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Abstract This paper is concerned with the H1 filtering

problem for switched Takagi–Sugeno (T–S) fuzzy systems

with asynchronous switching, where ‘‘asynchronous’’

means that the switching of the filters has a lag to the

switching of system models. In the switched T–S fuzzy

systems, every subsystem is represented by the well-known

T–S fuzzy model. Using the multiple Lyapunov functions

approach and mode-dependent average dwell time tech-

nique, a sufficient condition is developed to ensure the

filtering error system to be globally uniformly asymptoti-

cally stable with a weighted H1 performance index.

Moreover, the desired asynchronous H1 filters can be

constructed by solving a set of linear matrix inequalities.

Finally, an example about the continuous stirred tank

reactor is provided to demonstrate the applicability of the

obtained results.
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1 Introduction

During recent decades, switched systems have been

extensively investigated because many systems encoun-

tered in practice possess switching features [1]. A general

switched system comprises some discrete-time or contin-

uous-time subsystems and a switching signal which

orchestrates the switching among these subsystems. Until

now, the problems of stability analysis and stabilization for

switched systems have received considerable attention. A

number of methodologies have been developed to solve the

above problems [2–11]. For the stability analysis of swit-

ched systems under arbitrary switching, the main method is

constructing a common quadratic Lyapunov function for

all subsystems [1]. For switched systems under constrained

switching, together the multiple Lyapunov functions

approach [2] with the average dwell time switching [3]

may lead to well analysis results. Furthermore, by fully

taking consideration of the characteristics of every sub-

system, the mode-dependent average dwell time method is

proposed in [12]. The conservativeness of the results

obtained by the average dwell time approach can be further

reduced by using the mode-dependent average dwell time

method. Therefore, it is of practical and theoretical

importance for us to study switched systems using the

mode-dependent average dwell time method.

Due to the widespread existence of nonlinearlity in real

world, the study about the nonlinear switched systems has

become a hot spot. However, the existence of nonlinearity

makes it difficult to analyze nonlinear switched systems
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directly. For nonlinear control systems, it has been proven

that an effective approach is to model the studied nonlinear

systems as T–S fuzzy systems [13–28]. The T–S fuzzy

model utilizes the local linear system description for every

fuzzy rule and then connects these local models. Recently,

the T–S fuzzy model has been extended to study the non-

linear switched systems. Using the T–S fuzzy model to

represent every nonlinear subsystem, the considered non-

linear switched systems can be modeled as the switched T–

S fuzzy systems. Based on the switched T–S fuzzy systems,

considerable efforts have been made to study the nonlinear

switched systems [29–33].

The state estimation problem of dynamic systems has

received considerable attention because of its practical

applications in signal processing and control. Among the

various methods of state estimation, the H1 filtering keeps

attracting more and more attention [34–37]. The advantage

of H1 filtering is that there is no restriction on the statis-

tical properties of disturbances, which is more general than

the classical Kalman filtering [38]. Naturally, the H1 fil-

tering problem for switched systems has also been exten-

sively investigated [5, 6, 10, 30, 33]. However, all of these

works assumed that the switching between the system

model and its matched filter is synchronous. In practice, the

synchronous switching is a quite ideal case. Due to system

identification and other reasons, the matched con-

troller/filter of every subsystem would not be operated

immediately at each switching instant. Therefore, the

asynchronous switching generally exists in switched sys-

tems. In recent years, the effects of asynchronous switching

on the filter/controller design have been studied

[4, 5, 10, 39, 40].

As mentioned above, the works [5] and [10] have

studied the asynchronous H1 filtering problem for dis-

crete-time and continuous-time linear switched systems,

respectively. However, to the best of our knowledge, the

problem of asynchronous H1 filtering for continuous-time

nonlinear switched systems remains to be unsolved, which

motivates the research in this paper. The average dwell

time technique was used in [5] and [10] to study the

asynchronous H1 filtering problem for linear switched

systems. It has been pointed out that the conservativeness

of the results obtained by the average dwell time approach

can be further reduced by using the mode-dependent

average dwell time method [12]. Based on the above

considerations, using the T–S fuzzy model, our work

investigates the asynchronous H1 filtering problem for

nonlinear switched systems with mode-dependent average

dwell time switching.

The main contributions of our work are listed as follows:

(1) Using the T–S fuzzy model, the asynchronous H1 fil-

tering problem for the continuous-time nonlinear switched

systems is studied in this paper, which receives little

attention. (2) The obtained results can also be reduced to

study the asynchronous H1 filtering problem for linear

switched systems with mode-dependent average dwell time

switching.

The organization of this paper is given as follows. The

preliminaries and problem formulation are presented in

Sect. 2. The main results are shown in Sect. 3. In Sect. 4, a

practical example about the continuous stirred tank reactor

is given to demonstrate the applicability of our approach.

Finally, some conclusions are drawn in Sect. 5.

Notations The notations used throughout this paper are

fairly standard. Rn represents the n-dimensional Euclidean

space. The symbol ‘‘�’’ in a matrix stands for the trans-

posed elements in the symmetric positions. MT denotes the

transpose of the matrix M. I and 0 represent the identity

matrix and zero matrix in the block matrix, respectively.

For a vector, �k k denotes its Euclidean norm. The space

of square-integrable functions is denoted by L2½0;1Þ. For
vðtÞ 2 L2 0;1½ Þ, vðtÞk k2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R1
0

vðtÞT
vðtÞdt

q

represents its

norm. The space of continuously differentiable function is

represented by C1. A continuous function a : ½0;1Þ !
½0;1Þ is said to be of class K if it is strictly increasing and

að0Þ ¼ 0. If a is also unbounded, then it is said to be of

class K1. A function b : ½0;1Þ � ½0;1Þ ! ½0;1Þ is said
to be of class KL if bð�; tÞ is of class K for each fixed t� 0

and bðs; tÞ decreases to 0 as t ! 1 for each fixed s� 0.

The symbol M [ 0 (� 0, \0, � 0) is used to denote a

positive definite (semi-positive definite, negative definite,

semi-negative definite) matrix M. If not explicitly stated,

matrices are assumed to have compatible dimensions.

