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Abstract This paper proposes a new population-based

evolutionary optimization algorithm, elite-mixed continu-

ous ant colony optimization with central initialization

(EMCACO-C), for improving the accuracy of Takagi–

Sugeno–Kang-type recurrent fuzzy network (TRFN)

designs. The EMCACO-C is a stochastic search algorithm.

The EMCACO-C initializes the ant solutions on concen-

trative region around the center of the search range fol-

lowed by a new designed elite-mixed continuous ant

colony optimization to generate new solutions. The

EMCACO-C mixes the few best elites to generate the

directional solutions for guiding and exploring possible

promising regions. Then the EMCACO-C employs the

Gaussian random sampling to exploit further the direc-

tional solutions for finding better solutions. The method-

ology similarities and differences between the EMCACO-

C and genetic algorithm are analyzed. The performances of

the EMCACO-C for TRFN designs are verified in the

simulations of five application examples including

dynamic system control, dynamic system identification,

and chaotic series prediction. The EMCACO-C perfor-

mance is also compared with other swarm-based evolu-

tionary algorithms in the simulations.

Keywords Continuous ant colony optimization � Gaussian

sampling � Recurrent fuzzy systems � Dynamic system

control � Dynamic system identification � Chaotic series

prediction

1 Introduction

Recurrent fuzzy systems have been designed and aimed for

the processing of nonlinear dynamic systems. Contrasted

with feed-forward fuzzy systems, recurrent fuzzy systems

are characterized by having feedback loops in their struc-

ture. In processing the dynamic systems whose current

outputs depend explicitly on the delayed past outputs,

delayed past inputs or both, recurrent fuzzy systems have

been demonstrated to be particularly useful due to its

feedback structure [1–10]. If a feed-forward fuzzy system

is employed to deal with such temporal characteristic

problems, the number of lagged inputs and outputs of the

dynamic model should be acquired in advance. Unfortu-

nately, however, the exact order of the real-life dynamic

systems to be processed usually is unknown. Moreover,

these time-delayed input/output values provide the neces-

sary information and thus have to be fed as the inputs to the

feed-forward fuzzy system. This will increase the input

dimension yielding less compact fuzzy system models and

perhaps making the design more difficult. On the contrary,

the recurrent fuzzy systems are able to store information

from the past experiences due to the internal memory

inherited in recurrent models and thus do not require nec-

essarily such information from the external inputs. There-

fore, the recurrent fuzzy systems are probably more

suitable than the feed-forward fuzzy systems on processing

dynamic systems with temporal characteristics.

The proposed recurrent fuzzy systems in the studies

[1–10] differ mainly on the feedback structure. The exam-

ples of recurrent fuzzy systems in [1–4] feed the outputs of

the fuzzy system back to its inputs. The recurrent fuzzy

systems proposed in [5–10] use feedback loops from the

internal state variables instead of the fuzzy outputs, which

are further differentiated according to the recurrence
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property: local and global feedbacks. The recurrent systems

in the studies [5, 6] feed the output of each membership

function locally back to itself, so each membership value is

only affected locally by its past values. In [7], a recurrent

self-evolving fuzzy neural network with local feedback

(RSEFNN-LF) feeds the output of temporal firing strength

locally back to itself, so the temporal firing strength is

affected locally by the current and past states. The examples

of recurrent fuzzy systems with the global recurrence

property are recurrent self-organizing neural fuzzy infer-

ence networks (RSONFIN) [8], Takagi–Sugeno–Kang

(TSK)-type recurrent fuzzy networks (TRFN) [9], and

interactively recurrent self-evolving fuzzy neural network

(IRSFNN) [10]. In the TRFN, all rule firing strengths are

linearly summed according to their weights and then fed

back as internal network input variables. As a result, the

firing strength of each rule depends not only on its own

previous value but also on all other rules, making the global

recurrence across all rules. Due to such global recurrence,

the performance superiority of TRFN to recurrent fuzzy

neural networks (RFNN) [5] was shown in [9]. However,

given the fuzzy rules, the accurate design of fuzzy system,

equivalent to the identification of the parameters in fuzzy

systems, is always a time-consuming task. This is particu-

larly difficult for recurrent fuzzy systems. Therefore, this

study will aim on improving the accuracy of TRFN designs.

In the past decades, the designs of fuzzy systems have

adopted the parameter learning methods used for the

learning of artificial neural network to reduce the difficulty.

This was accomplished by transforming such design task

into solving an optimization problem of the parameters.

One major approach for solving the optimization problems

is the gradient-based learning algorithm in which the

search direction is derived from the gradient of the objec-

tive function with respect to the parameters [1–3, 5–10].

The gradient-based learning requires the training input–

output data pairs of the fuzzy system for calculating the

gradient. However, this usually does not fit for control

problems because the desired control outputs correspond-

ing to the inputs are usually not directly available in

advance. Moreover, the derivation of the gradient compu-

tation is usually complicated and is especially more com-

plex for recurrent fuzzy systems. Another problem for the

gradient-based method is that it is easily trapped in local

minima/maxima, which is always an issue for the opti-

mization problems where there are multiple minima/max-

ima in the search space.

To avoid issues above in gradient-based learning

methods, derivative-free population-based evolutionary

algorithms via computation techniques, such as genetic

algorithms (GAs) [9, 11–15], particle swarm optimization

(PSO) [16–20], and ant colony optimization (ACO)

[21–33], have been proposed and investigated extensively

for optimizing the parameters of fuzzy systems in the past.

These evolutionary algorithms apply stochastic procedures

on generating new solutions and evaluate many candidate

solutions simultaneously, so they are more likely in prob-

ability to find the relatively better solution.

Genetic algorithm [11] was developed based on the

principle of survival of fittest. The GA uses the crossover

operation for exchanging the information between two

randomly selected parent solutions, and the mutation

technique for exploiting the solutions further to generate

the offspring with optimistically better performance. In

[13], the GA was employed to design fuzzy controller for

the mobile robots. The design of neural fuzzy system

optimized by the GA for temperature control was demon-

strated in [14]. In [9], an elite genetic algorithm was

employed to identify optimally the parameters of a TRFN

for control problems. Particle swarm optimization (PSO)

was invented based on the understanding of the social

behavior of animals such as bird flocking, fish schooling

[16]. For each particle in the PSO, its locally own and

globally neighboring experiences stochastically determine

its velocity for movement. The swarm of particles moves in

the search space to find better solutions. In [17], the PSO

was used for the automatic construction of fuzzy systems.

The hybrid of GA and PSO (HGAPSO) was proposed to

achieve better accuracy of the TFRN designs [19]. The

study in [20] proposed to use interval type-2 fuzzy logic

system for dynamic parameter adaption in PSO to improve

the convergence and diversity of the swarm.

Inspired by the observations on real ant colony, the

ACO technique was proposed and originally used for

solving discrete combinational optimization problems

(COP) [21–24]. The original ACO and its variants have

been successfully applied to optimization problems and

have good performances [25–28]. A rank-based ACO with

the algorithm parameters being dynamically adjusted by

type-1 fuzzy logic [25] or interval type-2 fuzzy logic [26]

was proposed to optimize the membership functions of

trajectory fuzzy controller for mobile robot. The design of

a fuzzy controller for the ball and beam system using a

modified ACO with ant set partition strategy was proposed

in [27]. The proposed approach in [27] optimized in a

systematic and hierarchical way the type of membership

functions, the parameters of the membership function, and

the fuzzy rules of a fuzzy controller. In the studies [25–27],

the parameters of the membership functions of the fuzzy

controller were discretized such that the discrete ACO

variants can be applied to identify them optimally.

