and 6 for north and east

directions, respectively.

The fuzzy rules that are formed using the values of

consequent parameter set are given in Tables 7 and 8 for

north and east directions, respectively. In Tables 7 and 8,

the x1 and x2 coordinates are the values of the latitude and

the longitude, respectively, and Ci , Dj ði; j ¼ 1; 2; 3; 4Þ
clusters are the fuzzy sub-clusters for the latitude and

longitude values, respectively. The predictions for the

crustal motion velocities are calculated by means of these

models.

For the evaluation of the results obtained through the

method, performance of the test set is considered. Fig-

ure 11 shows the testing data and FIS output for test data.

The MSE values for the test set are calculated for the

north and the east directions as follows:

Fig. 11 Testing data and FIS output. a North direction. b east

direction
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MSEAFNN�n ¼
PN

k¼1 ðyk � ŷkÞ2

N
¼ 5:6503

MSEAFNN�e ¼
PN

k¼1 ðyk � ŷkÞ
2

N
¼ 3:0725

6 Comparison of Results

For the evaluation of the results obtained through both

methods, the contour maps are compared. Then the per-

formance of the test set is considered. The errors on the

predictions are given in Fig. 12 on the contour map. On the

map that is printed on the map of the Marmara Region, the

fault lines (red lines) and the errors are shown together.

The region is between the latitudes 39�–42� and longitudes

26�–31�.
When the errors are evaluated, it is seen that the con-

tours intensify near the fault lines and larger errors are

formed in Kriging method. In AFNN method, however, it

is seen that the contours are not very intensified and the

errors are small.

Fig. 12 Errors on crustal velocity prediction (Marmara Region). a For Kriging. b For AFNN (for north and east directions, respectively) (errors

are in mm and equivalent error range is 1 mm)

Table 9 Value of prediction and error of test set for north direction

Latitude Longitude Y ŷAFNN êAFNN ŷKriging êKriging

26.189 39.614 - 9.85 - 9.57 - 0.28 - 9.32 - 0.53

26.535 39.58 - 6.51 - 9.72 3.21 - 10.14 3.63

26.732 39.653 - 7.26 - 9.48 2.22 - 9.79 2.53

26.91 40.029 - 8.64 - 8.74 0.1 - 7.59 - 1.05

27.269 39.577 - 6.4 - 9.7 3.3 - 9.7 3.3

27.424 39.785 - 8.51 - 8.93 0.42 - 7.61 - 0.9

27.763 40.059 - 2.94 - 7.19 4.25 - 5.27 2.33

27.906 39.722 - 4.53 - 6.21 1.68 - 6.31 1.78

28.373 40.398 - 1.24 2.03 - 3.27 - 0.55 - 0.69

28.923 39.93 - 0.54 - 3.51 2.97 - 1.87 1.33

29.106 40.27 0.44 0.56 - 0.12 - 0.21 0.65

29.146 40.46 1.83 2.22 - 0.39 0.35 1.48

29.451 40.787 - 3.98 1.78 - 5.76 0.95 - 4.93

29.635 40.803 1.23 1.62 - 0.39 - 0.05 1.28

29.929 40.425 - 1.74 - 1.23 - 0.51 - 1.39 - 0.35

30.638 40.614 - 1.21 - 0.4 - 0.81 - 0.78 - 0.43

30.68 40.538 - 0.63 - 0.66 0.03 - 0.91 0.28

30.827 40.735 - 0.52 0.19 - 0.71 - 0.19 - 0.33
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When the results are obtained through both methods, it

can be seen that the performance of the test set has sig-

nificance as well.

The coordinates for the test set and the velocities

observed at these coordinates (Y), the prediction values

(ŷAFNN) and errors (êAFNN) obtained from AFNN approach

and the prediction values (ŷKriging) and errors (êKriging)

obtained from Kriging method are given in Tables 9 and 10

for the north and east directions, respectively.

From Fig. 13, we can see the errors obtained from both

methods for test data.

When the MSE values are compared for the test set, the

error obtained in AFNN is found to be larger for the north

direction and smaller for the east direction (Table 11).