2 Preliminaries and Problem Formulation

In this paper, let us consider the switched T–S fuzzy system

with every subsystem described as

Rule m for a subsystem rðtÞ: IF mrðtÞ1ðtÞ is MrðtÞ1m and

� � � and mrðtÞpðtÞ is MrðtÞpm, THEN

_xðtÞ ¼ ArðtÞmxðtÞ þ BrðtÞmwðtÞ;
yðtÞ ¼ CrðtÞmxðtÞ þ DrðtÞmwðtÞ;
zðtÞ ¼ ErðtÞmxðtÞ;

8

>

<

>

:

ð1Þ

where xðtÞ 2 Rnx is the state vector, yðtÞ 2 Rny is the

measurement vector, zðtÞ 2 Rnz is the output signal to be

estimated, and wðtÞ 2 Rnw is the disturbance that belongs to

L2½0;1Þ. A piecewise constant function of time rðtÞ :
½0;þ1Þ ! S ¼ f1; 2; . . .;Ng is called the switching sig-

nal, where N is the number of subsystems. For a switching

sequence 0 ¼ t0\t1\ � � �\tk\tkþ1\ � � �, rðtÞ is contin-

uous from right everywhere. When t 2 ½tk; tkþ1Þ, the rðtkÞ
subsystem is activated. For rðtkÞ ¼ i, i 2 S,
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Aim;Bim;Cim;Dim and Eim are constant real matrices of the

m local model of the i subsystem. miðtÞ ¼
ðmi1ðtÞ; mi2ðtÞ; . . .; mipðtÞÞ are some measurable premise

variables, and Milmðl ¼ 1; 2; . . .; pÞ are fuzzy sets.

By ‘‘fuzzy blending,’’ the final output of the i subsystem

is inferred as follows

_xðtÞ ¼
P

r

m¼1

himðtÞ AimxðtÞ þ BimwðtÞ½ �;

yðtÞ ¼
P

r

m¼1

himðtÞ CimxðtÞ þ DimwðtÞ½ �;

zðtÞ ¼
P

r

m¼1

himðtÞEimxðtÞ;

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

ð2Þ

where himðtÞ ¼ vimðtÞ=
Pr

m¼1 vimðtÞ, vimðtÞ ¼
Qp

l¼1 Milm

ðmilðtÞÞ, r is the number of IF-THEN rules, and MilmðmilðtÞÞ
is the grade of the membership function of mil in Milm. It is

assumed that vimðtÞ� 0 for all t, m ¼ 1; 2; . . .; r. It is

obvious that the normalized membership function himðtÞ
satisfies

himðtÞ� 0;
X

r

m¼1

himðtÞ ¼ 1: ð3Þ

The following mode-dependent fuzzy filter is designed for

the T–S fuzzy subsystem (2).

Rule m: IF mi1ðtÞ is Mi1m and � � � and migðtÞ is Migm,

THEN

_xf ðtÞ ¼ Afimxf ðtÞ þ BfimyðtÞ
zf ðtÞ ¼ Efimxf ðtÞ

�

ð4Þ

where xf ðtÞ is the state vector of the filter, Afim, Bfim, Efim

are the filter parameters to be designed. The final output of

the filter is inferred as follows

_xf ðtÞ ¼
P

r

m¼1

himðtÞ Afimxf ðtÞ þ BfimyðtÞ
� �

;

zf ðtÞ ¼
P

r

m¼1

himðtÞEfimxf ðtÞ:

8

>

>

<

>

>

:

ð5Þ

In this paper, in view of the asynchronous switching

behavior, we aim to design the more practical asyn-

chronous filter. Thus, combing (2) with (5) and defining

~xðtÞ ¼ ½xTðtÞ; xT
f ðtÞ�

T
and eðtÞ ¼ zðtÞ � zf ðtÞ, we can obtain

the following filtering error subsystem

_~xðtÞ ¼ �AiðtÞ~xðtÞ þ �BiðtÞwðtÞ;
eðtÞ ¼ �EiðtÞ~xðtÞ;

(

8t 2 ½tk;�tkÞ;

_~xðtÞ ¼ ÂiðtÞ~xðtÞ þ B̂iðtÞwðtÞ;
eðtÞ ¼ ÊiðtÞ~xðtÞ;

(

8t 2 ½�tk; tkþ1Þ;

8

>

>

>

>

>

<

>

>

>

>

>

:

ð6Þ

where the notation �tk (tk � �tk\tkþ1) represents the starting-

operating instant of the matched filter, and

�AiðtÞ ¼
AiðtÞ 0

BfjðtÞCiðtÞ AfjðtÞ

� �

¼
X

r

m¼1

X

r

l¼1

himðtÞhjlðtÞ
Aim 0

BfjlCim Afjl

� �

;

�BiðtÞ ¼
BiðtÞ

BfjðtÞDiðtÞ

� �

¼
X

r

m¼1

X

r

l¼1

himðtÞhjlðtÞ
Bim

BfjlDim

� �

;

�EiðtÞ ¼ EiðtÞ �EfjðtÞ½ � ¼
X

r

m¼1

X

r

l¼1

himðtÞhjlðtÞ Eim �Efjl½ �;

ÂiðtÞ ¼
AiðtÞ 0

BfiðtÞCiðtÞ AfiðtÞ

� �

¼
X

r

m¼1

X

r

l¼1

himðtÞhilðtÞ
Aim 0

BfilCim Afil

� �

;

B̂iðtÞ ¼
BiðtÞ

BfiðtÞDiðtÞ

� �

¼
X

r

m¼1

X

r

l¼1

himðtÞhilðtÞ
Bim

BfilDim

� �

;

ÊiðtÞ ¼ EiðtÞ �EfiðtÞ½ � ¼
X

r

m¼1

X

r

l¼1

himðtÞhilðtÞ Eim �Efil½ �:

To obtain the main results, the following definitions will be

needed.

Definition 1 [1] The filtering error system (6) with

wðtÞ 	 0 is globally uniformly asymptotically stable if

there exists a class KL function b such that for all

switching signals rðtÞ and all initial condition ~xðt0Þ, the
solutions of the filtering error system (6) satisfy the fol-

lowing inequality

~xðtÞk k� bð ~xðt0Þk k; tÞ; 8t� t0: ð7Þ

Definition 2 [12] For any T2 [ T1 � 0, i 2 S, let

NriðT1; T2Þ denote the switching numbers such that the

i subsystem is activated over the interval ½T1; T2�, TiðT1; T2Þ
represent the total running time of the i subsystem over the

interval ½T1; T2�. If there exist two constants Tai [ 0 and N0i

(N0i is the mode-dependent chatter bounds), such that the

following inequality holds

NriðT1; T2Þ�N0i þ
TiðT1; T2Þ

Tai

; ð8Þ

then, we can say that the switched systems have mode-

dependent average dwell time Tai.

