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Abstract Nowadays, databases expand rapidly due to

electronically generated information from different fields

like bioinformatics, census data, social media, business

transactions, etc. Hence, feature selection/attribute reduc-

tion in databases is necessary in order to reduce time, cost,

storage and noise for better accuracy. For this purpose, the

rough set theory has been played a very significant role, but

this theory is inefficient in case of real-valued data set due

to information loss through discretization process.

Hybridization of rough set with intuitionistic fuzzy set

successfully dealt with this issue, but it may radically

change the outcome of the approximations by adding or

ignoring a single element. To handle this situation, we

reconsider the hybridization process by introducing intu-

itionistic fuzzy quantifiers into the idea of upper and lower

approximations. Supremacy of intuitionistic fuzzy quanti-

fier over VPRS and VQRS is presented with the help of

some examples. A novel process for feature selection is

given by using the degree of dependency approach with

intuitionistic fuzzy quantifier-based lower approximation.

A greedy algorithm along with two supportive examples is

presented in order to demonstrate the proposed approach.

Finally, proposed algorithm is implemented on some

benchmark datasets and classification accuracies for dif-

ferent classifiers are compared.

Keywords Fuzzy set � Rough set � VPRS � VQRS �
Intuitionistic fuzzy quantifier

1 Introduction

Data size has increased explosively not only due to

increase in samples but also due to attributes in many real-

life applications such as text mining, biomedical and

bioinformatics. The high-dimensional dataset not only

makes the machine learning algorithm very slow but also

can corrupt the actual performance due to the presence of

redundant, irrelevant and noisy informations. It is neces-

sary to learn how to handle these large size data for

knowledge extraction. Feature selection or attribute

reduction is one of the dimensionality reduction tech-

niques, which is capable of selecting a small subset of

relevant and non-redundant features from the original

information systems [1–3].

Rough set theory, proposed by Pawlak, is a key tool to

tackle high-dimensional datasets in a much efficient man-

ner [4–7]. However, this method is applicable to discrete

data only. Therefore, discretization is required in order to

tackle the real-valued information system before feature

selection, but this may lead to information loss. Zadeh’s

fuzzy set concept is very much useful in handling vague-

ness and uncertainty available in datasets [8]. Dubois and

Prade combined fuzzy set with rough set and proposed

fuzzy rough set by approximating a set by its lower and

upper approximations [9, 10]. Further many researchers
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extended this idea for feature selection and classification

problems of high-dimensional datasets [11–14].

In variable precision rough set (VPRS) model, Ziarko

presented a generalization of the rough set concept by

introducing quantifiers at least 100 * u per cent and more

than 100 * l per cent to replace the universal and existen-

tial quantifiers, respectively [15]. Further, in vaguely

quantified rough set (VQRS) model, Cornelis et al. exten-

ded the concept of VPRS model by introducing vague

quantifiers most (an object x belongs to the lower

approximation of X � U, if most of the object related to X

are included in XÞ) and some (an object x belongs to the

upper approximation of X � U, if some of the object

related to X are included in X) into the model [16]. They

used fuzzy quantifiers based on Zadeh’s notion [17]. They

also discussed vaguely quantified fuzzy rough set (VQFRS)

model by using a fuzzy relation in place of crisp relation.

An intuitionistic fuzzy set is an extension of a fuzzy set

as it considers positive as well as negative and hesitancy

degree of an object to belong to a set [18]. So, it has a

strong ability in better describing the vagueness when

compared to the traditional fuzzy set theory. Some

researchers proposed different kinds of intuitionistic fuzzy

rough sets by combining rough set with an intuitionistic

fuzzy set [19–24]. The intuitionistic fuzzy rough set theory

is evolving as a successful and powerful tool to deal with

uncertainty and implemented for decision-making to take

care of numerous genuine issues of the real world. How-

ever, not much research works have been published for

attribute reduction based on intuitionistic fuzzy rough set

[25–34]. Intuitionistic fuzzy rough set-based approaches

for attribute reduction are much better than fuzzy rough

set-based approaches when hesitancy is involved in an

information system, but it may drastically change lower

and upper approximations on addition or rejection of a

single object.

To overcome the above issue, intuitionistic fuzzy

quantifier-based feature selection approach is needed.

However, some researchers defined intuitionistic fuzzy

quantifier, but they did not apply it on the problem of

feature selection of high-dimensional datasets. Atanassov

[35] defined intuitionistic fuzzy quantifier. Szmidt and

Kacprzyk [36] proposed the concept of intuitionistic fuzzy

linguistic quantifiers to find the degree of truth of intu-

itionistic fuzzy linguistic quantified statements. Cui repre-

sented an intuitionistic fuzzy linguistic quantifier by a

family of intuitionistic fuzzy-valued fuzzy measures and

provided a method for calculating the intuitionistic fuzzy

truth value of a quantified proposition [37]. Recently,

Atanassov proposed the basic concept of intuitionistic

fuzzy quantifier and discussed multi-dimensional intu-

itionistic fuzzy quantifiers along with level operators

[38, 39].

We present an intuitionistic fuzzy quantifier-based

rough set method for attribute reduction using the degree of

dependency approach to overcome above mentioned

issues. In this paper, we first define intuitionistic fuzzy

quantifiers most and some and compared their effects with

already existed VPRS and VQRS through an example.

Lower and upper approximations are constructed by using

intuitionistic fuzzy quantifiers. A method for attribute

reduction in a decision system is presented via the degree

of dependency approach. Algorithm and illustrative

examples are given for a better understanding of the pro-

posed method.

By using intuitionistic fuzzy linguistic quantifier in the

definition of lower approximation, we get extra information

about the degree of non-involvement (non-membership

grade) of objects in the lower approximation together with

involvement degree (membership grade). Proposed model

contributes in finding close-to-minimal reduct set and

improves classification accuracy of real benchmark data-

sets. Our approach also works on the fuzzy and intuition-

istic fuzzy decision systems, and hence, it is a generalized

approach. Moreover, the proposed approach provides better

results in terms of classification accuracy for reduced

datasets.

The rest of the paper is structured as follows. In this

paper, some preliminaries are discussed in Sect. 2. In

Sect. 3, intuitionistic fuzzy quantifier and intuitionistic

fuzzy quantified rough set (IFQRS) are defined. An

approach for feature selection of a decision system is

presented by using IFQRS model in Sect. 4. In Sect. 5, an

algorithm for the proposed method is presented. Illustrative

examples based on proposed model are given for demon-

stration in Sect. 6. In Sect. 7, we conclude our work.

2 Preliminaries

In this section, an overview of proposed models like VPRS,

VQRS and VQFRS is given.