By extending the discrete ACO to continuous domains, a

continuous ACO algorithm for solving continuous opti-

mization problems with real-value parameters to be

determined was proposed and named as ACOR [29]. The

ACOR demonstrated good performances for continuous
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optimization in [29], and later became useful for the high-

precision demanded problems such as the design of fuzzy

controllers for dynamic systems. Motivated by the ACOR,

several ACOR variants have been proposed to design fuzzy

systems for accuracy-oriented problems [30–33]. A coop-

erative continuous ACO (CCACO) [30] and an assimila-

tion–accommodation mixed continuous ant colony

optimization (ACACO) [31] inspired by the cognitive

psychology concepts were proposed for the designs of

feed-forward fuzzy systems. The elite-guided continuous

ACO (ECACO) as claimed to be the first application of

continuous ACO to recurrent fuzzy system design was

proposed in [32]. These ACOR variants achieved good

performances on the designs of fuzzy systems. However, as

far as accuracy of the fuzzy system design is concerned,

there is still room for further improvement over the existing

ACOR approaches in terms of convergence and accuracy of

the optimization algorithms. Based on the ACOR frame-

work, this paper proposes a new learning algorithm for

TRFN design to improve further the accuracy.

The main contributions of this paper are twofold. First, a

new continuous ACO, elite-mixed continuous ACO with

central initialization (EMCACO-C) is proposed for TRFN

designs. The EMCACO-C is developed based on the

framework of the ACOR and can be regarded as a new

population-based evolutionary optimization algorithm. The

EMCACO-C proposes a centrally distributed initialization of

the ant solutions for fuzzy system designs followed by a new

approach for new solution generation at each iteration. The

performance superiority of the EMCACO-C to the ACOR,

PSO, and ACACO algorithms is demonstrated in five sim-

ulation examples of TRFN designs. Second, the advantage

on the accuracy improvement for the TRFN designs gained

by applying the central initialization to population-based

algorithms is also demonstrated in this study. To the best of

our knowledge, this is the first time to be studied.

This paper is organized as follows. The next section

reviews the structure and the detailed operation of the TRFN.

Section 3 proposes the EMCACO-C for TRFN design and

provides the comparison of the algorithm with GA. The

simulation results of the TRFNs designed by the EMCACO-

C and other algorithms for several application problems are

presented and discussed in Sect. 4. The application problems

simulated in this paper include dynamic system control,

chaotic series prediction, and dynamic system identification.

Ultimately, Sect. 5 concludes this paper.

2 TSK-Type Recurrent Fuzzy Network

The TSK-type recurrent fuzzy network (TRFN) was pro-

posed in [9], and its structure is shown in Fig. 1. Referring

to [9], the detailed operation is reviewed as follows. Nodes

in layer 1 are input nodes. The sole function of the input

nodes is to transmit the input variables to layer 2. The

nodes in layer 2 are input term nodes and they act as

membership functions to express the input fuzzy linguistic

variables. Two types of membership functions are

employed in this layer. The first one is the Gaussian

membership function, which is used for the external net-

work input variable x and affects the fuzzy output based on

the local rules. The second one is a global membership

function, the sigmoid function, which is used for the

internal network input variable h. Each node in layer 3 is a

rule node and is to calculate the firing strength of a rule.

The nodes in layer 4 are consequent nodes. Each conse-

quent node corresponding to each rule node performs a

TSK-type consequence which is the linearly weighted

combination of the input variables x and h plus a constant.

Context nodes in layer 5 operate as the defuzzifier for the

inference output h. The link weights for inference output in

the consequent part of the rules are represented with sin-

gleton values. The number of the internal variables h in this

layer is the same as the ones of the rules nodes and the

consequent nodes. The node in layer 6 is a defuzzification

node and computes the output of the TRFN.

The memory mechanism behaviour in the TRFN is

explained as follows. In Fig. 1, the value of the internal

variable hi is derived from the firing strengths of all fuzzy

rules and then its delayed version is fed back to layer 1 as

the input for the corresponding rule. The sigmoid mem-

bership of each internal variable hi corresponding to each

rule can be regarded as the influence degree of the temporal

history to the current rule. Thus, these internal network

variables can memorize the temporal characteristics of the

TRFN.

To be specific, a TRFN is represented by a set of the

recurrent if–then fuzzy rules, which is described as follows:

Rule i : If x1ðtÞ isAi1; . . .; and xnðtÞ isAin; and hiðtÞ isG;

Then yðt þ 1Þ is ai0 þ ai1x1ðtÞ þ � � � þ ainxnðtÞ
þ aiðnþ1ÞhiðtÞ;
and h1ðt þ 1Þ is vi1; . . .; and hrðt þ 1Þ is vir;

ð1Þ

where Aij and G are the fuzzy sets, and the variables xi and

hi are the external network inputs and internal network

inputs to the TRFN, respectively. The values of aij and vij
are the consequent parameters for the external output y and

internal inference outputs h, respectively. The external

output y inferred from the TRFN with r fuzzy rules is

calculated by

yðt þ 1Þ ¼
Pr

i¼1 /i x~ðtÞ; hiðtÞð Þ � fiðtÞPr
i¼1 /i x~ðtÞ; hiðtÞð Þ ; ð2Þ
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and the internal inference output hi is computed by

hiðt þ 1Þ ¼
Xr

j¼1

/j x~ðtÞ; hjðtÞ
� �

� vji; i ¼ 1; 2; . . .; r; ð3Þ

where

fiðtÞ ¼ ai0 þ
Xn

j¼1

aijxjðtÞ þ aiðnþ1Þhi; ð4Þ

/i x~ðtÞ; hiðtÞð Þ ¼ 1

1 þ expð�hiðtÞÞ

� exp �
Xn

j¼1

xjðtÞ � mij

bij

� �2
( )

: ð5Þ

where the values of antecedent parameters mij and bij are

the centers and the widths of the Gaussian membership

functions for the external input xi, respectively.

Therefore, given the fuzzy rules, the design of TRFN

actually is to determine the parameters mij; bij; aij; and vij
as used in (3), (4) and (5). For a TRFN in (1) with n

external input variables, r fuzzy rules, and a single output,

all of the free parameters (decision variables) of the total

number D ¼ r � ðr þ 3nþ 2Þ can be represented as follows:

s~¼½m11;b11;...;m1n;b1n;a10;a11;...;a1ðnþ1Þ;...;mr1;br1;...;

mrn;brn;ar0;ar1;...;arðnþ1Þ;v11;v12;...;v1r;...;vr1;...;vrr�
�s 1;s2;...;sD
� �

:

ð6Þ

The design of a TRFN can be accomplished by applying

the optimization algorithm to determine the decision vari-

ables in (6) by minimizing or maximizing the value of the

task-dependent objective function when the TRFN is

employed for achieving such task.

3 Elite-Mixed Continuous ACO with Central
Initialization (EMCACO-C) for TRFN Design

This section presents the proposed elite-mixed continuous

ACO with central initialization (EMCACO-C) which will

be used for TRFN designs. Since the proposed EMCACO-

C is inspired by the ACOR, which is actually extended from

the discrete ACO framework, we firstly review the opera-

tion of the original ACO and the ACOR in detail for easier

explanation of the EMCACO-C later. The ACOR will also

be used as the benchmark for comparison.

3.1 Discrete ACO Framework

The discrete ACO framework outlines a class of swarm-

based evolutionary algorithms, which were inspired by the

behavior of real ant colonies and now are largely applied to

solve discrete combinational optimization problems. Ants

deposited the pheromone trail when they foraged for food.

Since the pheromone evaporates with the time, the path

with a higher pheromone level guiding other ants is usually

a shorter one to the food source. The first and best-known

Fig. 1 Structure of the TSK-type recurrent fuzzy network [9]
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discrete ACO, named as ant system (AS) [21], was pro-

posed and applied to solve the classical traveling salesman

problem (TSP). In ant system for the TSP problem, each

ant chooses probabilistically the next city to visit when it

moves. At the time t, the transition probability with which

ant k in city i chooses to move to city j is defined as

Pk
ijðtÞ ¼

sijðtÞ
� �a

gij
� �b

P
l2Uk

i
silðtÞð Þa gilð Þb

if j 2 Uk
i ;

0 otherwise:

8
><

>:
ð7Þ

The parameters in (7) are described as follows. sijðtÞ is the

pheromone trail on the edge (i, j) at the time t. gij is a prior

heuristic information for moving from city i to city j. Uk
i is

the set of allowed neighborhood cities of city i for the ant

k. The values of a and b determine the relative importance

of pheromone trail at time t and heuristic information. Each

ant constructs a feasible solution after it visited all cities

only once. All feasible solutions the ant colony built by

completing their visits are collected for the discrete ACO

algorithm to update the pheromone information for the next

ant cycle. Many variants of discrete ACO algorithms, such

as ant colony system (ACS) [22] and max–min ant system

(MMAS) [23] differing on the update rules for pheromone

values, were proposed.