Definition 3 For a[ 0 and c[ 0, the filtering error

system (6) is said to have a weighted H1 performance

index c, if under zero initial condition (i.e., ~xðt0Þ ¼ 0), the

following inequality holds
Z 1

0

e�aseTðsÞeðsÞds� c2
Z 1

0

wTðsÞwðsÞds: ð9Þ

3 Main Results

In this section, the asynchronous H1 filtering problem for

the switched T–S fuzzy system (2) is studied. To begin

with, three notations are introduced, i.e., Tðtk; tkþ1Þ,
T"ðtk; tkþ1Þ and T#ðtk; tkþ1Þ. Tðtk; tkþ1Þ represents the run-

ning time interval of one subsystem. T"ðtk; tkþ1Þ represents
the running time of the unmatched filter in Tðtk; tkþ1Þ.
T#ðtk; tkþ1Þ denotes the running time of the matched filter in
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Tðtk; tkþ1Þ. Therefore, during T"ðtk; tkþ1Þ, the Lyapunov

function may increase or decrease, while during

T#ðtk; tkþ1Þ, the Lyapunov function is strictly decreasing. It

can be seen from (6) that Tðtk; tkþ1Þ =

T"ðtk; tkþ1Þ
S

T#ðtk; tkþ1Þ. The conditions for the stability of

the filtering error system (6) with a weighted H1 perfor-

mance index can be summarized in the following lemma.

Lemma 1 For the given filtering error system (6), and

constants ai [ 0, bi [ 0, c[ 0 and li � 1,

8ðrðtkÞ ¼ i; rðt�k Þ ¼ jÞ 2 S � S; i 6¼ j, if there exists posi-

tive definite C1 function VrðtkÞ: Rn ! R with Vrðt0Þð~xðt0ÞÞ 	
0 satisfying

Við~xðtkÞÞ� liVjð~xðt�k ÞÞ; ð10Þ

and

_Við~xðtÞÞ�
biVið~xðtÞÞ � CðtÞ; t 2 ½tk; �tkÞ;
�aiVið~xðtÞÞ � CðtÞ; t 2 ½�tk; tkþ1Þ;

�

ð11Þ

where CðtÞ ¼ eTðtÞeðtÞ � c2wTðtÞwðtÞ, then for any

switching signal satisfying

Tai � T�
ai ¼

T ðbi þ aiÞ þ ln li

ai

; ð12Þ

the filtering error system (6) is globally uniformly asymp-

totically stable with a weighted H1 performance index

ĉ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

exp
PN

i¼1ðT�
aiaiÞ þ hmaxT

� 	

q

c, where

T ¼D max fT"ðtk; tkþ1Þ; 8k ¼ 0; 1; 2; . . .g.

Proof Here, we consider the worst situation, i.e., for an

arbitrary running time interval ½tk; tkþ1Þ (k ¼ 0; 1; 2; � � �), let
the asynchronous time T"ðtk; tkþ1Þ of this time interval take

its maximal value T . Denote hi ¼ ai þ bi and

hmax ¼ maxfhig. 8t 2 ½tk; tkþ1Þ, integrating (11), we have

Vð~xðtÞÞ� e�aiðt�tk�T ÞþbiT Vð~xðtkÞÞ �
Z t

tkþT
e�aiðt�sÞCðsÞds

� e�aiðt�tk�T Þ
Z tkþT

tk

ebiðtkþT �sÞCðsÞds

¼ e�aiðt�tkÞþhiT Vð~xðtkÞÞ �
Z t

tkþT
e�aiðt�sÞCðsÞds

�
Z tkþT

tk

e�aiðt�sÞþhiðtkþT �sÞCðsÞds:

ð13Þ

By (10) and (13), we have

Vð~xðtÞÞ � lie
�aiðt�tkÞþhiT Vð~xðt�k ÞÞ �

Z t

tkþT
e�aiðt�sÞCðsÞds

�
Z tkþT

tk

e�aiðt�sÞþhiðtkþT �sÞCðsÞds

� lie
�aiðt�tkÞ�ai�1ðtk�tk�1Þþðhiþhi�1ÞT Vð~xðtk�1ÞÞ

� lie
�aiðt�tkÞþhiT

Z tk

tk�1þT
e�ai�1ðtk�sÞCðsÞds

�

þ
Z tk�1þT

tk�1

e�ai�1ðtk�sÞþhi�1ðtk�1þT �sÞCðsÞds

�

�
Z tkþT

tk

e�aiðt�sÞþhiðtkþT �sÞCðsÞds �
Z t

tkþT
e�aiðt�sÞCðsÞds

� � � �

� lili�1 � � �l1e�aiðt�tkÞ�ai�1ðtk�tk�1Þ�����a0ðt1�t0ÞþT ðhiþhi�1þ���þh0ÞVð~xðt0ÞÞ

� lili�1 � � �l1e�aiðt�tkÞ�ai�1ðtk�tk�1Þ�����a1ðt2�t1ÞþT ðhiþ���þh1Þ

Z t1

t0þT
e�a0ðt1�sÞCðsÞds

�

þ
Z t0þT

t0

e�a0ðt1�sÞþh0ðt0þT �sÞCðsÞds�

� � � � �
Z tkþT

tk

e�aiðt�sÞþhiðtkþT �sÞCðsÞds �
Z t

tkþT
e�aiðt�sÞCðsÞds

¼ UðtÞ � KðsÞ;

ð14Þ

where

UðtÞ ¼ elnliþlnli�1þ���þlnl1�aiðt�tkÞ�ai�1ðtk�tk�1Þ�����a0ðt1�t0ÞþT ðhiþhi�1þ���þh0ÞVð~xðt0ÞÞ;

KðsÞ ¼ exp
X

N

i¼1

ðlnli þ hiT Þ � aiðt � tkÞ � � � � � a1ðt2 � t1Þ
( )

Z t1

t0þT
e�a0ðt1�sÞCðsÞds þ

Z t0þT

t0

e�a0ðt1�sÞþh0ðt0þT �sÞCðsÞds

� �

þ � � � þ
Z tkþT

tk

e�aiðt�sÞþhiðtkþT �sÞCðsÞds þ
Z t

tkþT
e�aiðt�sÞCðsÞds:

Let Nri denote Nriðt; t0Þ for simplicity. The following

equation can be obtained

UðtÞ ¼ exp
X

N

i¼1

Nrið�aiTai þ ln li þ hiT Þ
( )

Vð~xðt0ÞÞ:

ð15Þ

If supposing

�aiTai þ lnli þ hiT � 0; ð16Þ

a sufficient condition that guarantees the filtering error

system (6) to be globally uniformly asymptotically

stable can be obtained. The inequality (16) can be rewritten

as

Tai � T�
ai ¼

T ðbi þ aiÞ þ ln li

ai

: ð17Þ

Then, it can be concluded that Við~xðtÞÞ converges to zero as
t ! 1 if the inequality (17) holds.