2.1 Variable Precision Rough Sets (VPRS) [15]

Traditional lower and upper approximations of a set A

proposed in Pawlak’s rough set can be redefined as follows

[4]:

y 2 R " A iff RAðyÞ[ 0 ð1Þ
y 2 R # A iff RAðyÞ ¼ 1 ð2Þ

where RA yð Þ ¼ Ry\Aj j
Ryj j represents the degree of involvement

of Ry into A.

442 International Journal of Fuzzy Systems, Vol. 21, No. 2, March 2019

123



However, a small change in the involvement of Ry into

A may discard the entire class from the lower

approximation.

Example 2.1 Let us consider a collection of reports R ¼
r1; r2; . . .; r16f g in any manufacturing company. The

reports are characterized into four categories: R1 ¼
r1; r2; r3; r4f g; R2 ¼ r5; r6; r7; r8f g; R3 ¼ r9; r10; r11; r12f g

and R4 ¼ r13; r14; r15; r16f g. These grouping form an

equivalence relation R in X: If any query was launched

which is relevant to the report set A ¼ r2; r3; . . .; r10f g, then

it is clear that information retrieval system has all docu-

ments from R1 are in A except r1. Moreover, only r9 and r10

are recaptured from R3, showing the fact that these reports

from R3 are less relevant to the query, than the reports of

R2; which all comprised in A. Pawlak’s notion of rough sets

does not pay attention to these nuances, since using

Eqs. (1) and (2) we get, R # A ¼ R2 and R " A ¼ R1 [
R2 [ R3; putting R1 and R3 at the same level.

In many practical situations, classification analysis in

datasets is not easy due to the inadequacy of available

information. Ziarko [15] dealt with classification error

problem by introducing parameters into Eqs. (1) and (2) to

get the definitions:

y 2 R "l A iff RAðyÞ[ l ð3Þ
y 2 R #u A iff RAðyÞ� u ð4Þ

Using quantifiers, the above-defined formulas (3) and

(4) can be interpreted as:

y 2 R "l A iff at least 100 � u% elements of Ry are in A

ð5Þ

y 2 R #u A
iff more than 100 � l% elements of Ry are in A

ð6Þ

Both above-defined threshold quantifiers [ 100 � l%
and � 100 � u% are crisp. Despite the fact that VPRS

model permits a measure of tolerance towards errors, but it

obeys old-fashioned manner of a binary system. Due to its

dependency on particular values of l and u; any element

either fully belongs to lower or upper approximations or

does not belong at all.

Example 2.2 In the information retrieval problem from

Example 2.1, Ziarko’s VPRS model proposes a more

flexible way to differentiate between the roles of R1 and R3

as described in Eqs. (5) and (6), but the choice of the

threshold value is very vital. If we choose u ¼ 0:7 and

l ¼ 1 � u ¼ 0:3, in a symmetric VPRS model [15], this

provides R #:7¼ R1 [ R2 and R ":3¼ R1 [ R2 [ R3. How-

ever, for u ¼ 0:8, it gives the same outcome as in Example

2.1.

2.2 Vaguely Quantified Rough Sets (VQRS) [16]

The definitions of upper and lower approximations in the

VPRS model can be relaxed by presenting vague quanti-

fiers, deliberating the fact that y belongs to the lower and

upper approximations of A to the extent that most and some

elements of Ry are in A, respectively. It is assumed that

approximations used in the approach are fuzzy sets. A

fuzzy quantifier is used to model quantifier Q suitably [17].

Q is an increasing mapping from 0; 1½ � to 0; 1½ � which fulfils

the boundary conditions Q 0ð Þ ¼ 0 and Q 1ð Þ ¼ 1.

With the notion of Zadeh’s concept of s-number, a fuzzy

quantifier [17] that takes values in-between 0 and 1 is given

by the parameterized formula, for 0� a\b� 1; and x in

0; 1½ �;

Q a;bð Þ xð Þ ¼

0; x� a
2 x� að Þ2

b� að Þ2
; a� x� aþ b

2

1 � 2 x� bð Þ2

b� að Þ2
;
aþ b

2
� x� b

1; b� x

8
>>>>>>><

>>>>>>>:

ð7Þ

In this example, quantifiers Q 0:2;0:6ð Þ and Q 0:3;1ð Þ could be

chosen to reveal vague quantifiers some and most from

natural language, respectively.

If Ql and Qu are fixed fuzzy quantifiers, the Ql-upper

and Qu-lower approximations of any set A can be defined

as

R "Ql
AðyÞ ¼ Ql

Ry \ A
�
�

�
�

Ry

�
�
�
�

 !

¼ QlðRAðyÞÞ ð8Þ

R #Qu
AðyÞ ¼ Qu

Ry \ A
�
�

�
�

Ry

�
�
�
�

 !

¼ QuðRAðyÞÞ ð9Þ

where Ql
Ry\Aj j
Ryj j

� �

and Qu
Ry\Aj j
Ryj j

� �

; respectively, quantify

the truth values of the statement ‘‘Ql and QuR
0
ys are also

A
0
s’’.

Example 2.3 Continuing Examples 2.1 and 2.2, on

applying VQRS model with fuzzy quantifiers Qu ¼ Q 0:3;1ð Þ
and Ql ¼ Q 0:2;0:6ð Þ; results the lower approximation R #Qu

A ¼ f r5; 1ð Þ; r6; 1ð Þ; . . .; r8; 1ð Þ; r1; 0:74ð Þ; r2; 0:74ð Þ; . . .;
r4; 0:74ð Þ; r9; 0:16ð Þ; . . .; r12; 0:16ð Þg. In this list, a report

will have a higher grade if most of its elements relevant to

query report set A. With this reason, category R3 appears at

the bottom of the list. Therefore, different roles of the

categories in the search process can be determined in a

desirable way by assigning membership grades through

this model. Similarly, upper approximation can be found

as R #Qu
A ¼ r1; 1ð Þ; r2; 1ð Þ; . . .; r8; 1ð Þ; r9; 0:87ð Þ; . . .;f

r12; 0:87ð Þg.
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2.3 Vaguely Quantified Fuzzy Rough Sets (VQFRS)

[16]

In VQFRS, the Ql�upper and Qu�lower approximations

of A are same as defined in Eqs. (8) and (9) by using the

following fuzzy convention.

If P and Q are two fuzzy sets in X, then

(1) P \ Qð Þ xð Þ ¼ min P xð Þ;Q xð Þð Þ,
(2) Cardinality of P; Pj j ¼

P
x2X P xð Þ

(3) Ry xð Þ ¼ R x; yð Þ; where R x; yð Þ is a fuzzy relation.

3 Intuitionistic Fuzzy Quantifier

Intuitionistic fuzzy sets, a generalization of fuzzy sets, are

more effective to handle uncertainty as it contains hesi-

tancy degree together with membership and non-member-

ship degree. Combining VQRS model to intuitionistic

fuzzy sets, we can better deal with the complexity of vague

(uncertain) problems.

