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Abstract As an extension of hesitant linguistic term set,
interval-valued hesitant uncertain linguistic set can simul-
taneously express qualitative information and quantitative
information, and reflect the uncertainty and hesitancy of
assessment experts. The purpose of this paper is to present
a new interval-valued hesitant uncertain linguistic
MAGDM method, which can take into account changes in
the semantic environment and negative effects caused by
experts’ extreme assessment values. First, by combining
with different linguistic-scale functions, some new opera-
tional laws and a new comparison method for IVHULNS
are developed to accommodate different semantic envi-
ronments. Then, several new generalized interval-valued
hesitant uncertain linguistic power aggregation operators
are proposed, including generalized interval-valued hesi-
tant uncertain linguistic power average operator and its
weight form, generalized interval-valued hesitant uncertain
linguistic power geometric operator and its weighted form.
Some desirable properties and some special cases of these
operators are investigated and analyzed. Furthermore,
based on the proposed operators, an approach to multiple
attribute group decision-making with interval-valued hesi-
tant uncertain linguistic information is developed. Finally,
an illustrative example is provided to demonstrate the
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applicability and feasibility of the proposed approach. A
comparative analysis with other existing methods is also
conducted to illustrate the effectiveness of the proposed
approach.
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1 Introduction

As an important extension of the traditional fuzzy set,
hesitant fuzzy sets (HFSs) originally proposed by Torra and
Narukawa [1, 2] allow the membership degrees of an ele-
ment to have multiple different values between 0 and 1.
HFSs are highly useful to express uncertain information
than the traditional fuzzy sets or their extensions, espe-
cially when experts are difficult to provide specific
assessment values in a decision-making process. HFSs
have been investigated in depth and applied in many
practical decision problems [3—7]. Similarly to the ordinary
fuzzy sets theory, several extensions of HFSs have been
extended to accommodate to different decision contexts,
including interval-valued hesitant fuzzy sets IVHFSs) [8],
dual hesitant fuzzy sets (DHFSs) [9]. These extensions of
HFSs have enriched the applications of HFSs and become a
hot topic for many scholars.

However, in many real decision situations, compared
with numerical values, experts may prefer to utilize lin-
guistic information to express their options. Therefore,
linguistic term sets [10] are widely investigated and applied
in the decision-making process to express experts’ prefer-
ence options [11-18]. Motivated by HFSs and linguistic
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term sets, some useful extensions of HFSs were further
proposed, including hesitant fuzzy linguistic term sets
(HFLTSs) [19], hesitant fuzzy linguistic sets (HFLSs) [20],
interval-valued hesitant fuzzy linguistic sets (IVHFLSs)
[21]. For example, when an expert assesses the comfort
level of a car, he may choose the linguistic term “good”
(s4) to express his opinion. However, he may be hesitate
about several possible membership degrees associated with
the linguistic term “good,” such as 0.7, 0.8 or 0.9. Under
these circumstances, using the hesitate fuzzy linguistic set
proposed by Lin et al. [20] , the expert’s opinion can be
expressed as {(s4, (0.7,0.8,0.9))}. However, as the com-
plexity of the practical decision-making environment
increases, it might not be adequate or sufficient for experts
to express their linguistic evaluation and the associated
membership degrees by linguistic terms and crisp values.
In fact, taking into account the uncertainty and ambiguity
of the subjective thinking of experts, interval linguistic
terms, i.e., uncertain linguistic variables, and interval val-
ues may be more appropriate or convenient for expressing
the true opinions of experts. Therefore, by combining with
IVHFSs and uncertain linguistic variables, Liu et al. [22]
proposed a new extension of the linguistic terms set, called
interval-valued hesitant uncertain linguistic set (IVHULS).
The desirable characteristic of IVHULSs is that it can
simultaneously describe the fuzzy values of two aspects of
an evaluation object: One denotes an expert’s linguistic
evaluation information by an uncertain linguistic variable,
and the other uses several possible interval value mem-
bership grades to describe the hesitancy of experts. Based
on the concept of IVHULSs, the comfort level of a car
given by an expert can be expressed as
{([s4,s5],{[0.7,0.9]})}. Comparing with HFLTSs, HFLSs,
and IVHFLSs, IVHULSs can more comprehensively and
effectively reflect the true preferences of experts. Thus, the
research of MADM method based on IVHULSs has
important theoretical and applied value.

As we know, aggregation operators are highly useful
tools for aggregating experts’ preferences to derive the
comprehensive value of each alternative. Power average
(PA) operator, originally defined by Yager [23], can reduce
the negative impact of extreme assessment values provided
by experts on the final decision results. Therefore, it has
attracted many researchers’ attention in recent years.
Motivated by the PA operator, Xu and Yager [24] further
developed power geometric(PG) average operator and its
weighted form. By combining the PA operator and the
generalized aggregation operator, Zhou and Chen [25]
proposed a new generalized power average(GPA) operator.
However, on the one hand, the existing various power
averaging operators are based on traditional operational
laws and cannot meet the diverse semantic requirements of
different experts. On the other hand, they cannot be used to
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aggregate IVHULSSs. Therefore, in this paper, our aim is to
present several new power average aggregation operators
to integrate interval-valued hesitant uncertain linguistic
information.

In the study of linguistic decision-making methods, the
processing of language information is an important issue
that needs attention. By now, several linguistic information
processing methods have been proposed, including the
transformation method based on membership function
[26, 27], the symbolic calculation method based on the
subscripts of linguistic terms [28-30], the transformation
method based on cloud model [31], and the 2-tuple lin-
guistic representation model [32-34]. Nevertheless, as
mentioned by Martinez and Herrera [35], these above-
mentioned existing linguistic modeling methods have cer-
tain advantages; however, they cannot be used to handle all
types of decision problems. For example, when decision
makers assess an object, they may think that the semantic
deviation between “good” and “slightly good” is greater
or smaller than that between “good” and “very good.”
That is, as the linguistic term subscript i increases, the
semantic deviation between adjacent linguistic terms is not
always equal [21]. In many practical decision-making sit-
uations, decision makers may have different semantic
requirements for predefined linguistic terms. Obviously,
these existing linguistic methods cannot successfully solve
similar decision-making problems. Thus, in this paper, we
introduce the concept of linguistic-scale function (LSF)
[21] to redefine the operational laws for IVHULNSs to
accommodate to different semantic scenarios and improve
the flexibility of linguistic information processing, then we
further propose four new generalized interval-valued
hesitant uncertain linguistic power average operators to
solve such decision-making problems.

The main purpose of this paper is to present a MAGDM
method under interval-valued hesitant uncertain linguistic
environment which cannot only reduce the negative impact
of extreme evaluation values on the decision-making
results, but also adapt to different semantic environments
and satisfy different experts’ semantic requirements. To do
this, this paper is organized as follows: In Sect. 2, some
basic concepts are briefly reviewed. In Sect. 3, by combing
with linguistic-scale functions, some new operational laws
and a new comparison method for IVHULNS are defined.
In Sect. 4, several new generalized power average aggre-
gation operators are developed, some desirable properties
and special cases are investigated and analyzed. In Sect. 5,
based on the proposed operators, an approach to interval-
valued hesitant uncertain fuzzy linguistic MAGDM prob-
lems is developed, which considers the relationships
among the preference values given by experts and the
semantic preferences of experts under different semantic
situations. In Sect. 6, a numerical example is provided to



Z. Liu et al.: Multiple Attribute Group Decision-Making Method Based on Generalized... 1997

illustrate the effectiveness of the proposed approach, sub-
sequently, comparison analyses with other existing
MAGDM methods are given. Finally, some conclusions are
given in Sect. 7.

2 Preliminaries
2.1 Uncertain Linguistic Variables

Let S = {so, 51,52, . - ., 52} denote a discrete linguistic term
set with odd cardinality, where any label s; represents a
possible linguistic variable value. For example, when
t=3, S could be represented as S = {sp = none, s; =
very low, s, =low, s3 = medium, s4 = high, s5 = very
high, s¢ = perfect}.

However, in the decision-making process, the linguistic
aggregation value is usually not equal to any linguistic term
belonging to S. To avoid the computational loss of lin-
guistic terms during the process of linguistic information
aggregation, Xu [36] proposed a new continuous linguistic
term set S = {§;|i € [0, 4]} to replace the existing discrete
linguistic term set S.

Moreover, in many practical decision-making problems,
linguistic evaluation values given by experts may be
located between any two of the linguistic terms belonging
to S. To deal with such situations, Xu [37, 38] further
developed the concept of uncertain linguistic variable.

Definition 1 Suppose § = [s4, Sp,], 54,5, €S and
0<a; <b;, s, and s, are the lower limit and upper limit of
s, respectively, then § is called an uncertain linguistic
variable.

2.2 Interval Numbers

Definition 2 [39] Let 7= [y/,y*] = {x|0§y’ <x< ,yu}’
and then 7 is called a positive interval number.

In order to rank the magnitude of any two interval num-
bers, Ishibuchi and Tanaka [40], Kundu [41], Sengupta and
Pal [42], Xu and Da [39] have proposed several ranking
methods. In this paper, we utilize the possibility degree
formulas mentioned in [39] to rank interval numbers.

Definition 3 Let y; = [y*,7%] and y, = [5,7Y] be any
two interval numbers, and [, = 7% —y}, 1, =4 — 75, then
the possibility degree of y, >y, is defined as:

u [

Y2 — V1
P > = m 1 —m 0 0. 1
(VI—VZ) ax{ ax{l i ) }7 } ( )

71 72

Similarly, the degree of possibility of y, >y, is defined as

i al
Py >7,) = max{l - max{/l I ,o},o}. @

71 72

Obviously, the following results can be derived from
Egs. (1) and (2):

(1 0Zpy=27) <1,
2 p(r1 =) +p(=n) =1,
3 p(ri=1) =pH22>72) :%'

To rank the input arguments y; = [y},7¥](i = 1,2,...,n),
using Eq. (1), we can compare each y; with all yj(j:
1,2,...,n) and then form a complementary matrix P =
[Piflyxn (for simplicity, suppose p;; = p(y; >7;)), where
pij > 0,pi =0.5,p;j +p;i = 1(i,j = 1,2,...,n). Comput-
ing the sum of all of the elements of each line in matrix P,
we have

pi = Z pii=1,2,...,n). (3)

j=1

According the value of p;, we can derive the ranking order
of vy;, i.e., the smaller the value of p;, the greater the value
ofy, i=1,2,...,n).