Next, the weighted H1 performance index for the

filtering error system (6) will be established. Defining
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amax ¼
D
maxfaig and letting all ai ¼ amax, the following

inequality can be obtained

KðsÞ�HðsÞ

¼ exp
X

N

i¼1

ðln li þ hiT Þ
( )

Z t1

t0þT
e�amaxðt�sÞCðsÞds

�

þ
Z t0þT

t0

e�amaxðt�sÞþh0ðt0þT �sÞCðsÞds

�

þ � � �

þ
Z t

tkþT
e�amaxðt�sÞCðsÞds

þ
Z tkþT

tk

e�amaxðt�sÞþhiðtkþT �sÞCðsÞds:

ð18Þ

As for CðsÞ ¼ eTðsÞeðsÞ � c2wTðsÞwðsÞ, we define �KðsÞ
and K̂ðsÞ with the eTðsÞeðsÞ and c2wTðsÞwðsÞ terms,

respectively. The following equality is introduced

HðsÞ ¼ �KðsÞ � K̂ðsÞ; ð19Þ

where

�KðsÞ¼exp
X

N

i¼1

ðlnliþhiT Þ
( )

Z t1

t0þT
e�amaxðt�sÞeTðsÞeðsÞds

�

þ
Z t0þT

t0

e�amaxðt�sÞþh0ðt0þT �sÞeTðsÞeðsÞds

�

þ���

þ
Z tkþT

tk

e�amaxðt�sÞþhiðtkþT �sÞeTðsÞeðsÞds

þ
Z t

tkþT
e�amaxðt�sÞeTðsÞeðsÞds;

ð20Þ

and

K̂ðsÞ ¼ exp
X

N

i¼1

ðlnli þ hiT Þ
( )

Z t1

t0þT
e�amaxðt�sÞc2wTðsÞwðsÞds

�

þ
Z t0þT

t0

e�amaxðt�sÞþh0ðt0þT �sÞc2wTðsÞwðsÞds

�

þ � � �

þ
Z tkþT

tk

e�amaxðt�sÞþhiðtkþT �sÞc2wTðsÞwðsÞds

þ
Z t

tkþT
e�amaxðt�sÞc2wTðsÞwðsÞds:

ð21Þ

Owing to exp
PN

i¼1ðln li þ hiT Þ
� 	

� 1 and hiðtk þ T � sÞ
� 0, the following inequality can be obtained

�KðsÞ�
Z t1

t0þT
e�amaxðt�sÞeTðsÞeðsÞds

�

þ
Z t0þT

t0

e�amaxðt�sÞeTðsÞeðsÞds

�

þ � � �

þ
Z tkþT

tk

e�amaxðt�sÞeTðsÞeðsÞds

þ
Z t

tkþT
e�amaxðt�sÞeTðsÞeðsÞds

¼
Z t

t0

e�amaxðt�sÞeTðsÞeðsÞds:

ð22Þ

Since hmaxT � 0 and hiðtk þ T � sÞ� hmaxT , the following

inequality can be obtained

K̂ðsÞ� exp
X

N

i¼1

ðln li þ hiT Þ
( )

Z t1

t0þT
e�amaxðt�sÞþhmaxT c2wTðsÞwðsÞds

�

þ
Z t0þT

t0

e�amaxðt�sÞþhmaxT c2wTðsÞwðsÞds

�

þ � � �

þ exp
X

N

i¼1

ðlnli þ hiT Þ
( )

Z tkþT

tk

e�amaxðt�sÞþhmaxT c2wTðsÞwðsÞds

�

þ
Z t

tkþT
e�amaxðt�sÞþhmaxT c2wTðsÞwðsÞds

�

¼ exp
X

N

i¼1

ðln li þ hiT Þ
( )

Z t

t0

e�amaxðt�sÞþhmaxT c2wTðsÞwðsÞds:

ð23Þ

Combining (17) with (23) leads to
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K̂ðsÞ� exp
X

N

i¼1

ðT�
aiaiÞ

( )

Z t

t0

e�amaxðt�sÞþhmaxT c2wTðsÞwðsÞds:

ð24Þ

As for KðsÞ, under zero initial condition, (14) gives

KðsÞ� 0: ð25Þ

Then, combining (19), (22), (23), (24) with (25), the fol-

lowing inequality can be obtained

Z t

t0

e�amaxteTðsÞeðsÞds� exp
X

N

i¼1

ðT�
aiaiÞ þ hmaxT

( )

Z t

t0

e�amaxðt�sÞc2wTðsÞwðsÞds:

ð26Þ

Let t0 ¼ 0, integrating both sides of inequality (26) form

t ¼ 0 to 1 leads to
Z 1

0

e�amaxseTðsÞeðsÞds� ĉ2
Z 1

0

wTðsÞwðsÞds; ð27Þ

where ĉ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

exp
PN

i¼1ðT�
aiaiÞ þ hmaxT

� 	

q

c. The proof is

completed. h

Remark 1 In the above proof, the worst situation that is

the asynchronous time T"ðtk; tkþ1Þ takes its maximal value

T is considered. Therefore, the obtained results have more

or less conservativeness compared with the case that not all

the asynchronous time T"ðtk; tkþ1Þ takes its maximal value

T . In practice, if not all the asynchronous time T"ðtk; tkþ1Þ
takes its maximal value T , the filtering error system (6) can

be globally uniformly asymptotically stable with a rela-

tively small T�
ai and has a relatively better H1 performance.

Remark 2 By the same procedure as the proof of Lemma

1, we can conclude that the filtering error system (6) with

wðtÞ ¼ 0 is globally uniformly asymptotically stable for

any switching signal satisfying (12).