3.2 ACO for Continuous Domains (ACOR)

Many continuous ACO algorithms for continuous opti-

mization problems were proposed and studied after the

proposal of the discrete ACO. In particular, ACO for

continuous domain (denoted as ACOR) proposed in [29]

directly extended the discrete probability distributions (7)

used in the discrete ACO to the continuous probability

density functions (PDFs). In the ACOR, these PDFs are the

Gaussian functions and can be derived from a maintained

solution archive sketched in Fig. 2 for sampling values to

generate new candidate solutions.

In the ACOR, each row vector in the solution archive

represents a feasible solution to the optimization problem

to be solved. The quality of each feasible solution s~l is

determined by the value of the objective function E s~lð Þ. All

the feasible solutions in the archive are sorted and ranked

from the best quality to the worst one in the table so that

the solution s~l has rank l. These ranks are used to determine

the probabilities of each ant solution being selected in the

next ant cycle to generate the new solutions. The procedure

of the ACOR is detailed as follows.

Initially, in the archive of N solutions, each D-dimen-

sional row vector s~¼ ½s1; s2; . . .; sD� with the continuous-

valued components as in (6) is randomly generated within

the specified search space. All solutions then are evaluated,

sorted, and kept in the solution archive. Each solution s~l
(with rank l) in the sorted archive has associated with a

weight wl:

wl ¼
1

qN
ffiffiffiffiffiffi
2p

p exp � l� 1ð Þ2

2q2N2

( )

; ð8Þ

where q is a parameter of the ACOR.

The ACOR generates a new candidate solution in two

phases. In the phase one, the ACOR chooses probabilisti-

cally one leading solution s~l from the archive according to

the following probability distribution:

pl ¼
wl

PN
m¼1 wm

; m ¼ 1; 2; . . .;N: ð9Þ

It is inferred from (8) and (9) that the solution with the

better quality has the higher chances being chosen. Once a

leading solution is chosen, a new candidate solution is

constructed by completing the second phase. In the phase

two, the new value for each variable s j of a new candidate

solution is sampled around the jth component value of the

leading solution based on the Gaussian PDF g
j
l ðs j; l

j
l ; r

j
l Þ

with the mean l j
l ¼ s

j
l and the standard deviation r j

l

g
j
l ðs j; l

j
l ; r

j
l Þ ¼

1

r j
l

ffiffiffiffiffiffi
2p

p exp �
s j � l j

l

� �2

2 r j
l

� �2

( )

; ð10Þ

r j
l ¼ e

XN

m¼1

s jm � s
j
l

	
	

	
	

N � 1
; ð11Þ

where the pheromone evaporation rate e[ 0 is a parameter

of the ACOR. For constructing a new candidate solution, a

leading solution s~l from all archive solutions is chosen only

once and the Gaussian PDFs g
j
l ðs j; l

j
l ; r

j
l Þ are sampled in

sequence for j ¼ 1; 2; . . .;D. Therefore, L new candidate

solutions can be generated for consideration by repeating

this two-phase process L times. These L new candidate

solutions, together with the original N solutions in the

previous ant cycle, are sorted again according to their

values of objective function E �ð Þ. At the end of each ant

cycle, only the N top-best-performance solutions over the

total (N ? L) solutions are reserved and stored in the

archive for next cycle.

Fig. 2 Solutions archive in the ACOR, where the weights w1 �w2

� � � � �wN and the objective values E s~1ð Þ�E s~2ð Þ� � � � �E s~Nð Þ
[29]

C.-C. Chen, L. P. Shen: Improve the Accuracy of Recurrent Fuzzy System Design Using an Efficient Continuous Ant… 821

123



3.3 EMCACO-C

The proposed algorithm, elite-mixed continuous ACO with

central initialization (EMCACO-C), for improving the

accuracy of TRFN designs differs from the ACOR on the

initialization of ant solutions and the method of generating

new candidate solution. The superiority of the proposed

EMCACO-C for TRFN designs will be demonstrated in

Sect. 4. The operation of the EMCACO-C is detailed as

follows.

3.3.1 Central Initialization

The initial guesses of ant solutions in the EMCACO-C for

TRFN design are not the same as most popular swarm-

based algorithms, such as GA, PSO, and ACOR. Those

well-known popular algorithms usually generate the initial

population of solutions randomly and uniformly over the

entire search space because of no a prior information in the

beginning. In the EMCACO-C for TRFN designs, how-

ever, all the initial solutions are guessed uniformly within

the certain width around the center point of the search

space. Our idea for this is simply based on the case

observations of some manually designed fuzzy systems. In

some observed fuzzy systems, especially accuracy-oriented

systems, one of the locations of the membership functions

for each input in its antecedent part is usually designed

around the input value which arises more frequently or is

most concerned. The other membership functions for each

input could be located in the positions symmetrically

extending from that point. Therefore, we consider the

central initialization for the archive solutions in the pro-

posed EMCACO-C for fuzzy system designs. The centrally

distributed initial ant solutions will be further optimized by

the proposed algorithm.

The specific procedure for the initial guess of solutions

in the EMCACO-C is as follows. In the first step, the entire

search range for each decision variable to be optimized is

normalized to the fixed range [0, 1], respectively. In fact,

such normalization procedure for the decision variables to

be learned is very common in the field of computational

intelligence because it makes the learning rates for all the

decision variables uniform. Then an initial ant solution in

the archive is formed by generating random numbers uni-

formly over the range [0.5 - a/2, 0.5 ? a/2] and scaling

back to the original search range for each decision variable.

The parameter a is defined as the guess width for initial-

izing population solutions, and its value is a parameter of

the EMCACO-C. The effects of the guess width a for

initializing solutions on the performance of TRFN designs

will be discussed through simulation results.

3.3.2 Elite-Mixed ACOR

In the ACOR, all N solutions in the archive are the candi-

dates for being chosen as the leading solution. Around the

leading solution, a series of D (the number of decision

variables) corresponding Gaussian samplings are followed

to generate a new solution. The probability of a solution to

be chosen in (8) and (9) is inversely in exponential way

proportional to its corresponding rank and depends on the

value of the parameter q in (8). When q is small, the best-

ranked solutions are intensely favored and thus the algo-

rithm is easier to be stuck in one of the local optima while

it converges faster. On the contrary, when q is too large, the

probabilities for all archive solutions being selected

become more uniform, and the algorithm has better chance

to find the global optima while it converges more slowly.

The EMCACO-C mixes in scanning manner starting

from the first solution component, the fixed number of the

few best elites uniformly in probability to form a direc-

tional solution. The Gaussian random sampling procedure

for exploiting further the directional solution then is

employed to generate a new candidate solution. The

entire process of the mixing operation followed by the

Gaussian sampling is denoted as the elite-mixed ACOR to

differentiate from the original ACOR. For example, we

consider the EMCACO-C in which the Q best-ranked elites

are involved for mixing. The EMCACO-C firstly con-

structs the directional solution, whose jth component s
j

dðjÞ is

chosen identically and independently from the component

set s
j
1; s

j
2; . . .; s

j
Q

n o
. Around the constructed directional

solution, a new candidate solution is generated by sampling

the Gaussian PDF g
j

dðjÞðs j; l
j
d; r

j
dÞ with l j

d ¼ s
j

dðjÞ and r j

dðjÞ
as defined in (11) for j ¼ 1; 2; . . .;D: Therefore, the L new

candidate solutions are generated for consideration by

L repetitions of the elite-mixed ACOR. The value of Q is a

parameter of the algorithm and its effect on the perfor-

mance is discussed in Sect. 4.