2.3 IVHFSs

Definition 4 [1, 2] Let X be a reference set, a HFS on X is
defined in terms of a function that when applied to X re-
turns a subset of [0, 1].

To be easily understood, a simple mathematical symbol
can be utilized to describe the HFS [3]:

E = {({x,he(x))|x € X)},

where hg(x) is a set of values in [0, 1], denoting the pos-
sible membership degrees of the element x € X to E.

However, experts may find it difficult to character all
possible membership degrees of an assessment object with
exact values. Motivated by the concept of HFSs and
interval numbers, Chen et al. [8] introduced the interval-
valued hesitant fuzzy sets (IVHFSs), which utilize interval
numbers instead of exact values to represent the possible
membership degrees of an object to a set.

Definition 5 [8] Let X be a fixed set, and M[0, 1] be the
set of all closed subintervals of [0, 1]. Then an IVHFS on
X is denoted as

E={(x,hz(x;))x; €X, i=1.2,...n}, (4)

where 7;(x;) : X — M][0,1] denotes all possible interval-
valued membership degrees of the element x; € X. For

convenience, we call fz,;(xi) an interval-valued hesitant
fuzzy element (IVHFE), which is expressed by:
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hi(xi) = {717 € hg(x)},

here, 7 = [, 7"] is an interval value. j~ = infj and 71 =
supy represent the lower and upper limits of y, respectively.
It is easy to observe that IVHFS is an extension of HFS. If
7% =77, then IVHFS degenerates into HFS.

2.4 IVHULSs

Definition 6 [22] Let X be a reference set, sg(x), () € Ss
and M[O, 1] be the set of all closed subintervals of [0,1]. An
interval-valued hesitant fuzzy linguistic set (IVHULS) on
X is:

A = {(x. 5009 $y00): S0) x € XY,
where d(x) {yi, 74} denotes several pos-
sible 1nterval Valued me ﬁ)ershlp degrees of x € X belongs

0 [So(x), $n(a))-

For convenience, & = ([sy(a),Sy(x)],0(%)) is called an
interval-valued hesitant uncertain linguistic num-
ber(VHULN). If &(@) = {[y',7“]} has only one interval

value, then the membership degree of o belongs to

[So(a)» Sy(2) 1
is called an interval-valued uncertain linguistic number.
Moreover, it should be noted that HFLLSs and IVHFLSs are
special cases of IVHULS:s.

[y!,7"]. For example, & = ([s3,ss], [0.3,0.7])

Example 1 Here, let us describe the application of
IVHULNS by a simple example. Suppose experts need to
evaluate the operability of three different production
facilities, denoted as fj, fo and f3. Considering that this
attribute is qualitative, it is more appropriate to use lin-
guistic variables for evaluation. For example, the expert
may feel that the linguistic evaluation value for f; is higher
than “good” but lower than “very good”; meanwhile, the
expert may also be uncertain and hesitant about such an
uncertain linguistic variable, so the expert can express his
opinion by providing several possible interval-valued
membership. In this case, an IVHULN is more suitable to
express such evaluation, which can be expressed as
([s5,6),[0.5,0.6],]0.7,0.8]). [0.5,0.6] and [0.7, 0.8]
denote the possible interval-valued membership degrees
where fi belongs to the uncertain linguistic variable [ss, s¢).

For any two IVHULNS a; = <[s0<o;1),s,1(&1)],5(o?1)> and
g2 = ([s0(@,) Sy(@)], 6(32) ), 4 €[0,1], Liu and Ju [22]
defined the operational rules as follows.

o @ = <{Sﬁ(«'.w(mvS»7<&.>+n<a2) ;

D U { {Vﬁz. o = E Y Y — v‘;} }>
() € 6(an)
) (%) € 0(d)
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o ® oy = <|:~Y()(i1)><(7(ig)ﬁsn(i\)xr](&z)}3 U

(d) € o(an)

()

3) = <[S’xu<il>»%x0<m] (oz )Lejé(n) H] - 7}’;‘)Z' - 77;')2] }>

4 -
@ = <[S(r)(5.))”s(q(m)’]’ . U

It is easy to notice that the above operational rules for
IVHULNSs are based on subscripts of linguistic terms and
assume that the absolute deviations of adjacent linguistic
terms are always equal. However, in many practical deci-
sion situations, experts may have different semantic pref-
erences for linguistic terms and the absolute deviations
between adjacent linguistic terms are not always equal. In
order to solve such problems, by combining with linguistic-
scale functions, we proposed new operational rules, dis-
tance measurement and a comparison method for any two
IVHULN:S in the next section.

3 New Operations for IVHULSs
3.1 Linguistic-Scale Functions

In general, a simple way to deal with linguistic terms is to
directly manipulate the subscripts of linguistic terms.
However, in many practical situations, we can find that this
way cannot flexibly and precisely express the experts’
semantic intention under different semantic environments.
To solve such situations, Wang et al. [2]1] summarized
three different linguistic-scale functions (LSFs) that are
flexible to convert linguistic terms into different semantic
values according to different semantic contexts. These
linguistic-scale functions are simply introduced as follows:

Definition 7 [21, 43] A linguistic-scale function (LSF) p

is a mapping from s; to ¢;(i=0,1,2,...,2¢f) that is
denoted by the following formula:
pisi— ¢, (i=0,1,2,...,21), 9)

where s; € S, ¢; € [0, 1] is an exact value and represent the
semantics value of the linguistic term s;. In addition, ¢,
need to satisfy the condition that 0<¢y<¢, <¢
., < ¢p,,. Therefore, p is a strictly monotonically
increasing function with regard to linguistic subscript i.
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(1) The most simple LSF is a simple average calculation
of the subscripts of linguistic terms, that is:
o(s1) :¢i:2it(i:071727...,2t). (10)

(2) The second LSF is a composite scale function that is
formed by combining the exponential scale and the
—n ~ n scale. Its main characteristic is that the closer
to both ends of the linguistic term set, the greater the
semantic deviation between the adjacent linguistic
terms. For example, the semantic deviation between
linguistic terms “very high” and “perfect” is greater
than that between “high” and “very high.”

p(si) = ¢;

(Pl _ (pz—i
2(p — 1

(Pt + (pi—f -2

2(pf — 1

(i=0,1,2,...,1),

(i=t+1,t+2,...,20).
(11)

The parameter value of ¢ in Eq. (11) is introduced in
the Ref. [44].

(3) The third LSF is based on the value function in
prospect theory. Contrary to Eq. (11), this function
can characterize the phenomenon that the closer to
both ends of the linguistic term set, the smaller the
absolute deviation between adjacent linguistic terms.

p(si) = ;
t—(r—i)
% (i=0,1,2,...,1),
e+ -0
T (l—t+17t+2,...,2t).
(12)
where Y, € (0,1], and if Yy =¢ =1, then

p(si) = b; = 5

Further, in order to avoid the computational loss, Wang
et al. [21] further expanded Eq. (9) to the continuous lin-
guistic term set S: § : § — R(R = {r|[r>0,r € R}), which
satisfies p(s;) = ¢;. The inverse function of p is repre-
sented by p—.

From the above definitions, we can observe that compared
with other existing linguistic information processing methods,
the most important advantage of introducing these three types
of LSFs is that they can be used in different semantic envi-
ronments to satisfy different semantic requirements of
experts. For example, for 54 = “high”, ss = “very high” and
s¢ = “perfect” in the linguistic term set S(¢z = 3) defined in
the Sect. 2.1, experts may have different semantic preferences
in a real decision-making environment. If the expert feels that
the semantic deviations dj; between adjacent linguistic terms
s; and s; are always equal, then by using Eq. (10), the

semantic deviations dys = dsq = 1/7 = 0.14. If the expert
feels the absolute deviation between s¢ and ss is greater than
that of between ss and s4, then by using Eq. (11) (let
¢ = 1.4), we can get the linguistic deviations: ds4 = p(s5) —
p(s4) = 0.1603, des = p(se) — p(ss5) = 0.2248. If the expert
thinks the deviation between s and s5 is smaller than that of
between s5 and s4, then by using Eq. (12) (let y = ¢ = 0.8),
we can get dsy = p(S5) — p(S4) = 0.1539, d¢s = p(S6)—
p(ss) = 0.1385. Obviously, existing other linguistic models
cannot be effectively used to deal with the latter two semantic
situations. Thus, in the next subsection, by combining LSFs,
we will propose the operational laws for IVHULNs, which
have better flexibility and adaptability for processing lin-
guistic terms.

3.2 New Operations and Distance Measure

In this subsection, based on the operational rules of
IVHULNS defined by Liu and Ju [22], by combining with
linguistic-scale functions, we redefined the operational laws
for IVHULN:S to deal with different semantic situations.