Lemma 2 For the given filtering error system (6), and

constants ai [ 0, bi [ 0, c[ 0 and li � 1,

8ði; jÞ 2 S � S; i 6¼ j, if there exist matrices Pi [ 0

satisfying

Pi\liPj; ð28Þ

Pi
�AiðtÞ þ �A

T

i ðtÞPi � biPi Pi
�BiðtÞ �E

T
i ðtÞ

� �c2I 0

� � �I

2

6

4

3

7

5

\0; 8t 2 ½tk;�tkÞ;

ð29Þ

PiÂiðtÞ þ Â
T

i ðtÞPi þ aiPi PiB̂iðtÞ Ê
T

i ðtÞ
� �c2I 0

� � �I

2

6

4

3

7

5

\0; 8t 2 ½�tk; tkþ1Þ;

ð30Þ

then the filtering error system (6) is globally uniformly

asymptotically stable with a weighted H1 performance

index ĉ for any switching signal satisfying (12).

Proof Choose the following Lyapunov functions for the

filtering error system (6)

Við~xðtÞÞ ¼ ~xTðtÞPi~xðtÞ: ð31Þ

First, let us consider t 2 T"ðtk; tkþ1Þ. The following equality
can be obtained from the filtering error system (6)

_Við~xðtÞÞ � biVið~xðtÞÞ þ eTðtÞeðtÞ � c2wTðtÞwðtÞ ¼ gTðtÞP
i1
gðtÞ;

where

gTðtÞ ¼ ~xTðtÞ;wTðtÞ
� �

;

P
i1
¼ Pi

�AiðtÞ þ �A
T

i ðtÞPi � biPi þ �E
T
i ðtÞ�EiðtÞ Pi

�BiðtÞ
� �c2I

" #

:

Similarly, for t 2 T#ðtk; tkþ1Þ, the following equality holds

_Við~xðtÞÞ þ aiVið~xðtÞÞ þ eTðtÞeðtÞ � c2wTðtÞwðtÞ ¼ gTðtÞP
i2
gðtÞ;

where

P
i2
¼ PiÂiðtÞ þ Â

T

i ðtÞPi þ aiPi þ Ê
T

i ðtÞÊiðtÞ PiB̂iðtÞ
� �c2I

" #

:

Using the Schur’s complement, it can be concluded that the

inequalities (29) and (30) imply Pi1 \0 and Pi2 \0. Let

CðtÞ ¼ eTðtÞeðtÞ � c2wTðtÞwðtÞ, the following inequality

can be obtained

_Við~xðtÞÞ�
biVið~xðtÞÞ � CðtÞ; t 2 T"ðtk; tkþ1Þ;
�aiVið~xðtÞÞ � CðtÞ; t 2 T#ðtk; tkþ1Þ:

�

For Pi\liPj, it can be obtained

Við~xðtkÞÞ\liVjð~xðt�k ÞÞ:

By Lemma 1, it can be concluded that the filtering error

system (6) is globally uniformly asymptotically stable with

a weighted H1 performance index ĉ for any switching

signal satisfying (12). The proof is completed. h

In Lemma 2, the filter parameter matrices are coupled

with the matrix variable Pi in (29) and (30). Therefore, it is

difficult to use Lemma 2 to design the asynchronous H1
filter directly. To overcome this problem, a decoupling

technique is introduced in the following lemma.
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Lemma 3 Let ai [ 0, bi [ 0, c[ 0 and li � 1 be given

constants. 8ði; jÞ 2 S � S; i 6¼ j, if there exist matrices �Pi1,
�Pi2, �Pi3, AFiðtÞ, BFiðtÞ, EFiðtÞ, L, R and X satisfying

�Pi ¼
�Pi1

�Pi2

� �Pi3

� �

[ 0; �Pi � li
�Pj; ð32Þ

Ui11 Ui12 Ui13 Ui14 Ui15 ET
i ðtÞ

� Ui22 Ui23 Ui24 Ui25 �ET
FjðtÞ

� � Ui33 Ui34 Ui15 0

� � � Ui44 Ui25 0

� � � � �c2I 0

� � � � � �I

2

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

5

\0; ð33Þ

and

Wi11 Wi12 Wi13 Wi14 Wi15 ET
i ðtÞ

� Wi22 Wi23 Wi24 Wi25 �ET
FiðtÞ

� � Wi33 Wi34 Wi15 0

� � � Wi44 Wi25 0

� � � � �c2I 0

� � � � � �I

2

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

5

\0; ð34Þ

where

Ui11 ¼ AT
i ðtÞL þ BFjðtÞCiðtÞ þ LT AiðtÞ þ CT

i ðtÞBT
FjðtÞ � bi

�Pi1;

Ui12 ¼ AFjðtÞ þ AT
i ðtÞR þ CT

i ðtÞBT
FjðtÞ � bi

�Pi2;

Ui13 ¼ �Pi1 � LT þ AT
i ðtÞL þ CT

i ðtÞBT
FjðtÞ;

Ui14 ¼ �Pi2 � XT þ AT
i ðtÞR þ CT

i ðtÞBT
FjðtÞ;

Ui15 ¼ LT BiðtÞ þ BFjðtÞDiðtÞ; Ui22 ¼ AFjðtÞ þ AT
FjðtÞ � bi

�Pi3;

Ui23 ¼ �P
T
i2 � RT þ AT

FjðtÞ; Ui24 ¼ �Pi3 � XT þ AT
FjðtÞ;

Ui33 ¼ �L � LT ; Ui34 ¼ �R � XT ; Ui44 ¼ �X � XT ;

Wi11 ¼ AT
i ðtÞL þ BFiðtÞCiðtÞ þ LT AiðtÞ þ CT

i BT
FiðtÞ þ ai

�Pi1;

Wi12 ¼ AFiðtÞ þ AT
i ðtÞR þ CT

i ðtÞBT
FiðtÞ þ ai

�Pi2;

Wi13 ¼ �Pi1 � LT þ AT
i ðtÞL þ CT

i ðtÞBT
FiðtÞ;

Wi15 ¼ LT BiðtÞ þ BFiðtÞDiðtÞ;
Wi23 ¼ �P

T
i2 � RT þ AT

FiðtÞ; Wi24 ¼ �Pi3 � XT þ AT
FiðtÞ;

Wi33 ¼ �L � LT ; Wi34 ¼ �R � XT ; Wi44 ¼ �X � XT :

then, we can conclude that the inequalities (28), (29) and

(30) hold.