3.3.3 Population Update

The L new candidate solutions above are evaluated by the

values of the objective function E �ð Þ. These L new candi-

date solutions, together with the original N solutions in the

previous cycle, are sorted again according to their values of

objective function. Similarly, at the end of each cycle, only

the N top-best-performance solutions over the total

(N ? L) solutions are reserved and stored in the archive for

next cycle, and the rest of them are discarded.

The EMCACO-C repeats generating the L new candi-

date solutions followed by the population update until the

termination condition for the algorithm is satisfied. The

822 International Journal of Fuzzy Systems, Vol. 20, No. 3, March 2018
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pseudo code of the EMCACO-C algorithm is shown in

Fig. 3.

3.3.4 Qualitative Comparison of the EMCACO-C with GA

Though the EMCACO-C is inspired from the ACOR, its

operation is more like the Genetic algorithms (GA).

Referring to [32], the methodology similarities and dif-

ferences between the EMCACO-C and GA are compared.

In the EMCACO-C, the mixing operation of the elite-

mixed ACOR can be regarded as the multi-parent scanning

crossover in the GAs [34]. In general, the GA usually

selects and recombines two parents to generate new solu-

tions. The basic principle for selecting parents is that the

better-quality parents are possibly selected with higher

probability. The techniques of the tournament and the

roulette wheel are two of the examples. The general

recombination techniques include one-point, two-point, or

arithmetic crossover operations. However, the mixing

operation of the elite-mixed ACOR in the EMCACO-C

selects multiple parents. These parents are the top-per-

formed Q elites in the archive. Each of these Q elites is

selected uniformly in probability. The scanning crossover

used in the mixing operation of the elite-mixed ACOR

essentially is (D - 1)-point crossover. Intuitively, the

multi-parent scanning crossover probably could provide

more diverse candidate solutions than the two-point

crossover by two parents. However, the mixing operation

of the elite-mixed ACOR does not handle the correlation

information between each optimized variable in the TRFN

[29], and thus, a larger value of Q may slow down the

convergence speed.

In the elite-mixed ACOR, the Gaussian sampling around

the directional solution plays the similar role as the

mutation operation in the GA. In general GA mutation

operation, the mutation probability is usually constant and

small, and thus, at each iteration some offspring solutions

might not be mutated. The deviation range in the GA

mutation for each offspring solution component usually is

set to be fixed and identical. Furthermore, the mutation in

GA usually is implemented by sampling the uniform den-

sity function. On the contrary, the sampling in the

EMCACO-C is based on Gaussian density function and is

always realized for generating new candidate solution.

Moreover, since the deviation range for the sampling in the

EMCACO-C depends on the separate convergence status

of each solution component in the archive, it is not fixed.

4 Simulation Results and Discussions

4.1 The Values of a and Q

To determine suitable values of a and Q in the EMCACO-

C for TRFN designs, a validation procedure by employing

various combinations of a and Q has been conducted to

optimize a TRFN. The TRFN for validation is used to

produce the control input for controlling the nonlinear

dynamic plant output to track the reference trajectory as

detailed in Example 1 below. The computation environ-

ment is a personal computer with Intel CoreTM i5-4570

CPU@3.2 GHz and memory capacity of 4 GB running the

program compiled by dev-C?? on Windows 7. In the

EMCACO-C, the population size N is set to 20, the number

EMCACO-C Algorithm 

         Initialize evaporation rate , guess width ,  number of elites Q, archive size N.
         Generate N solutions of the form (6) uniformly using the guess width  around the center. 

   Evaluate and sort the initial N solutions. 
while the number of ant cycles is less than prescribed value  do

For k = 1 : L  (generate candidate solutions kNs )
                    For j = 1 : D   (generate solution components j

kNs )

                          choose )( jd  from Q,,2,1  uniformly 
j

jd
j

d
jj

jd
j

kN sgs )()( ,;sampling  with j
jd

j
d s )( and j

jd )( in (11) 
                    End 
             End  

Evaluate L new candidate solutions and sort (N+L) solutions. 
             Update population to keep N solutions in the archive. 
  end while 

...

→

Fig. 3 EMCACO-C algorithm
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of new solution candidates L is set to 20, and the parameter

e is set to 0.85 as that used in [29].

Example 1 (MISO dynamic plant control) As the same as

that used in [9, 19, 32], the nonlinear dynamic plant to be

controlled is given by

yðk þ 1Þ ¼ yðkÞyðk � 1ÞðyðkÞ þ 2:5Þ
1 þ y2ðkÞ þ y2ðk � 1Þ þ kðkÞ; ð12Þ

where kðkÞ is the control input to the plant and is limited

within the range [- 4, 4] in this study. The system output

in (12) depends on two previous outputs and is controlled

by a control input. The objective is to design a TRFN for

controlling the system output, initialized at yð0Þ ¼ yð1Þ ¼
0:0; to track the reference trajectory ydðkÞ; which is guided

by the reference input rðkÞ and is described as follows:

ydðk þ 1Þ ¼ 0:6ydðkÞ þ 0:2ydðk � 1Þ þ rðkÞ;

rðkÞ ¼ 0:5 � sin
2pk
45

� �

þ 0:2 � sin
2pk
15

� �

þ 0:2 � sin
2pk
90

� �

;

ð13Þ

where the initial reference states ydð0Þ and ydð1Þ are

assumed to be 2.4 and 1.9, respectively.

The control configuration of the TRFN controller and

the nonlinear plant is presented in Fig. 4 where the input–

output variables of the TRFN are also illustrated. The only

input variables to the TRFN are the desired plant output

ydðk þ 1Þ and the current plant state yðkÞ: Excited by these

two external inputs as well as the internal states within the

TRFN, the TRFN produces the output kðkÞ to control the

nonlinear dynamic plant governed by (12). The perfor-

mance of the designed TRFN controller is evaluated by the

root-mean-square error (RMSE) between the plant output

yðkÞ and the reference trajectory ydðkÞ over the 250 time

steps and is calculated by

RMSE ¼
X250

k¼1

ðydðk þ 1Þ � yðk þ 1ÞÞ2

250

 !1
2

: ð14Þ

This RMSE error is defined as the value of the objective

function Eð�Þ for use in the EMCACO-C and other com-

pared evolutionary algorithms. We firstly designed a TRFN

with four fuzzy rules. The free parameters mij 2
�3; 3½ �; bij 2 ½0; 3�; aij 2 ½�4; 4�; vij 2 ½�4; 4� as described

in (6) are searched for finding a better controller so as to

determine the suitable values of a and Q. The 30,000

evaluations were performed in a single run of the opti-

mization process to build a TRFN controller. With 100

independent runs, the validation results of the average, the

standard deviation (SD), the best (minimum), and the worst

(maximum) of RMSE errors are shown in Table 1. The

results clearly indicate that the values of a and Q should be

selected as 0.2 and 2, respectively, for the EMCACO-C.

These two values will be also adopted by the EMCACO-C

to conduct other simulations later.

To validate the performance superiority of the proposed

EMCACO-C using the determined values of a and Q, some

population-based optimization algorithms including the

ACOR associated with several different q values, PSO, and

assimilation–accommodation mixed continuous ant colony

optimization (ACACO) [31] were also applied to the same

TRFN design problem for comparison. The settings of

parameters used in these algorithms are described as fol-

lows. In the ACOR, the population size of N = 50, the

number of new candidate solutions L = 20 at each ant

cycle, and the parameter of e ¼ 0:85 are set. In the PSO,

the number of particles, the inertia coefficient for previous

velocity, the acceleration coefficient toward the globally

best-known solution, and the acceleration coefficient

Fig. 4 Configuration of evolutionary learning of TRFN for the

control of nonlinear plant in Example 1

Table 1 Cross-validation results for different values of a and Q in the

EMCACO-C for the four-rule TRFN in Example 1

Q a 0.04 0.1 0.2 0.3 0.4 0.5

1 Avg. 0.1367 0.1128 0.1013 0.1022 0.1029 0.1121

SD 0.0272 0.0219 0.0227 0.0289 0.0290 0.0319

Best 0.0604 0.0505 0.0490 0.0512 0.0418 0.0443

Worst 0.2342 0.1715 0.1528 0.2116 0.2043 0.2080

2 Avg. 0.0341 0.0298 0.0281 0.0329 0.0435 0.0575

SD 0.0192 0.0153 0.0122 0.0170 0.0246 0.0396

Best 0.0127 0.0100 0.0088 0.0098 0.0125 0.0144

Worst 0.1076 0.1029 0.0706 0.1328 0.1557 0.2196

3 Avg. 0.0377 0.0327 0.0305 0.0371 0.0463 0.0564

SD 0.0199 0.0169 0.0124 0.0228 0.0228 0.0298

Best 0.0096 0.0110 0.0133 0.0149 0.0164 0.0119

Worst 0.0974 0.0960 0.0740 0.0999 0.1405 0.1432

4 Avg. 0.0521 0.0461 0.0433 0.0473 0.0438 0.0587

SD 0.0252 0.0265 0.0253 0.0305 0.0223 0.0315

Best 0.0168 0.0154 0.0140 0.0150 0.0129 0.0168

Worst 0.1374 0.1324 0.1356 0.2055 0.1210 0.2061

Bold value indicates the minimum value in the same comparison item
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toward the locally own best solution are set to 50, 0.5, 2.0,

and 1.0, respectively. In the ACACO, the population size

of N = 50 and the number of new candidate solutions

L = 20 at each ant cycle are set. The ACACO set group

size N1 = 2, N2 = 8, and N3 = 40 for group 1, group 2,

and group 3, respectively, as those used in [31].

In addition to the TRFNs with four rules, we also

compared the TRFNs composed of eight fuzzy rules. Fig-

ure 5 and Table 2 show the learned results of the TRFN

systems optimized by the EMCACO-C, ACOR, PSO, and

ACACO. The simulation results performed by the ACOR,

PSO, and ACACO were obtained when the decision vari-

ables were initialized uniformly over the entire search

space as usual, that is a ¼ 1:0. Figure 5 shows the average

best-so-far RMSE at each performance evaluation of each

algorithm for the TRFN with eight rules. The numerical

results in Table 2 demonstrate that the average error of the

EMCACO-C is smaller than the ones of the ACOR, PSO,

and ACACO for TRFNs with the same rule number. To

verify the statistically significant difference between the

EMCACO-C and the algorithms used for comparison, the

nonparametric Wilcoxon signed-rank tests [35] for two

related samples of RMSE errors were performed. For each

algorithm, the null hypothesis claims that its average error

is less than or equal to that of the EMCACO-C. The per-

formance of the EMCACO-C is compared against each of

the algorithms, and the resulting p value is presented. The

p values in Table 2 indicate that the null hypothesis is

rejected at the significant level of 5% for each comparison.

Moreover, we also observed that the performance of the

TRFN with eight rules outperforms that with four rules

when they were optimized by the EMCACO-C. However,

this observation does not hold for the ACOR with larger

q values. The possible reason for this is that the ACOR

converges slower if the q value is larger. The best four-rule

TRFN controller designed by the EMCACO-C is shown in

Table 3, and the resulting control results are shown in

Fig. 6. The results show that the controlled plant output is

very close to the reference output except at the first few

time steps because the initial conditions of the controlled

plant are different from the reference.

4.2 Application Examples

Example 2 (MIMO dynamic plant control) The nonlinear

multiple-input multiple-output (MIMO) plant to be con-

trolled by the TRFN is the same as that used in [19, 32] and

is given by

y1ðk þ 1Þ ¼ 0:5 � y1ðkÞ
1 þ y2

2ðkÞ
þ k1ðk � 1Þ


 �

ð15Þ

Fig. 5 Average best-so-far RMSEs at each performance evaluation

for the evolutionary TRFN controllers optimized by the EMCACO-C

and different population-based optimization algorithms in Example 1

(eight rules)

Table 2 Performances of the TRFN controllers designed by various population-based optimization algorithms for the MISO plant control

problem in Example 1

Algorithms ACOR (q = 1.0) ACOR (q = 0.1) ACOR (q = 0.02) ACOR (q = 0.01) PSO ACACO EMCACO-C

Rule number 4

RMSE avg. 0.0991 0.0973 0.0914 0.0928 0.1391 0.0769 0.0281

RMSE SD 0.0261 0.0454 0.0462 0.0549 0.0938 0.0552 0.0122

RMSE (best) 0.0589 0.0369 0.0189 0.0194 0.0305 0.0248 0.0088

p value 1.9e-18 1.9e-18 4.7e-18 1.6e-17 1.9e-18 2.8e-17 –

Rule number 8

RMSE Avg. 0.2030 0.1143 0.0675 0.0691 0.1425 0.0493 0.0216

RMSE SD 0.1276 0.0376 0.0235 0.0359 0.1841 0.0325 0.0082

RMSE (Best) 0.0886 0.0387 0.0233 0.0169 0.0399 0.0172 0.0067

p value 1.9e-18 1.9e-18 2.2e-18 8.7e-18 1.9e-18 1.3e-16 –

CPU time (s) 14.8 14.5 14.8 14.7 12.5 47.1 14.7

Bold value indicates the minimum value in the same comparison item
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y2ðk þ 1Þ ¼ 0:5 � y1ðkÞy2ðkÞ
1 þ y2

2ðkÞ
þ k2ðk � 1Þ


 �

: ð16Þ

The objective is to generate two sequences of control

inputs k1ðkÞ and k2ðkÞ such that the controlled plant out-

puts y1ðkÞ; y2ðkÞ; initialized at y1ð0Þ ¼ 0:2 and y2ð0Þ ¼ 0:0;

follow the two desired sinusoidal reference outputs yd1ðkÞ
and yd2ðkÞ;, respectively, as follows:

yd1ðkÞ ¼ sin
kp
45

� �

ð17Þ

yd2ðkÞ ¼ cos
kp
45

� �

: ð18Þ

Similarly, the only input variables to the TRFN are the

current plant states y1ðkÞ; y2ðkÞ and the desired outputs

yd1ðk þ 1Þ; yd2ðk þ 1Þ: Excited by these inputs, the TRFN

produces two control inputs k1ðkÞ and k2ðkÞ. The two

delayed TRFN outputs k1ðk � 1Þ and k2ðk � 1Þ are used to

control the plant governed by (15) and (16). The RMSE of

the two tracking data over the 250 time steps is defined by

RMSE¼
X250

k¼1

yd1ðkþ1Þ�y1ðkþ1Þð Þ2þ yd2ðkþ1Þ�y2ðkþ1Þð Þ2

250

 !1
2

:

ð19Þ

In this example, we designed the TRFN systems with

two different numbers of rules as studied in [32]: six rules

and eight rules. The free parameters mij 2 � 1; 1½ �; bij 2
½0; 1�; aij 2 ½�2; 2�; vij 2 ½�2; 2� are searched for finding a

better-performed TRFN controller. The 15,000 evaluations

were performed in a single run of the optimization process.

With 100 independent runs of simulations, the average

best-so-far RMSE at each performance evaluation of each

algorithm for the eight-rule TRFN is shown in Fig. 7.

