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Abstract In this paper, a methodology for construction

projects risk assessment under epistemic uncertainty (i.e.,

uncertainty arising from lack of data/knowledge) has been

proposed. In practice, as the sufficient data from historical

sources for probabilistic analysis are quite difficult to

obtain, qualitative risk assessment methodologies based on

expert’s judgments are commonly used in construction

industry. However, these insufficient probabilistic data

combined with experts’ judgments can be used in the risks

evaluation process to reduce uncertainties and biasness. All

the methodologies developed so far have assumed that the

degrees of uncertainties (i.e., levels of uncertainties)

involved in individual risk event are equal. However, in

practice, the degree of uncertainties that involved in each

risk event may vary due to the variation in the availability

or quality of data obtained from multiple sources (e.g.,

from experts’ opinions and past data from similar projects).

Therefore, evaluation of risks considering the degree of

uncertainty involved in individual risk events may assist

project manager in setting-up response strategies to miti-

gate threat to the project objectives. This paper proposes a

risk assessment methodology using triangular fuzzy num-

bering system to compute risk value by combining expert’s

opinion and insufficient historical data. A modified form of

general ramp-type fuzzy membership function for

quantification of uncertainty range of each risk event and

an extended VIKOR method for risk ranking with these

uncertainty ranges have been used. The most notable dif-

ference with other fuzzy risk assessment methods is the use

of algorithm to handle the uncertainties involved in indi-

vidual risk event. The proposed risk assessment method-

ology is illustrated for two practical example problems: (1)

a steel-frame structured building and (2) a rehabilitation

project of a building.

Keywords Risk assessment � Epistemic uncertainty �
Degree of uncertainty � Fuzzy logic � VIKOR

1 Introduction

The construction industry is plagued by various risks which

are often responsible for poor performance with increasing

cost and time delay, even project failure [37]. Risk is

inherent in all projects and can never be eliminated com-

pletely. However, it can be managed to reduce its effects to

an acceptable level. Therefore, a systematic and proactive

risk management framework is needed to enhance the

chance of success and improve performance. All potential

risks and uncertain factors should be identified at the initial

phase of the project life cycle and managed effectively for

avoiding potential loss. The successful management of risk

requires the identification of risks, assessment of risk

magnitude and implementation of response strategies to

reduce threats to the project objectives [10].

A risk is an uncertain future event that has negative

impact on the project objectives, such as scope, schedule,

cost or quality [24]. Other definitions of risk are also

available in the literature, for example, ‘‘risk is the

potential barrier for project completion and achieving
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goal’’ [17], ‘‘the possibility of financial losses, physical

damages or injuries, delays and detrimental events occur-

ring to the project’’ [3, 5], ‘‘negative deviation from desired

level’’ [12]. Although various researchers define risk in

various ways, some common characteristics are found in all

definitions. A risk is an unexpected future event with the

involvement of substantial uncertainties that have detri-

mental effects to the project objectives.

Risk is raised when there are uncertainties and these

uncertainties are integral part in any risk assessment pro-

cess [4, 11, 21, 26]. Therefore, without considering the

uncertainty that is associated with risks, the risk assessment

process will remain inefficient. The uncertainty that

involved in risk assessment process can be divided into two

types: aleatory uncertainty and epistemic uncertainty [9].

In real-life problems, both types of uncertainties should be

accounted for in risk analysis process [1, 9]. Aleatory

uncertainty is irreducible and also known as random

uncertainty. It refers to the inherent randomness that comes

from natural variability. On the other hand, epistemic

uncertainty is reducible and often arises from limited or

imprecise data, measurement limitations and approxima-

tions in mathematical model. By gathering more informa-

tion and precise data, these types of uncertainty can be

reduced. In the literature, epistemic uncertainty previously

has been expressed by probability distributions [35], sub-

jective probabilities [25], fuzzy sets [14], etc.

Construction projects are associated with greater inher-

ent risks due to the involvement of many stakeholders [29].

There are many risk sources and factors involved in con-

struction projects that should be identified and assessed for

effective risk managements. In risk analysis process, there

exist both qualitative and quantitative data. However, in

many circumstances, for construction project, it is very

hard to obtain sufficient amount of risk data from historical

sources due to its non-routine and unique characteristics.