Proof In order to decouple the matrix variables Pi and

filter parameter matrices, we introduce a slack matrix

Q. Moreover, introducing slack matrices can also reduce

the design conservativeness [15]. Similar as in [41], by

introducing a slack matrix Q, we introduce the following

inequalities

P
i3

Pi � QT þ �A
T

i ðtÞQ QT �BiðtÞ �E
T
i ðtÞ

� �Q � QT QT �BiðtÞ 0

� � �c2I 0

� � � �I

2

6

6

6

6

4

3

7

7

7

7

5

\0; ð35Þ

P
i4

Pi � QT þ Â
T

i ðtÞQ QT B̂iðtÞ Ê
T

i ðtÞ

� �Q � QT QT B̂iðtÞ 0

� � �c2I 0

� � � �I

2

6

6

6

6

6

4

3

7

7

7

7

7

5

\0; ð36Þ

where

P
i3
¼ QT �AiðtÞ þ �A

T

i ðtÞQ � biPi;

P
i4
¼ QT ÂiðtÞ þ Â

T

i ðtÞQ þ aiPi:

Multiplying (35) from the left and right, respectively, by
�XiðtÞ and its transpose. Similarly, multiplying (36) from the

left and right, respectively, by X̂iðtÞ and its transpose,

where

�XiðtÞ ¼
I �A

T

i ðtÞ 0 0

0 �B
T
i ðtÞ I 0

0 0 0 I

2

6

4

3

7

5

; X̂iðtÞ ¼
I Â

T

i ðtÞ 0 0

0 B̂
T

i ðtÞ I 0

0 0 0 I

2

6

6

4

3

7

7

5

:

Then, we can conclude that (29) and (30) hold. If the

conditions in (35) and (36) hold, the matrix Q is nonsin-

gular. Partition the matrix Q as

Q ¼
Q1 Q2

Q4 Q3

� �

: ð37Þ

Because of our consideration about a full-order filter, Q2

and Q4 are both square. Without loss of generality, Q3 and

Q4 are assumed to be perturbed, respectively, by matrices

DQ3 and DQ4. The matrices DQ3 and DQ4 are norms

bounded, and the norm bounds are sufficiently small. Then

Q3 þ DQ3 and Q4 þ DQ4 are nonsingular and satisfy (35)

and (36). Define some matrices as follows

q ¼
I 0

0 Q�1
3 Q4

� �

; �Pi ¼
�Pi1

�Pi2

� �Pi3

� �

¼ qT Piq[ 0;

L ¼ Q1; R ¼ Q2Q�1
3 Q4; X ¼ QT

4Q�T
3 Q4

ð38Þ

and

AFiðtÞ BFiðtÞ
EFiðtÞ 0

� �

¼ QT
4 0

0 I

� �

AfiðtÞ BfiðtÞ
EfiðtÞ 0

� �

Q�1
3 Q4 0

0 I

� �

:

ð39Þ
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Performing a congruence transformation to (35) and (36)

by the diagonal matrix diagðq1; IÞ with q1 = diag(q, q, I),

the following inequalities can be obtained

P
i5

P
i6

qT QT �BiðtÞ qT �E
T
i ðtÞ

� �qTðQ þ QTÞq qT QT �BiðtÞ 0

� � �c2I 0

� � � �I

2

6

6

6

6

4

3

7

7

7

7

5

\0; ð40Þ

P
i7

P
i8

qT QT B̂iðtÞ qT Ê
T

i ðtÞ

� �qTðQ þ QTÞq qT QT B̂iðtÞ 0

� � �c2I 0

� � � �I

2

6

6

6

6

6

4

3

7

7

7

7

7

5

\0; ð41Þ

where

P
i5
¼ qT QT �AiðtÞ þ �A

T

i ðtÞQ � biPi

h i

q;

P
i6
¼ qT Pi � QT þ �A

T

i ðtÞQ
h i

q;

P
i7
¼ qT QT ÂiðtÞ þ Â

T

i ðtÞQ þ aiPi

h i

q;

P
i8
¼ qT Pi � QT þ Â

T

i ðtÞQ
h i

q:

Considering (35)–(39) and (6), it can be concluded that

(40) and (41) imply (33) and (34), respectively. Moreover,

performing a congruence transformation to Pi � liPj by the

matrix q, it can be obtained

qT Piq� liq
T Pjq , �Pi � li

�Pj: ð42Þ

Then, it can be concluded that (28)–(30) hold if (32)–(34)

hold. The proof is completed. h

Based on the above lemmas, a set of mode-dependent

filters will be designed to estimate the output of the swit-

ched T–S fuzzy system (2).

Theorem 1 For the given filtering error system (6), and

constants ai [ 0, bi [ 0, c[ 0 and li � 1,

8ði; jÞ 2 S � S; i 6¼ j, if there exist matrices �Pi, AFim, BFim,

EFim, L, R and X satisfying

�Pi ¼
�Pi1

�Pi2

� �Pi3

� �

[ 0; ð43Þ

�Pi � li
�Pj; ð44Þ

�Hijml\0; ð45Þ

Ĥiiml þ Ĥiilm\0; m� l; ð46Þ

where

�Himl ¼

�Ui11
�Ui12

�Ui13
�Ui14

�Ui15 ET
im

� �Ui22
�Ui23

�Ui24
�Ui25 �ET

Fjl

� � �Ui33
�Ui34

�Ui15 0

� � � �Ui44
�Ui25 0

� � � � �c2I 0

� � � � � �I

2

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

5

;

Ĥiml ¼

Ŵi11 Ŵi12 Ŵi13 Ŵi14 Ŵi15 ET
im

� Ŵi22 Ŵi23 Ŵi24 Ŵi25 �ET
Fil

� � Ŵi33 Ŵi34 Ŵi15 0

� � � Ŵi44 Ŵi25 0

� � � � �c2I 0

� � � � � �I

2

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

5

;

�Ui11 ¼ AT
imL þ BFjlCim þ LT Aim þ CT

imBT
Fjl � bi

�Pi1;

�Ui12 ¼ AFjl þ AT
imR þ CT

imBT
Fjl � bi

�Pi2;

�Ui13 ¼ �Pi1 � LT þ AT
imL þ CT

imBT
Fjl;

�Ui14 ¼ �Pi2 � XT þ AT
imR þ CT

imBT
Fjl;

�Ui15 ¼ LT Bim þ BFjlDim; �Ui22 ¼ AFjl þ AT
Fjl � bi

�Pi3;

�Ui23 ¼ �P
T
i2 � RT þ AT

Fjl;
�Ui24 ¼ �Pi3 � XT þ AT

Fjl;

�Ui25 ¼ RT Bim þ BFjlDim;

�Ui33 ¼ �L � LT ; �Ui34 ¼ �R � XT ; �Ui44 ¼ �X � XT ;

Ŵi11 ¼ AT
imL þ BFilCim þ LT Aim þ CT

imBT
Fil þ ai

�Pi1;

Ŵi12 ¼ AFil þ AT
imR þ CT

imBT
Fil þ ai

�Pi2;

Ŵi13 ¼ �Pi1 � LT þ AT
imL þ CT

imBT
Fil;

Ŵi14 ¼ �Pi2 � XT þ AT
imR þ CT

imBT
Fil;

Ŵi15 ¼ LT Bim þ BFilDim; Ŵi22 ¼ AFil þ AT
Fil þ ai

�Pi3;

Ŵi23 ¼ �P
T
i2 � RT þ AT

Fil; Ŵi24 ¼ �Pi3 � XT þ AT
Fil;

Ŵi25 ¼ RT Bim þ BFilDim;

Ŵi33 ¼ �L � LT ; Ŵi34 ¼ �R � XT ; Ŵi44 ¼ �X � XT ;

then the filtering error system (6) is globally uniformly

asymptotically stable with a weighted H1 performance

index ĉ for any switching signal satisfying (12). Further-

more, the filter matrices are given as

Afim Bfim

Efim 0

� �

¼ X�T 0

0 I

� �

AFim BFim

EFim 0

� �

: ð47Þ

Proof Denote the left side of (33) and (34) as �HiðtÞ,
ĤiðtÞ, respectively. If the conditions in Theorem 1 hold,

the following inequalities can be obtained

�HiðtÞ ¼
X

r

m¼1

X

r

l¼1

himðtÞhjlðtÞ �Hijml\0;

and
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ĤiðtÞ ¼
X

r

m¼1

X

r

l¼1

himðtÞhilðtÞĤiiml

¼
X

r

m¼1

h2
imðtÞĤiimm þ

X

r

m¼1

X

r

m\l

himðtÞhilðtÞ

ðĤiiml þ ĤiilmÞ\0:

From Lemmas 1, 2 and 3, it can be concluded that the

asynchronous H1 filter design problem for the switched T–

S fuzzy system (2) is solved.

Finally, by (39), the filter matrices can be obtained as

follows

Afim Bfim

Efim 0

� �

¼ Q�T
4 0

0 I

� �

AFim BFim

EFim 0

� �

Q�1
4 Q3 0

0 I

� �

¼ Q�1
4 Q3


 ��1
X�T 0

0 I

" #

AFim BFim

EFim 0

� �

Q�1
4 Q3 0

0 I

� �

:

ð48Þ

Then, the filter matrices Afim, Bfim and Efim in (5) can be

written as (48). Setting Q�1
4 Q3 ¼ I, we can obtain (47).

Then, the filter matrices in (5) can be constructed by (47).

The proof is completed. h

Remark 3 Theorem 1 provides a sufficient condition for

the existence of the asynchronous H1 filter for the swit-

ched T–S fuzzy system. If (45) in Theorem 1 is removed,

Theorem 1 can also be used to study the H1 filter design

problem for the switched T–S fuzzy system without

asynchronous switching. Then, it can be concluded that the

filtering error system without asynchronous switching is

globally uniformly asymptotically stable with a weighted

H1 performance index ĉ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

exp
PN

i¼1ðT�
aiaiÞ

� 	

q

c for any

switching signal satisfying Tai � T�
ai ¼

lnli

ai
.

Remark 4 The conclusions of Theorem 1 describe how

to obtain the filter gains for switched T–S fuzzy systems

with asynchronous switching. All of these conditions have

a general form for the asynchronous filter design. There-

fore, the presented approach in this paper can also be

applied to handle the asynchronous H1 filtering problem

for other switched systems, such as switched time-delay

systems, linear switched systems.

Remark 5 All the parameters (ai, bi and li) of Theorem

1 have their physical meaning. Specifically speaking, the

parameter ai [ 0 denotes the decline rate of the Lyapunov

function, which corresponds to the convergence rate of the

switched system in the synchronous state. The parameter

bi [ 0 denotes the increasing rate of the Lyapunov func-

tion when the switched system is running in the asyn-

chronous state. The parameter li � 1 represents the

increasing rate bound from the j subsystem to the

i subsystem. In practice, all these parameters can be

designed in a proper range. The design of these parameters

increases the flexibility of our approach.

4 Example

In this section, a practical example is used to show the

effectiveness of the obtained results. Consider a continuous

stirred tank reactor where an exothermic, irreversible

reaction of the form A ! B happens. There are two dif-

ferent feeding streams to feed the reactor, and these two

feeding streams are selected by a selector. In other words,

the reactor has two modes with respect to the feeding

stream. For each mode of operation, the mathematical

model for the process has the following differential equa-

tions [29].

_CA ¼ Fr

V
ðCAr � CAÞ � k0e

�E=RTR CA;

_TR ¼ Fr

V
ðTAr � TRÞ þ

�MH

qcp

k0e
�E=RTR CA þ Qr

qcpV
;

ð49Þ

where CA represents the concentration of the species A, TR

denotes the temperature of the reactor, Qr is the heat

removed from the reactor, V is the volume of the reactor,

k0;E;MH are the pre-exponential constant, the activation

energy, and enthalpy of the reaction, cp, q are the heat

capacity and fluid density in the reactor, and rðtÞ 2 f1; 2g
is the switching signal which is a discrete variable. The

values of all process parameters can be found in [29].

The system (49) is a nonlinear switched system. Sub-

stituting the process parameters into equation (49), the

following two subsystems can be obtained

Subsystem 1: ðr ¼ 1Þ
_CA ¼ �0:0334CA � 1:2� 109e�10000TR CA þ 0:026386;

_TR ¼ �0:0334TR þ 2:4� 1011e�10000TR CA þ 11:77684þ Qr

23:9
;

Subsystem 2: ðr ¼ 2Þ
_CA ¼ �0:0167CA � 1:2� 109e�10000TR CA þ 0:0167;

_TR ¼ �0:0167TR þ 2:4� 1011e�10000TR CA þ 5:177þ Qr

23:9
:

When Qr ¼ 0, the two steady states can be easily obtained

as ðCA; TRÞ1 ¼ ð0:57; 395:3Þ and ðCA; TRÞ2 ¼
ð0:738; 509:12Þ.