Table 10 Value of prediction

and error of test set for east

direction

Latitude Longitude Y ŷAFNN êAFNN ŷKriging êKriging

26.189 39.614 - 19.94 - 19.9 - 0.04 - 20.8 0.86

26.535 39.58 - 20.45 - 20 - 0.45 - 21.26 0.81

26.732 39.653 - 22.65 - 19.9 - 2.75 - 20.21 - 2.44

26.91 40.029 - 19.7 - 19.6 - 0.1 - 21.86 2.16

27.269 39.577 - 20.77 - 19.8 - 0.97 - 19.06 - 1.71

27.424 39.785 - 22.95 - 19.8 - 3.15 - 19.62 - 3.33

27.763 40.059 - 22.89 - 19.7 - 3.19 - 23.02 0.13

27.906 39.722 - 21.2 - 20 - 1.2 - 21.2 0.00

28.373 40.398 - 19.18 - 18.6 - 0.58 - 19.63 0.45

28.923 39.93 - 23.43 - 21.2 - 2.23 - 20.23 - 3.2

29.106 40.27 - 20.83 - 20 - 0.83 - 20.99 0.16

29.146 40.46 - 20.09 - 18 - 2.09 - 17.72 - 2.37

29.451 40.787 - 7.5 - 8.97 1.47 - 9.23 1.73

29.635 40.803 - 6.06 - 8.47 2.41 - 8.62 2.56

29.929 40.425 - 17.69 - 18.5 0.81 - 17.88 0.19

30.638 40.614 - 13.58 - 13.3 - 0.28 - 13.79 0.21

30.68 40.538 - 17.01 - 16.3 - 0.71 - 16.02 - 0.99

30.827 40.735 - 7.95 - 5.61 - 2.34 - 10.55 2.6

Fig. 13 Errors for test data. a North direction and b east direction
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Different from the kriging method, prediction value, in

adaptive networks, for a given location can be calculated

without the need to make the calculations from scratch with

the use of the models belonging to the fuzzy rules obtained.

7 Conclusions

Determination of the crustal motion velocities causing

earthquakes is hard and is a prolonged process. Observa-

tion stations are established to determine the motion

velocities and data are obtained as a result of the mea-

surements made in different periods at these stations.

Motion velocities in unknown coordinates can be predicted

with the use of motion velocities determined by the

observation stations. As there is a spatial relation between

the motion velocities, spatial prediction is utilized for this

prediction. In this paper, as an alternative to the existing

methods used in spatial prediction problems, use of AFNN

approach and the variogram function which considers the

spatial dependence in selection of the membership function

is suggested. In order to determine the efficiency of the

system, a comparison is made to the Kriging method. The

MSE obtained from the test data showed that the AFNN

system had given results as efficient as the kriging method

which is known to be the best prediction method. So, it can

be said that the ability of AFNN for earthquake prediction

is good. When worked with enough data, the AFNN system

could be used in solving earthquake prediction problems.

The advantage of the AFNN system over the kriging

method is that it has models in hand for predictions. With

the help of these models obtained, prediction of the crustal

motion velocities in any given location in a study area can

be quickly calculated. In kriging method, the weight values

used in predictions are calculated based on the distance

between the variables. Therefore, the weights need to be

recalculated for the prediction of each new spot. It can be

said that AFNN has eliminated this problem. When the

fuzzy models are obtained with the working of the network,

the predictions will be made any time. This is the strength

of the AFNN.

Besides the advantages of the AFNN system, there are

some points to be careful about during the application

stage. If there are not enough data for the application,

models suitable for the AFNN system may not be estab-

lished. In such circumstances, even though sufficient

results for the training set are obtained, the predictions on

the sample locations may have big errors. Another point to

be watched is the selection of the membership function. In

the selection of the membership functions, selection of a

variogram model that is not appropriate for the structure of

the data will surely affect the performance of the AFNN

system, values of the premise parameters and the models

for the fuzzy rules to be obtained through the network. For

this reason, attention should be given to the selection of the

membership function. These are the weaknesses of the

AFNN.

Prediction of the crustal motion velocities has signifi-

cance in terms of earthquake studies. Thanks to the

research regarding crustal motions, annual velocity of the

deformation in the seismically active portions of the earth’s

crust can be calculated. The period of time that the

deformation reaches the saturation point, taking this

velocity into account, can be predicted and earthquakes

might be predicted in advance. Therefore, this study is

thought to be of contribution to the earthquake prediction

studies.

This study is applied in Marmara Region, Turkey.

Researchers can similarly use AFNN approach in any

spatial region.
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lendirilmesinde Jeoistatistiksel Yöntemler, TMMOB Jeoloji
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