Due to the scarcity of sufficient data for probabilistic

analysis, construction project risks are being managed

based on experts’ judgments and experiences [37]. There-

fore, the data type for risk studies is mostly qualitative

rather than quantitative [18]. Note that this qualitative data

may induce imprecision and biasness in the decision-

making process [27]. Moreover, these qualitative data are

often found as linguistic variables. These linguistic vari-

ables express imprecise and vague information instead of

sharp numerical values. In these situations, the risk

assessment cannot be exact but approximate. Fuzzy set

theory [34] provides an effective tool to quantify or capture

the vagueness in the linguistic variables. However,

depending on the data types, availability and sources, both

probabilistic and subjective judgments can be used in risk

analysis process simultaneously. Due to its suitability for

handling both quantitative and qualitative data, fuzzy logic

has been used in risk assessment process for a long time

[3, 8, 24, 27, 37]. Concepts other than fuzzy logic have also

been used in risk management over the last two decades,

such as multicriteria decision-making (MCDM) approach

[13, 32, 36, 38], fault tree analysis/event tree analysis [15],

Dempster-Shafer theory [33], influence diagram [10], brain

storming, merging fuzzy with MCDM tools [16, 22]. In

real-life problem, although it is very hard to obtain suffi-

cient statistical data, it may be possible to evaluate risk

using these insufficient data merging with subjective

judgments. A very few researchers have attempted to

develop their risk assessment models using data from both

sources: historical data from similar projects and subjective

judgments from experts [7] (Choi et al., 2008). This paper

evaluates risks considering data from both historical source

(i.e., insufficient statistical data) and subjective judgments

from many experts under fuzzy environments.

Several studies on the construction project risk assess-

ment are reported in the literature to deal with uncertainty.

A model for risk assessment considering associated

uncertainty was developed by Zeng et al. [37], based on

fuzzy reasoning and Analytic Hierarchy Process (AHP).

A Factor Index was introduced in this risk analysis process

to evaluate all possible uncertainty associated with two

parameters: risk likelihood and risk severity. However, the

biasness in subjective judgments is ignored in this model;

therefore, evaluation of uncertainty is still not compre-

hensive. Asan et al. [2] proposed a fuzzy prioritizing

approach to project risk management considering the

uncertainty raised from subjective judgments. This model

gives satisfactory results in respect of handling biasness in

subjectivities but still incapable of handling modeling

uncertainty. Islam and Nepal [18] proposed a fuzzy-

Bayesian model for making realistic budget and avoiding

cost overrun by identifying the critical risk in the prelim-

inary stage of the project life cycle. They used expert’s

judgments for developing the model with Bayesian belief

networks, which overcome the drawback of biasness in

subjective judgments. However, the uncertainty that

involved in probabilistic parameter estimation was not

explicitly considered in this risk analysis model. All these

existing models are developed under aleatory uncertainty

alone, which leads poor performance in practice as real-life

problem includes both aleatory and epistemic uncertainty.

These models are also found incapable of handling epis-

temic uncertainty and complex relationships among the

risk factors properly. Therefore, as the epistemic uncer-

tainty is reducible, this must be incorporated into the risk

assessment framework and managed separately for better

project performance.

In the uncertain environment, interval-valued numbers

are the simplest way of representing uncertainty in the

decision-making problems. Since the assessment of risk is
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basically the measure of uncertainty, it is difficult or even

impossible to express the risk with exact point value.

Therefore, in this situation, it is more appropriate to

express them as intervals. Basically, risks are assessed for

prioritizing them in order to set up risk response strategies

against only higher-order risks because of the limitations of

time and money. Numerous methods for ranking with

interval numbers are available in the literature such as a

two-grade approach [31], interval-valued intuitionistic

fuzzy sets theory [6, 23, 30], Monte Carlo method [19],

extended TOPSIS [20], extended VIKOR [28].

Although there is now an extensive volume of methods

available for ranking with interval numbers, all these

methods have only been studied with respect to the deci-

sion-making problems. However, this concept may also be

employed in construction project risk assessment process.

Since the construction project is associated with substantial

epistemic uncertainties, interval number can be the way of

representing the degree of uncertainties involved in each

risk event. All the risk assessment methodologies devel-

oped so far have assumed that the degrees of uncertainties

involved in individual risk event are equal. However, in

practice, the degree of uncertainties involved in each risk

event may vary due to the variations in availability or

quality of data. None of the existing risk assessment

methods take into account the degrees of uncertainties that

involved among different risk events as a variable factor

and interval numbers to express risk values. Therefore,

there is a need for an efficient risk assessment methodology

that evaluates construction project risks with interval

numbers considering the degree of uncertainty involved in

each risk event. This paper proposes a methodology for risk

assessment of construction project under epistemic uncer-

tainty using fuzzy concept. The proposed method evaluates

construction project risk in terms of uncertainty interval

that represents the degree of uncertainties involved in

individual risk. It also provides a ranking of risks based on

these uncertainty intervals.

The rest of the paper is organized as follows: Sect. 2

describes the proposed risk assessment model using fuzzy

logic under epistemic uncertainty. In Sect. 3, two case

problems: (1) a steel-frame structured building and (2) a

rehabilitation project of a building are used to illustrate the

proposed methodology. Results and discussion are given in

Sect. 4. Section 5 provides conclusions and suggestions for

future work.

2 Proposed Risk Assessment Model

A typical risk management process consists of four steps:

risk identification, risk assessment, risk response, and risk

monitoring and controlling. It should cover all aspects of

risks in construction project and demonstrate risks with

potential causes, effects and their corrective actions. All the

previously proposed fuzzy-based risk assessment method-

ologies have three common steps as follows:

Step 1: Definition and fuzzification—all the fundamental

parameters are defined basically with vague data or lin-

guistic terms and then these parameters are converted into

suitable fuzzy numbers or membership functions (MFs).

Step 2: Fuzzy inference system—the relationships

between inputs and output parameters are defined by the

appropriated fuzzy mathematical operations or if–then

rules.

Step 3: Defuzzification—the output result in the form of

fuzzy number is converted into appropriate numerical

value that can adequately represent it.

This paper proposes a risk assessment model under

epistemic uncertainty based on fuzzy concept as shown in

Fig. 1. In this risk assessment framework, the algorithm of

risk model consists of four phases: preliminary phase, data

collection phase, risk measurement phase and uncertainty

measurement phase. In brief, the risk assessment team must

go through these four phases to implement the proposed

construction project risk assessment model. The following

four phases are basically concerned with the following

tasks:

Phase 1: The review of risks data, definition of fuzzy

linguistic variables and selection of their corresponding

fuzzy membership function. Here, in this paper, trian-

gular fuzzy number (TFN) is used to map the member-

ship values to take advantage of its simplicity and

familiarity.

Phase 2: Identification of risks sources and gathering

risk-related information such as risk likelihood (RL) and

risk severity (RS) from diversified sources to reduce

biasness.

Phase 3: Application of the appropriate fuzzy operations

for aggregation of data obtained from multiple sources

and computation of risk value (RV) through fuzzy

inference system (FIS).

Phase 4: Determination of uncertainty range of each risk

event by selecting appropriate fuzzy membership curve

and prioritization of risk events based on their uncer-

tainty ranges.

The details of the risk assessment methodology are

described in the following subsections.

2.1 Preliminary Phase

2.1.1 Establish a Risk Assessment Team

Risk assessment process is basically a team work, and its

success mainly depends on how well the risk assessment
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team is formed. Therefore, selection of members in the risk

assessment team is very crucial and needs great attention of

senior management. The team should be formed with the

experts from different backgrounds and disciplines and

have a high degree of knowledge and previous experience

of working in similar construction projects. This team may

include the following experts: project managers, site

engineers, construction managers, project team members,

subject specialists, etc. The size of the team is also

important; too big can create many opinions which often

lead to lack of coordination, and too small may lead to

biasness with incomplete viewpoints. The authors suggest

that the perfect team size may vary from 3 to 7 members

depending on the project’s type, size and length. Once the

risk assessment team is formed, they will undertake the

responsibility of carrying out the whole risk assessment

process from the beginning to the very end.

Establish a risk assessment team 

Review risk data and define linguistic variables

 Define matching MFs for each linguistic variable 

Preliminary phase 

Collect data from diversified sources 

Allocate weights to the data sources 

Data collection 
phase 

Risk 
measurement 

phase 

Convert the data of RL and RS into matching TFN 

Aggregate TFN of RL and RS into group TFN

Fuzzy inference system 

Evaluate RV through Defuzzification process

Uncertainty 
measurement 

phase 

Determine the linguistic term for uncertainty range

Determine fuzzy membership curves for each risk item 

Evaluate uncertainty intervals through defuzzification 

Risks ranking with uncertainty intervals 

Fig. 1 A fuzzy-based risk assessment model
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2.1.2 Review Risk Data and Define Linguistic Variables

All the members of risk assessment team are required to

review the risk-related information and should be clarified

by themselves if they have any doubts about the risk

assessment procedures. All the risk parameters such as RL,

RS and associated linguistic variables should be defined by

the risk assessment team at the very beginning of the risk

assessment process. It is extremely difficult to quantify the

construction project risks with an exact numerical value

due to the involvement of huge uncertainties. If the risk

assessment group has imprecise, imperfect or lack of

information about risks associated with a project, then the

assessment of risk cannot be exact but approximate. In

these situations, the judgments of the risk assessment group

members are expressed by means of linguistic terms

instead of numerical values or real numbers. The variable

which can take words in natural languages as its value is

called linguistic variable. For example, the occurrence

probability of a risk event can be expressed with simple

linguistic terms such as ‘‘high,’’ ‘‘low,’’ ‘‘very low,’’ and

‘‘very high,’’ instead of exact numerical values such as

2/10, 4/100. For evaluating the risk parameters with this

risk assessment model, RL and RS are defined by five

linguistics terms: ‘‘very low,’’ ‘‘low,’’ ‘‘medium,’’ ‘‘high,’’

and ‘‘very high.’’

2.1.3 Define Matching MFs for Each Linguistic Variable

The linguistics terms must be converted into a matching

fuzzy number by using appropriate conversion scale for

numerical quantification of risks. The linguistic variables

are characterized by fuzzy membership functions defined

in the universe of discourse in which the variable is

defined. Various types of fuzzy membership functions are

available, such as triangular, trapezoidal, Gaussian and

S-shaped MFs. However, triangular and trapezoidal MFs

are the most frequently used MFs in construction project

risk analysis in practice because of their simplicity. Fig-

ure 2 shows the TFN for the associated linguistic variables

of RS and RL. It is seen that the TFN for linguistic term

‘‘very low’’ is (0, 0, 0.25), for ‘‘low,’’ it is (0, 0.25, 0.5) and

so on.

2.2 Data Collection Phase

2.2.1 Collect Data from Diversified Sources

In construction project risk analysis, sufficient amount of

historical or statistical data is often hard to obtain. There-

fore, most of the existing models use only data from

expert’s judgments. However, these insufficient statistical

data along with expert’s judgments can be used in risk

evaluation process for better performance. Although the

projects are characterized as unique, one-time endeavor,

Fig. 2 TFN for linguistic variables
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there are some common risk events that exist for all types

of projects and some are specific to a particular project.

Therefore, risk data are available for these common risk

events in the historical sources. This paper evaluates risks

considering both data from historical source (i.e., insuffi-

cient statistical data) and subjective judgments from many

experts. If data are collected from m number of experts,

then total number of data source will be n = m ? 1,

because data from statistical source should be considered

as one source. It is important to note that data should be

collected from as diversified and multiple sources as pos-

sible to reduce biasness, because different experts will see

the problems from their own viewpoints. Here, the term

diversified is used to mean the experts from different

backgrounds and sectors.

2.2.2 Allocate Weights to the Data Sources

As different sources of data have different impacts on the

final decision, weights are introduced into the project risk

analysis model. Weights (Ws) will be allocated to experts

on the basis of experience, knowledge and expertise and to

the statistical source on the basis of data quality, quantity

and credibility. If data are collected from n number of

sources, then the kth data source Sk is assigned a weight

factor Wk, where Wk 2[0, 1], and W1 ? W2 ? ��� ?
Wn = 1.

2.3 Risk Measurement Phase

2.3.1 Convert the Data of RL and RS into Matching TFN

In this step, all the risk data related to RL and RS obtained

from experts’ opinions and historical source should be

converted into appropriate fuzzy number. In this risk

assessment model, TFN is used for its simplicity and

popularity. Experts’ judgments in the form of linguistic

variables are needed to convert into matching TFN as

defined earlier by the risk assessment team. For example,

an expert might say that the occurrence probability for the

kth risk event is ‘‘high’’; then, according to the definition,

the matching TFN is (0.5, 0.75, 1.0). Experts are also

allowed to give any intermediate values of TFN about RL

and RS directly without any help of linguistic variables.

Suppose, it is possible to put (0.3 0.4 0.5) directly as TFN

for both RL and RS. In case of statistical data source, single

numerical values are obtained about RL and RS from

probabilistic analysis such as frequency analysis, Monte

Carlo simulation, Bayesian approach. Data obtained from

probabilistic analysis also need to be converted into TFN to

take advantages of merging with TFN obtained from other

sources in the aggregation process. If ‘‘a’’ be the measured

value of RS or RL by probabilistic analysis, then TFN is

converted as (a, a, a). For example, if the occurrence

probability of a risk event is found as 0.3, then TFN will be

(0.3, 0.3, 0.3).

2.3.2 Aggregate Individual TFN of RL and RS into Group

TFN

The aim of this step is to apply appropriate operator to

aggregate the individual TFN of RL and RS obtained from

various sources into group TFN. The aggregation of TFN

scores is performed by applying the fuzzy weighted trian-

gular averaging operator, which is defined by

A
�
k ¼ A

�
i1 �W1 �A

�
i2 �W2 � � � � � A

�
in �Wk

� �
ð1Þ

where A�
k is the fuzzy aggregated TFN score and

A�
ik for k ¼ 1; 2; . . .;mþ 1ð Þ are the measured TFN of m

numbers of experts from diversified field and one from

statistical source. Here, � and � denote the fuzzy multi-

plication and fuzzy addition operators, respectively. W1,

W2,…, