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Abstract As an extension of hesitant fuzzy element,

probabilistic hesitant fuzzy element (PHFE) has received

increasing attention. However, some important issues in

PHFE utilization remain to be addressed. This study aims

to build a consensus among the decision makers for

probabilistic hesitant fuzzy preference relations (PHFPRs)

with expected additive consistency. First, several general-

ized operations that are suitable for PHFPRs are defined.

Then, expected additive consistent PHFPRs are introduced,

and a theorem is proposed to obtain them. Second, the

consistency index is defined based on the Hausdorff dis-

tance of PHFEs to measure whether individual PHFPRs

exhibit acceptable expected additive consistency. If not,

then an automatic iterative algorithm is designed to obtain

acceptable ones. Third, group PHFPR is obtained based on

the proposed generalized operations, and then the consen-

sus index is determined according to the Hausdorff dis-

tance. If at least one of the consensus levels of the decision

makers is lower than a given threshold, then an automatic

iterative algorithm is used to update the PHFPRs to reach a

predefined consensus level. Finally, a numerical example is

provided, and comparative analyses with existing methods

are performed to demonstrate the validity of the proposed

method in addressing group decision-making problems.

Keywords Probabilistic hesitant fuzzy element � Group
decision making � Probabilistic hesitant fuzzy preference

relations � Expected additive consistency � Consensus

1 Introduction

Group decision making (GDM) is a common activity

among humans and is widely applied to many fields [1–3].

For typical multi-criteria group decision-making

(MCGDM) problems, a group of experts is invited to

participate in finding the best among several alternatives.

In decision-making processes, experts provide their

assessments for alternatives with respect to the predeter-

mined criteria. Afterward, a ranking of alternatives can be

obtained based on the evaluation information of experts. In

the MCGDM process, a group of experts reaching a high

degree of consensus among their opinions is preferable [4].

For this reason, the consensus reaching algorithms for

handling MCGDM problems has been studied deeply

[5–9]. For example, Wu et al. [5] built a consensus model

under social network with distributed linguistic trust.

Zhang et al. [6] constructed a minimum-cost consensus

model based on random opinions. Quesada et al. [7] pre-

sented an expert weighting methodology for consensus

reaching. Zhang et al. [8] established a consensus model

with heterogeneous information according to individual

concerns and satisfactions. Moreover, an overview of

consensus models under fuzzy environments was investi-

gated by Herrera-Viedma et al. [10].

With the contribution of fuzzy set and hesitant fuzzy

linguistic term set, which were investigated by Liu and
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Liao [11], and Liao et al. [12], some scholars focused on

studying the properties of hesitant fuzzy set (HFS) [13].

The primary advantage of HFS is that they can represent

the hesitant information of experts. During assessments,

experts are occasionally hesitant about certain values, that

is, they cannot determine which value can best express

their assessments of alternatives. In such case, hesitant

values are used to express their assessments. Thus, the

information represented by HFS makes describing uncer-

tain evaluation more convenient than using fuzzy set.

Fuzzy preference relations can accomplish diverse prop-

erties, and some of the properties have been introduced into

consensus models for addressing MCGDM problems [7].

Consequently, several types of preference relations have

been developed, including hesitant fuzzy preference rela-

tions (HFPRs) [14, 15], hesitant multiplicative preference

relations [16], hesitant fuzzy linguistic preference relations

[17], and hesitant intuitionistic fuzzy preference relations

[18]. Although the aforementioned preference relations

have been extensively studied, controversies remain. For

example, Xu et al. [19] pointed out that a shortcoming in

the normalization process was introduced in [17]; they then

proposed a method for normalizing HFPRs. Meng and An

[20] identified shortcomings in [17, 21] and then con-

structed 0–1 mixed programming models to derive priority

weight vectors. The shortcoming of HFPRs was also pre-

sented in [22].

To overcome the shortcoming of HFSs in representing

evaluation information, extended fuzzy sets are developed.

Zhu [23] introduced the concept of probabilistic hesitant

fuzzy set (PHFS). The primary advantage of PHFS is that it

not only represents the hesitant information of experts, but

also the corresponding probabilities of hesitant informa-

tion. Consequently, PHFS has gained the attention of

scholars. Xu and Zhou [24] established the score, deviation

function, comparison laws, and basic operations of PHFS.

Li and Wang [25] presented an information integration

method based on statistical knowledge. Zhang et al. [26]

reported that the probabilistic hesitant fuzzy element

(PHFE) might have missing values and then proposed an

improved PHFS. Wang and Li [27] presented the correla-

tion coefficient of PHFE. Similar studies were also con-

ducted in [28–30].

To provide more accurate assessment information than

HFPRs, the concept of probabilistic hesitant fuzzy prefer-

ence relations (PHFPRs) have been recently proposed by

scholars [31, 32], and MCGDM methods based on con-

sensus with PHFPRs have been developed in

[23, 31, 33–35]. Zhou and Xu [31] discussed consensus

among decision makers under uncertain PHFPRs based on

additive consistency. Wu et al. [26] developed consensus

measures based on the distance between individuals

PHFPRs. A consensus model was constructed for large-

scale group decision making with probabilistic hesitant

fuzzy information and changeable clusters by Wu and Xu

[33]. Zhou and Xu [34] presented the probability calcula-

tion and element optimization of PHFPRs based on

expected consistency. Zhu [23] discussed individual con-

sistency and consensus level based on multiplicative con-

sistency. Zhu et al. [35] developed probabilistic hesitant

multiplicative preference relations that used the 1/9–9 scale

instead of the 0.1–0.9 scale to express the membership

degree in PHFEs.

Although the concept of PHFPRs has been introduced

and decision-making methods have been proposed by some

scholars, some important issues remain to be solved. (1)

Existing works have mainly utilized expected consistency

to develop PHFPRs [23, 31, 32, 34]. PHFPRs have been

translated into fuzzy preference relations with expected

consistency. This method is simple and easy to implement,

but it cannot reflect the hesitancy of decision makers. (2)

When the expected consistency of PHFPR was unaccept-

able, iterative optimization algorithms were developed in

[31, 34], which provided formulas to calculate the cor-

rected expected values in the proposed algorithms. Since

every element in PHFPR has two parts: ci and pi, they

should be considered simultaneously. However, the cor-

rected expected value developed in [31, 34] considered

only the membership degree part ci, whereas the proba-

bility part pi received insufficient attention. (3) The

Euclidean distance was defined to obtain the consistency

index [28]. This distance required all PHFEs offered by

decision makers to have the same number of elements.

Therefore, a normalization process is necessary. However,

the normalization process will derive different priority

weight vectors with respect to different PHFEs because the

normalization process will obtain various normalization

results. (4) Consensus is an essential aspect of group

decision-making problems [36]. However, some studies

[28, 35] considered only the consistency of preference

relations and provided less attention to consensus in the

decision-making process.

To overcome the aforementioned limitations, the current

study focuses on building consensus among PHFPRs with

expected additive consistency and developing an effective

method to address probabilistic hesitant MCGDM prob-

lems. The main objectives of this study are summarized as

follows.

Table 1 Consistency thresholds of PHFPRs

n ¼ 3 n ¼ 4 n ¼ 5 n ¼ 6 n ¼ 7 n ¼ 8

0.9118 0.8789 0.8604 0.8490 0.8414 0.8357
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(1) To better reflect the hesitancy of decision makers in

utilizing expected consistency to develop PHFPRs.

Expected additive consistent PHFPRs are proposed

in this study. Moreover, a theorem is introduced to

obtain expected additive consistent PHFPRs.

(2) To overcome the shortcoming of iterative optimiza-

tion algorithms that merely used the membership

degree part ci. In the current study, two automatic

iterative algorithms are designed to improve indi-

vidual consistency and consensus among decision

makers. The adjusted formulas developed in the

algorithms not only consider the membership degree

part ci, but also the probability part pi.

(3) The automatic iterative Algorithm 2 developed in

this study not only considers the

acceptable consistency of PHFPRs, but also consen-

sus in the group decision-making process, which can

overcome the shortcoming of iterative optimization

algorithms that considered only consistency.

(4) The Hausdorff distance is defined to obtain the

consistency index. The distance developed in this

study does not require a normalization process. It can

effectively calculate the distance when two PHFEs

have different number of elements.

The remainder of the paper is organized as follows. In

Sect. 2, basic concepts related to HFS, HFPRs, and PHFS

are reviewed. In Sect. 3, expected additive consistent

PHFPRs are introduced and a theorem is provided to obtain

expected additive consistent PHFPRs. In Sect. 4, two

automatic iterative algorithms are designed to improve

Fig. 1 Group decision-making process framework with PHFPRs
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individual consistency and consensus among the decision

makers. In Sect. 5, the proposed algorithms are applied to

investment evaluation problems, a comparative study is

conducted, and discussions are presented. Finally, conclu-

sions are provided in Sect. 6.

2 Preliminaries

In this section, basic definitions related to HFS, HFPRs,

and PHFS are reviewed.

Orlovshy [37] introduced the concept of fuzzy prefer-

ence relations (FPRs), which can be described as follows.

Definition 1 [37] Let R ¼ cij
� �

n�n
be a preference rela-

tion. Then, R is regarded as an FPR if

cij þ cji ¼ 1; cii ¼ 0:5; cij 2 ½0; 1�; i; j ¼ 1; 2; . . .; n: ð1Þ

Tanino [38] defined R as additive consistent if it satisfies

the following additive transitivity:

cij þ cjk ¼ cik þ 0:5; 8 i; j; k 2 n: ð2Þ

Theorem 1 [38] Let R ¼ cij
� �

n�n
be an additive consis-

tent FPR. Then, the following formulas are equivalent:

1. cij þ cjk ¼ cik þ 0:5, 8 i; j; k 2 n;

2. cij þ cjk þ cki ¼ cji þ ckj þ cik, 8 i; j; k 2 n;

3. cij þ cjk þ cki ¼ 3
2
, 8 i; j; k 2 n;

4. cij ¼ 1
n

Pn
k¼1 cik þ ckj

� �
� 0:5, 8 i; j; k 2 n.