Definition 3.1 [18] Let U be a finite non-empty set. A set

A on the universe U of the form A ¼
x; lA xð Þ; #A xð Þh ijx 2 Uf g is said to be an intuitionistic

fuzzy set (IFS), where lA : U ! 0; 1½ � and #A : U ! 0; 1½ �
satisfy the condition 0� lA xð Þ þ #A xð Þ� 1 for all x in U:

lA xð Þ and #A xð Þ are the membership degree and non-

membership degree of the element x in A, respectively, and

pA xð Þ ¼ 1 � lA xð Þ � #A xð Þ is the degree of hesitancy (or

non-determinacy) of the element x in IFS A:

Any fuzzy set A ¼ x; lA xð Þh ijx 2 Uf g can be character-

ized by an IFS having the form x; lA xð Þ; 1 � lA xð Þh if jx 2
Ug: Thus, every fuzzy set is an IFS.

Definition 3.2 [18] An ordered pair hl; #i is called an

intuitionistic fuzzy value, where 0� l; #� 1 and

0� lþ #� 1.

Definition 3.3 [40] Let A ¼ x; lA xð Þ; #A xð Þh ijx 2 Uf g be

an IFS on the real line R: It is called an intuitionistic fuzzy

number (IFN) if

(a) A is normal,

i.e. there exist at least two points x1; x2 2 X such that

lA x1ð Þ ¼ 1; #A x2ð Þ ¼ 1;

(b) A is convex,

i.e. 8x1; x2 2 R; 8k 2 0; 1½ �; lA kx1 þ 1 � kð Þx2ð Þ�
lA x1ð Þ ^ lA x2ð Þ and #A kx1 þ 1 � kð Þx2ð Þ�#A x1ð Þ_
#A x2ð Þ,

(c) lA is upper semi-continuous and #A is lower semi-

continuous,

(d) supp A ¼ x 2 Uj#A xð Þ\1f g is bounded.

Definition 3.4 [41, 42] Let A ¼ x; lA xð Þ;hf #A xð Þijx 2
Ug be an IFS, its cardinality is given by Aj j ¼
P

x2A
1þlA xð Þ�#A xð Þ

2
:

We generalize the concept of Zadeh’s fuzzy quantifiers,

which rely on fuzzy cardinality, into the notion of the

intuitionistic fuzzy quantifier. We propose two quantifiers

in natural language with imprecise meaning such as most

and some in order to find a degree of truth of intuitionistic

fuzzy linguistically quantified statements as follows:

lQðxÞ ¼ Q a1;a2ð ÞðxÞ

¼

0; x� a1

2 x� a1ð Þ2

a2 � a1ð Þ2
; a1 � x� a1 þ a2

2

1 � 2 x� a2ð Þ2

a2 � a1ð Þ2
;

a1 þ a2

2
� x� a2

1; x� a2

8
>>>>>>><

>>>>>>>:

ð10Þ

and

mQðxÞ ¼ Q b1;b2ð ÞðxÞ

¼

1; x� b1

1 � 2 x� b1ð Þ2

b2 � b1ð Þ2
; b1 � x� b1 þ b2

2

2 x� b2ð Þ2

b2 � b1ð Þ2
;

b1 þ b2

2
� x� b2

0; x� b2

8
>>>>>>><

>>>>>>>:

ð11Þ

where a1; a2; b1; b2 2 0; 1½ � are parameters such that

0� b1 � a1 � b2 � a2 � 1: These parametric values are

expert dependent/user oriented. Q ¼ x; lA xð Þ; #A xð Þh ijx 2f
Ug is an intuitionistic fuzzy quantifier and lQ; #Q

� �

interprets the quantifiers most and some. For example,

Q 0:3;1ð Þ;Q 0:2;0:8ð Þ
� �

and Q 0:2;0:6ð Þ;Q 0:1;0:55ð Þ
� �

could be used

to express the intuitionistic quantifiers most and some from

natural language.

These mathematical formulae can be interpreted as

follows for the quantifier most: if less than a1 � 100% of

some elements x 2 X satisfy a property P and less than

b1 � 100% do not satisfy it, then we say most of them

certainly do not satisfy it (satisfy to degree 0; 1h i). If at

least a2 � 100% of them satisfy it and also at least

b2 � 100% do not satisfy it, then most of them certainly

satisfy it (to degree 1; 0h i). For rest of the cases, we will get

some values in-between 0; 1h i and 1; 0h i, which means the

more of them satisfy it, the higher the degree of satisfaction

by most of the elements. Similarly, the quantifier some can

be interpreted. The geometrical interpretation of the intu-

itionistic fuzzy quantifier is illustrated in Fig. 1.

Lemma 3.1

0� lQðxÞ þ mQðxÞ� 1:

Proof From Eqs. (10) and (11),
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lQðxÞþ mQðxÞ

¼

1; x�b1;x�a2

1� 2ðx� b1Þ2

ðb2 � b1Þ2
; b1 �x�a1

1þ 2 x� a1ð Þ2

a2 � a1ð Þ2
� 2ðx� b1Þ2

ðb2 � b1Þ2
; a1 �x� b1 þ b2

2

2 x� a1ð Þ2

a2 � a1ð Þ2
þ 2ðx� b2Þ2

ðb2 � b1Þ2
;

b1 þ b2

2
�x� a1 þ a2

2

1þ 2ðx� b2Þ2

ðb2 � b1Þ2
� 2 x� a2ð Þ2

a2 � a1ð Þ2
;

a1 þ a2

2
�x�b2

1� 2 x� a2ð Þ2

a2 � a1ð Þ2
; b2 �x�a2

8
>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>:

It is clear from the above expression and Fig. 1 that

0� lQðxÞ þ mQðxÞ� 1: h

Lemma 3.2 An Intuitionistic fuzzy quantifier is an intu-

itionistic fuzzy number.

Proof For the intuitionistic fuzzy quantifier defined in

Eqs. (10) and (11),

(1) Normality Since lQðxÞ ¼ 1; 8x� a2 and mQðxÞ ¼
1; 8x� b1 , Q is normal.

(2) Convexity Let x1; x2 2 R; k 2 ½0; 1�:
Since lQ is an increasing function. It implies

lQðx1Þ� lQðx2Þ when x1 � x2, and mQ is a decreas-

ing function. It implies mQðx1Þ� mQðx2Þ when x1 �
x2

Case 1 If x1 � x2 ) kx1 þ ð1 � kÞx2 � x2 )
lQðkx1 þ ð1 � kÞx2Þ� lQðx2Þ and lQðx1Þ� lQ
ðx2Þ ) lQðx1Þ ^ lQðx2Þ ¼ lQðx2Þ hence, lQðkx1

þð1 � kÞx2Þ� lQðx1Þ ^ lQðx2Þ: Similarly, x1 � x2

) kx1 þ ð1 � kÞx2 � x2 ) mQðkx1þ ð1 � kÞx2Þ�
mQðx2Þ and mQðx1Þ� mQðx2Þ ) mQðx1Þ _ mQðx2Þ ¼
mQðx2Þ hence, mQðkx1 þ ð1 � kÞx2Þ� mQðx1Þ_
mQðx2Þ:
Case 2 If x2 � x1 ) kx1 þ ð1 � kÞx2 � x1. With

the similar process, lQðkx1 þ ð1 � kÞx2Þ�
lQðx1Þ ^ lQðx2Þ and mQðkx1 þ ð1 � kÞx2Þ�
mQðx1Þ _ mQðx2Þ:

(3) Semi-continuity

Since lQ and mQ are continuous, lQ is upper semi-

continuous and mQ is lower semi-continuous also.

(4) Boundedness

supp (QÞ¼fx 2 XjmQðxÞ\1g ¼ ½b1; b2� � ½0; 1� is

bounded. h

The definition of lower and upper approximations in

VQFRS model can be more generalized by presenting

intuitionistic fuzzy quantifiers, expressing the fact that y

belongs to the lower approximations of A to the extent that

most = Ql;Ql0h i elements of Ry are in A and y belongs to

the upper approximations of A to the extent that some =

elements of Ry are in A.

If we fix couples Ql;Ql0h i, Qu;Qu0h i of intuitionistic

fuzzy quantifiers, the Q l;l0ð Þ-upper and Q u;u0ð Þ-lower

approximations of an approximation set A in X are defined

as

R "Q
l;l
0ð Þ

A yð Þ ¼ Ql

Ry \ A
�
�

�
�

Ry

�
�
�
�

 !

;Ql
0

Ry \ A
�
�

�
�

Ry

�
�
�
�

 !* +

¼ QlðRAðyÞÞ;Ql
0 ðRAðyÞÞ

� �
ð12Þ

Fig. 1 Intuitionistic fuzzy quantifiers
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R #Q
u;u

0ð Þ
A yð Þ ¼ Qu

Ry \ A
�
�

�
�

Ry

�
�
�
�

 !

;Qu
0

Ry \ A
�
�

�
�

Ry

�
�
�
�

 !* +

¼ QuðRAðyÞÞ;Qu
0 ðRAðyÞÞ

� �

ð13Þ

Here, Ql;Qu are determined by Eq. (10) and Ql0 ;Qu0 are

determined by Eq. (11). l; u and l0; u0 are parameters in

tuple form ai; aj
� �

and bi; bj
� �

, respectively. Pair R #Q u;u0ð Þ

	

A yð Þ;R "Q l;l0ð Þ A yð ÞÞ is called intuitionistic fuzzy quantified

rough set.

Example 3.1 In the continuation of Example 2.1, we have

applied the proposed IFQRS model on the above infor-

mation retrieval problem. We have chosen intuitionistic

fuzzy quantifiers Qu;Qu0h i and Ql;Ql0h i with Qu ¼
Q 0:3;1ð Þ;Qu0 ¼ Q 0:2;0:8ð Þ; Ql ¼ Q 0:2;0:6ð Þ and Ql0 ¼ Q 0:1;0:55ð Þ.

We get, the lower approximation R #Qu
A ¼ r5; 1; 0ð Þ;f

r6; 1; 0ð Þ; . . .; r8; 1; 0ð Þ; r1; 0:74; 0:01ð Þ; r2; 0:74; 0:01ð Þ;
. . .; r4; 0:74; 0:01ð Þ; r9; 0:16; 0:5ð Þ; . . .; r12; 0:16; 0:5ð Þg.

Here, we are assigning membership grade together with

non-membership grade to reports in each category so that

we can get extra information to choose any category rele-

vant to the query by choosing desirable parameters. We can

see, the reports which are highly related to the query report

set have high membership grade and low non-membership

grade. On the similar manner, we get upper approximation

R #Qu
A ¼ r1; 1; 0ð Þ; r2; 1; 0ð Þ; . . .; r8; 1; 0ð Þ; r9; 0:87;ðf

0:05Þ; . . .; r12; 0:87; 0:05ð Þg.

Now, we extend the results on lower and upper

approximations similar to Dubois and Prade [10] for our

approach.

Let Ql;Ql0h i, Qu;Qu0h i be intuitionistic fuzzy quantifiers

with Ql;Ql0 ;Qu;Qu0 2 0; 1½ �

Theorem 3.1 If Qu � Ql and Ql0 � Qu0 ; i:e: QuðxÞ�
QlðxÞ and Ql0 ðxÞ�Qu0 ðxÞ; 8x 2 ½0; 1� R #Qðu;u0Þ

AðyÞ �
R "Qðl;l0 Þ

AðyÞ

Proof

If QuðxÞ�QlðxÞ and Ql0 ðxÞ�Qu0 ðxÞ; 8x 2 ½0; 1�

Replacing x by RAðyÞ;
QuðRAðyÞÞ�QlðRAðyÞÞ ð14Þ
Ql0 ðRAðyÞÞ�Qu0 ðRAðyÞÞ ð15Þ

Using Eqs. (14) and (15), we get

QuðRAðyÞÞ;Qu
0 ðRAðyÞÞ

� �
� QlðRAðyÞÞ;Ql

0 ðRAðyÞÞ
� �

Hence, R #Qðu;u0 Þ
AðyÞ � R "Qðl;l0 Þ

AðyÞ: h

Theorem 3.2 If A1 � A2 � X;

R #Qðu;u0Þ
A1ðyÞ � R #Qðu;u0Þ

A2ðyÞ
R "Qðl;l0 Þ

A1ðyÞ 	 R "Qðl;l0Þ
A2ðyÞ

Proof Since A1 � A2

) Ry \ A1 � Ry \ A2 ) Ry \ A1

�
�

�
�� Ry \ A2

�
�

�
�

)
Ry \ A1

�
�

�
�

Ry

�
�
�
�

�
Ry \ A2

�
�

�
�

Ry

�
�
�
�

) RA1
ðyÞ�RA2

ðyÞ

Since Qu and Ql are increasing functions,

QuðRA1
ðyÞÞ�QuðRA2

ðyÞÞ ð16Þ
QlðRA1

ðyÞÞ�QlðRA2
ðyÞÞ ð17Þ

and Qu0 and Ql0 are decreasing functions;

Qu0 ðRA1
ðyÞÞ�Qu0 ðRA2

ðyÞÞ ð18Þ
Ql0 ðRA1

ðyÞÞ�Ql0 ðRA2
ðyÞÞ ð19Þ

By Eqs. 16–19, we get the required result. h

4 Feature Selection by IFQRS

Feature selection has become center of the attention of

much research in application areas for which datasets with

tens or hundreds of thousands of features are available.

Feature selection for the information systems with the help

of the proposed model is done in this section. Here, the

degree of dependency method for the feature selection is

used.

Definition 4.1 [43] A quadruple IS ¼ U;AT;V ; hð Þ is

called an information system, where U ¼ u1; u2; . . .; unf g
is a non-empty finite set of objects, called the universe of

discourse, AT ¼ a1; a2; . . .; amf g is a non-empty finite set

of attributes. V ¼
S

a2AT Va, where Va is the set of attribute

values associated with each attribute a 2 AT and h : U 

AT ! V is an information function that assigns particular

values to the objects against attribute set such that

8a 2 AT; 8u 2 U; h u; að Þ 2 Va.

An information system is called an intuitionistic fuzzy

information system if attribute values associated with

objects are intuitionistic fuzzy numbers.

Definition 4.2 [43] An information system IS ¼
U;AT;V ; hð Þ is said to be decision system if AT ¼ C [ D

where C is a non-empty finite set of conditional attributes

and D is a non-empty collection of decision attributes with

C \ D ¼ ;. Here, V ¼ VC [ VD with VC and VD as the set

of conditional attribute values and decision attribute
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values, respectively. h be a mapping from U 
 C [ D to V;

such that h : U 
 C ! VC and h : U 
 D ! VD. For

example, Table 1 represents real-valued decision system,

while Table 2 represents intuitionistic fuzzy decision

system.

Different similarity relations for different type of

information systems are available in the literature. We

consider following fuzzy similarity relation between two

objects of the information system with respect to a condi-

tional attribute c 2 C as given in [12].

Sc ui; uj
� �

¼ max min
ðlðujÞ � ðlðuiÞ � rcÞÞ
ðlðuiÞ � ðlðuiÞ � rcÞÞ

;
ðlðuiÞ þ rcÞ � lðujÞ
� �

ðlðuiÞ þ rcÞ � lðuiÞð Þ

� �

; 0

� �

ð20Þ

where r2
c is the variance of feature c and l uið Þ is mem-

bership grade of object ui.

And following intuitionistic fuzzy similarity relation as

in [41] is used

Sc ui; uj
� �

¼ 1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

l uið Þ � l uj
� �� �2þ m uið Þ � m uj

� �� �2þ p uið Þ � p uj
� �� �2

q

ð21Þ

where ui and uj are objects. l uið Þ,m uið Þ and p uið Þ are

membership, non-membership and hesitancy degree of ui;

respectively.

For partitioning the universe of discourse, we define R-

foreset of the object ui; i.e. Rui with respect to attribute

c 2 C as:

Rui ¼ ½Ta
c �ðuiÞ ¼ uj : sc ui; uj

� �
� a

� �
ð22Þ

where a 2 0; 1ð Þ is a similarity threshold, which provides a

degree of similarity for addition of objects within tolerance

classes.

With the help of lower approximation defined in terms

of quantifiers, the positive region of decision attribute D

over set of conditional attributes C can be calculated as:

POSC Dð Þ ¼ sup
A2U=D

R #Q
u;u

0ð Þ
A uið Þ

¼ sup
A2U=D

QuðRAðuiÞÞ; inf
A2U=D

Qu
0 ðRAðuiÞÞ

* +

ð23Þ

where R #Q u;u0ð Þ
A uið Þ is defined in Eq. (13) and UnD con-

tain sets of objects having same decision values.

After calculating positive region, the degree of depen-

dency of decision attribute D over set of conditional attri-

butes C can be computed as:

CC Dð Þ ¼ POSC Dð Þj j
Uj j ð24Þ

where :j j in the numerator is the cardinality of an intu-

itionistic fuzzy set, while :j j in the denominator is the

cardinality of a crisp set and CC Dð Þ 2 0; 1½ �:

Definition 4.3 [11] A subset R of the conditional attribute

set C is said to be reduct set of a decision system if

CR Dð Þ ¼ CC Dð Þ
CR� cif g Dð Þ\CR Dð Þ; 8ci 2 C

ð25Þ

Required reduct set can be obtained by comparing the

degree of dependencies of decision attribute over sets of

conditional attributes. Attributes are selected one by one

until the reduct set gives the same degree of dependency

value as the original set.

5 Algorithm for Intuitionistic Fuzzy Rough Set
Approach

In this section, a quick reduct algorithm for feature selec-

tion of a decision system based on intuitionistic fuzzy

quantifier approach is presented by using degree of

dependency method. Initially, the reduct set is an empty

set. We add conditional attributes one by one in reduct set

and calculate degree of dependencies of decision attribute

over obtained reduct set. The proposed algorithm selects

only those conditional attributes, which causes a maximum

increase in the degree of dependency of decision attribute.

The proposed algorithm is given as follows:

Step 1 Take an intuitionistic fuzzy information sys-

tem/fuzzy information system.

Step 2 Calculate similarity relations between objects

with respect to set of conditional attributes.

Step 3 On the basis of similarity relations, tolerance class

of each object with respect to conditional attributes can

be determined by introducing a similarity threshold

between object.

Step 4 Compute the lower approximations of each object

with respect to UnD by using quantifier Q u;u0ð Þ:

Table 1 Real-valued decision system

Objects Attributes

c1 c2 c3 d

u1 - 0.4 - 0.3 - 0.5 No

u2 - 0.4 0.2 - 0.1 Yes

u3 - 0.3 - 0.4 - 0.3 No

u4 0.3 - 0.3 0 Yes

u4 0.2 - 0.3 0 Yes

u6 0.2 0 0 No
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Step 5 Evaluate the degree of dependency of decision

attribute over set of conditional attributes by calculating

positive region.

Step 6 Select the conditional attribute that has the

highest degree of dependency (Select any one if there are

more than one conditional attributes having the highest

and same degree of dependencies). That will be the first

member of reduct set.

Step 7 Add other conditional attributes to obtained

conditional attribute and again calculate the degree of

dependencies of such coupled conditional attributes.

Step 8 Apply the same process for so obtained attributes

as in Step 6 and 7.

Step 9 The process will terminate until the newly

obtained subset of conditional attributes causes no

increment in the degree of dependency than the previous

one.

In the proposed algorithm, for a dataset with dimension

n, we require n evaluations in calculating degrees of

dependency of decision attribute over n conditional attri-

butes. After selecting the conditional attribute with the

highest degree of dependency, we need n� 1ð Þ evaluations

and repeating this process one more time, we need n� 2ð Þ
evaluations and so on. Hence, time complexity of proposed

approach is nþ n� 1ð Þ þ n� 2ð Þ þ � � � þ 3 þ 2 þ 1 for

the worst-case dataset. Therefore, the proposed intuition-

istic fuzzy quantified rough set-based algorithm requires

n2 þ nð Þ=2 evaluations of the dependency function.

6 Experimental Analysis

In this section, proposed algorithm is implemented on two

different types of example datasets and on eight real

datasets for feature selection and classification.

Example 6.1 Consider a decision system as given in

Table 1, which contains real-valued conditional attributes

c1; c2; c3f g and a decision attribute df g 11½ �.
The similarity degree between objects with respect to

each conditional attributes is calculated by using Eq. (20)

and presented in Table 3.

Here, D ¼ fdg; UnD ¼ A1;A2f g; A1 ¼ u1; u3; u6f g; A2

¼ fu2; u4; u5g
Taking a ¼ 0:7, R-foreset of each object corresponding

to attribute c1 is calculated by Eq. (22),

Ru1
¼ u1; u2f g; Ru2

¼ u1; u2f g; Ru3
¼ u3f g;

Ru4
¼ u4f g; Ru5

¼ u5; u6f g; Ru6
¼ u5; u6f g:

By using Eq. (13), intuitionistic fuzzy lower approxi-

mations of objects over UnD are given as:

R #Q
u;u

0ð Þ
A1 u1ð Þ ¼ 0:16; 0:5h i; R #Q

u;u
0ð Þ

A1 u2ð Þ

¼ 0:16; 0:5h i; R #Q
u;u

0ð Þ
A1 u3ð Þ ¼ 1; 0h i

R #Q
u;u

0ð Þ
A1 u4ð Þ ¼ 0; 1h i; R #Q

u;u
0ð Þ
A1 u5ð Þ

¼ 0:16; 0:5h i; R #Q
u;u

0ð Þ
A1 u6ð Þ ¼ 0:16; 0:5h i

R #Q
u;u

0ð Þ
A2 u1ð Þ ¼ 0:16; 0:5h i; R #Q

u;u
0ð Þ

A2 u2ð Þ

¼ 0:16; 0:5h i; R #Q
u;u

0ð Þ
A2 u3ð Þ ¼ 0; 1h i

R #Q
u;u

0ð Þ
A2 u4ð Þ ¼ 1; 0h i; R #Q

u;u
0ð Þ

A2 u5ð Þ

¼ 0:16; 0:5h i; R #Q
u;u

0ð Þ
A2 u6ð Þ ¼ 0:16; 0:5h i

After calculating fuzzy lower approximation, the posi-

tive region of decision attribute over conditional attributes

computed by Eq. (23) results

POSc1
Dð Þðu1Þ¼ 0:16;0:5h i; POSc1

Dð Þðu2Þ¼ 0:16;0:5h i;
POSc1

Dð Þðu3Þ¼ 1;0h i;POSc1
Dð Þðu4Þ¼ 1;0h i;

POSc1
Dð Þðu5Þ¼ 0:16;0:5h i; POSc1

Dð Þðu6Þ¼ 0:16;0:5h i:

Now, the degree of dependency of decision attribute D

over conditional attribute c1 can be calculated by Eq. (24)

as follows:

Cc1
Dð Þ ¼ 0:554

In a similar manner, Cc2
Dð Þ ¼ 0:854;Cc3

Dð Þ ¼ 0:854.

The degrees of dependency of c2 and c3 are equal and

highest. Any one of them can be taken as the first candidate

of reduct set of given information system, say c2: Now,

combining c1 and c3 to c2 one by one and calculating the

corresponding degrees of dependency, we get

C c1;c2f g dð Þ ¼ 1; C c2;c3f g dð Þ ¼ 1

Since degree of dependency cannot exceed 1, the reduct

set of this dataset is either c1; c2f g or c2; c3f g:

Example 6.2 An intuitionistic fuzzy decision system is

chosen which is a judgment problem of CISA’s informa-

tion systems security audit risk [44]. In this dataset, the

object set U ¼ u1; u2; . . .; u10f g comprises 10 audited

objects. Five conditional attributes C ¼ c1; c2; c3; c4; c5f g
are there in conditional attribute set, where c1 = ‘‘Better

Systems Total Security’’, c2 = ‘‘Better Systems Operation

Security’’, c3 = ‘‘Safer Data Centre’’, c4 = ‘‘Credible

Hardware Device’’, and c5 = ‘‘Credible Network Secu-

rity’’. Every value which condition attribute is taken on has

special actual meaning. For example,f x1; c1ð Þ ¼ 0:2; 0:4h i
means that the membership degree of systems total security

is 0.2, and non-membership degree of systems total secu-

rity is 0.4. The decision attribute set, d = ‘‘Risk Judgement

Order of Information Systems Security Audit’’. The
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domain of d is 1; 2; 3f g; where 1 means ‘‘Complete

Examination’’, 2 means ‘‘Major Examination’’, and 3

means ‘‘No Examination’’.

Here, D ¼ fdg;Un D ¼ A1;A2;A3f g;A1 ¼ u1; u3;f
u4; u6g;A2 ¼ fu2; u5; u7; u8g;A3 ¼ u9; u10f g

Calculating fuzzy similarity relation between two intu-

itionistic fuzzy numbers with respect to attribute c1 2 C by

using Eq. (21), we get Table 4.

Taking a ¼ 0:8; R-foreset of each object with respect to

attribute c1 is given as:

Ru1
¼ u1f g; Ru2

¼ u2; u3; u6f g; Ru3
¼ u2; u3; u4f g;

Ru4
¼ u3; u4f g; Ru5

¼ u5f g;
Ru6

¼ u2; u6f g; Ru7
¼ u7f g; Ru8

¼ u8f g; Ru9
¼ u9f g;

Ru10
¼ u10f g

Table 4 Fuzzy similarity

relation Sc1
ui; uj
� �

with respect

to c1

Objects U1 U2 U3 U4 U5 U6 U7 U8 U9 U10

U1 1 0.63 0.49 0.35 0.51 0.75 0.43 0.51 0.51 0.43

U2 0.63 1 0.86 0.72 0.63 0.86 0.38 0.29 0.29 0.38

U3 0.49 0.86 1 0.86 0.63 0.72 0.35 0.21 0.21 0.35

U4 0.35 0.72 0.86 1 0.58 0.58 0.29 0.12 0.12 0.29

U5 0.51 0.63 0.63 0.58 1 0.58 0.72 0.51 0.51 0.72

U6 0.75 0.86 0.72 0.58 0.58 1 0.38 0.35 0.35 0.38

U7 0.43 0.38 0.35 0.29 0.72 0.38 1 0.72 0.72 0

U8 0.51 0.29 0.21 0.12 0.51 0.35 0.72 1 0 0.72

U9 0.51 0.29 0.21 0.12 0.51 0.35 0.72 0 1 0.72

U10 0.43 0.38 0.35 0.29 0.72 0.38 0 0.72 0.72 1

Bold values signify the similarity values between objects greater than threshold alpha

Table 2 An information

systems security risk judgment

decision table

Objects Attributes

C1 C2 C3 C4 C5 d

U1 h0.2, 0.4i h0.1, 0.7i h0.2, 0.6i h0.6, 0.4i h0.2, 0.8i 1

U2 h0.1, 0.7i h0.1, 0.8i h0.3, 0.6i h0.5, 0.2i h0.2, 0.7i 2

U3 h0.1, 0.8i h0.1, 0.8i h0.2, 0.8i h0.5, 0.4i h0.6, 0.4i 1

U4 h0.1, 0.9i h0.6, 0.3i h0.2, 0.7i h0.2, 0.8i h0.6, 0.4i 1

U5 h0.4, 0.6i h0.2, 0.6i h0.2, 0.8i h0.2, 0.8i h0.2, 0.8i 2

U6 h0.1, 0.6i h0.2, 0.6i h0.2, 0.8i h0.2, 0.4i h0.2, 0.8i 1

U7 h0.6, 0.4i h0.6, 0.4i h0.6, 0.4i h0.7, 0.3i h0.4, 0.6i 2

U8 h0.6, 0.2i h0.6, 0.2i h0.8, 0.2i h0.4, 0.6i h0.4, 0.5i 2

U9 h0.6, 0.2i h0.6, 0.4i h0.8, 0.2i h0.1, 0.6i h0.8, 0.2i 3

U10 h0.6, 0.4i h0.6, 0.4i h0.8, 0.2i h0.8, 0.2i h0.6, 0.4i 3

Table 3 Similarity relation between objects

lRc1
ui; uj
� �

lRc2
ui; uj
� �

lRc3
ui; uj
� �

1.0 1.0 0.699 0.0 0.0 0.0 1.0 0.0 0.568 1.0 1.0 0.0 1.0 0.0 0.036 0.0 0.0 0.0

1.0 1.0 0.699 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.137 0.0 1.0 0.036 0.518 0.518 0.518

0.699 0.699 1.0 0.0 0.0 0.0 0.568 0.0 1.0 0.568 0.568 0.0 0.036 0.036 1.0 0.0 0.0 0.0

0.0 0.0 0.0 1.0 0.699 0.699 1.0 0.0 0.568 1.0 1.0 0.0 0.0 0.518 0.0 1.0 1.0 1.0

0.0 0.0 0.0 0.699 1.0 1.0 1.0 0.0 0.568 1.0 1.0 0.0 0.0 0.518 0.0 1.0 1.0 1.0

0.0 0.0 0.0 0.699 1.0 1.0 0.0 0.137 0.0 0.0 0.0 1.0 0.0 0.518 0.0 1.0 1.0 1.0
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Now, proceeding in a similar manner as in Example 6.1,

degree of dependencies of decision attribute D over

conditional attributes are given as:

Cc1
Dð Þ ¼ 0:875; Cc2

Dð Þ ¼ 0:469; Cc3
Dð Þ ¼ 0:846;

Cc4
Dð Þ ¼ 0:808; Cc5

Dð Þ ¼ 0:799

The degree of dependency in case of c1 is highest;

therefore, we add other attributes c2; c3 and c4 to c1. After

Table 5 Reduct sets for different parametric values

Datasets Objects Features Reduct set

(0.3, 0.1), (0.2, 0.8) (0.2, 0.9), (0.1, 0.7) (0.3, 0.9), (0.1, 0.8)

Column_2C 310 7 5 5 5

Ionosphere 351 34 7 5 5

Iris 150 5 2 3 2

Glass 214 10 7 6 6

Hepatitis 155 20 2 2 2

Lung_Cancer 32 57 5 5 5

Soybean_small 47 22 2 2 2

Zoo 101 17 5 4 6

Table 6 Classification accuracies (in percentage) for parametric value (0.3, 0.1), (0.2, 0.8)

Datasets Classifiers

Bayes Net Naı̈ve Bayes IBk JRip PART J48 LMT Random tree

Unr. Red. Unr. Red. Unr. Red. Unr. Red. Unr. Red. Unr. Red. Unr. Red. Unr. Red.

Column_2C 76.45 75.80 77.74 77.74 81.61 82.25 82.25 82.90 80.96 81.61 81.61 82.25 85.48 85.48 79.03 81.61

Ionosphere 89.45 90.88 82.62 88.03 86.32 89.74 89.17 92.87 91.73 92.02 91.45 92.59 92.87 93.16 86.60 90.31

Iris 92.66 94.66 96 96 95.33 95.33 95.33 92.66 94 95.33 96 96 94 93.33 92 94

Glass 70.56 65 48.59 47.19 70.56 68.69 68.69 67.18 68.62 65.42 66.82 64.48 68.69 71.96 70.09 67.71

Hepatitis 82.58 84.51 83.87 84.51 80.64 85.16 78.70 84.51 86.45 84.51 80.64 84.51 83.22 84.51 76.12 84.51

Lung_Cancer 43.75 50 65.62 71.87 50 78.12 50 71.87 37.5 81.25 40.62 78.12 59.37 71.87 28.12 68.75

Soybean_small 100 100 97.87 100 100 100 97.87 100 100 100 97.87 100 97.87 100 100 100

Zoo 94.05 95.04 95.04 90.09 96.03 95.04 88.11 90.09 92.07 95.04 92.07 94.05 95.04 96.03 96.03 95.04

Bold values signifies the larger value of classification accuracy of datasets for particular classifiers

Table 7 Classification accuracies (in percentage) for parametric value (0.2, 0.9), (0.1, 0.7)

Datasets Classifiers

Bayes Net Naı̈ve Bayes IBk JRip PART J48 LMT Random tree

Unr. Red. Unr. Red. Unr. Red. Unr. Red. Unr. Red. Unr. Red. Unr. Red. Unr. Red.