Using the T–S fuzzy model [13] and from [29], the

nonlinear switched system (49) can be approximated by the

following subsystem Sr:

Subsystem Sr:
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Rule 1: IF the concentration of the species A is Mr1ðx1Þ
(i.e.,x1ðtÞ is 0.57), THEN
d _xrðtÞ ¼ Ac

r1dxðtÞ; ð50Þ

Rule 2: IF the concentration of the species A is Mr2ðx1Þ
(i.e.,x1ðtÞ is 0.738),THEN

d _xrðtÞ ¼ Ac
r2dxðtÞ; ð51Þ

where r 2 f1; 2g represents the subsystem subscript,

xrðtÞ ¼ ½xT
r1ðtÞ; xT

r2ðtÞ�
T ¼ ½CT

A ; TT
R �

T
, dxrðtÞ ¼ xrðtÞ � xd

r,

and xd
r is the stationary point of the subsystem r. It was

shown in [29] that the Ac
r1 and Ac

r2 have the following

values

Ac
11 ¼

�4:5803� 10�2 6:6748� 10�5

2:4807 �3:61� 10�3

� �

;

Ac
12 ¼

�3:5728 5:1826� 10�5

707:89 �0:010268

� �

;

Ac
21 ¼

�0:029103 5:1833� 10�5

2:4807 �0:0036045

� �

;

Ac
22 ¼

�3:564 5:1826� 10�5

706:13 �0:010265

� �

:

Note that both of the models in (50) and (51) are unstable.

However, in order to use the filtering techniques, all the

models of the switched T–S fuzzy system (2) should be

stable. Different from [29], we assume that each model is

firstly stabilized by some control law and get a closed-loop

switched system d _xrðtÞ ¼ ArmdxðtÞ. Then, the closed-loop

switched T–S fuzzy system can be obtained with the fol-

lowing matrices

A11 ¼
�0:0458 �0:002

2:4752 �1:436

� �

; A12 ¼
�3:5728 �0:002

707:8839 �1:658

� �

;

A21 ¼
�0:291 �0:002

2:4752 �1:437

� �

; A22 ¼
�3:564 �0:002

706:1236 �1:743

� �

:

Suppose other system parameters to be

B11 ¼ B12 ¼ B21 ¼ B22 ¼ ½0:01; 0�;
C11 ¼ C12 ¼ C21 ¼ C22 ¼ ½0 0:01�;
D11 ¼ D12 ¼ D21 ¼ D22 ¼ 0;

E11 ¼ E12 ¼ E21 ¼ E22 ¼ ½1 0�:

So the measurements are y1ðtÞ ¼ 0:01x12ðtÞ, y2ðtÞ ¼
0:01x22ðtÞ, and the signals to be estimated are

z1ðtÞ ¼ x11ðtÞ, z2ðtÞ ¼ x21ðtÞ.
The normalized membership functions for Rule 1 and

Rule 2 of the two subsystems are taken as

h11ðx1Þ ¼ h21ðx1Þ ¼
arctanð50 � ðx1 � 0:654ÞÞ þ p=2

p
;

h12ðx1Þ ¼ 1� h11ðx1Þ; h22ðx1Þ ¼ 1� h21ðx1Þ:

8

<

:

Let a1 ¼ 0:02, a2 ¼ 0:01, b1 ¼ 0:012, b2 ¼ 0:01,

l1 ¼ 1:5, l2 ¼ 1:5, c ¼ 2, T ¼ 5, and

Ef11 ¼ Ef12 ¼ Ef21 ¼ Ef22 ¼ ½1 0�. By Theorem 1, we

can get T�
a1 ¼ 28:2733, T�

a2 ¼ 35:3643 and ĉ ¼ 3:6826.

Using the LMI toolbox to solve the LMIs (43)-(46), and by

(47), the filter parameters can be obtained as

Af11 ¼
�0:9609 1:1371

62:0370 �235:6692

� �

;

Af12 ¼
�1:1573 1:1411

70:4219 �236:6697

� �

;

Af21 ¼
�0:9762 1:1363

59:9555 �235:6900

� �

;

Af22 ¼
�1:2888 1:1410

81:7358 �236:5881

� �

;

Bf11 ¼
114

�23462

� �

; Bf12 ¼
114

�23568

� �

;

Bf21 ¼
114

�23460

� �

; Bf22 ¼
115

�23560

� �

:

The initial conditions are assumed to be xðt0Þ ¼
½0:4; 404:9�T and xf ðt0Þ ¼ ½0:5; 400�T . The disturbance

input is assumed to be wðtÞ ¼ 0:01 expð�0:007tÞ cosð0:5tÞ.
With the consideration of asynchronous behavior, the

output signal z(t) of the switched T–S fuzzy system and the

estimated signal zf ðtÞ of the filter are shown in Figure 1.

The filtering error e(t) of the filtering error system with

asynchronous behavior is given in Figure 2. As shown in

Figure 1 that after every switching, the output signal zf ðtÞ
of the designed filter can estimate the output signal z(t) of

the switched T–S fuzzy system quickly. The simulation

results demonstrate the effectiveness of our method.

5 Conclusion

In this paper, the H1 filtering problem has been investi-

gated for the switched T–S fuzzy systems with asyn-

chronous switching. Every subsystem of the studied

switched systems is represented by the T–S fuzzy model.

Using the multiple Lyapunov functions approach and

mode-dependent average dwell time technique, a more

general result is obtained. Based on the obtained results,

the desired filters are designed to guarantee the filtering

error system to be globally uniformly asymptotically

stable with a weighted H1 performance index. It is also

remarked that the obtained results can be reduced to study
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Fig. 1 Output signal z(t) of the switched T–S fuzzy system and the output signal zf ðtÞ of the designed filter
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Fig. 2 The filtering error e(t)

1480 International Journal of Fuzzy Systems, Vol. 20, No. 5, June 2018

123



the fuzzy H1 filtering problem for switched systems

without asynchronous switching. Finally, a practical

example is provided to illustrate the effectiveness of the

proposed method.

In our work, all the premise variables are assumed to be

measurable. Using the sector nonlinearity approach to

derive a T–S formulation from a nonlinear model, the T–S

fuzzy systems with unmeasurable premise variables are

likely to be considered. This case is much more complex

than the condition considered in our work. How the asyn-

chronous filter design for switched T–S fuzzy systems in

this case can be implemented has to be left as a future

work.
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