Definition 8 Let /1, = <[S()(a),s,,’(“>], 5(0()> = <[S0(a),s,1(“)],
Uy, ssges, 1105 751} and kg = (lsog) sy 6(B)) = ([saip)-
sup)ls U”*’/f:[?;w?’?f]ea/‘ {[y%, y;‘;]}> be any two IVHULNS, >0,

then new operation laws for IVHULNs are defined as
follows:

D han- <[ﬁ" (Blsu) + Blso))s 57 (Blsu) + Blowm) ) -
e { [vh+ ol = 7ol s + 7 — ] }>

(13)
@ hy ® by = <[/3_1 (ﬁ(sum)ﬁ(sf)(ﬁ)))? P (ﬁ(%u))ﬁ(&;u:)))k
U {biprsl }>

7. € 0(a)
75 € 0(B)

O <{ﬁ h (A"ﬁ(som))v p! (Aﬁ(sﬂm))],
: . (15)
oo

74E04

) h = <[ﬁfl((ﬁ(6'o(x)))2), ﬁq((ﬁ(sn(x)))/z)}a U H(v;)/z’(y:)z]}>'

72€04

(16)
Example 2 Let S = {so=none, s; = very low, s, =
low, s3 = medium, s4 = high, s5 = very high, s =
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perfect} be a linguistic term set. Assume that we choose
Eq. (12) as the LSF to manipulate the following two
IVHULNS: h, = <[s],sz]{[O.l,0.3][0.2,0.4]}) and hg =
<[S2,S3], {[0.2,0.3], [0.3,0.5}}>, let A=2¢= %, Q= %
then we can get the following results by using (13)-(16):

(1) h“ D h/; = <[S2'535, .5‘3536]7 {[028, 051]7 [0377 065],
(0.36,0.58], [0.44,0.7]})

(2) ha ® ]’l/} = <[S0,223, .8‘1,134]7 {[002, 009]7 [0037 015],
(0.04,0.12],[0.06,0.2] })

(3) /Ul“ = 2h1 = <[S1'798, 52.928, {[0197 051], [0367 064]}>

@) =12 = {[so1,50512], {[0.01,0.09], [0.04,0.16]})

Further, based on Example 1, if an expert chooses a
semantic scenario in which the closer to both ends of the
set of linguistic terms, the greater the deviation between
adjacent linguistic terms, then Eq. (11) (let ¢ = 1.4) is
used to participate in the calculation, and we can get the
following result:

(1) hy @ hp = ([$3.9659, 55.5316), {[0.28,0.51],[0.37,0.65],
[0.36,0.58], [0.44,0.7]})

(2)  hy ®hg = ([s0.3467, S0.8348], {[0.02,0.09], [0.03, 0.15],
004,012} 0.06,0.2]}

(3) Ah = 2h == <[S2 51875 54.9754, {[019,051], [036,
0.64]})

) hi = h2 = {[s01973, Soc21s], {[0.01, 0.09], [0.04,
0.16]})

Thus, from Example 1, we can see that if different lin-
guistic-scale functions are used in the calculation process,
the results are obviously different. In actual decision-
making, experts can flexibly determine the LSF according
to individual semantic preferences. Compared with the
operational rules proposed Liu and Ju [22], the new oper-
ational laws defined above have better flexibility and
adaptability to linguistic decision scenarios.

Theorem 1 Let hy, = ([s0(s), Syor) ], 6(o:)) (i = 1,2,3) be
any three IVHULNs and 1> 0, the following properties
hold:

(1) hocl @hmz :haz @hala

(2) hoq ® hocz = haz ® hoq s

B) Moy B op) = Ahy, B Ahy,,

(4) (hou @ hdz)A = hil ® héz’

(5 hy ® (hocz D hds) = (hdl ® hiz) @ hy;,
(6) hocl & (haz ® hacs) = (hacl & hozz) ® has'

Based on these abovementioned operational rules of
IVHULNS in Definition 8, Theorem 1 can be easily proven,
the proof process is omitted here.

Based on Definition 6 and Hamming distance, we pro-
pose the distance measures for IVHULNS as follows:
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Definition 9 Let = { [suc.

]7()> <[ 003

0
Sr[(a)]a Uyd:[}v{ﬁy’;]eﬁ(a) [yéw VﬁH> and hﬂ - <[ ]’

5(ﬁ)> = < [sﬁ(ﬁ) ) SV](,B)L Uyﬂ:[y;{,ymeé([j) [’yi?? V;ﬂ:l > be any two

IVHULNSs, combining the LSF, the normalized Hamming
distance measure between &, and &y is defined as follows:

1
) _
it (ha hp) = 4#len21:(’p 56(a
) a(j)
o()

Bsoe) (75|
)ﬂ(i)}
a(i)\

+ |P So(a)) (Vy
+ |5y (73)

— p(socp) (Vs
= P(sy(p)) ()

|y ()Y — Blsys ))(Vﬁ)am‘),

(17)
where yZU), y;m are the jth largest interval values in (o)
and o(f), respectively. #len(d(a)), #len(d(p)) denote the
number of interval values in 6(a) and 6(f), respectively.
#len is the maximum of #len(d(x)) and #len(d(p)). It is
easy to prove that Eq. (17) satisfies the following condi-
tions: 0 <dpy (hy, hg) <1,dy(hy, hp) = 0 if and only if h, =
hg,dy(hy, hg) = du(hp, hy). The proof is omitted here.

Note that different IVHULNs may have different inter-
val numbers in most practical cases, that is #len(d,) #
#len(dp). In order to calculate correctly, we should sup-
plement the shorter IVHULN by adding some interval
numbers to it until both of them have the same length. Let
h, be the shorter IVHULN, and 7/, 7" be the maximum and
minimum interval numbers in (o) respectively, and sim-
ilarly to the method proposed by Zhu and Xu [45], we can
add the interval values to 6(«) repeatedly by the following
formula:

F=1"a (1= 1)y (18)

It is obvious that the parameter 1 is employed to represent
experts’ risk preferences. In general, / can be set to 1, 0, or
1/2, corresponding to the max, min and the average interval
value, respectively. Optimists may expect good results, and
thus add a maximum interval value. On the contrary, pes-
simists will complement a minimum interval value [4].
Here, experts are considered pessimists(that is 4 = 0). For
example, let h, = ([s2,s4],{[0.1,0.3],[0.4,0.5]}), hp =
{[s3, s4],{[0.1,0.3],]0.2,0.4],[0.6,0.8]}), Obviously, #len
(6(a)) =2<#len(d(f)) =3. To operate correctly, we
should extend o(a) to have the same length with 6(f). By
using Egs. (1) and (2), we can get the minimum interval
values in (), then we can extend h, as ([s,,sq4], {[0.1,
0.3],[0.4,0.5],]0.1,0.3]}) (suppose A = 0).
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3.3 Comparison Method for IVHULNSs

In order to compare any two IVHULNS, Liu et al. [22]
defined the score function of an IVHULN. However, the
accuracy function of IVHULN has not been provided. In
the following, the score function and accuracy function of
an IVHULN are proposed, a comparison method for two
IVHULN:S is also defined.

Definition 10 Let h, = <[s@(a), Sn())» 5a> = <[s@(a>,
sn(a)],U,y:[%m@s(a){[yé»“/g]}]> be an IVHULN, then a

score function of &, can be denoted as follows:

((s0) + P(sy)) 2o, s, (7 + %)
4#len ’

S(h“) =

where #len denotes the number of interval values in d(a).

Definition 11 Let h, = <[Sg(a), Sn(a)], 50,> = <[S9(o(),
Su(e))s Uy, =yt e 5, {7 7413]) be an IVHULN, the expec-
tation function E(J,) of h, can be defined as E(J,) =

D s, Pt

S , then the variance function V(J,) of h, can be
denoted by V(4,) = #Zueéa [Vi;"/; — E(éa)}z. Therefore,
the accuracy function of D(h,) can be denoted as follows:

P(So()) + P(Sy(a)) (1
2

where #/ is number of interval values in J,

D(h,) = —V(5,), (19)

Definition 12 Let h, = <[s9(x),s,1(x)],5“>,h[; = <[SH(/})>
sy(p)» Op) be any two IVHULNS, then

(1) if S(hy) > S(hg),then hy > hyg.
(2) if S(hy) = S(hp),then
if D(hy) > D(h/;), then h, > hg,
if D( 9C) D( hﬁ),then hy = hg.

Example 3 Let h, = <[s1,s2] , {[0.2,0.4], [0.3,0.7]}> and
hg = <[sz,S4], {[0.2,0.3], [0.1,0.2]}> are two IVHULNS.
If p(s;) == (i=0,1,2,...,2t) and ¢ = 3, then their com-
parative order can be calculated as follows:

C(14+2)(02+04+03+0.7)

S(ha) 12 =0.1,
~(02+04)+(03+0.7)

E(d,) = 2 = 0.4,
1 0.2+0.4 > (03407 :

D(6,) = 5 x ( 5 —0.4) +< 3 —0.4) } =0.01,
142

D(h,) = %(1 —0.01) = 0.2475.

Similarly, S(bg) =0.1 and D(hg) =0.4938. Thus,

according to Definition 12, we can derive h, <hg.

4 Some Generalized Interval-Valued Hesitant
Uncertain Linguistic Power Aggregation
Operators

In this section, the PA and PG operators are extended to
accommodate interval-valued hesitant uncertain linguistic
context and different semantic situations. In addition, some
desirable properties and special cases of these newly pro-
posed operators are investigated and discussed.

Power average (PA) operator was originally introduced
by Yager [23] to aggregate a collection of real numbers. It
is defined as follows:

X (L+ Ta))d

PA(y. din. .. ..d0,) = 7
(alaa27 )y a ) an _ (1 +-|]—(al))

(20)

where

> Supp(d, diy),

i=1 (21

i#]
and Supp(d, dy) denotes the support measure for g, from
dy, which holds the following basic properties:
Supp(d;, d;) € [0, 1], Supp(d,d;) = Supp(dj, d;), Supp(d,
d.i) > Supp(Gim, din) if |(o4, O‘j)| <[otm, 0.

Based on Eq. (20) and geometric mean, Xu and Yager

[24] further presented a power geometric (PG) operator to
aggregate d;(i = 1,2,...,n):

1+T(d;)
I (22)
i=1

Note that the PA and the PG operator are nonlinear
aggregation tools. A typical characteristic of these two
operators is that the weights of d;(i = 1,2,...,n) depends
on the support measure of all other inputs for d;, that is,
allowing the inputs to support each other.

PG(diy, s, . - ., in)

4.1 GIVHULPA Operator and GIVHULPGA
Operator

Definition 13 Let /(i =1,2,...,n) be a collection of
IVHULNS, then a generalized interval-valued hesitant
uncertain linguistic power average (GIVHULPA) operator

is a mapping H" — H and can be defined as follows:

)

(23)

GIVHULPA (iy, b, . .., ) = <@" 1+
i (1+

where H is the set of all IVHULNS, and
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Z Supp( fl ﬁ
Jj=1
J#i
in which Supp(/;, fzj) is the support measure for /; from /j,
the properties listed below hold:

(1) Supp(hi, iy) € [0,1],

@ Supp(hi, hy) = Supp(hj, hy),

(3)  Supp(hi, b;) > Supp(lpm, hy) it d(hi, ) <d(Bp, hy),
where d denotes a distance measure between any two
IVHUFLNSs.

(24)

It is worth noting that if we assume that & =

14T (h)
Yo (4T ()
simplified as

forall i, then } ! | & = 1, and Eq. (23) can be

GIVHULPA (hy, hs, .. ., h

(@, & h) (25)

Based on the operational rules of IVHULNS defined in
Definition 8, and for computational convenience, in the

following, we suppose ¢; = anﬂr(ﬁ,-)

————~——, then we have the
o U4 T (7))

following theorems.