The learned results of the TRFNs with six and eight

rules are shown in Table 4. The results show that the

average error of the EMCACO-C is smaller than the ones

of the ACOR, PSO, and ACACO for TRFNs with the same

rule number. The p values in Table 4 indicate that the null

hypothesis is rejected at the significance level of 5% for

each comparison using the Wilcoxon test. Similarly, the

performance of the TRFN with eight rules outperforms that

with six rules when they were designed by the EMCACO-

C. The control results of the TRFN controller optimized by

the EMCACO-C are shown in Fig. 8. The results demon-

strate that two controlled plant outputs are very close to the

desired ones except at the first few time steps.

Example 3 (Continuously stirred tank reactor control) In

this example, we use a TRFN system to control a

Table 3 Obtained TRFN controller composed of four rules optimized by the EMCACO-C. The values are truncated to two fractional digits

Rule i mi1 bi1 mi2 bi2 ai0 ai1 ai2 ai3 v1i v2i v3i v4i

1 2.37 1.09 - 0.62 1.07 3.19 - 0.14 - 0.75 3.11 - 4.00 - 0.41 - 2.12 - 4.00

2 0.19 2.28 0.04 1.17 - 1.17 1.05 - 0.52 1.58 4.00 0.56 1.48 - 4.00

3 0.16 0.65 - 0.20 1.52 - 0.54 0.92 - 0.17 1.05 - 4.00 - 0.99 1.02 - 3.99

4 - 3.00 0.00 - 3.00 0.00 - 4.00 3.99 4.00 - 4.00 4.00 4.00 - 4.00 3.99

Bold value indicates the minimum value in the same comparison item

Fig. 6 Control results of the TRFN controller optimized by the

EMCACO-C in Example 1 (four rules)

Fig. 7 Average best-so-far RMSEs at each performance evaluation

for the evolutionary TRFN controllers optimized by the EMCACO-C

and different population-based optimization algorithms in Example 2

(eight rules)
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continuously stirred tank reactor (CSTR) in which the first-

order, irreversible, exothermic reaction A 7!B is carried

out. At the input, the fresh feed of chemical A is mixed

with the recycle stream of unreacted material A with a

recycle rate. Let t be the moment of time the output exits

the CSTR. According to [36], the CSTR material and

energy balance equations in dimensionless variables are

_x1ðtÞ ¼ f1ðx*ðtÞÞ þ
1

k
� 1

� �

x1ðt � sÞ

_x2ðtÞ ¼ f2ðx*ðtÞÞ þ
1

k
� 1

� �

x2ðt � sÞ þ bu;

ð20Þ

where

f1ðx*ðtÞÞ¼
�1

k
x1ðtÞþDað1�x1ðtÞÞexp

x2ðtÞ
1þx2ðtÞ=c0

� �

f2ðx*ðtÞÞ¼� 1

k
þb

� �

x2ðtÞþHDað1�x1ðtÞÞexp
x2ðtÞ

1þx2ðtÞ=c0

� �

;

ð21Þ

where xiðtÞ¼hi for t2 �s;0½ �; i¼1;2; and �1�uðtÞ�1 is

the control input. The state x1ðtÞ represents the conversion

rate of the reaction, 0�x1ðtÞ�1; and x2ðtÞ is the dimen-

sionless temperature. As the same as that used in the pre-

vious study [32], the constant parameters are given as

c0¼20;H¼8;b¼0:3;Da¼0:0072;k¼0:8; s¼2; and the

initial values of xiðtÞ are h1¼0:144 and h2¼0:8862. The

objective is to control the conversion rate x1ðtÞ to follow

the pre-defined set points xdðtÞ as given by

xdðtÞ ¼

0:4; t� 35;
0:6; 35\t� 70;
0:8; 70\t� 105;
0:6; 105\t� 150:

8
>><

>>:
ð22Þ

The TRFN controller to be optimized is composed

of six fuzzy rules and its inputs are the current states

x1ðtÞ; x2ðtÞ; and the set point xdðtÞ. The free parameters

mij 2 0; 1½ �; bij 2 ½0; 0:5�; aij 2 ½� 1; 1�; vij 2 ½� 1; 1� are

searched for finding a better-performed TRFN controller.

In the simulation, the controller commands a new control

input u every 0.5 time interval. The simultaneous differ-

ential equations in (20) are solved by Euler method for

simulations. The RMSE error for training is defined by

RMSEtrain ¼
X300

k¼1

WðkÞ x1ðkÞ � xdðkÞð Þ2

300

 !1
2

; ð23Þ

where the time step k is set to 2t and W(k) is defined by

WðkÞ ¼ 1; 70 nþ 1� k� 70 nþ 5; n ¼ 0; 1; 2; 3;
5; otherwise:

�

ð24Þ

In the RMSEtrain, when the desired conversion rate changes

from one set point to another, the regulation errors in the

initial five steps of the transition state are weighted with

Table 4 Performances of the TRFN controllers designed by various population-based optimization algorithms for the MIMO plant control

problem in Example 2

Algorithms ACOR (q = 1.0) ACOR (q = 0.1) ACOR (q = 0.02) ACOR (q = 0.01) PSO ACACO EMCACO-C

Rule number 6

RMSE avg. 0.0864 0.0595 0.0576 0.0590 0.1096 0.0408 0.0242

RMSE SD 0.0120 0.0089 0.0178 0.0209 0.0704 0.0156 0.0136

RMSE (best) 0.0650 0.0390 0.0208 0.0145 0.0333 0.0134 0.0058

p value 1.9e-18 6.5e-18 1.3e-17 2.0e-17 1.9e-18 1.3e-11 –

Rule number 8

RMSE avg. 0.0943 0.0569 0.0473 0.0486 0.0921 0.0362 0.0195

RMSE SD 0.0237 0.0101 0.0172 0.0198 0.0582 0.0156 0.0100

RMSE (best) 0.0629 0.0285 0.0102 0.0136 0.0259 0.0107 0.0043

p value 1.9e-18 2.1e-18 7.1e-17 5.8e-17 2.2e-18 2.3e-12 –

Bold value indicates the minimum value in the same comparison item

Fig. 8 Control results of the TRFN controller optimized by the

EMCACO-C in Example 2 (six rules)
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W ¼ 1; and the following errors in the steady state are

weighted with W ¼ 5: The 25,000 evaluations were per-

formed in a single run of the training process. As consid-

ered in [32], by neglecting the initial transition errors, the

evaluation RMSE for the obtained controller is defined by

RMSEeva ¼
X300

k¼21

WðkÞ x1ðkÞ � xdðkÞð Þ2

280

 !1
2

: ð25Þ

where

WðkÞ ¼ 0; 70 nþ 1� k� 70 nþ 5; n ¼ 1; 2; 3;
1; otherwise:

�

ð26Þ

With 100 independent runs of simulations, the average

best-so-far training RMSE at each performance evaluation

of each algorithm for the TRFN is shown in Fig. 9. Table 5

shows the learned statistical results of training and evalu-

ation RMSEs. The results show the average training error

RMSEtrain of the EMCACO-C is smaller than the ones of

the ACOR, PSO, and ACACO. Moreover, the average

evaluation error RMSEeva of the EMCACO-C is also

smaller than the ones of the population-based algorithms in

comparison. The p values in Table 5 indicate that the null

hypothesis is rejected at the significance level of 5% for

each comparison using the Wilcoxon test for the samples of

evaluation errors RMSEeva. The control results of the

TRFN optimized by the EMCACO-C are shown in Fig. 10.

The results demonstrate that the controlled plant output is

very close to the desired set points except at the initial

transition time steps.

Example 4 (Mackey–Glass Chaotic Series Prediction)

This example considers the prediction of chaotic time

series using a TRFN as studied in [7]. The time series to be

predicted is generated by the well-known Mackey–Glass

chaotic system, which is described by the delay differential

equation:

dxðtÞ
dt

¼ 0:2xðt � sÞ
1 þ x10ðt � sÞ � 0:1xðtÞ; ð27Þ

where s is set to 17, and the initial value x(0) is 1.2 with

x(t) = 0 for t\ 0. The objective is to design a TRFN using

the four past values of x(t - 24), x(t - 18), x(t - 12) and

x(t - 6) as the external inputs for predicting x(t). The

Fig. 9 Average best-so-far training RMSEs at each performance

evaluation for the evolutionary TRFN CSTR controllers optimized by

the EMCACO-C and different population-based optimization algo-

rithms in Example 3

Table 5 Performances of the TRFN controllers designed by various population-based optimization algorithms for the CSTR control problem in

Example 3

Algorithms ACOR (q = 1.0) ACOR (q = 0.1) ACOR (q = 0.02) ACOR (q = 0.01) PSO ACACO EMCACO-C

RMSEtrain avg. 0.0852 0.0814 0.0805 0.0811 0.0836 0.0805 0.0803

RMSEtrain SD 0.0019 0.0009 0.0005 0.0025 0.0071 0.0016 0.0007

RMSEeva avg. 0.0137 0.0074 0.0054 0.0063 0.0096 0.0053 0.0047

RMSEeva SD 0.0026 0.0019 0.0013 0.0036 0.0076 0.0021 0.0013

p value 2.1e-18 4.1e-16 1.4e-07 1.1e-08 2.4e-13 1.1e-04 –

Bold value indicates the minimum value in the same comparison item

Fig. 10 CSTR control result of the TRFN controller optimized by the

EMCACO-C in Example 3
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objective function is defined as the RMSE error between

the sampled output of the system governed by (27) and the

TRFN output.

In this example, the TRFN predictor to be optimized is

composed of five fuzzy rules. The free parameters mij 2
0:4; 1:4½ �; bij 2 ½0; 0:5�; aij 2 ½� 1:4; 1:4�; vij 2 ½� 1:4; 1:4�

are searched for finding a better-performed TRFN predic-

tor. To evaluate the performances, the following experi-

ment was conducted: First, the time series data governed

by (27) were generated using Runge–Kutta numerical

method. As discussed in [7], 500 data patterns from

t = 124 to 623 extracted from the time series are used for

training the TRFN and the other 500 data patterns from

t = 624 to 1123 are for testing. The 100,000 evaluations

were performed in a single run of the training process.

With 50 independent runs of simulations, the average

best-so-far training RMSE at each performance evaluation of

each algorithm for the TRFN is shown in Fig. 11. Table 6

presents the learned results of training errors RMSEtrain (the

first 500 data) and testing errors RMSEtest (the second 500

data). The results show that the training error RMSEtrain and

testing error RMSEtest of the EMCACO-C are smaller than

the ones of the ACOR, PSO, and ACACO. The p values in

Table 6 indicate that the null hypothesis is rejected at the

significance level of 5% for each comparison using the

Wilcoxon test for the samples of testing errors RMSEtest. In

[7], the TRFN was trained by the gradient-based supervised

learning (TRFN-S) for predicting the same chaotic time

series. The testing RMSEtest using the TRFN-S is 0.012,

which is larger than that by the EMCACO-C. The prediction

outputs from t = 624 to 1123 of the optimized TRFN by the

EMCACO-C are demonstrated in Fig. 12. The results show

nearly undistinguishable difference between the actual

chaotic series and the predicted series.

Example 5 (Dynamic system identification) This example

as taken from [9] uses a TRFN to identify a nonlinear

dynamic system with multiple time delays. The nonlinear

plant is described as follows:

ypðk þ 1Þ ¼ f ðypðkÞ; ypðk � 1Þ; ypðk � 2Þ; kðkÞ; kðk � 1ÞÞ
ð28Þ

where

f ðx1; x2; x3; x4; x5Þ ¼
x1x2x3x5ðx3 � 1Þ þ x4

1 þ x2
3 þ x2

2

: ð29Þ

Fig. 11 Average best-so-far training RMSEs at each performance

evaluation for the evolutionary TRFN predictors optimized by the

EMCACO-C and different population-based optimization algorithms

in Example 4
Fig. 12 Test results of the TRFN predictor optimized by the

EMCACO-C in Example 4

Table 6 Performances of the TRFN designed by various population-based optimization algorithms for the prediction of nonlinear chaotic time

series in Example 4

Algorithms ACOR (q = 1.0) ACOR (q = 0.1) ACOR (q = 0.02) ACOR (q = 0.01) PSO ACACO EMCACO-C

RMSEtrain avg. 0.0393 0.0241 0.0252 0.0256 0.0612 0.0125 0.0077

RMSEtest avg. 0.0388 0.0240 0.0250 0.0280 0.0603 0.0126 0.0078

RMSEtest SD 0.0118 0.0055 0.0139 0.0238 0.0278 0.0038 0.0020

RMSEtest (best) 0.0251 0.0139 0.0087 0.0082 0.0190 0.0058 0.0042

p value 3.8e-10 3.8e-10 4.0e-10 4.8e-10 3.8e-10 8.9e-09 –

Bold value indicates the minimum value in the same comparison item
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The current output ypðkÞ and the control input kðkÞ are the

inputs of the TRFN model, and the value of ypðk þ 1Þ is the

target output for the TRFN. The objective function is

defined as the RMSE between the plant output in (28) and

the TRFN output.

The TRFN identification model to be optimized is com-

posed of three fuzzy rules. The free parameters mij2
�1:5;1:5½ �;bij2½0;1:5�;aij2½�1:5;1:5�;vij2½�1:5;1:5� are

searched for finding a better-performed TRFN model. The

training data for the TRFN are the control inputs of 900 time

steps and the corresponding outputs produced by the plant.

The first 450 control inputs are independently and identically

distributed uniform random sequences over [- 1, 1]. The

remaining half control inputs are generated by a sinusoid

1.05sin(pk/45). The 100,000 evaluations were performed in

a single run of the optimization process. To see the identi-

fication performance, the following guiding input signal is

used for test:

kðkÞ¼

sinðpk=25Þ; k\250

1:0; 250�k\500

�1:0; 500�k\750

0:3sinðpk=25Þþ0:1sinðpk=32Þþ0:6sinðpk=10Þ; 750�k\1000:

8
>><

>>:

ð30Þ

With 50 independent runs of simulations, the average

best-so-far training RMSE at each performance evaluation

of each algorithm for the TRFN is shown in Fig. 13.

Table 7 shows the learned numerical results of statistical

training and testing RMSEs. The results show that the

training error RMSEtrain and testing error RMSEtest of the

EMCACO-C are smaller than the ones of the ACOR, PSO,

and ACACO. The p values in Table 7 indicate that the null

hypothesis is rejected at the significance level of 5% for

each comparison using the Wilcoxon test for the samples of

testing errors RMSEtest. The same problem was also stud-

ied using TRFN-S [9]. The TRFN-S reached the testing

error RMSEtest of 0.0346, which is larger than that by the

EMCACO-C. The outputs of the optimized TRFN by the

EMCACO-C for the test input in (30) are demonstrated in

Fig. 14. The results show TRFN output is very close to the

output of dynamic plant.

Fig. 13 Average best-so-far training RMSEs at each performance

evaluation for the evolutionary TRFN models optimized by the

EMCACO-C and different population-based optimization algorithms

in Example 5

Table 7 Performances of the TRFN designed by various population-based optimization algorithms for the system identification problem in

Example 5

Algorithms ACOR (q = 1.0) ACOR (q = 0.1) ACOR (q = 0.02) ACOR (q = 0.01) PSO ACACO EMCACO-C

RMSEtrain avg. 0.0787 0.0687 0.0640 0.0658 0.0775 0.0567 0.0520

RMSEtest avg. 0.0618 0.0503 0.0444 0.0452 0.0698 0.0433 0.0286

RMSEtest SD 0.0089 0.0125 0.0139 0.0139 0.0175 0.0124 0.0067

RMSEtest (best) 0.0444 0.0228 0.0218 0.0223 0.0515 0.0224 0.0216

p value 3.8e-10 4.5e-10 7.7e-08 1.4e-08 3.8e-10 3.8e-09 –

Bold value indicates the minimum value in the same comparison item

Fig. 14 Test results of the TRFN model optimized by the EMCACO-

C in Example 5
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4.3 Analysis of the EMCACO-C

4.3.1 Analysis of Computational Complexity

The time complexity of the EMCACO-C as applied to

TRFN design is proportional to the number Ncycles of ant

cycles (iterations), the number L of new candidate solu-

tions, the runtime Tgen for generating a new ant, and the

evaluation time Teva for a new solution, and can be com-

puted as follows:

Ncycles � L� Tgen þ Teva

� �� �
: ð31Þ

In the simulation results of Example 1 as an example,

the computational time of each evolutionary learning for

TRFN design for tracking control was also reported in

Table 2. The results indicate the time the EMCACO-C

consumed is comparable to that of the ACOR, which

implies that in this example the runtime Tgen in the

EMCACO-C is not much different from that in the ACOR

or both of them are negligible compared to the evaluation

time Teva for a new solution.

4.3.2 Performance Analysis of the Central Initialization

on TRFN Designs

In addition to the results in Table 1, a cross-validation on

three of the simulated examples has been conducted for

discussing the advantages of the central initialization on the

experimented TRFN designs. The validation results for the

EMCACO-C, PSO, and ACOR are presented in Table 8.

The results show that for each algorithm itself, the central

initialization helps achieve the smaller error than the blind

uniform initialization. This demonstrates that the proposed

central initialization can help the investigated swarm-based

algorithms including the EMCACO-C achieve the better

performance on the TRFN designs for application

examples.

Furthermore, to learn whether the proposed central ini-

tialization (a ¼ 0:2) confines the EMCACO-C conver-

gence to the initial local guesses around or not, we need to

examine the parameters of the designed TRFN. The

parameters of the best designed TRFN controller optimized

by the EMCACO-C in Example 1 are shown in Table 3.

We found that 25% (12/48) of the parameters fall in the

initially guessed region, which is slightly more than the

case (20%) of the blind uniform guess. We also observed

that some of the parameter values in the designed TRFN

are equal or very close to the specified limit for search,

which has demonstrated that if the proper guess width is

used, the central initialization does not necessarily confine

the search only toward the initial local guess.

4.3.3 Analysis of the Number of Elites and the Evaporation

Rate

The value of 2 for Q currently used in the EMCACO-C for

applications simulations was determined simply based on

the cross-validation results for the four-rule TRFN in

Example 1 when the evaporation rate e is 0.85 as that used

in [29]. To learn more about the influences of Q value on

the performances of the EMCACO-C for TRFN designs,

more experiments on Examples 1, 2, and 5 using the values

of Q ranging from 1 to 10 were simulated. The results in

Fig. 15 show that the best performances are achieved when

Table 8 Performance

comparisons of the EMCACO,

ACOR, and PSO as applied to

the TRFN designs by using the

different guess widths for

initialization

Algorithms guess width a PSO ACOR (q = 0.02) EMCACO-C

1.0 0.2 1.0 0.2 1.0 0.2

Example 1 (4 rules)

RMSE avg. 0.1391 0.0552 0.0914 0.0344 0.0963 0.0281

RMSE (best) 0.0305 0.0180 0.0189 0.0114 0.0189 0.0088

Example 1 (8 rules)

RMSE avg. 0.1425 0.0400 0.0675 0.0464 0.0624 0.0216

RMSE (best) 0.0399 0.0136 0.0233 0.0145 0.0223 0.0067

Example 2 (6 rules)

RMSE avg. 0.1096 0.0394 0.0576 0.0367 0.0534 0.0242

RMSE (best) 0.0333 0.0137 0.0208 0.0104 0.0150 0.0058

Example 2 (8 rules)

RMSE avg. 0.0921 0.0351 0.0473 0.0328 0.0449 0.0195

RMSE (best) 0.0259 0.0165 0.0102 0.0072 0.0108 0.0043

Example 5

RMSEtest avg. 0.0698 0.0613 0.0444 0.0291 0.0430 0.0286

RMSEtest (best) 0.0515 0.0511 0.0218 0.0217 0.0205 0.0216

Bold value indicates the minimum value in the same comparison item
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two elites are used for mixing operation. It is also observed

that the error decreased significantly when the value of

Q was changed from one to two. When the value of Q is

one, the EMCACO-C actually did not mix elites, and thus,

the Gaussian sampling was the only operation in the

algorithm, which is the possible reason for being inferior.

Furthermore, the average error increases roughly with the

value of Q starting from 2. One of the possible reasons is

that a higher value of Q provides more exploration in

search thus lower convergence speed and the worse

performance.

To verify the above reason, the normalized diversity of

all ant solutions is defined to indicate the convergence of

learning and is computed as follows:

Diversity ðtÞ ¼ 1

N � 1

XN

m¼1

1

D

XD

j¼1

s jmðtÞ � s
j
1ðtÞ

	
	

	
	

L j
; ð32Þ

where t is the iteration index and L j is the search length for

the parameter in the jth dimension. With 100 independent

runs, the average normalized diversity of the EMCACO-C

with each different Q value in Example 1 as an example is

shown in Fig. 16. The results show that when e is fixed to

0.85, the EMCACO-C with a higher value of Q converges

slower than that with a lower value of Q. However, because

a higher value of e can provide more exploration in search

and a lower value of e can provide more exploitation in

search, different values of e can be used to respond to the

selected Q value for balancing the exploration and

exploitation based on the following guideline: the higher

the value of Q is selected, the lower the value of e is used.

The diversity results using the different values of e to

respond to the selected Q value are also shown in Fig. 16

for comparison. The corresponding learning curves of

performance evaluations are shown in Fig. 17, indicating

that the resulting performances using the adjusted value of

e are much improved and some of them are even better than

the case of Q ¼ 2 and e ¼ 0:85.

5 Conclusions

This paper proposes an efficient continuous ACO, elite-

mixed continuous ACO with central initialization

(EMCACO-C), for improving the accuracy of TRFN

designs. The EMCACO-C is developed based on the

framework of the ACOR and can be regarded as a new

Fig. 15 Comparison about the performance achieved by the

EMCACO-C with respect to different values of Q

Fig. 16 Average normalized diversity of the TRFN parameters

optimized by the EMCACO-C with different values of Q and e in

Example 1 (Dash lines are the cases of e ¼ 0:85; solid lines are the

cases for different values of e)

Fig. 17 Average best-so-far training RMSEs optimized by the

EMCACO-C with different values of Q and e in Example 1 (Dash

lines are the cases of e ¼ 0:85; solid lines are the cases for different

values of e)
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population-based evolutionary optimization algorithm.

Unlike most popular population-based algorithms, the

EMCACO-C initializes the ant solutions on concentrative

region around the center of the search range. The

EMCACO-C mixes in scanning manner the fixed number

of the few best elites uniformly in probability to form a

directional solution. A new candidate solution is generated

by sampling Gaussian density function around the con-

structed directional solution. The methodology similarities

and differences between the EMCACO-C and GAs are also

compared in this study.

In the TRFN designs for the problems of dynamic sys-

tems control, dynamic system identification, and chaotic

series prediction, the simulation results demonstrated that

the EMCACO-C achieved smaller errors than those by the

algorithms of ACOR, PSO, and ACACO. The Wilcoxon

signed-rank tests were conducted to verify the significant

differences in comparisons.

In addition, the advantages on the accuracy improve-

ment for TRFN designs gained by applying the central

initialization to the ACOR and PSO were also demonstrated

in this study. The selection guidelines for the number of

elites for mixing operation and the value of the evaporation

rate in the EMCACO-C for TRFN design were discussed

and demonstrated by the simulation results of the appli-

cation example.

In the future, the performances of the EMCACO-C for

the designs of various types of recurrent and feed-forward

fuzzy systems will be studied. The study of different

skewed initializations and elites selection techniques for

finding the performance improvement will also be con-

sidered. In addition, hybridization of other evolutionary

optimization algorithms with the EMCACO-C may further

improve optimization performance and thus will also be

studied in the future.
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