To represent hesitant information, Torra [13] developed

the concept of HFS.

Definition 2 [13] Let X be a reference set. An HFS A on

X is defined in terms of function hA xð Þ. When applied to X,

the function returns a finite subset of [0, 1].

For easy understanding, Xia and Xu [39] expressed HFS

using a mathematical symbol, as follows:

A ¼ \x; hA xð Þ[ x 2 Xjf g;

where function hA xð Þ is a set of different values in [0, 1],

which represent the possible membership degrees of ele-

ment x in X to A. For convenience, hA xð Þ is called hesitant

fuzzy element (HFE).

Xia and Xu [40] first introduced the definition of

HFPRs. Afterward, a revised definition was presented by

Xu et al. in [19], which can be restated as follows.

Definition 3 [19] Let X ¼ x1; x2; . . .; xnf g be a fixed set.

Then, the HFPRs on X is presented by a matrix

H ¼ hij
� �

n�n
� X � X, where hij ¼ clij

���l ¼ 1; 2; . . .;#hij

n o

is an HFE that indicates all possible preference degrees of

the objective xi over xj. Moreover, hij should satisfy the

following conditions:

cr lð Þ
ij þ cr lð Þ

ji ¼ 1; cii ¼ 0:5; #hij ¼ #hji; i; j ¼ 1; 2; . . .; n;

ð3Þ

where #hij is the number of values in hij, and cr lð Þ
ij is the l-

th element in hij.

Remark 1 The difference of the definitions related to

HFPRs between Xia and Xu [40], and Xu et al. [19] is that

the elements in HFEs should be arranged in ascending

order in [40], whereas such arrangement is not required in

[19].

To collect the preferences of decision makers, Zhu [23]

introduced the concept of PHFS. Afterward, Zhang et al.

[26] noted several missing values in PHFE and proposed

the improved PHFS, which can be restated as follows.

Definition 4 [26] Let R be a fixed set. Then, PHFS on R

is expressed by a mathematical symbol:

A ¼ \x; hx pxð Þ[ x 2 Xjf g;

where function hx is a set of different values in [0, 1],

which is described by the probability distribution px that

denotes possible membership degrees of element x in X to

A. For convenience, hx pxð Þ is called PHFE and indicated by

hx pxð Þ¼ ci pið Þ i ¼ 1; 2; . . .;#hjf g;

where pi satisfies
P#h

i¼1 pi � 1, and it is the probability of

the possible value ci, and #h is the number of all ci pið Þ in
hx pxð Þ. If

P#h
i¼1 pi\1, then several values are missing in

PHFE. If
P#h

i¼1 pi ¼ 1, then no value is missing in PHFE. In

such case, PHFS has transformed into the concept intro-

duced in [23, 24]. No special explanation is provided in this

paper because we discuss only condition
P#h

i¼1 pi ¼ 1.

Example 1 Let X¼ x1; x2f g be a reference set, and

hx1 px1ð Þ¼ 0:2 0:3ð Þ; 0:4 0:2ð Þ; 0:5 0:1ð Þ; 0:7 0:4ð Þf g and

hx2 px2ð Þ¼ 0:3 0:1ð Þ; 0:4 0:9ð Þf g be two PHFEs of xi i ¼ 1; 2ð Þ
to a set A. Then, A can be considered a set of PHFS,

A ¼ x1; 0:2 0:3ð Þ; 0:4 0:2ð Þ; 0:5 0:1ð Þ; 0:7 0:4ð Þf gh i;f
x2; 0:3 0:1ð Þ; 0:4 0:9ð Þf gh ig:

If we disregard the probabilities of the possible values in

a PHFE, then the values have the same probability. In this

case, PHFEs are transformed into HFEs.

Xu and Zhou [24] introduced the score function for

ranking PHFEs.

Definition 5 [24] Let hx pxð Þ ¼ ci pið Þ i¼1; 2; . . .;j #hf g be

a PHFE. Then, its score function is defined as

E hx pxð Þð Þ ¼
X#h

i¼1
cipi: ð4Þ

Li and Wang [41] introduced the Hausdorff distance

between two PHFEs as follows.
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Definition 6 [41] Let hx pxð Þ ¼ ci pið Þ i¼ 1; 2;. . .;j #hxf g
and hy py

� �
¼ cj pj

� �
j¼1; 2; . . .;j #hy

� �
be two arbitrary

PHFEs. The Hausdorff distance between them is defined as

D1 hx pxð Þ; hy py
� �� �

¼ 1

2

1

#hx

X#hx

i¼1
min

cj pjð Þ2hy pyð Þ
cipi � cjpj
�� ��

(

þ 1

#hy

X#hy

j¼1
min

ci pið Þ2hx pxð Þ
cjpj � cipi
�� ��

)

:

ð5Þ

Example 2 On the basis of the data provided in Example

1 and according to Definition 6, the Hausdorff distance

between the two PHFEs is D1 hx1 px1ð Þð ; hx2 px2ð ÞÞ ¼ 0:0475.

3 Expected Additive Consistency of PHFPRs

In this section, several operations related to PHFEs are

proposed, and some concepts, including PHFPRs and

expected additive consistency of PHFPRs, are introduced.

3.1 PHFPRs

The widely applied operational laws for PHFEs were

proposed by Zhang et al. [26] and Xu and Zhou [24]. These

operational laws may be unsuitable for PHFPRs. Motivated

by the work of Zhu and Xu [42], several operations are

proposed as follows.

Definition 7 Let h pð Þ, h1 p1ð Þ, and h2 p2ð Þ be three

PHFEs, and a a[ 0ð Þ be a real number. Then, the gener-

alized operations ‘‘�,’’ ‘‘	,’’ and ‘‘
’’ are defined as

follows:

h1 p1ð Þ � h2 p2ð Þ ¼ [c1 p1ð Þ2h1 p1ð Þ;c2 p2ð Þ2h2 p2ð Þ c1 þ c2ð Þ p1p2ð Þf g;
ð6Þ

h pð Þ � a ¼ [c pð Þ2h pð Þ cþ að Þ pð Þf g; ð7Þ

h pð Þ	a ¼ [c pð Þ2h pð Þ c� að Þ pð Þf g; ð8Þ

a
 h pð Þ ¼ [c pð Þ2h pð Þ acð Þ pð Þf g: ð9Þ

Remark 2 The corresponding probability of real number a

is 1, that is, a is represented in a PHFE as a 1ð Þ. Therefore,
Eq. (7) is a special case of Eq. (6).

Remark 3 Every element in a PHFE has two parts: the

membership part ci and the corresponding probability part

pi. From the operations related to HFEs presented in Def-

inition 4 [42], the membership part c1 þ c2 obtained from

Eq. (6) is occasionally higher than 1, which is meaningless.

However, considering that the operations are involved only

in the calculation process, the final result is only slightly

influenced.

On the basis of the definition of HFPRs, PHFPRs can be

obtained in a similar manner as follows.

Definition 8 Let X ¼ x1; x2; . . .; xnf g be a fixed set, and

PHFPRs on X is presented by a matrix

H ¼ hij pij
� �� �

n�n
� X � X, where hij pij

� �
¼

clij plij

� ����l ¼ 1; 2; . . .;#hij

n o
is a PHFE that indicates all

possible probabilistic preference degrees of objective xi

over xj. Moreover, hij pij
� �

should satisfy the following

conditions:

cr lð Þ
ij þ cr lð Þ

ji ¼ 1; p
r lð Þ
ij ¼ p

r lð Þ
ji ; cii pð Þ ¼ cii 1ð Þ ¼ 0:5; #hij

¼ #hji; i; j ¼ 1; 2; . . .; n;

ð10Þ

where #hij is the number of the values in hij pij
� �

, and cr lð Þ
ij

is the l-th element in hij pij
� �

.

Remark 4 The PHFPRs introduced in Definition 8 are

similar to those in the definition presented by Zhou and

Xu[31] and Wu et al. [26]. However, a slight difference

exists. PHFEs do not need to be normalized in this study;

thus, the condition cr lð Þ
ij \cr lþ1ð Þ

ij ¼ 1; i; j ¼ 1; 2; . . .; n has

been omitted.

On the basis of the operations introduced in Definition 7

and additive transitivity, the expected additive consistent

PHFPR is defined as follows.

Definition 9 The PHFPR H ¼ hij pij
� �� �

n�n
is called an

expected additive consistent PHFPR if it satisfies the fol-

lowing formula:

E hij pij
� �� �

¼ E hik pikð Þ � hkj pkj
� �

	0:5
� �

; 8 i; j; k 2 n;

ð11Þ

where E hij pij
� �� �

and E hik pikð Þ � hkj pkj
� �

	0:5
� �

denote

the score functions of hij pij
� �

and hik pikð Þ � hkj pkj
� �

	0:5,

respectively. Equation (11) can be interpreted as follows.

For an expected additive consistent PHFPR, the averaging

preference degree of objective Vi preferred to objective Vj

is equal to the averaging preference degree of objective Vi

preferred to objective Vk. When probabilistic hesitation

emerges in judgments, add �ð Þ that of objective Vk pre-

ferred to objective Vj plus 	ð Þ 0.5.

Example 3 When a PHFPR is given,

H ¼
0:5f g 0:6 0:2ð Þ; 0:7 0:8ð Þf g 0:4 0:4ð Þ; 0:5 0:6ð Þf g

0:4 0:2ð Þ; 0:3 0:8ð Þf g 0:5f g 0:7 0:3ð Þ; 0:8 0:7ð Þf g
0:6 0:4ð Þ; 0:5 0:6ð Þf g 0:3 0:3ð Þ; 0:2 0:7ð Þf g 0:5f g

2

4

3

5:

h12 p12ð Þ ¼ f0:6ð0:2Þ; 0:7ð0:8Þg, h13 p13ð Þ �
h32 p32ð Þ	0:5 ¼ 0:1 0:28ð Þ; 0:2 0:54ð Þ; 0:3 0:18ð Þf g and

E h12 p12ð Þð Þ ¼ 0:68, E h13 p13ð Þ � h32 p32ð Þ	0:5ð Þ ¼ 0:19,

and E h12 p12ð Þð Þ 6¼ E h13 p13ð Þ � h32 p32ð Þ	0:5ð Þ. From
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Definition 9, H is not an expected additive consistent

PHFPR.

Motivated by the idea of Zhang et al. [28], the following

theorem can be developed to obtain expected additive

consistent PHFPRs.

Theorem 2 Given a PHFPR H ¼ hij pij
� �� �

n�n
. Then,

H
0 ¼ h

0

ij p
0

ij

� �� �

n�n
is an expected additive consistent

PHFPR if

h
0

ij p
0

ij

� �
¼

1

n
�n

k¼1 hik pikð Þ � hkj pkj
� �� �� �

	0:5

	 

; i; j ¼ 1; 2; . . .; n; i 6¼ j

0:5f g; otherwise

8
<

:
::

ð12Þ

Proof For any i ¼ j ¼ 1; 2; . . .; n; i 6¼ j, we have

E h
0

ij p
0

ij

� �� �
¼ E

1

n
�n

k¼1 hik pikð Þ � hkj pkj
� �� �� �

	0:5

� �

¼ 1

n
E �n

k¼1 hik pikð Þ � hkj pkj
� �� �� �

	0:5:

Furthermore,

E h
0

ik p
0

ik

� �
� h

0

kj p
0

kj

� �� �
¼ E

1

n
�n

q¼1 hiq piq
� �

� hqk pqk
� �� �� �

	0:5

� �

� 1

n
�n

q¼1 hkq pkq
� �

� hqj pqj
� �� �

	0:5
� �

¼ 1

n
E �n

q¼1 hiq piq
� �

� hqk pqk
� ���

� hkq pkq
� �

� hqj pqj
� ���

	1

¼ 1

n
E �n

q¼1 hkq pkq
� �

� hqk pqk
� �� ��

� �n
q¼1 hiq piq

� �
� hqj pqj

� �� �� ��
	1

¼ 1

n
E �n

q¼1 hkq pkq
� �

� hqk pqk
� �� �

	0:5
� ��

� E �n
q¼1 hiq piq

� �
� hqj pqj

� �� �
	0:5

� ��

¼ E
1

n
�n

q¼1 hkq pkq
� �

� hqk pqk
� �� �� �

	0:5

� �

� E
1

n
�n

q¼1 hiq piq
� �

� hqj pqj
� �� �� �

	0:5

� �

¼ 0:5� E
1

n
�n

q¼1 hiq piq
� �

� hqj pqj
� �� �� �

	0:5

� �

¼ E h
0

ij p
0

ij

� �� �
� 0:5:

Therefore, E h
0

ij p
0

ij

� �� �
¼ E h

0

iq p
0

iq

� �
� h

0

qj p
0

qj

� �
	0:5

� �
,

which indicates that H
0 ¼ h

0
ij p

0
ij

� �� �

n�n
is an expected

additive consistent PHFPR.

Hence, the proof is completed.

Example 4 Let H be the PHFPR shown in Example 3.

Then, its corresponding expected additive consistent

PHFPR H
0
can be obtained from Eq. (12) as follows:

H
0 ¼

0:5f g
0:43 0:01ð Þ; 0:47 0:11ð Þ; 0:5 0:36ð Þ

0:53 0:4ð Þ; 0:57 0:12ð Þ

( )
0:53 0:01ð Þ; 0:57 0:09ð Þ; 0:6 0:29ð Þ

0:63 0:41ð Þ; 0:67 0:2ð Þ

( )

0:57 0:01ð Þ; 0:53 0:11ð Þ; 0:5 0:36ð Þ

0:47 0:4ð Þ; 0:43 0:12ð Þ

( )

0:5f g
0:53 0:03ð Þ; 0:57 0:19ð Þ; 0:6 0:4ð Þ

0:63 0:32ð Þ; 0:67 0:06ð Þ

( )

0:47 0:01ð Þ; 0:43 0:09ð Þ; 0:4 0:29ð Þ

0:37 0:41ð Þ; 0:33 0:2ð Þ

( )
0:47 0:03ð Þ; 0:43 0:19ð Þ; 0:4 0:4ð Þ

0:37 0:32ð Þ; 0:33 0:06ð Þ

( )

0:5f g

2

66666666664

3

77777777775

:

h
0

12 p
0

12

� �
is used as an example. Then, from Eq. (12), we

derive

h
0

12 p
0

12

� �
¼ 1

3
�3

k¼1 h1k � hk2ð Þ
� �

	0:5

	 


¼ 1

3
h11 � h12ð Þ � h12 � h22ð Þ � h13 � h32ð Þð Þ	0:5

	 


¼ 1

3
1:1 0:2ð Þ; 1:2 0:8ð Þð Þ � 1:1 0:2ð Þ; 1:2 0:8ð Þð Þð

	

� 0:6 0:28ð Þ; 0:7 0:54ð Þ; 0:8 0:18ð Þð ÞÞ	0:5




¼ 1

3
2:2 0:04ð Þ; 2:3 0:32ð Þ; 2:4 0:64ð Þð Þð

	

� 0:6 0:28ð Þ; 0:7 0:54ð Þ; 0:8 0:18ð Þð ÞÞ	0:5




¼ 1

3
2:8 0:01ð Þ; 2:9 0:11ð Þ; 3 0:36ð Þ; 3:1 0:4ð Þ; 3:2 0:12ð Þð Þ	0:5

	 


¼
	

0:93 0:01ð Þ; 0:97 0:11ð Þ; 1 0:36ð Þ; 1:03 0:4ð Þ; 1:07 0:12ð Þð Þ	0:5




¼ 0:43 0:01ð Þ; 0:47 0:11ð Þ; 0:5 0:36ð Þ; 0:53 0:4ð Þ; 0:57 0:12ð Þ
	 


:

Remark 5 Occasionally, the membership values in

PHFEs obtained from the formula proposed in Theorem 2

will lie outside the range of [0, 1], but in an interval of

½�a; 1þ a�, a[ 0ð Þ. In this case, a transformation function

f xð Þ ¼ xþa
1þ2a

developed by Herrera-Viedma et al. [43] is

applied to normalize the obtained values.

Example 5 Let H be a PHFPR, which is shown as

follows:

H ¼
0:5f g 0:1 0:2ð Þ; 0:2 0:8ð Þf g 0:1 0:4ð Þ; 0:2 0:6ð Þf g

0:9 0:2ð Þ; 0:8 0:8ð Þf g 0:5f g 0:8 0:3ð Þ; 0:9 0:7ð Þf g
0:9 0:4ð Þ; 0:8 0:6ð Þf g 0:2 0:3ð Þ; 0:2 0:7ð Þf g 0:5f g

2

64

3

75:

Then, its corresponding expected additive consistent

PHFPR H
0
can be obtained according to Eq. (12) as

follows:

H
0 ¼

0:5f g
�0:03 0:01ð Þ;0 0:11ð Þ;0:03 0:36ð Þ

0:07 0:4ð Þ;0:1 0:12ð Þ

( )
0:2 0:01ð Þ;0:23 0:09ð Þ;0:27 0:29ð Þ

0:3 0:41ð Þ;0:33 0:2ð Þ

( )

1:03 0:01ð Þ;1 0:11ð Þ;0:97 0:36ð Þ

0:93 0:4ð Þ;0:9 0:12ð Þ

( )

0:5f g
0:5 0:03ð Þ;0:53 0:19ð Þ;0:57 0:4ð Þ

0:6 0:32ð Þ;0:63 0:06ð Þ

( )

0:8 0:01ð Þ;0:77 0:09ð Þ;0:73 0:29ð Þ

0:7 0:41ð Þ;0:67 0:2ð Þ

( )
0:5 0:03ð Þ;0:47 0:19ð Þ;0:43 0:4ð Þ

0:4 0:32ð Þ;0:37 0:06ð Þ

( )

0:5f g

2

666666
66664

3

777777
77775

:

Evidently, the membership values in H
0
lie in the

interval of ½�0:03; 1:03�, where a ¼ 0:03. When the

transformation function f xð Þ ¼ xþa
1þ2a

is utilized, the nor-

malized expected additive consistent PHFPR HN can be

obtained as follows:
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HN¼

0:5f g
0 0:01ð Þ;0:03 0:11ð Þ;0:06 0:36ð Þ

0:09 0:4ð Þ;0:12 0:12ð Þ

( )
0:22 0:01ð Þ;0:25 0:09ð Þ;0:28 0:29ð Þ

0:31 0:41ð Þ;0:34 0:2ð Þ

( )

1 0:01ð Þ;0:97 0:11ð Þ;0:94 0:36ð Þ

0:91 0:4ð Þ;0:88 0:12ð Þ

( )

0:5f g
0:5 0:03ð Þ;0:53 0:19ð Þ;0:57 0:4ð Þ

0:59 0:32ð Þ;0:62 0:06ð Þ

( )

0:78 0:01ð Þ;0:75 0:09ð Þ;0:72 0:29ð Þ

0:69 0:41ð Þ;0:66 0:2ð Þ

( )
0:5 0:03ð Þ;0:47 0:19ð Þ;0:43 0:4ð Þ

0:41 0:32ð Þ;0:38 0:06ð Þ

( )

0:5f g

2

66666666664

3

77777777775

:

Remark 6 Remark 5 indicates that the membership part ci
obtained from Theorem 2 occasionally lies outside the

range of [0, 1], but not the PHFE ci pið Þ.

4 Consistency Improvement for PHFPRs
with Acceptable Consistency

In a decision-making process, obtaining consistent prefer-

ence relation is difficult. In such case, decision makers

strive for acceptable consistent preference relation. In this

section, two automatic iterative algorithms are developed

to obtain individual acceptable consistent PHFPRs and

consensus PHFPRs.

4.1 Automatic Iterative Algorithm for Individual

Acceptable Consistent PHFPRs

In this subsection, we first introduce the Hausdorff distance

between two PHFPRs, and then the consistency index of

the PHFPR is developed based on the Hausdorff distance.

Finally, an automatic iterative algorithm is designed to

obtain individual acceptable consistent PHFPRs.

4.1.1 Consistency Index of PHFPRs

The Hausdorff distance is a formula for calculating the

distance between two objects. The characteristic of the

Hausdorff distance introduced in Definition 6 is that it does

not require two PHFEs to have the same number of ele-

ments. However, Eq. (5) may be unsuitable for PHFPRs. In

the succeeding section, a new Hausdorff distance formula

is proposed as follows.

Definition 10 Let hx pxð Þ ¼ ci pið Þ i¼ 1; 2;. . .;j #hxf g and

hy py
� �

¼ cj pj
� �

j¼1; 2; . . .;j #hy
� �

be two arbitrary PHFEs.

Then, the Hausdorff distance between them is defined as

D2 hx pxð Þ; hy py
� �� �

¼ max max
ci pið Þ2hx pxð Þ

min
cj pjð Þ2hy pyð Þ

ci � cj
�� ��pipj; max

cj pjð Þ2hy pyð Þ
min

ci pið Þ2hx pxð Þ
cj � ci
�� ��pjpi

( )

:

ð13Þ

The Hausdorff distance introduced in Eq. (13) is similar

to that in Eq. (5), and the basic properties can be easily

obtained in the same manner, and thus, the procedures are

no longer discussed in this study.

Definition 11 Let H1 ¼ hij pij
� �

1

� �
n�n

and H2 ¼
hij pij
� �

2

� �
n�n

be two PHFPRs. Then, the Hausdorff dis-

tance between them is calculated as

D H1;H2ð Þ ¼ 2

n n� 1ð Þ
Xn

j¼iþ1

Xn�1

i¼1

D2 hij pij
� �

1
; hij pij

� �
2

� �
;

ð14Þ

where D2 hij pij
� �

1
; hij pij

� �
2

� �
is the Hausdorff distance

between hij pij
� �

1
and hij pij

� �
2
, which is introduced in

Definition 10.

From Eq. (14), the consistency index of the PHFPRs is

defined as follows.

Definition 12 Let H ¼ hij pij
� �� �

n�n
be a PHFPR and

H
0 ¼ h

0
ij p

0
ij

� �� �

n�n
be its corresponding consistent

PHFPR, which is obtained from Theorem 2. Then, the

consistency index of H can be measured by the Hausdorff

distance between H and H
0
, which is denoted as

CI Hð Þ ¼ 1� D H;H
0

� �
: ð15Þ

When the value CI Hð Þ is large, the consistency level of

H is good. If CI Hð Þ ¼ 1, then H is consistent. The

consistency threshold CI Hð Þ is discussed in the succeeding

section. First, CI Hð Þ can be concretely expressed as

CI Hð Þ¼1�D H;H
0

� �

¼1� 2

n n�1ð Þ
Xn

j¼iþ1

Xn�1

i¼1

D2 hij pij
� �

;h
0

ij p
0

ij

� �� �

¼1� 2

n n�1ð Þ
Xn

j¼iþ1

Xn�1

i¼1

max max
cij;l pij;lð Þ2hij pijð Þ

(

min
cij;m pij;mð Þ2h0ij p

0
ijð Þ

cij;l�cij;m
�� ��pij;lpij;m; max

cij;m pij;mð Þ2h0ij p
0
ijð Þ

min
cij;l pij;lð Þ2hij pijð Þ

cij;m�cij;l
�� ��pij;mpij;l

)

:

Let eij ¼max max
cij;l pij;lð Þ2hij pijð Þ

min
cij;m pij;mð Þ2h0ij p

0
ijð Þ

cij;l � cij;m
�� ��

(

pij;lpij;m; max
cij;m pij;mð Þ2h0ij p

0
ijð Þ

min
cij;l pij;lð Þ2hij pijð Þ

cij;m � cij;l
�� ��pij;mpij;l

)

:

Then, we have

CI Hð Þ ¼ 1� 2

n n� 1ð Þ
Xn

j¼iþ1

Xn�1

i¼1

eij:

Decision makers frequently exhibit a tendency to

achieve certain consistency in making pairwise compar-

isons [28, 44]. PHFS is extensions of HFS; thus, decision

makers also exhibit such a tendency when making pairwise

comparisons. Motivated by this idea, the values of the

Hausdorff distance eij should be relatively centralized in

the domain close to zero. eij i\jð Þ can be assumed as

independently and normally distributed, with a mean of

zero and a standard deviation of r, that is, eij �N 0;r2ð Þ.
On the basis of this condition,

n n�1ð Þ
2

1
r � 1� CI Hð Þð Þ
� �2

is
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a Chi-square distribution with
n n�1ð Þ

2
degrees of freedom,

that is,
n n�1ð Þ

2
1
r � 1� CI Hð Þð Þ
� �2 � v2 n n�1ð Þ

2

� �
, which is a

one-sided right-tailed test [28, 44]. The critical value of v2

is ka at a significance level a. Then, we obtain

CI Hð Þ ¼ 1� r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

n n� 1ð Þ ka

s

:

If CI Hð Þ� CI Hð Þ, then the obtained consistency level

of H is acceptable. From the given values r and a of Dong

[44], i.e., r ¼ 2 and a ¼ 0:1, Zhu [23] provided the values

of the consistency thresholds CI Hð Þ for different n values,

as shown in Table 1.

Example 6 Let H be the PHFPR shown in Example 3 and

H
0
be its corresponding expected additive consistent

PHFPR shown in Example 4. Then, the consistency index

CI Hð Þ of H can be obtained as follows:

CI Hð Þ ¼ 1� 2

3� 2

X3

j¼iþ1

X2

i¼1

D hij pij
� �

; h
0

ij p
0

ij

� �� �

¼ 0:9488[CI Hð Þ ¼ 0:9118; n ¼ 3ð Þ:

Evidently, H is acceptable consistent PHFPR.

4.1.2 Automatic Iterative Algorithm for Individual

Acceptable Consistent PHFPRs

If PHFPRs provided by decision makers exhibit unac-

ceptable consistency, then their consistency should be

improved to meet the established consistency level. The

weights of the decision makers can be derived with the

individual acceptable consistent PHFPRs. Motivated by the

automatic iterative algorithm proposed by Wu and Xu [45],

a similar automatic iterative algorithm is developed to

obtain individual acceptable consistent PHFPRs as follows.

Algorithm 1

Input: PHFPRs H ¼ hij pij
� �� �

n�n

Output: Acceptable consistent PHFPRs

H
 ¼ h
ij p
ij

� �� �

n�n
, iteration times k, and

consistency index CI Hð Þ
Step 1: Let H kð Þ ¼ hij pij

� � kð Þ
� �

n�n
and k ¼ 0;

Step 2: Use Eq. (12) to calculate its corresponding

consistent PHFPRs H
0 ¼ h

0
ij p

0
ij

� �� �

n�n
;

Step 3: Use Eq. (15) to calculate the consistency index

CI Hð Þ of H;

Step 4: If the consistency index does not meet the

consistency level listed in Table 1, then continue

to the next step; otherwise, proceed to the Step 7;

Step 5: Assume an adjusted parameter h 0\h\1ð Þ, and
let

hij pij
� � kþ1ð Þ¼ 1� hð Þhij pij

� � kð Þ�hh
0

ij p
0

ij

� �
;

Step 6: Let k ¼ k þ 1, and return to Step 3;

Step 7: Let H
 ¼ Hk, then output the

acceptable consistent PHFPRs H
, the iteration

times k, and the consistency index CI Hð Þ;
Step 8: End

Theorem 3 Let H ¼ hij pij
� �� �

n�n
be a PHFPR. Then,

H kð Þ ¼ hij pij
� � kð Þ

� �

n�n

n o
is the matrix sequence gener-

ated in Algorithm 1. It follows that

CI H kþ1ð Þ� �
[CI H kð Þ� �

for each k, and

limk!þ1 CI H kð Þ� �
¼ 1.

Proof Let hij pij
� � kð Þ¼ cij;l pij;l

� ���l ¼ 1; 2; . . .;#hij
� �

and

h
0
ij p

0
ij

� �
¼ cij;m pij;m

� ���m ¼ 1; 2; . . .;#h
0
ij

n o
. Given that

hij pij
� � kþ1ð Þ¼ 1 � hð Þhij pij

� � kð Þ�hh
0
ij p

0
ij

� �
¼ 1 � hð Þcij;l

��

þhcij;mÞ pij;lpij;m
� �

jl ¼ 1; 2; . . .;#hij; m ¼ 1; 2; . . .;#h
0
ijg,

we derive

CI H kþ1ð Þ� �
¼ 1� 2

n n�1ð Þ
Pn

j¼iþ1

Pn�1

i¼1

D2 hij pij
� � kþ1ð Þ

;h
0
ij p

0
ij

� �� �

¼ 1� 2
n n�1ð Þ

Pn

j¼iþ1

Pn�1

i¼1

max

max
cij;l pij;lð Þ2hij pijð Þ
cij;m pij;mð Þ2h0ij p

0
ijð Þ

min
cij;m pij;mð Þ2h0ij p

0
ijð Þ

1�hð Þcij;lþhcij;m� cij;m
�� ��pij;lpij;mpij;m;

max
cij;m pij;mð Þ2h0

ij
p
0
ijð Þ

min
cij;l pij;lð Þ2hij pijð Þ
cij;m pij;mð Þ2h0ij p

0
ijð Þ

cij;m� 1�hð Þcij;lþhcij;mð Þj jpij;mpij;lpij;m

8
>>>>><

>>>>>:

9
>>>>>=

>>>>>;

�1� 2
n n�1ð Þ

Pn

j¼iþ1

Pn�1

i¼1

max

max
cij;l pij;lð Þ2hij pijð Þ

min
cij;m pij;mð Þ2h0ij p

0
ijð Þ

1�hð Þcij;lþhcij;m� cij;m
�� ��pij;lpij;mpij;m;

max
cij;m pij;mð Þ2h0

ij
p
0
ijð Þ

min
cij;l pij;lð Þ2hij pijð Þ

cij;m� 1�hð Þcij;lþhcij;mð Þj jpij;mpij;lpij;m

8
><

>:

9
>=

>;

�1� 2
n n�1ð Þ

Pn

j¼iþ1

Pn�1

i¼1

max

max
cij;l pij;lð Þ2hij pijð Þ

min
cij;m pij;mð Þ2h0ij p

0
ijð Þ

1�hð Þcij;lþhcij;m� cij;m
�� ��pij;lpij;m;

max
cij;m pij;mð Þ2h0

ij
p
0
ijð Þ

min
cij;l pij;lð Þ2hij pijð Þ

cij;m� 1�hð Þcij;lþhcij;mð Þj jpij;mpij;l

8
><

>:

9
>=

>;

¼ 1� 2
n n�1ð Þ

Pn

j¼iþ1

Pn�1

i¼1

1�hð Þmax

max
cij;l pij;lð Þ2hij pijð Þ

min
cij;m pij;mð Þ2h0ij p

0
ijð Þ

cij;l� cij;m
�� ��pij;lpij;m;

max
cij;m pij;mð Þ2h0

ij
p
0
ijð Þ

min
cij;l pij;lð Þ2hij pijð Þ

cij;m�cij;lj jpij;mpij;l

8
><

>:

9
>=

>;

[1� 2
n n�1ð Þ

Pn

j¼iþ1

Pn�1

i¼1

max

max
cij;l pij;lð Þ2hij pijð Þ

min
cij;m pij;mð Þ2h0ij p

0
ijð Þ

cij;l� cij;m
�� ��pij;lpij;m;

max
cij;m pij;mð Þ2h0

ij
p
0
ijð Þ

min
cij;l pij;lð Þ2hij pijð Þ

cij;m�cij;lj jpij;mpij;l

8
><

>:

9
>=

>;

¼CI H kð Þ� �
:

Furthermore, we obtain

lim
lim k!þ1

CI H kð Þ
� �

¼ lim
lim k!þ1

1 � 2

n n� 1ð Þ
Xn

j¼iþ1

Xn�1

i¼1

1 � hð Þkmax

max
cij;l pij;lð Þ2hij pijð Þ

min
cij;m pij;mð Þ2h0ij p

0
ijð Þ

cij;l � cij;m
�
�

�
�pij;lpij;m;

max
cij;m pij;mð Þ2h0ij p

0
ijð Þ

min
cij;l pij;lð Þ2hij pijð Þ

cij;m � cij;l
�� ��pij;mpij;l

8
>><

>>:

9
>>=

>>;

8
>><

>>:

9
>>=

>>;

¼ 1� lim
lim k!þ1

1� hð Þk 2

n n� 1ð Þ
Xn

j¼iþ1

Xn�1

i¼1

max

max
cij;l pij;lð Þ2hij pijð Þ

min
cij;m pij;mð Þ2h0ij p

0
ijð Þ

cij;l � cij;m
�� ��pij;lpij;m;

max
cij;m pij;mð Þ2h0ij p

0
ijð Þ

min
cij;l pij;lð Þ2hij pijð Þ

cij;m � cij;l
�� ��pij;mpij;l

8
>><

>>:

9
>>=

>>;

¼ 1:

Hence, the proof is completed.
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4.2 Automatic Iterative Algorithm for Consensus

PHFPRs

Acceptable individual consistency PHFPRs can be

obtained using Algorithm 1. In group context, consensus

decision making is frequently considered a desirable out-

come. In the succeeding section, we first utilize the gen-

eralized add operator ‘‘�,’’ which is defined in Eq. (6), for

collecting individual PHFPRs. Then, a consensus index is

introduced to measure the consensus level among group

members. When the consensus level is lower than a spec-

ified threshold, an automatic iterative algorithm is designed

to update the PHFPRs to reach a predefined consensus

level.

4.2.1 Consensus Index of PHFPRs

Definition 13 Let Hl ¼ hlij plij

� �� �

n�n
, l ¼ 1; 2; . . .m be

any m PHFPRs provided from m decision makers. Then,

the collective PHFPR Hc ¼ hcij pcij

� �� �

n�n
can be calcu-

lated as follows:

hcij pcij

� �
¼ -1h

1
ij p1ij

� �
� -2h

2
ij p2ij

� �
� � � � � -mh

m
ij pmij

� �
;

ð16Þ

where -1;-2; . . .;-mð Þ is the weight vector of the decision
makers, and the symbol ‘‘�’’ is the generalized add oper-

ation introduced to Eq. (6).

On the basis of Eq. (16) and the Hausdorff distance

introduced in Eq. (13), the consensus index related to the l-

th decision maker is defined as follows.

Definition 14 Let Hl ¼ hlij plij

� �� �

n�n
be any m PHFPRs

are provided from m decision makers and Hc ¼

hcij pcij

� �� �

n�n
is the collective PHFPR obtained from

Definition 13. Then, the consensus index related to the l-th

decision maker is defined as

GCI Hlð Þ ¼ 1� 2

n n� 1ð Þ
Xn

j¼iþ1

Xn�1

i¼1

D2 hlij plij

� �
; hcij pcij

� �� �
:

ð17Þ

When the value of GCI Hlð Þ is large, the decision makers

are close to the group. If GCI Hlð Þ ¼ 1, then the l-th

decision maker achieves full consensus with the group. The

threshold of the consensus level GCI can be determined in

advance by decision makers in the decision-making

process. As suggested in [45, 46], the threshold of the

acceptable consensus level can be set at 0:9.

Theorem 4 Let Hl ¼ hlij plij

� �� �

n�n
be any m PHFPRs

provided from m decision makers and Hc ¼ hcij pcij

� �� �

n�n

is the collective PHFPR. Then,

D2 Hl;Hcð Þ� max
t¼1;2;...;m; t 6¼l

D2 Hl;Htð Þf g: ð18Þ

Proof From Definition 11, we have

D2 Hl;Hcð Þ¼ 2

n n�1ð Þ
Xn

j¼iþ1

Xn�1

i¼1

D2 hlij plij

� �
;hcij pcij

� �� �

¼ 2

n n�1ð Þ
Xn

j¼iþ1

Xn�1

i¼1

max

max
cij;l pij;lð Þ2hlij pl

ijð Þ
min

cij;1 pij;1
� �

2 h1ij p1ij

� �

cij;2 pij;2
� �

2 h2ij p2ij

� �

� � �

cij;m pij;m
� �

2 hmij pmij

� �

cij;l� -1cij;1þ-2cij;2þ���þ-mcij;m
� ��� ��pij;lpij;1pij;2 � � �pij;m;

max

cij;1 pij;1
� �

2 h1ij p1ij

� �

cij;2 pij;2
� �

2 h2ij p2ij

� �

� � �

cij;m pij;m
� �

2 hmij pmij

� �

min
cij;l pij;lð Þ2hlij pl

ijð Þ
-1cij;1þ-2cij;2þ���þ-mcij;m
� �

� cij;l
�� ��pij;1pij;2 � � �pij;mpij;l

8
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

9
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

� 2

n n�1ð Þ
Xn

j¼iþ1

Xn�1

i¼1

max

max
cij;l pij;lð Þ2hlij pl

ijð Þ
min

cij;t pij;tð Þ2htij pt
ijð Þ

cij;l� -1cij;tþ-2cij;tþ���þ-tcij;t
� ��� ��pij;lpij;tpij;t � � �pij;t;

max
cij;t pij;tð Þ2htij pt

ijð Þ
min

cij;l pij;lð Þ2hlij pl
ijð Þ

-1cij;tþ-2cij;tþ���þ-tcij;t
� �

� cij;l
�� ��pij;tpij;t � � �pij;tpij;l

8
>><

>>:

9
>>=

>>;

� 2

n n�1ð Þ
Xn

j¼iþ1

Xn�1

i¼1

max

max
cij;l pij;lð Þ2hlij pl

ijð Þ
min

cij;t pij;tð Þ2htij pt
ijð Þ

cij;l� -1cij;tþ-2cij;tþ���þ-tcij;t
� ��� ��pij;lpij;t;

max
cij;t pij;tð Þ2htij pt

ijð Þ
min

cij;l pij;lð Þ2hlij pl
ijð Þ

-1cij;tþ-2cij;tþ���þ-tcij;t
� �

� cij;l
�� ��pij;tpij;l

8
>><

>>:

9
>>=

>>;

¼ 2

n n�1ð Þ
Xn

j¼iþ1

Xn�1

i¼1

max

max
cij;l pij;lð Þ2hlij pl

ijð Þ
min

cij;t pij;tð Þ2htij pt
ijð Þ

cij;l�cij;t
�� ��pij;lpij;t;

max
cij;t pij;tð Þ2htij pt

ijð Þ
min

cij;l pij;lð Þ2hlij pl
ijð Þ

cij;t� cij;l
�� ��pij;tpij;l

8
>><

>>:

9
>>=

>>;

¼D2 Hl;Htð Þ:

Therefore, the proof is completed.

Theorem 4 shows that the consensus index related to the

l-th decision maker is higher than one minus the Hausdorff

distance between any two individual PHFPRs.

Theorem 5 Let Hl ¼ hlij plij

� �� �

n�n
be any m PHFPRs

provided from m decision makers and Hc ¼ hcij pcij

� �� �

n�n

is the collective PHFPR. Then,

CI Hcð Þ� max
l¼1;2;...;m

CI Hlð Þf g: ð19Þ

Proof Let

hcij pcij

� �
¼ cij;1 þ cij;2 þ � � � þ cij;m

� �
pij;1pij;2 � � � pij;m
� ��

jcij;1 pij;1
� �

2 h1ij p1ij

� �
; cij;2 pij;2

� �
2 h2ij p2ij

� �
; . . .; cij;m pij;m

� �
2 hmij pmij

� �
:
o

From Definition 11, we derive
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CI Hcð Þ
¼ 1� D2 Hc;H

0

c

� �

¼ 1� 2
n n�1ð Þ

Pn

j¼iþ1

Pn�1

i¼1

max

max
cij;cl pij;clð Þ2hcij pc

ijð Þ
min

cik;cl pik;clð Þ2hcij pcijð Þ
ckj;cl pkj;clð Þ2hcij pc

ijð Þ

cij;cl � 1
n
�n

k¼1 cik;cl þ ckj;cl
� �� �

	 0:5
� ��� ��pij;clpik;clpkj;cl;

max
cik;cl pik;clð Þ2hcij pcijð Þ
ckj;cl pkj;clð Þ2hcij pc

ijð Þ

min
cij;cl pij;clð Þ2hcij pc

ijð Þ
1
n
�n

k¼1 cik;cl þ ckj;cl
� �� �

	 0:5� cij;cl
� ��� ��pik;clpkj;clpij;cl

8
>>>>>>>>><

>>>>>>>>>:

9
>>>>>>>>>=

>>>>>>>>>;

� 1 � 2
n n�1ð Þ

Pn

j¼iþ1

Pn�1

i¼1

max

max
cij;l pij;lð Þ2hlij pl

ijð Þ
min

cik;l pik;lð Þ2hlij plijð Þ
ckj;l pkj;lð Þ2hlij pl

ijð Þ

cij;l � 1
n
�n

k¼1 cik;l þ ckj;l
� �� �

	 0:5
� ��� ��pij;lpik;lpkj;l;

max
cik;l pik;lð Þ2hlij plijð Þ
ckj;l pkj;lð Þ2hlij pl

ijð Þ

min
cij;l pij;lð Þ2hlij pl

ijð Þ
1
n
�n

k¼1 cik;l þ ckj;l
� �� �

	 0:5� cij;l
� ��� ��pik;lpkj;lpij;l

8
>>>>>>>>><

>>>>>>>>>:

9
>>>>>>>>>=

>>>>>>>>>;

¼ 1� D2 Hl;H
0
l

� �

Hence, the proof is completed.

Corollaries 1 and 2 can be easily obtained with Theo-

rem 5 as follows.

Corollary 1 Let Hl ¼ hlij plij

� �� �

n�n
be any m PHFPRs

provided from m decision makers and Hc ¼ hcij pcij

� �� �

n�n

is the collective PHFPR. Then, CI Hcð Þ� CI under the

condition of CI Hlð Þ� CI, l ¼ 1; 2; . . .m.

Corollary 2 If CI Hlð Þ ¼ 1 and l ¼ 1; 2; . . .m, then

CI Hcð Þ ¼ 1.

Theorem 5 shows that the consistency of the group is

higher than the highest individual consistency. Corollary 1

indicates that if every PHFPR exhibits acceptable consis-

tency, then the group PHFPR also has acceptable consis-

tency. Corollary 2 implies that if all individual PHFPRs are

completely consistent, then the group PHFPR is also

completely consistent.

4.2.2 Automatic Iterative Algorithm for Consensus

PHFPRs

If for all PHFPRs Hl, l ¼ 1; 2; . . .;m provided from m

decision makers, then we have GCI Hlð Þ� 0:9. An accept-

able consensus level is then concluded to be achieved

among decision makers. If at least one consensus index

related to the l-th decision maker exists, such that

GCI Hlð Þ\0:9, then consensus is not achieved. Accord-

ingly, the following algorithm is developed to improve the

consensus level and obtain the consensus PHFPRs.

Algorithm 2

Input: Individual PHFPRs Hl ¼ hlij plij

� �� �

n�n
, Hl,

l ¼ 1; 2; . . .m, and the weight vector of decision

makers - ¼ -1;-2; . . .;-mð Þ
Output: Consensus PHFPRs H
 ¼ h
ij p
ij

� �� �

n�n
,

iteration times k, and the consensus

index GCI Hlð Þ related to the l-th decision

maker

Step 1:
Let Hk

l ¼ hlij plij

� �k
� �

n�n

and k ¼ 0;

Step 2: Use Eq. (16) to calculate collective PHFPRs

Hc ¼ hcij pcij

� �� �

n�n
;

Step 3: Use Eq. (17) to calculate the consensus index

GCI Hlð Þ, l ¼ 1; 2; . . .m;

Step 4: If at least one consensus index related to the l-th

decision maker exists, such that GCI Hlð Þ\0:9,

then continue to the next step; otherwise,

proceed to Step 7;

Step 5: Assume an adjusted parameter h 0\h\1ð Þ, and
let

hlij plij

� � kþ1ð Þ

¼ 1� hð Þhlij plij

� � kð Þ
�hhcij pcij

� � kð Þ
;

Step 6: Let k ¼ k þ 1, and return to Step 2;

Step 7: Let H
 ¼ Hk
l , then output the consensus

PHFPRs H
, iteration times k, and consensus

index GCI Hlð Þ;
Step 8: End

Remark 7 In Step 5 of Algorithm 2, more than one con-

sensus index related to the l-th decision maker may exist,

such that GCI Hlð Þ\0:9. In such case, the minimum

GCI Hlð Þ should be determined and its value should be

adjusted, thereby reducing the number of iterations.

Theorem 6 Let Hl ¼ hlij plij

� �� �

n�n
be any m PHFPRs

provided from m decision makers and GCI be the corre-

sponding consensus threshold, H
kð Þ
l

n o
be the PHFPR

sequence that is generated in Algorithm 2 for the l-th

decision maker, and GCI H
kð Þ
l

� �n o
be the consensus index

of H
kð Þ
l . Then, we have GCI H

kþ1ð Þ
l

� �
[GCI H

kð Þ
l

� �
for

each k.

The proof of Theorem 6 is similar to that of Theorem 3

and, thus, is omitted from this paper.
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Theorem 7 Let Hl ¼ hlij plij

� �� �

n�n
be any m PHFPRs

provided from m decision makers and H
kð Þ
l

n o
be the

PHFPR sequence generated in Algorithm 2 for the l-th

decision maker. If max CI H
kð Þ
l

� �n o
� CI, then

l ¼ 1; 2; . . .m. Thus, we have

max CI H
kþ1ð Þ
l

� �n o
�max CI H

kð Þ
l

� �n o
� CI.

The proof of Theorem 7 can be easily obtained

according to Theorems 4 and 6 and, thus, is omitted from

this paper.

Theorem 7 implies that in Algorithm 2, we start with

PHFPRs with acceptable consistency and end with modi-

fied PHFPRs that not only achieve the predefined consen-

sus level but also the acceptable individual consistency.

5 Group Decision-Making Based on PHFPRs

In this section, a group decision-making problem under a

probabilistic hesitant fuzzy environment is proposed to

demonstrate the application of the proposed method.

5.1 Problems Description

For group decision-making problems, let A ¼
A1;A2; . . .;Anf g be a set of alternatives; D ¼
D1;D2; . . .;Dmf g be a set of decision makers;

- ¼ -1;-2; . . .;-mð Þ, where -i � 0; and
Pm

i¼1 -i ¼ 1 be

weight vector of the decision makers, which are completely

unknown. The evaluation of alternative Ai over alternative

Aj by the decision makers with PHFPRs is represented by

Hl ¼ hlij plij

� �� �

n�n
, l ¼ 1; 2; . . .m.

The complete support model for group decision making

with PHFPRs is depicted in Fig. 1, and the main proce-

dures are described as follows.

Step 1 Construct the individual PHFPRs

The individual PHFPRs can be constructed and

denoted as Hl ¼ hlij plij

� �� �

n�n
, l ¼ 1; 2; . . .m

Step 2 Calculate the individual consistent PHFPRs

The individual consistent PHFPRs can be

obtained according to Eq. (12)

Step 3 Calculate the individual consistency index

The individual consistency index can be

calculated according to Eq. (15). If the

consistency index does not meet the established

consistency level, then the acceptable individual

consistent PHFPRs Hl ¼ hlij plij

� �� �

n�n
and the

consistency index CI Hlð Þ, l ¼ 1; 2; . . .m can be

obtained using Algorithm 1

Step 4 Derive the weights of the decision makers

The weights of the decision makers can be

derived using the following formula:

-i ¼
CI Hi

� �

Pm
l¼1 CI Hl

� � ; i ¼ 1; 2; . . .m: ð20Þ

Step 5 Calculate the group PHFPR

The group PHFPR can be obtained according to

Eq. (16)

Step 6 Calculate the consensus index

The consensus index can be obtained according

to Eq. (17). If at least one consensus index related

to the l-th decision maker exists, such that

GCI Hlð Þ\0:9, then the consensus PHFPRs H
 ¼

h
ij p
ij

� �� �

n�n
can be derived using Algorithm 2.

Otherwise, proceed to next step.

Step 7 Calculate the score matrix

The score matrix E H
ð Þ related to the consensus

PHFPRs can be obtained according to Eq. (4)

Step 8 Calculate the priority weights of alternatives

The priority weights of fuzzy preference relations

have been discussed in depth by several scholars

[47, 48]. In this study, we utilize the formula

proposed in [48] to derive the priority weights of

the alternatives:

wi ¼
Pn

j¼1 H


ij

n2

2

; i ¼ 1; 2; . . .m: ð21Þ

Step 9 Rank all the alternatives

The best alternative can be determined according to the

values of wi, i ¼ 1; 2; . . .m.

5.2 Illustrative Example

For an investment company, the investment project selec-

tion problem is significant for its long-term development.

This problem not only affects the economic benefits of the

company, but also its future development. Accordingly,

three investment experts are invited to participate in

making the investment plan of the company. In accordance

with an earlier survey, three investment projects are

determined, namely: (1) education and training for the

middle school, (2) civil serve examination training, and (3)

pre-job training. The problem is selecting the best among

the aforementioned projects for the company to invest in.

Let A1, A2, and A3 indicate the three investment projects,
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respectively. To evaluate which project to choose, five

main influence factors are considered, namely: (1) eco-

nomic returns, (2) market capacity, (3) existing resources,

(4) investment cost, and (5) future market. After fully

considering these factors, the experts conduct project

pairwise comparisons by utilizing the PHFPRs. Let H1, H2,

and H3 be three PHFPRs provided by the three experts,

which are denoted as follows.

To obtain the best investment plan, the decision-making

process can be proposed in the following steps.

Step 1 Construct the individual PHFPRs

The individual PHFPRs are constructed and are shown

in H1, H2, and H3:

H1 ¼
0:5f g 0:1f g 0:8f g
0:9f g 0:5f g 0:2 0:8ð Þ; 0:7 0:2ð Þf g
0:2f g 0:8 0:8ð Þ; 0:3 0:2ð Þf g 0:5f g

2

64

3

75;

H2 ¼
0:5f g 0:4f g 0:3 0:5ð Þ; 0:4 0:5ð Þf g
0:6f g 0:5f g 0:5f g

0:7 0:5ð Þ; 0:6 0:5ð Þf g 0:5f g 0:5f g

2

64

3

75;

H3 ¼
0:5f g 0:6f g 0:7f g
0:4f g 0:5f g 0:4f g
0:3f g 0:6f g 0:5f g

2

64

3

75:

Step 2 Calculate the individual consistent PHFPRs

The individual consistent PHFPRs, namely H
0

1, H
0

2, and

H
0
3, can be derived by using Eq. (12) as follows:

H
0

1 ¼

0:5f g 0:27 0:2ð Þ; 0:43 0:8ð Þf g 0:47 0:8ð Þ; 0:61 0:2ð Þf g

0:73 0:2ð Þ; 0:57 0:8ð Þf g 0:5f g
0:37 0:64ð Þ; 0:53 0:32ð Þ

0:7 0:04ð Þ

( )

0:53 0:8ð Þ; 0:39 0:2ð Þf g
0:63 0:64ð Þ; 0:47 0:32ð Þ

0:3 0:04ð Þ

( )

0:5f g

2

66666664

3

77777775

;

H
0

2 ¼

0:5f g 0:37 0:5ð Þ; 0:4 0:5ð Þf g
0:33 0:25ð Þ; 0:4 0:25ð Þ

0:37 0:5ð Þ

( )

0:63 0:5ð Þ; 0:6 0:5ð Þf g 0:5f g 0:47 0:5ð Þ; 0:5 0:5ð Þf g
0:67 0:25ð Þ; 0:6 0:25ð Þ

0:63 0:5ð Þ

( )

0:53 0:5ð Þ; 0:5 0:5ð Þf g 0:5f g

2

66666664

3

77777775

;

H
0

3 ¼
0:5f g 0:6f g 0:63f g
0:4f g 0:5f g 0:47f g
0:37f g 0:53f g 0:5f g

2

64

3

75:

Step 3 Calculate the individual consistency index

The individual consistency index can be calculated

using Eq. (15) as follows:

CI H1ð Þ ¼ 0:8099, CI H2ð Þ ¼ 0:9875, and

CI H3ð Þ ¼ 0:9633.

For CI H2ð Þ ¼ 0:9875[ 0:9118 and

CI H3ð Þ ¼ 0:9633[ 0:9118, n ¼ 3ð Þ, then H2 and H3 sat-

isfy the consistency level and do not need to be adjusted.

In addition, CI H1ð Þ ¼ 0:8099\0:9118, H1 dissatisfies

the consistency level and should be further adjusted

according to Algorithm 1 h ¼ 0:5; k ¼ 1ð Þ. The accept-

able consistent PHFPRs of H

1 can be obtained as follows:

H

1 ¼

0:5f g 0:19 0:2ð Þ;0:27 0:8ð Þf g 0:64 0:8ð Þ;0:7 0:2ð Þf g

0:81 0:2ð Þ;0:73 0:8ð Þf g 0:5f g
0:29 0:51ð Þ;0:37 0:26ð Þ;0:45 0:03ð Þ

0:54 0:13ð Þ;0:62 0:06ð Þ;0:07 0:01ð Þ

( )

0:36 0:8ð Þ;0:3 0:2ð Þf g
0:71 0:51ð Þ;0:63 0:26ð Þ;0:55 0:03ð Þ

0:46 0:13ð Þ;0:38 0:06ð Þ;0:93 0:01ð Þ

( )

0:5f g

2

666
666
64

3

777
777
75

:

The consistency index of H

1 is CI H


1

� �
¼ 0:9722.

Step 4 Derive the weights of the experts

The weights of the experts can be derived using Eq. (20)

as follows:

-1 ¼ 0:3, -2 ¼ 0:4, and -3 ¼ 0:3.

Step 5 Calculate the group PHFPR

The group PHFPR Hc ¼ hcij pcij

� �� �

n�n
can be derived

using Eq. (16) as follows:

Hc ¼
0:5f g 0:55f g 0:45 0:5ð Þ; 0:49 0:5ð Þf g
0:45f g 0:5f g 0:44 0:8ð Þ; 0:47 0:2ð Þf g

0:55 0:5ð Þ; 0:51 0:5ð Þf g 0:56 0:8ð Þ; 0:53 0:2ð Þf g 0:5f g

2

64

3

75:

Step 6 Calculate the consensus index

The consensus index related to the three experts can be

obtained using Eq. (17) as follows:

GCI Hc
1

� �
¼ 0:9318, GCI Hc

2

� �
¼ 0:9393, and

GCI Hc
3

� �
¼ 0:9310.

All the consensus indexes are greater than 0.9; thus,

consensus among the three experts can be obtained. Let

H
 ¼ Hc and proceed to the next step.

Step 7 Calculate the score matrix

The score matrix E H
ð Þ is calculated using

Eq. (4) as follows:

E H
ð Þ ¼
0:5f g 0:55f g 0:47f g
0:45f g 0:5f g 0:45f g
0:53f g 0:55f g 0:5f g

2

4

3

5:

Step 8 Calculate the priority weights of alternatives

The priority weights of alternatives can be

calculated using Eq. (21) as follows:

w1 ¼ 0:3378, w2 ¼ 0:3111, and w3 ¼ 0:3511.

Step 9 Rank all the alternatives
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w3 [w1 [w2; therefore, A3 � A1 � A2, which implies

that pre-job training is the best choice among the three

investment projects.

5.3 Comparative Study and Discussion

To validate the feasibility of the proposed method, a

comparative study was conducted with other methods

based on the same illustrative example. In this section, we

apply the goal programming model introduced by Zhou

and Xu [34] to the illustrative example. The following

steps are involved.

Step 1 Construct the goal programming model to derive

the individual priority weight vector

For H1, use Eq. (11) in Zhou and Xu [34]. The goal

programming model can be constructed as follows:

min z ¼ dþ12 þ d�12 þ dþ13 þ d�13 þ dþ23 þ d�23

s:t:

0:1 w1
1 þ w1

2

� �
� w1

1 þ d�12 � dþ12 ¼ 0

0:8 w1
1 þ w1

3

� �
� w1

1 þ d�13 � dþ13 ¼ 0

0:2� 0:8þ 0:7� 0:2ð Þ w1
2 þ w1

3

� �
� w1

2 þ d�23 � dþ23 ¼ 0

w1
1 þ w1

2 þ w1
3 ¼ 1

w1
1; w

1
2; w

1
3 � 0

d�12; d
�
13; d

�
23; d

þ
12; d

þ
13; d

þ
23 � 0; d�12 � dþ12

¼ 0; d�13 � dþ13 ¼ 0; d�23 � dþ23 ¼ 0

8
>>>>>>>>>>><

>>>>>>>>>>>:

:

By solving this optimization model, we obtain

w1
1 ¼ 0:03, w1

2 ¼ 0:29, w1
3 ¼ 0:68, dþ12 ¼ 0, d�12 ¼ 0,

dþ13 ¼ 0:54, d�13 ¼ 0, dþ23 ¼ 0, and d�23 ¼ 0.

Similarly, for H2, we can obtain

w2
1 ¼ 0:22, w2

2 ¼ 0:39, w2
3 ¼ 0:39, dþ12 ¼ 0:03, d�12 ¼ 0,

dþ13 ¼ 0, d�13 ¼ 0, dþ23 ¼ 0, and d�23 ¼ 0.

For H3, we can derive

w3
1 ¼ 0:48, w3

2 ¼ 0:32, w3
3 ¼ 0:2, dþ12 ¼ 0, d�12 ¼ 0,

dþ13 ¼ 0, d�13 ¼ 0, dþ23 ¼ 0, and d�23 ¼ 0:11.

Step 2 Expected consistency checking and improving

The expected consistency for H1, H2, and H3 can be

obtained as follows by utilizing Eq. (13) in Zhou and Xu

[34]: ECI1 ¼ 0:18, ECI2 ¼ 0:01, and ECI3 ¼ 0:04.

ECI2 ¼ 0:01\0:02, and thus, the expected consistency of

H2 is acceptable. Meanwhile,ECI1 ¼ 0:18[ 0:02 and

ECI3 ¼ 0:04[ 0:02; hence, H1 and H3 are unacceptable.

The iterative optimization algorithm [34] is used to

improve the expected consistency as follows:

For H1, we obtain dmax ¼ dþ13 ¼ 0:54 by calculating the

maximum deviation, and then the adjustment amount

d
 ¼ dþ
13

w1
1
þw1

3

¼ 0:76. The optimal element is c
13 ¼ 0:04.

c13 ¼ 0:8 is replaced with c
13 ¼ 0:04, the goal program-

ming model is constructed, and the adjustment optimum

solution is obtained as follows:

w1

1 ¼ 0:03, w1


2 ¼ 0:29, w1

3 ¼ 0:68, dþ


12 ¼ 0:003,

d�

12 ¼ 0, dþ


13 ¼ 0, d�

13 ¼ 0, dþ


23 ¼ 0, and d�

23 ¼ 0.

ECI
1 ¼ 0:001\0:02, and thus, the expected consistency

of H

1 is acceptable.

Similarly, the adjustment optimum solution for H3 can

be obtained as follows:

w3

1 ¼ 0:48, w3


2 ¼ 0:32, w3

3 ¼ 0:2, dþ


12 ¼ 0, d�

12 ¼ 0,

dþ

13 ¼ 0, d�


13 ¼ 0, dþ

23 ¼ 0:0007, and d�


23 ¼ 0.

ECI
3 ¼ 0:0002\0:02, and thus, the expected consis-

tency of H

3 is acceptable.

Step 3 Derive the collective priority weight

Suppose that the weights of the decision makers are

-1 ¼ 0:3, -2 ¼ 0:4, and -3 ¼ 0:3. Then, the ranking

matrix is obtained as follows:

0:3; 0:4; 0:3½ � �
0:03; 0:29; 0:68

0:22; 0:39; 0:39

0:48; 0:32; 0:20

2

64

3

75

¼ 0:241; 0:339; 0:420½ �:

Step 4 Rank all the alternatives

w3 [w2 [w1; therefore, A3 � A2 � A1, which implies

that pre-job training is the best choice among the three

investment projects.

For a better comparison, the calculation results of Zhou

and Xu [34] and the proposed method are listed in Table 2.

As shown in Table 2, the ranking result derived from the

method of Zhou and Xu [34] differs from that of the pro-

posed method. The ranking result derived from the method

of Zhou and Xu [34] is A3 � A2 � A1, whereas that of the

proposed method is A3 � A1 � A2. However, the best

choice obtained by the method of Zhou and Xu [34] is the

same as that of the proposed method, i.e., A3. The possible

reason for the differences between the two methods is as

follows. The method of Zhou and Xu [34] requires higher

consistency than the proposed method. In the illustrative

example, the consistencies of H1 and H3 are unacceptable,

Table 2 Ranking results of

different methods
Methods Results Ranking Best alternative

Zhou and Xu’s method [34] 0:241; 0:339; 0:420ð Þ A3 � A2 � A1 A3

Proposed method 0:3378; 0:3111; 0:3511ð Þ A3 � A1 � A2 A3
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whereas in the proposed method, only H1 is unacceptable.

Furthermore, we provide a possible reason why the best

choice is the same between the two methods, i.e., these

methods are both based on consistency checking and

improvement.

Moreover, to demonstrate the validity of the proposed

method, comparative studies with existing methods are

provided as follows:

1. Comparison of consensus models. The studies in [7–9]

present some current trends in the field of consensus

models, that is, the experts behavior is integrated with

uninorm aggregation operators to reach consensus in

[7], individual concerns and satisfactions are consid-

ered comprehensively in [8], and trust degree of

experts in social network is determined in [9]. These

consensus models fully take into account the expert

behavior, preference and trust, and they can effectively

solve many MCGDM problems. However, the proba-

bilistic hesitant information receives insufficient atten-

tion in these models, and how to establish models

based on the PHFPRs to reach consensus deserves

further study. Fortunately, the consensus method

presented in this study appropriately deals with

probabilistic hesitant fuzzy information.

2. Comparison of expected consistency-based methods.

The studies in [23, 31, 32, 34] utilize expected

consistency to develop PHFPRs, and then PHFPRs

are translated into FPRs. Subsequently, the consensus

reaching process is implemented based on FPRs. These

methods are simple and easy to use, but they cannot

reflect the hesitancy of decision makers. Moreover,

these methods do not fully take advantage of proba-

bilistic hesitant fuzzy information, and they may cause

the loss of information. However, the proposed method

employs the expected additive PHFPRs, and it can then

avoid the loss of information and better reflect the

hesitancy of decision makers.

3. Comparison of the iterative optimization algorithms

proposed in [31, 34]. When the expected consistency

of PHFPR is unacceptable, iterative optimization

algorithms are developed to improve the consistency

[31, 34]. Unfortunately, these algorithms only consid-

ered the membership degree part of PHFE, whereas the

probability part is ignored. These methods do not fully

take advantage of probabilistic hesitant fuzzy infor-

mation, and they may lead to the loss of information.

However, the adjusted formulas presented in the

proposed algorithms consider not only the membership

degree part but also the probability part, and they can

then avoid the loss of information.

4. Comparison of the automatic iterative algorithms

proposed in [28, 35]. These studies only consider the

consistency of preference relations and pay less

attention to consensus in decision-making process.

Due to different experiences and knowledge back-

ground of the decision makers, the provided evaluation

values based on the decision makers’ preferences may

be divergent. Therefore, the decision results obtained

without consensus check may be unreasonable and

cannot be accepted by most of decision makers.

However, Algorithm 2 developed in this study con-

siders not only the acceptable consistency of PHFPRs,

but also the consensus in the group decision-making

process. Therefore, the final decision results are easy to

be accepted by decision makers in the proposed

algorithm.

5. Comparison of the Euclidean distance defined to obtain

the consistency index in [28]. This distance defined in

[28] requires all PHFEs offered by decision makers to

have the same number of elements. Therefore, a

normalization process is necessary. Unfortunately, the

normalization process will generate different priority

weight vectors with respect to different PHFEs because

the normalization process will obtain various normal-

ization results. However, the Hausdorff distance pro-

posed in this study does not require the normalization.

It can calculate distance when two PHFEs have

different number of elements and effectively avoid

the influence of different additional values on decision

results.

Compared with the above methods, the features and

advantages of the proposed method in this study can be

described as follows.

1. The expected additive consistent PHFPR presented in

this study can better reflect the hesitancy of decision

makers. And the adjusted formulas in the proposed

automatic iterative algorithms consider not only the

membership degree, but also the corresponding prob-

ability. Moreover, both the expected additive consis-

tent PHFPRs and automatic iterative algorithms

presented in this study can avoid the loss of

information.

2. The automatic iterative Algorithm 2 developed in this

study considers not only the acceptable consistency of

PHFPRs, but also the consensus among decision

makers. In this way, the final decision results are

reasonable and can be accepted by decision makers.

3. The Hausdorff distance developed in this study does

not require the normalization, it can effectively avoid

the influences from different additional values on

various decision results.
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6 Conclusion

As an extension of HFE, PHFE is a useful tool for

describing uncertain and fuzzy information. This study

aims to introduce a new method to address group decision-

making problems based on the consensus among decision

makers with PHFPRs. First, a theorem is introduced to

determine expected additive consistent PHFPRs. Then, the

consistency index of PHFPR is defined based on the

Hausdorff distance of PHFEs. Next, two automatic iterative

algorithms are constructed to identify the individual

acceptable consistent PHFPRs and the consensus of

PHFPRs. Finally, an illustrative example in conjunction

with comparative analyses is employed to demonstrate that

our proposed method is feasible for practical MCGDM

problems. In addition, the advantages of the proposed

method are summarized by further comparing our method

with existing methods.

This study makes several significant contributions to

MCGDM fields, which are summarized as follows. (1) The

expected additive consistent PHFPRs presented in this

study can better reflect the hesitancy of decision makers.

(2) The adjusted formulas in the proposed automatic iter-

ative algorithms consider not only the membership degree,

but also the corresponding probability. (3) The automatic

iterative Algorithm 2 developed in this study considers not

only the acceptable consistency of PHFPRs, but also the

consensus among decision makers. (4) The Hausdorff

distance used in this study can effectively avoid the influ-

ences from different additional values on the final decision

results. In future, we will investigate the linear program-

ming model for developing group decision-making meth-

ods with probabilistic hesitant information.
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