Theorem 2 Let hy, = ([s(;(mi),s,](ai)],5(0(,~)>(i =
1,2,...,n) be a collection of IVHULNS, the result calcu-
lated by utilizing the GIVHULPA operator is also an
IVHULN, and

GIVHULPA (hy, s, . . ., hy)

(26)

Proof By using the operation of IVHULNS described in
Definition 8 and mathematical induction, Eq. (26) can be
proven as follows.

(1) For n = 2, since

&y = <[ Y& ((soe))” ) Y& (P (S ))A)}7
{[1-a-ea-a-e]}),

and

@ Springer

eotf = [ (@ (Powa)) o™ (6P (5) )
{[1-a-oha-a-o)]}).

then

1
GIVHULPA (hy, ) = (@legihg)’

= (&h] + &hg)”

@((; o ))))ﬁ'((ié,(ﬁm(m))”)’)}
Yo = [vf% € o(a) { Kl ) H(‘ - (V’m)i);): (1 - H(l B (y:,)/z)f” }>

(i=1,2)

so, when n = 2, Eq. (26) is right.
(2)  Suppose that n =k, Eq (26) is right, i.e.,

() ()]

0 {0 e

then when n = k + 1, we can obtain:

h
1—

1
GIVHULPA (hy, hy, . .., hysr) = (@ff‘g,h,@)’ -

(@ngyih,{: ® gk—lh//;}rl)/i
) )E)’ﬁil ((i5'(/3(""1(1.)))/:)%”«,

Vo = [k 7] € S(au) = =
(i=1,2,...,k)

@< {ﬁfl (ka+1 (ﬁ(&um,)))i) B (§k+1 (P59 1)));’)] )

P = [, 5] € 0(a) = =
(i=1,2, k+1)

Thus, Eq. (26) holds for all n = k + 1, which completes the
proof. O

Theorem 3 Let Supp(hy,, h,,) = ¢ for all i # j, then

1
AN
GIVHULPA (hy,, hoy, - Iy,) = (@i—rhi-) , (27)
=1, ",
which denotes that if all the support measures are equal,
Eq. (23) reduces to the generalized interval-valued hesitant
uncertain linguistic ~weighted average (IVHULWA)

operator.
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Proof Since Supp(hy,, hy,) = ¢ for all i # j, then

T(hy) = Y Supp(hy, hy) = (n— 1)k
j=1
i #]
Thus, we have
Dl (1 + T () ®h:‘~>%
GIVHULPA (hy,, hay, . . . ) = [ =L '
( = (PR T
TR
= <®i:l(ﬁh1i)) :
O
Theorem 4 (Commutativity) Let h,, (i = 1,2,...,n) be a
collection of IVHUFLNs and h, (i =1,2,...,n) be any
permutation of hy,(i = 1,2,...,n) then
GIVHULPA (hy, , hy, . . ., hy,) = GIVHULPA (hy, , hy, . . ., )
Proof Since h,, is any permutation of A, (i = 1,2,...,n),

then for each #,,, there must be exist one and only one ﬁii

such that h, = hy,, T(hy,) = T(hs,), and vice verse. Thus,

we have:
S (U4 T(hy) @k, = (1+T(hy,)) @ k.

i=1 i=1

According to Eq. (23), we have

D+ T(hy) @k
) = (52 )

GIVHULPA (hy, , s, , . . T T T ()
i=1 ®i

i (@ (1 + T, ))®ﬁ§i)%
- o, ) — z .

GIVHULPA (hy, , hy,, . .
izt (14 T(hs,))

Therefore

GIVHULPA (hy,, s, .. ., hy,) = GIVHULPA (fy, , iy . . ., Iy

O

Note that the GIVHULPA operator is neither monotonic
nor idempotent, which can be illustrated by the following
example.

Example 4 Let hy = ([s1,s3],{[0.4
([s2, 4], {[0.2,0.4],]0.3,0.5]}), h3 = ([sl,sz] {[0.2,0.3], [0.
4,0.6]1), hy =)[s3,s5],{[0.1,0.3],[0.2,0.4]}) be four
IVHUFLNs. Suppose Supp(h;,h;) =1 — dy(hi, hj), 2 =1
and p(sg(;)) = é (for computational convenience). Then, by
Eq. (30), we have

0.6],(0.5,0.7]}), hy =

GIVHULPA (hy, hy, hy) = (Js1, 53], {[0.4,0.6][0.4354,0.6362],
[0.4354,0.6368], [0.4687,0.6697),
[0.4354,0.6367], [0.4687, 0.6696],
0.4687,0.6702], [0.5,0.7]}),

([s1.3358, 53.0065), {[0.2735,0.4489]
0.3391,0.5416], [0.3053, 0.4816],
0.3681,0.5689)], [0.3165,0.4995],
0.3783,0.5837], [0.3465,0.5292],
[0.4055,0.6085]}),

([52.0014, Sa.0014], {[0.2437, 0.4489],
0.2728,0.4762], [0.2768,0.4816],
0.3046,0.5073], [0.2881,0.4995],
0.3155,0.5243], [0.3192,0.5292],
0.3454,0.5525]}).

(h17h2’h3) =

GIVHULPA (hy, hy, hy) =

According to Definition 10, we have S(h;) = 0.1833, S(hy)
= 0.175, S(h3) = 0.0938, S(hs) = 0.1667, S(GIVHULPA
(hy,h,hy)) = 0.184, S(GIVHULPA (hy, by, h3)) = 0.1582
and S(GIVHULPA (hy, ha, hy)) = 0.1997.

Obviously, S(GIVHULPA (hy,h,,h3)) # S(hy). There-
fore, GIVHULPA (hy, hy, h3) # hy, which explains that the
GIVHULPA operator is not idempotent. Moreover,
because S(GIVHULPA (hy, hy, hs)) = 0.1997 > max
s(hy), (hy), (hy)} = S(hy) =0.1833,  the  inequation
ming;_; 5 4y < GIVHULPA (hy, ho, hy) <maxyi—; 54y  does
not hold. Thus, the GIVHULPA operator is not bounded.

Lemma 1 Let
> 7 =1, then

i
Hf.,- < Zw
i=1 i=1

with equality if and only if each 7;(i = 1,2,. .,

7, >0,7,>0,i=1,2,...,¢t, and

1) is equal.
Theorem 5 7, = ([so(s,), Sy(a))s 6(2)) =

U“/‘y,:[?";iﬂ’ﬁﬁi]@s(li) { [yétﬂ Vﬁ/]}} >(l = 17 2’ e

tion of IVHULNs and 4 > 0. Then,
GIVHULPG (hy,, hs,, . . ., hy, ) < GIVHULPA (hy, , by, - -, ).

(50 1)
n) be a collec-

Proof For any uncertain fuzzy linguistic information part
of the aggregated result by using the GIVHULPG operator,
by Lemma 1, we have

p <,ﬁ (ﬁ(sew,-)))éi) =0 <<,ﬂ <(ﬁ(59(“">))2> éi>l>
(o))

similarly,
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5! (H (p(sm)))é") <p ((; i (ﬁ(sm,-)))}")%) ,

i=1

and for the membership of the aggregated result by using
the GIVHULPG operator, we have

[T = (TTes)7)

i=1

< (1 “T10- (vi,.)/i)i"):-

i=1

Similarly, we can derive

[T62)" = (11" )

i=1 i=1

< (iéi@;i)i>% = (1 - i‘fi(l - (“/Zl);'))
< (1 - H (1- (VZ,.))‘)@)%-

i=1

By Definition 12, we can conclude that

S(GIVHULPG (hy,, sy, - - ., 1y, )) < S(GIVHULPA (hy, , by, , . 1 b)),

which implies that

GIVHULPG (hy, , hyy, - - -, hy,) < GIVHULPA (hyy , By -y hy,).
O

Now, we consider some special cases of GIVHULPA
operator. For computational convenience, we suppose

&= (14 T(hy))/ 202 (1 4 T(hy,)).

(1) If 2 — 0, then the GIVHULPA operator achieves the
following limit:

lim GIVHULPA (1, iy - 3,

= < {ﬁ“ ( 1}1 (ﬁ<so<u,>))5') ! ( ; (é(sn<a,>))5')} :

Vo =D, 7% €0 (0i)

(2) If 2 =1, the GIVHULPA operator reduces to the
IVHULPA operator [46]:

1+ T(hy)) @ hy,
GIVHULPA(hm ) ham .. ( + ( ')) @ Ay,

@ Springer

) = B 5

Furthermore, if Supp(hy,,h,) = k for all i<j and
A =1, then the GIVHULPA operator reduces to the
IVHUFLA operator.

(3) If A= -1, the GIVHULPA operator becomes the
interval-valued hesitant uncertain fuzzy linguistic
power harmonic average(IVHULPHA) operator:

n (1+-ﬂ—(hd,))®h;l>7l

GIVHULPA (hy,, hay, .. . hy,) = (D e
( = (8L ST

4) If A=2, the GIVHULPA operator becomes the

interval-valued hesitant uncertain fuzzy linguistic
power quadratic average(IVHULPQA) operator:

v (L4 T(hy) @R, )

GIVHULPA (hy, , hyy, . . s hy,) = =
i (% e

In the following, by combining Eq. (20) and the
geometric mean, we further present a generalized
interval-valued hesitant uncertain linguistic power
geometric average (GIVHULPGA) operator.

Definition 14 Let h, (i = 1,2,...,n) be a collection of
IVHULNSs, then a generalized interval-valued hesitant
uncertain linguistic power (GIVHULPG) geometric oper-
ator is a mapping H" — H and can be defined as follows:

14T (ha)

pon) T,
(28)

1 n
GIVHULPG (h,,, hyy, . . ., hy,) = 7 (@i:l

where H is the set of all IVHULNS, A is a parameter such
that 2 € (—oo, 4+00) and 4 # 0, T(h,,) satisfies Eq. (24).
Similarly to Definition 13, if we suppose that & =

1+T(h;)
S (T ()
transformed into the following Eq. (29):

) =1 (@7_1 e hi)§’>.

(29)

forall i, then Y, & = 1, and Eq. (28) can be

GIVHUFLPG (hy, hy, ..

According to the operations of IVHULNs and mathemati-
cal induction on n, we can obtain Theorem 6.

Theorem 6 Let hy, = ([s(,), Syio)], 0()) (i = 1,2, ..,

n) be a collection of IVHULNS, the calculated result by
utilizing Eq. (29) is also a IVHULN, and
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GIVHULPG (h,,, hy, . . ., hy)

Vo =004, 4, 1€0 -
_ (1_ Ta-( —V‘;,)A)é">/l”>’
i=1
(30)
where &; = %'
Theorem 7 Let ha, = ([8001)> Sy ] (1)) =

<[s()(oci)7 SI7(a,’)]7 U7’1i:[7£<i'7’zi]6‘3(“i){[’yéi’ 'y’;,}}b(l = 13 25 ) n)
be a collection of IVHULNs and /. > 0, then,

GVHULPG (hy, , hyy, . . . 1y, ) <IVHULPA(hy, , by, - -
Proof For the uncertain linguistic information part of the

aggregated result by using the GIVHULPG operator, by
Lemma 1, we have:

~,1 ( ! Hl ( )ﬁww)éi) <5 ( %Z éizﬁ(soui)))
~—1(Zé,p Sota) )

(! H ) )gﬁ_'(E;fiiﬁ(%(m)))
-5 (S antsien).

and for the interval number part of the aggregated result by
using the GIVHULPG operator, we have:

- (1 711 (1 —(1- vi,_)*)é’)"

i=1

)

=1
= 1 — «/a
i=1
Similarly, we have

(T (- 0-nr) Y - TTo -

i=1 i=1

By Definition 12, we can conclude that

why,).

S(GIVHULPG (hy,, hy, . . . hy,)) < SOVHULPA (hy , iy . . oy 1))

Thus, we can derive the result

GIVHULPG (hy, , by, . - . hy,) <IVHULPA (g, , hy, . . ., 1y, ).

O

Next, several special cases of the GIVHULPG operator
will be discussed. For computational convenience, we

suppose & = (14 T(hy,))/ 320 (1 + T(hy,)).
(1) If A— 0, then
lim GIVHULPG s, s ., s,

.5_1 (H (‘70(11))Ei> ) /3_] < (S;1(ag))fl>:| 5
=1 i=1
[T(m(—)"  TT0nl )" >
U 1—e= , ei=l .
Vo =Dt 7% | €0(ci)

(2) If A=1, then the GIVHULPG operator reduces to
the IVHULPG operator:

GIVHULPG (h,,, hy,, .. ., h

= &,
<{~_IH Plsota)”) l(g(ﬁ(sw,)))é’)}

[;H}eo( )HH 72) H ) ”>

(3)  If Supp(hy,, hy) = & for all i # j, then

Vo

GIVHULPG (hy, , h, . . -

which shows that if all the support measure are
equal, Eq. (28) reduces to the generalized interval-
valued hesitant wuncertain linguistic —geomet-
ric(GIVHULG) operator. Further, if Supp(h,,, i) =
¢ for all i # j and 4 = 1, then Eq. (28) reduces to the
interval-valued hesitant uncertain linguistic geo-
metric(IVHULG) operator.

In the GIVHULPA operator and the GIVHULPG operator,
all of the arguments (hy,,hy,, ..., h,, ) are of equal impor-
tance. However, this may not be consistent with the prac-
tical decision-making situations. In most practical decision-
making problems, different evaluation attributes have
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different degrees of importance. Therefore, by considering
the importance of different attributes, we further present
their weighted forms, which are defined in next section.

4.2 Weighted Forms of GIVHULPA
and GIVHULPG

Definition 15 Let A, (i=1,2,...,
IVHULNS, ¢ = (01,02, . . ., a,,)T be the weight vector with

€[0,1] and >} | 0; = 1. Then, the weighted form of
GIVHULPA operator is defined as

WGIVHULPA,,; (hy,, hay, - . iy, )

(@?_lai(1+—[(hd;))®hi>% (31)
er'l:l Gi(l +—U—(hoc,)) '

n) be a collection of

where

—[r(h%) = Z O-jsupp(hai7h3<j)7
j=1 (32)
JFi

Theorem 8 Let By, = ([So() Sy(on)» 0(00:)] ) (i =

1,2,...,n) be a collection of IVHULNs. The result using
Eq. (31) is also an IVHULN, and

WGIVHULPA (hy, , hyy - . ., B
= (7 (@ (ﬁ(sowf)))i)%’ P (@)
U A{l0-TT0- 6. -11

Yoy =10, 7 1 €6 (o1)

(1=,

o ol T(hy)
where v; = Zn (T ()

Especially, if o = (1,1, ,n) then Eq. (31) reduces to
the GIVHULPA operator. In addition, if Supp(h,,, 1) = 0

for i#j, then T(hy)=0,
1
WGIVHULPA (hy, , hiyy - . . By, ) = (@”l- _10® h;)

That is to say, Eq. (8) reduces to the generalized interval-
valued hesitant uncertain linguistic mean.

1

/}7
(33)

thus we can derive

Definition 16 Let h,(i=1,2,...,

IVHULNS, ¢ = (01,02, . ., a,,)T be the weight vector with
€[0,1] and >_} | ; = 1. Then, the weighted form of

GIVHULPG is defined as

WGIVHULPG, ;(hy, , by, . -, hy,)

1 i (14T (he;)) (34)

~ 7 <®l (A h, )Ei: ”f“ﬂT(hx,))),

where T (h,,) satisfies Eq. (32).

n) be a collection of

@ Springer

Analogously, we can have the following Theorem 9.

Theorem 9 Let h,, = ([Sg(,), Sy(a)> 6(o)) (i = 1,2,...,n)
be a collection of IVHULNs. The result using Eq. (34) is
also an IVHULN, and

WGIVHULPG (hy,, oy, . s )

= ([ G@nteny )ﬁﬁ*‘(%@;;1w(sn(z,)))“)],

U {b-0-Tro-o-w) )
=l T 0(a) -
_ (1 Q(l - (1= ,5,)/.)“)1 }>
where v; = Z Jl(zlr,JrlTihTzh)))

Note that the WGIVHULPA and WGIVHULPG oper-
ators, similar to the GIVHULPA and GIVHULPG oper-
ators, are neither idempotent nor bounded. Moreover, the
WIVGHULPA and WIVGHULPG operators are not
commutative. In fact, if (hy,,h,,, ..
tation of (hy,, hyy,. .. hy ), T(hy)

. hy,) is any permu-
s2j=1j "
Supp(hs,, by ,)- Since g; usually are not equal, then T (A,
hm o hy ,) may not be the permutation of T (hy,, A4, . . .,
hy). As a result, equations WGIVHULPA(hy,,h,,,
.h,) = WGIVHULPA(h,,  h,, ...h,) and
WGIVHULPG (hy, , hyy, - .., hy) = WGIVHULPG  (hy,,

Ryyy - ..o hy,) generally do not hold, as illustrated in the
following example.

Example 5 Let hy = ([s1,s3],{[0.4,0.6],[0.5,0.7]}),
hy, = {[s2,54],{[0.2,0.4],[0.3,0.5]}), hs = {[s1,s2],{[0.2,
0.3],[0.4,0.6]}) be three IVHULNs and w = (0.2, 0.5,
0.3)". Suppose Supp(hs,, hy,) = 1 — d(hy,, ) (ij = 1,2,
3), A= 2, and p(sg(y)) = 2% Then, by Egs. (33) and (35),
we have:

WGIVHULPA (hy, , hy,, hy,) = (5156655 533120, {[0.2632, 0.4396],
[0.3222,0.5195],[0.3051, 0.4861],
[0.3561,0.5558], [0.3056, 0.4843],
[0.3565,0.5543], , [0.34150.5249],
[0.3865,0.5868]}),

([s1.2913, S2.8708] {[0-2819,0.4469),
0.3342,0.5048], [0.3670, ,0.5658],
[0.4062, 0.6058], [0.3006, 0.4687],
[0.3496,0.5229], [0.3807, 0.5805],
[0.4181,0.6186]}),

([s1.3993, 53.0743], {[0.2328,0.3993],
[0.2818,0.4865], [0.2838, , 0.4434],
0.3468,0.5473], [0.2429, 0.4093],
[0.2946,0.5001], , [0.2966, 0.4552],
[0.3634,0.5641]}),

WGIVHULPA (hy,, s, by ) =

WGIVHULPG (b, , by, hsyy) =



Z. Liu et al.: Multiple Attribute Group Decision-Making Method Based on Generalized...

2007

WGIVHULPG (hy, , hy,, hy,) = (51,1667, S2.6507), {0.2459,0.3897],
[0.2607,0.403], [0.339, , 0.5425],
[0.3612,0.5651], [0.2693, 0.4085],
0.2858,0.4226], [0.3743,0.5747],

0.3997,0.6]}).

According to Definition 10, we have

S(WGIVHULPA (hy, , hy,, hy, ) = 0.1730,
S(WGIVHULPG (hy, , by, iy )) = 0.1432,

S(WGIVHULPA (hy, h3, hy)) = 0.155,
S(WGIVHULPG (hy, 3, hy)) = 0.130.

Obviously, S(WGIVHULPA (hy, , hy,, hy)) £ S
(WGIVHULPA (hy,, by, by, ), and S(WGIVHULPG(A,,,
hoy, o)) # S(WGIVHULPG (hy, b3, hy)). Therefore, the
WGIVHULPA and WGIVHULPG operators are not
commutative.

5 An Approach to Multiple Attribute Group
Decision-Making with Interval-Valued Hesitant
Uncertain Linguistic Information

Let AX = {ax,,ax,,...,
AC = {ac,,ac,, . . .,
and o = (01,07,..., an)T be the weight vector, where
0;>0 and >} ,0; = 1. Let AE = {aey,aes,...,ae,} be
the set of assessment experts, and ® = {1, wy, .. ., wp} is
the experts’ weight vector, with
;>0 =1,2,...,p),> " »; = 1. Suppose that DM* =
[a@]mxn is an interval-valued hesitant uncertain linguistic

5P)

Sutat)s d(a)]) takes the form of

IVHULNS, given by the assessment expert Dy, for alter-

native ax; under attribute acj, where

H(ag-) > '7(615-)7 So(a)s Sn(al) € S = {50,515 --y52} and
5 i i

Next, the GIVHULPA (or GIVHULPG) operator is

employed to develop an approach to MAGDM with

IVHULN:S, the detailed steps are illustrated as following:
Step 1 Calculate the supports.

Supp( a, ,,) flfd( aj, ,,) k,t=1,2,....p, i
=1,2,...m, j=1,2,....n. (36)

ax,} be a set of alternatives,

ac,} be the collection of attributes,

decision matrix given by expert aex(k =1,2,..
where  aj; = ([syqt 3

which satisfy the conditions defined in Definition 23. Here,
d(ai;, au) is the distance measure given by Eq. (17).

Step 2 Utilize expert weights wx(k=1,2,...,p) to
calculate the weighted support T (a l]) of ag- from aj;(t =

1,2,...,p, and t # k).

Z ;Supp(a U’ l/)

r=1 (37)
t#k
and calculate the weights fg with respect to
ag(k =1,2,...,p):
(1 + T(dk
w_ ol Tl) (38)

gl - ) ) RAN '7p'
7 e (14 T(af))
where 55 >0and ) §_, ég =1
Step 3 Utilize the WGIVHULPA operator Eq. (33):
= WGIVHULPA (a a)

1

ij u""’ ij
_ Pk k\A
—< k:léij(aij))

k=1
P 1
7 (D lilsa))) |, (39)
k=1
P i}
U =TT = 6007,
’v [/]}7 IT]E(S,'( k=1

(-TT0-e %) ]}).

or the WGIVHULPG operator Eq. (35):

— WGIVHULPG(a}, U,...,ag.):%( ’Zzl(iaf;)5§>
= qﬁl(%/ﬁ (AP(S()( )))éf"),
5 (%In (o))
U {-0-TT0- 040"
=l kted) k=1

(=100 )
(40)

to integrate decision matrices DM = (a @) n (k=
1,2,...,p) given by all experts into the collective decision
matrix DM = (a;),,,.,-

Step 4 Calculate the support degrees:

Supp(ajj, air) = 1 —d(ay,air),i =1,2,...,m;j,

41
t=1,2,...,n (41)

which satisfy the conditions defined in Definition 23. Here,

d(ag7 aj;) is the distance measure given by Eq. (17).
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Step 5 Utilize the attribute weights ¢;(j = 1,2,...,n) to
calculate the weighted support T(a;) of a; from
ay(t=1,2,....,n,and t #j):

Z o, Supp(ay, air),
t=1 (42)

1#]j
and calculate ¢; associated with a;;:

£ = a;(1 + T(ay))
T a1+ T(ay)’

where &; >0, and > 07, &; =
Step 6 Utilize the WGIVHULPA operator(Eq. (33))

= (@ 150(‘111) )l’

or the WGIVHULPG operator( Eq. (35))
1

=7 (@; 1 (Zay) V,,>7

to aggregate all attributes values in each row of decision
matrix DM and derive the comprehensive assessment value
{; corresponding to the alternative ax;.

Step 7 Rank {;(i =1,2,...,m) in descending order by
using the comparison method of IVHULNs proposed in
Definition 12.

Step 8 Rank the alternatives and select the best alter-
native(s) according to the ranking of {;(i = 1,2,...,m).

Step 9 End.

T(ay) =

i=1,2,...n, (43)

{; = WGIVHULPA (a1, a, . . ., ain)

C,- = WGIVHULPG(G,‘] s AiDy ooy ain)

6 Illustrative Examples

Example 6 In the following, an illustrative example
adapted from [21] is cited to demonstrate the application of
the proposed approach. Let us reconsider its background.
The main business of a large state-owned enterprise in
China is the production and sale of non-ferrous metals. In
order to further expand its business, the company needs to
choose a partner from serval alternative countries to
cooperate. After the previous investigation and research,
four alternatives ({E)Eh ax,, axs,axs}) are considered.
Four attributes are under consideration (suppose the weight
vector is o = (0.25,0.2,0.3,0.25)", including ac,: avail-
able mineral resources; ac,: political environment; acs:
economic conditions; ac4: domestic infrastructure

Three assessment experts {DM;, DM,, DM3}, with the

weight vector o = (0.35,0.470.25)T, form an evaluation
committee to evaluate alternatives ax;(i = 1,2,3,4) under
attributes ac;(j = 1,2,3,4). IVHULNs are selected by
experts to express evaluation information and linguistic
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term set S = {so = very poor, s; = poor, sy = slightly
poor, s3 = fair, s4 = slightly good, s5 = good, s¢ = very
good}. Three evaluation decision matrices (A* = (af),,,»
k=1,2, 3) are shown in Tables 1, 2 and 3.

6.1 An Illustration of the Developed Approach

In the following, the above approach and the WGIV-
HULPA operator are used to rank the alternatives. In order
to facilitate the calculation, the first type of LSF, i.e.,
Eq. (10), is selected for handling linguistic terms. The
detailed calculation steps are shown as follows:

Step 1 Calculate the support Supp(a’ ag, l])(i =1,2,3,
4;j=1,2,3,4,5m,n=1,2,3,m # n) based on Eq. (36)
(for simplicity, we denote Supp(aj}, aj;) by Suppj;"), which
means the supports between A™ and A", and they are shown
as follows:

r0.8917
0.8750
0.8833
10.9792
r0.8021
0.8667
0.8833
| 0.9000
r0.9104
0.9583
0.9500
1 0.9208

0.8854
0.9000
0.8208
0.9333
0.9125
0.8500
0.9125
0.7625
0.7979
0.9167
0.9083
0.7458

0.9542
0.7667
0.8875

0.9208
0.8667

0.8917
0.9125

0.9583
0.8208

0.7500
0.8917
0.9375

0.9548 T
0.9083
0.9375
0.8833 |
0.8792 7
0.8417
0.8542

0.9542 |
0.8667 ]

0.9333
0.7917
0.8417 |

Supp'? = Supp®! =

= Supp’! =

Supp13

Supp” = Supp* =

Step 2 Use the weights w, of experts DM,,(p = 1,2,3) and
Eq. (37) to obtain the weighted support T (7} )(k =1,2,3)
of rij from other IVHULNS r;(r = 1,2,3 and t #Kk):

70.5572
0.5667
0.5742

1 0.6167

70.5397
0.5458
0.5467

| 0.5729

70.6449
0.6867
0.6892

| 0.6833

0.5823
0.5725
0.5565
0.5640
0.5094
0.5442
0.5144
0.5131
0.6385
0.6642
0.6827
0.5652

0.5983
0.5296
0.5831
0.6079
0.5392
0.4558
0.5335
0.5567
0.6317
0.6121
0.6760
0.7104

0.5981 7
0.5738
0.5885
0.5919 |
0.54777
0.5513
0.5260
0.5169 |
0.6544 7
0.6679
0.6156
0.6706 |

T, =

T,

Then, wuse Eq. (38) to calculate g’; of
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Table 1 Decision matrix given by DM;

acy

ac, acs acy
ax, ([s1, 2], {[0.4,0.6]}) ([s3, 5], {[0.6,0.7],[0.6,0.9]}) ([s2, s4], {[0.5,0.6]}) ([s3, 4], {[0.5,0.8]})
ax, ([s2, s3], {[0.7,0.9]}) ([s2, 4], {[0.5,0.7]}) ([s2, 2], {[0.6,0.8]}) ([s2, 4], {[0.6,0.8],[0.7,0.9]})
axs ([s3,55],{[0.6,0.8]}) ([s3,54],{[0.4,0.6],[0.5,0.7]}) ([s3,54],{[0.6,0.9]}) ([s2,53],{[0.7,0.7]})
axy ([s2, s3], {[0.5,0.7]}) ([s4, s4], {[0.6,0.7],[0.6,0.8]}) ([s2, s3], {[0.6,0.7]}) ([s4, 5], {[0.5,0.7]})
Table 2 Decision matrix given by DM,
ac ac, acs acy

ax ([s1,53],{[0.6,0.8]}) ([s455],{[0.6,0.8],0.8,0.9]}) ([s2,53],{[0.5,0.6]}) ([s3,55],{[0.5,0.6]})
ax, ([s2, 53], {[0.4,0.6]}) ([s4, s4], {[0.5,0.6]}) ([s3, s4], {[0.7,0.9]}) ([s3, s4],{[0.7,0.9]})
axs ([s3, 4], {[0.5,0.7]}) ([s3, 5], {[0.7,0.8]}) ([s2, 54], {[0.6,0.7]}) ([s2, 53], {[0.5,0.6]})
axy ([s2,53],{[0.6,0.7]}) (Is3,54],{[0.7,0.9]}) ([s3,53],{[0.5,0.6],0.7,0.8]}) ([s,54],{[0.8,0.9]})
Table 3 Decision matrix given by DM3

EEI acy /6;(73 %4
ax ([s2,53],{[0.7,0.8],[0.7,0.9]}) ([s3,54],{[0.6,0.7]}) (Is3,54],{[0.6,0.8]}) ([s4,54],{[0.7,0.8]})
ax; ([s2,52],{[0.5,0.7]}) ([s455],{[0.5,0.7]}) ([s1,53],{[0.5,0.7],10.6,0.8]}) ([s3, 55, {[0.7,0.9]})
axs ([s3, 3], {[0.6,0.8],[0.6,0.9]}) ([s3, s4], {[0.6,0.8]}) ([s3, $4], {[0.6,0.8]}) ([s3,54], {[0.6,0.9]})
axs ([s2,54],{[0.6,0.8]}) ([s1,52],{[0.8,0.9]}) ([s2,53],{[0.7,0.8]}) ([s3,54],{[0.6,0.7],{0.6,0.9]})

ri (k=1,2,3;i,j = 1,2,3,4). We denote (e

shown in the following, respectively.

Vi

Vs

V3

[0.3467
0.3452
0.3461

1 0.3502

[0.3917
0.3893
0.3886

1 0.3894

[0.2616
0.2655
0.2653

1 0.2604

Step 3 Utilize

0.3534
0.3474
0.3467
0.3545
0.3852
0.3899
0.3855
0.3920
0.2614
0.2626
0.2677
0.2534

0.3534
0.3520
0.3493
0.3489
0.3889
0.3829
0.3866
0.3860
0.2577
0.2650
0.2641
0.2651

0.35137
0.3468
0.3541
0.3520 |
0.38891
0.3907
0.3887
0.3841 |
0.2598 7
0.2625
0.2572

i

0.2639 |

)axa Y Vi as

Eq. (33) to integrate the three decision
matrices Af = (a}),, ,(k=1,2,3) into the collective

i

decision matrix A = (a;j),,4(see Table 4).

Step 4 Calculate the supports Supp(ry,ri)(i=1,2,
3,4,j,t=1,2,3,4,j#1) by utilizing Eq. (41). For sim-
plicity, we denote (Supp(ry,7ip))y,; by Supp;,, which

means the supports between the jth and the pth columns of

A.

Supp;, = Supzi

Suppy4 = Supa

Suppyy, = Supa

[0.72377
0.8933
0.9463

10.7432 |

[0.8042 1
0.8079
0.9128

1 0.7801 |

[0.92131
0.9146
0.8929

1 0.9085 |

»Supp;3 = Supsi

,Supp,; = Supz;

»Suppsy = Supaz =

[0.9267
0.9452
0.9532

1 0.9604 |

[0.7987
0.9481
0.9567

| 0.8938 |

[0.87747
0.8626
0.9362 |

1 0.8023 |

Step 5 Calculate the weighted support T(a;) of a; from
ait(t = 15253747t 7&])

other IVHULNSs
(T(aij))4xa by T:

We denote
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0.6238 0.6509 0.6108 0.6485
T_ 0.6642 0.7364 0.6416 0.6437
~10.7034 0.7468 0.6637 0.6876
0.6318 0.6811 0.6194 0.6174

Further, utilize Eq. (43) to obtain the weights ¢; of a;(i =
j=1,2,3,4.) which is shown as follows:

0.2488 0.2024 0.2962 0.2526
0.2496 0.2084 0.2955 0.2465
V= 0.2511 0.2060 0.2942 0.2487
0.2496 0.2057 0.2973 0.2474

Step 6. Utilize Eq. (33) to integrate all the assessment
values a;;(i,j = 1,2, 3,4) in the ith row of A and obtain the
comprehensive assessment value {; of the alternative ax;:

C] = <[S2'49127 S3,7974], {[05631, 07216], [05861, 0.73
62], [0.5631, 0.7426], [0.5861, 0.7562], [0.5631, 0.7339],
[0.5861, 0.7479], [0.5631, 0.754], [0.5861, 0.7669] }>,

CZ = <[S2'46737S3A5172]7 {[05942,0 8032], [060407
0.8145], [0.6197,0.8096], [0.61 11,0.8205]}>,

C3 = <[S2'70|57S3A8372], {[05902, 0774}, [05955 07786]7
[0.5902,0.7842], [0.5955, 0.7647]}),

C4 = <[S2_7187, S3.5010], [06320, 07723], [06320, 07880]7
[0.6530,0.8132],[0.632, 0.7789][0.632, 0.7942],[0.6529,
0.8099], [0.6529,0.8099], [O.653,0.8187]>.

Step 7 Using Definition 12, we calculate the scores of
((i=1,2,3,4):

S(¢y) = 0.3458, S(¢;) =0.3539, S({3) = 0.3728, S({4)
= 0.3732.

Then, the descending order of {; can be derived based on
the value of S({;):

G>G>0>0.

Step 8 The ranking of ax;(i = 1,2,3,4) is the same as
the ranking of {;. Thus, we can derive: ax4 > ax3 >
Zl}z > Efl.

Thus, the best alternative is ax,.

6.2 The Influence of the LSFs on Ranking Results

Further, to illustrate the influence of the LSF on the ranking
results , other two types of LSFs are also applied to the
above decision-making process to derive the ranking
results. The results are represented in Table 5.

From Table 5, we can observe that when the second LSF
is used to process linguistic terms, we can obtain the same
ranking result ax4 > ax; > ax, > ax; as the above cal-
culation. However, when the third type of LSF, i.e.,
Eq. (12), is employed in the decision-making process, axs
and ax, are identified as the first and second best solutions,
respectively, which are different from those obtained by
other two types of LSFs. The main reason for this
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difference is that three different types of LSFs depict dif-
ferent semantic situations respectively, and may produce
different semantic preferences and semantic deviations,
which eventually result in different ranking results. For
example, expert DM, provides ([s3,s4],[0.5,0.7] as his
preference for alternative ax; with respect to attribute ac.
If we use these three different types of LSFs to deal with
this attribute value, absolute semantic deviations between
s3 and s4 are 0.17, 0.11 and 0.21, respectively. Obviously,
different semantic deviations will have a certain impact on
the final decision-making results. Thus, one of the advan-
tages of our proposed method is that it can accommodate to
different semantic decision-making environments and sat-
isfy the semantic requirements of different experts. In the
actual decision-making, experts can flexibly select the
appropriate LSF according to their real decision-making
linguistic preferences.

6.3 Comparison Analyses and Discussions

In this subsection, to illustrate the effectiveness and fea-
sibility of the proposed method, we compare the proposed
method with other existing methods based on different
interval-valued hesitant uncertain linguistic aggregation
operators: generalized interval-valued hesitant uncertain
linguistic weighted average (GIVHULWA) operator [22],
generalized interval-valued hesitant uncertain linguistic
weighted geometric (GIVHULWG) operator [22] and
interval-valued hesitant uncertain linguistic power weigh-
ted average IVHFULPWA) operator [46].

6.3.1 Compared with the Method Based
on the IVHULPWA Operator

In Ref. [46], Wei proposed an interval-valued hesitant
uncertain linguistic power weighted average
(IVHULPWA) operator to derive the comprehensive val-
ues of alternatives. Now, we utilize the MAGDM method
based on the IVHULPWA operator to solve Example 6.
The ranking results are presented in Table 6.

From Table 6, it can be observed that the ranking result
obtained by Wei’s method [46] is exactly the same as the
result obtained by our proposed method with the first and
second type of LSFs. This shows the effectiveness and
feasibility of the proposed method. However, when the
third type of LSF is applied to the calculation process, the
ranking results obtained by Wei’s method [46] are slightly
different from that obtained by the proposed method. By
using Wei’ method [46], ax4 and ax; are evaluated as the
best and second best alternatives, respectively, whereas the
best alternative identified by our method is ax; and the
second best alternative is ax,4. Next, it is necessary to look
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Table 4 The collective interval-valued hesitant uncertain linguistic decision matrix A

acy

acy

acs

acy

ax,
([s1.26165 52.6533]»
{[0.5730, 0.7457],
[0.5730, 0.7878]})

axp

([52.05 52.7345)
{ [0.55, 0.7704]})

ax;

([53.0+ S4.0808)

{[0.5638, 0.7659, [0.5638, 0.8052]})

axy

<[Sz.07 53.2604],
{[0.5675, 0.73011})

([53.3852, 54.7386]»
{[0.6000, 0.7434], [0.6937, 0.8035],
[0.6, 0.8259], [0.6937, 0.86671})

<[S3.305| ) 54.2626]»
{[0.5, 0.66441})

([53.05 54.3855)
{[0.5880, 0.7457], [0.6132, 0.76981})

<[Sz.3477, §3.4931 ]
{[0.7002, 0.8524],

[0.7002, 0.8721]})

<[S2.25777 §3.611 1],

{[0.5297, 0.66541})

([52.1179, $3.0309],
{[0.6199, 0.8292],
[0.6423, 0.84731})

<[52.61347 53,7359],
{[0.6, 0.81641})

<[52.38607 53.0],
{[0.5960, 0.6989],
[066836, 0.76971})

([53.2598 S4.3889]

{[0.5621, 0.73811})

([32.6532, S4.2625] >
{[0.6685, 0.8728],
[0.7. 0.91})

([52.2572, 83.2572]
{[0.6060, 0.7471]})

([53.7361 5 54.3520],
{[0.6684, 0.8033],
[0.6684, 0.8528] })

Table 5 Ranking results LSF

obtained by different LSFs

Score values Ranking

/3(&,) = 2%(0 <i< 2[) S(Cl) = 03458,5({2) =0.3539 axy > axz > ?1\)22 > ax;
T (1) = 0.3417,5((,) = 0.3552 dxs > ax3 > axy > ax
0 ~t(p (0<i<n) S({y) =0.3417,8(¢,) = 0.355 ax, > axz > ax, > ax
ps) =14 -, 2/{:2 S(&3) = 0.3661, 8(¢,) = 0.3697.
P erﬁ/:i; (1<i<2t
= (r—i)" 0<i<n S(¢y) = 0.3486,8(¢,) = 0.3535 ax; > x4 > ax, > ax
P =1l ’ S(G3) = 03776, 5(¢) = 0.3753.
T (r<i<2r).

at Wei’ method and our proposed method in depth and
identify the reasons for such ranking results.

ey

In Ref. [46], the IVHULPWA operator is proposed
based on the traditional operations of IVHULNS, i.e.,
Egs. (5)—(8). In essence, our new operational laws
that combines with the first type of LSF are
equivalent to Egs. (5)—(8). They are all based on a
basic assumption that the semantic deviation
between any two adjacent linguistic terms is always
equal. But, in practice, decision makers may not
think so. For example, they may think that the
semantic deviation between linguistic terms “very
high” and “perfect” is smaller than that between
high and very high. Obviously, the traditional
operation laws for IVHULNSs are not appropriate
for handling such decision situations. Our proposed
operations with the third type of LSF can be used to
properly and effectively solve such semantic

@

situations. In addition, we can observe that when
A =1, the proposed GIVHULPWA operator reduces
to the IVHULPWA operator proposed by Wei [46].
That is, the IVHULPWA operator proposed by Wei
[46] is a special case of our proposed operator. Thus,
from Table 6, it can be seen that when we use the
first type of LSF, i.e., (s;) = zit, although the score
values derived by these two methods are different,
the ranking results are exactly the same.

From Table 6, we can also observed that when the
third type of LSF is used in the calculation process,
the ranking result is different from that obtained by
Wei’s method [46]. The main reason for this
difference is that the third LSF is based on the value
function of prospect theory, which describes such a
semantic situation that the closer to the ends of a
linguistic terms set, the smaller the absolute devia-
tion between adjacent linguistic terms. Its
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Table 6 Ranking results by different methods

Methods Score values Ranking

Our proposed method with the first type of LSF S(ax,) = 0.3458, S(ax,) = 0.3539, axy > ax3 = ax, = ax
S(axs) = 0.3728, S(axs) = 0.3731

Our proposed method with the second type of LSF S(ax;) = 0.3417,S(ax,) = 0.3552, axs = axz = ax, > axy
S(@x3) = 0.3661, S(axs) = 0.3697

Our proposed method with the third type of LSF S(ax;) = 0.3486, S(ax,) = 0.3535, axs; = ax4 = ax, = axi
S(ax ) = 0.3776, S(axs) = 0.3753

Wei’s method based on IVHULPWA operator [46] S(ax;) = 1.9290, S(ax,) = 1.9756 axy > ax3 > ax, = ax
S(ax x) = 2.1135, S(ax4) = 2.1301

application provides us different semantic values and
semantic deviations between adjacent linguistic
terms. Correspondingly, the support measure for
each attribute value is different from that obtained by
the traditional operations. Finally, the ranking results
obtained by these two methods are different. From
this point of view, compared with Wei’s method
[46], our proposed method can adapt to different
semantic environment requirements and therefore
has better adaptability and flexibility.

6.3.2 Compared with the Method Based
on the GIVHULWA and GIVHULWG Operators

In the above subsection, we have illustrated and analyzed
the effectiveness and flexibility of the proposed method by
comparing with the method based on IVHULPWA opera-
tor proposed by Wei [46]. In the following, we further
present another example to show the advantages of our
proposed method by comparing with the two existing
methods proposed by Liu et al. [22].

Example 7 A traditional manufacturing enterprise plans
to implement the construction of ERP system. After the
pre-investigation and screening, four suitable ERP systems
ri,ry,r3,r4 are chosen as alternatives. Three experts
11,1y, 13 with the weight vector w = {0.4,0.3,0.3} form an
expert panel to evaluate these four alternatives under the
following four attributes: (1) system functions and techni-
cal level c;, (2) software developer’s reputation ¢, (3)
software developer’s technical capabilities c3, (4) software
developer service capabilities c4. The attribute weight
vector is w = (0.32,0.26,0.22,0.2). Experts #;(k = 1,2, 3)
provide their interval-valued hesitant uncertain linguistic
decision DY = (¢)(i=j=1,234k=
1,2,3) are presented in Tables 7, 8 and 9.

matrices

@ Springer

In Ref. [22], Liu et al. presented two generalized inter-
val-valued hesitant uncertain linguistic aggregation opera-
tors, including the generalized interval-valued hesitant
uncertain linguistic ~weighted average(GIVHULWA)
operator and the generalized interval-valued hesitant
uncertain linguistic weighted geometric (GIVHULWG)
operator. In the following, we utilize Liu et al.’s [22]
method and our proposed method to solve Example 7,
respectively. The ranking results are shown in Table 10.

From Table 10, the ranking results obtained by our
method with different types of LSFs are different from that
obtained by Liu et al.’s method [22]. Based on the GIV-
HULWA and GIVHULWG operators, Liu et al. [22]
identifies r, and r3 as the best alternatives, respectively.
Our proposed method with the first and second types of
LSFs choose r; as the best alternative, whereas r3 is con-
sidered as the optimal ERP system under the third type of
semantic environment. One reason for this difference is
that, as mentioned in Example 5, these two operators
proposed by Liu et al. [22] are based on traditional oper-
ations. Therefore, they cannot be employed to deal with
different semantic situations. Another important reason is
that Liu et al.” method [22] uses the basic weighted aver-
aging and weighted geometric operators to aggregate
decision information, which do not consider the influence
of extreme evaluation attribute values on the ranking
results. However, our proposed method can assign lower
weights to irrational evaluation values by introducing the
concept of support measures, and then reduce the impact of
them on final decision results.

Based on the above analysis and discussion, we can
summarize the main advantages of the proposed method:

(1) IVHULNSs can describe experts’ preferences more
flexibly and adequately. As an extension and gener-
alization of uncertain linguistic variable and interval-
valued hesitant fuzzy number, an IVHULN can
effectively and objectively describe the experts’
point of view and characterize their uncertainty,
hesitancy and inadequacy, which is the prerequisite



Z. Liu et al.: Multiple Attribute Group Decision-Making Method Based on Generalized...

2013

Table 7 Decision matrix given by #

1 C2 c3 [

i ([s2,53],{[0.6,0.7]}) ([s3,54,{0.7,0.8],0.8,0.9]}) ([s1,52],{[0.5,0.6]}) (Iss, 551, {[0.8,0.9]})
r ([s4,55],{[0.8,0.9}) ([s4,55],{[0.7,0.8]}) ([s2,53],{[0.8,0.9]}) ([s4,55],{[0-6,0.7],[0.6,0.8]})
s (Iss. 53], {(0.5,0.7)}) (Iss. 53], {[(0.6.0.8),[0.7,0.9]}) (Isr.52], {[(0.5.0.1)}) {Iss, 53], {[0-6,0.9]})
s (Iss. 53], {(05,0.6)}) (Is2. 53], {[0.5.0.6], [0.6,0.8]}) (Is2. 521, {[0.6,0.7]}) {Iss.55]. {0.7,08]})
Table 8 Decision matrix given by 75
r ([s4,54],{[0-5,0.6]}) ([s3, 551, {[0-5,0.6],{0.7,0.8]}) ([s2,53],{[0.6,0.8]}) ([s4,55),{[0.6,0.8]})
n ([s4, 54],{[0-6,0.6]}) ([s3, 54, {[0.6,0.8]}) ([s3,53],{[0.6,0.7]}) ([s2,53],{[0.5,0.8]})
s ([s4, 54],{[0-8,0.9]}) ([s3,54], {[0.6,0.8]}) ([s2,54],{[0.5,0.8]}) ([s3, 54, {[0.6,0.7]})
s ([s2, 53], {(0.7,0.8)}) ([s2, s3], {[0.5,0.8]}) ([s1, s3], {[0.6,0.7],[0.6,0.8]}) ([ss, 5], {[0.8,0.9]})
Table 9 Decision matrix given by T3

C1 C [&] Cq
i ([s3,53],{[0.5,0.6],0.7,0.8]}) ([s4,55),{[0.6,0.8]}) ([s2,54),{[0.7,0.8]}) ([s3, 55, {[0.6,0.9]})
r ([s2,52],{[0.2,0.3]}) ([s3,54],{[0.5,0.9]}) ([s1,52],{[0.5,0.6],0.8,0.9]}) (Is3,53],{[0.6,0.9]})
r3 ([s2, 4], {[0.5,0.6],[0.7,0.9]}) ([s2, s4], {[0.6,0.8]}) ([s2, 4], {[0.7,0.9}) ([s4, 5], {[0.6,0.7]})
T4 <[S1 ) S3} {(0'57 0'7)}> ([SQ,Sz] {[O 7, 0'9]}) ([52’ 54]’ {[0'67 0'9]}> <[S4, 55]7 {[0'57 0'6}7 [0'87 0'9]})

Table 10 Ranking results by different methods

Methods

Liu et al.’s method [22](based on the GIVHULWA operator)

Liu et al.’s method [22](based on the GIVHULWG operator)

Our proposed method with the first type of LSF

Our proposed method with the second type of LSF

Our proposed method with the third type of LSF

Score values Ranking

S(ry) =2.4162,8(ry) = 2.4285 P =r =1y - ry
S(r3) = 2.4160, S(r4) = 1.9819

S(ry) = 2.1975, 8(ry) = 2.0677 Py 1> 12 = 1y
S(r3) = 2.2523,8(ry) = 1.7905

S(r1) = 0.4037,S(r3) = 0.3996 P13 -1y
S(r3) = 0.4009, S(rs) = 0.3311

S(r1) = 0.3935,5(r,) = 0.3896, =1y = r3 =1y
S(r3) = 0.3874, S(rs) = 0.3407

S(r1) = 0.4096, S(r,) = 0.4062, =T =T =Ty
S(r3) = 0.4110, S(rs) = 0.3231.

(@)

for ensuring the accuracy of the result. Moreover,
although the GIVHULPA and the GIVHULPG
operators, from the computational point of view,
are more complicated than the GIVHULWA,
GIVHULWG [22] and IVHULPA[46] operators,
the results can be quickly derived by using applica-
tion software.

LSFs are utilized to defined the operations of
IVHULNSs and aggregation operators presented in

Sect. 4. As a result, different ranking results can be
derived when different LSFs p are employed in the
aggregation process. Experts can autonomously
choose different LSFs p according to actual semantic
contexts, this provides better flexibility for experts to
evaluate alternatives. Hence, the developed approach
is more flexible and practical than Wei’s method
[46].

@ Springer
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(3) the proposed approach based on the GIVHULPA or
GIVHULPG operator takes into account the impact
of extreme evaluation values on the final decision
results. By introducing the concept of support
measures, our approach can assign lower weights
to irrational evaluation values, and then reduce the
impact of them on final decision results. Therefore,
our approach is more reliable than the approach
proposed in Ref. [22].

7 Conclusions

In this paper, combining linguistic-scale functions (LSFs)
and generalized power average operator, an approach is
proposed to solve interval-valued hesitant uncertain lin-
guistic MAGDM problems and accommodate to different
semantic situations. Firstly, new operational laws, Ham-
ming distance and comparison method for IVHULNSs are
defined by combining LSFs. Then, aiming at the traditional
PA operators cannot accommodate to situations in which
evaluation values given by experts are IVHULNS, some
new generalized power aggregation operators are presented
to aggregate IVHULNSs. The most important feature of
these operators is that they cannot only accommodate to
different semantic scenes but also reduce the negative
impact of unreasonable evaluation values. Meanwhile, we
have investigated some desired properties and analyzed
some special cases of these operators. Furthermore, using
the newly proposed aggregation operators, a new MAGDM
approach is proposed. Finally, an illustrative example is
provided to demonstrate the effectiveness of the developed
approach. In addition, detailed comparison analyses are
also made with the existing methods. In the further
research, we will further investigate LSFs and their appli-
cation in other linguistic sets, and continue working on the
extension and application of the developed operators to
other domains.
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