Column_2C 76.45 75.80 77.74 77.74 81.61 82.25 82.25 82.90 80.96 81.61 81.61 82.25 85.48 85.48 79.03 81.61

Ionosphere 89.45 90.59 82.62 90.31 86.32 90.88 89.17 90.88 91.73 92.59 91.45 92.30 92.87 92.30 86.60 90.02

Iris 92.66 93.33 96 96 95.33 95.33 95.33 92.66 94 95.33 96 96 94 93.33 92 94

Glass 70.56 71.96 48.59 48.59 70.56 76.63 68.69 64.48 68.62 74.29 66.82 69.15 68.69 68.69 70.09 71.02

Hepatitis 82.58 84.51 83.87 84.51 80.64 85.16 78.70 84.51 86.45 84.51 80.64 84.51 83.22 84.51 76.12 84.51

Lung_Cancer 43.75 50 65.62 71.87 50 78.12 50 71.87 37.5 81.25 40.62 78.12 59.37 71.87 28.12 68.75

Soybean_small 100 100 97.87 100 100 100 97.87 100 100 100 97.87 100 97.87 100 100 100

Zoo 94.05 94.05 95.04 89.10 96.03 98.01 88.11 91.06 92.07 96.03 92.07 94.05 95.04 97.02 96.03 98.01

Bold values signifies the larger value of classification accuracy of datasets for particular classifiers
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applying the same process as above, we calculate degree of

dependencies of decision attribute with respect to each pair

of conditional attributes, we get

C c1;c2f g Dð Þ ¼ 1; C c1;c3f g Dð Þ ¼ 0:86; C c1;c4f g Dð Þ ¼ 1;
C c1;c5f g Dð Þ ¼ 0:86

Therefore, reduct set of above intuitionistic fuzzy

information system is c1; c2f g or c1; c4f g:

We have examined the proposed approach for feature

selection on two example datasets. In Example 6.1, we

have taken a decision system having three real-valued

conditional attributes and one decision attribute. R-foreset

of each object based on fuzzy similarity relation are cal-

culated. Using quantifier-based lower approximation for-

mula, positive region has been computed and it has been

found that the degrees of dependency for attribute set

c1; c2f g and c2; c3f g are highest amongst c1; c2; c3f g:
Therefore, c1; c2f g or c2; c3f g is the reduct set of the given

decision system. After proceeding with the similar process,

we have dealt with an intuitionistic fuzzy decision system

in Example 6.2 and got c1; c2f g or c1; c4f g as the reduct

set.

Example 6.3 In this example, proposed algorithm is

applied on real datasets and classification accuracies are

evaluated.

6.1 Experimental Setup

In this section, we apply proposed algorithm on eight

benchmark datasets: Column_2C, Ionosphere, Iris, Glass,

Hepatitis, Lung cancer, Soybean_small, Zoo [45]. First, we

calculate reduct of these datasets by intuitionistic fuzzy

quantified rough set approach. Reducts of different datasets

are calculated by assigning different values to the param-

eters ða1; a2Þ; b1; b2ð Þ, and then, classification analysis is

performed for unreduced as well as reduced datasets. For

classification part, eight different classifiers are used,

namely JRip, PART, J48, Random Tree, IBK, Bayes Net,

KSTAR, LMT. Classification accuracies for original and

reduced datasets are calculated with these classifiers.

Effects of the parameters on classification accuracies are

also shown. All the experiments are performed in

MATLAB 2017a.

6.2 Experimental Results

In Table 5, the reduct size of different datasets for different

parametric values is compared. Table 6 shows the average

classification accuracy for eight classifiers in the form of

percentage obtained using 10-fold cross-validation. Ini-

tially, the classification process was performed on the

unreduced (original) datasets and then on the reduced

datasets obtained using the proposed technique. It can be

observed that classification accuracies are either improving

or remaining the same for most datasets. Effect of para-

metric values on classification accuracy is presented in

Tables 6, 7 and 8. For dataset ‘‘Glass’’, classification

accuracies are mostly decreasing for the parametric value

(0.3, 1), (0.2, 0.8) and mostly increasing for the parametric

value (0.2, 0.9), (0.1, 0.7) or (0.3, 0.9), (0.1, 0.8). For

dataset Zoo, parametric value (0.2, 0.9), (0.1, 0.7) classi-

fication accuracy increases for all classifiers except Naı̈ve

Bayes and decreases for parametric value (0.3, 0.9), (0.1

,0.8) for all classifiers except JRip. A slight change in

parametric value can differ in accuracy a lot. So assigning

values to the parameters plays an important role and can be

chosen carefully for particular data domain.

Table 8 Classification accuracies (in percentage) for parametric value (0.3, 0.9), (0.1, 0.8)

Datasets Classifiers

Bayes Net Naı̈ve Bayes IBk JRip PART J48 LMT Random tree

Unr. Red. Unr. Red. Unr. Red. Unr. Red. Unr. Red. Unr. Red. Unr. Red. Unr. Red.

Column_2C 76.45 75.80 77.74 77.74 81.61 82.25 82.25 82.90 80.96 81.61 81.61 82.25 85.48 85.48 79.03 81.61

Ionosphere 89.45 90.59 82.62 90.31 86.32 90.88 89.17 90.88 91.73 92.59 91.45 92.30 92.87 92.30 86.60 90.02

Iris 92.66 93.33 96 96 95.33 95.33 95.33 92.66 94 95.33 96 96 94 93.33 92 94

Glass 70.56 71.96 48.59 48.59 70.56 76.63 68.69 64.48 68.62 74.29 66.82 69.15 68.69 68.69 70.09 71.02

Hepatitis 82.58 84.51 83.87 84.51 80.64 85.16 78.70 84.51 86.45 84.51 80.64 84.51 83.22 84.51 76.12 84.51

Lung_Cancer 43.75 50 65.62 71.87 50 78.12 50 71.87 37.5 81.25 40.62 78.12 59.37 71.87 28.12 68.75

Soybean_small 100 100 97.87 100 100 100 97.87 100 100 100 97.87 100 97.87 100 100 100

Zoo 94.05 88.11 95.04 88.11 96.03 90.09 88.11 91.08 92.07 88.11 92.07 88.11 95.04 87.12 96.03 91.08

Bold values signifies the larger value of classification accuracy of datasets for particular classifiers
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7 Conclusion

In this paper, we have proposed a new approach for attri-

bute reduction in an information system based on intu-

itionistic fuzzy quantified rough set. We have defined

intuitionistic fuzzy quantifiers most and some and associ-

ated them with intuitionistic fuzzy rough set. Some results

on lower and upper approximations are proven for justifi-

cation of proposed rough set. Degree of dependency con-

cept has been used for attribute reduction in a decision

system with our model. Stepwise algorithm has been pre-

sented with two examples for better understanding of

proposed work. Proposed algorithm has been implemented

on some real benchmark datasets, and classification accu-

racies for different classifiers have been evaluated. It has

been found that reduced datasets outperform unreduced

datasets in terms of resulting classification performance.

In future, we intend to use intuitionistic fuzzy quantified

rough set for attribute reduction in high-dimensional

datasets by using discernibility matrix approach. We wish

to define new intuitionistic fuzzy linguistic quantifier based

on relational logic, and we will combine this with rough set

to propose a new robust approach for attribute reduction in

real datasets.
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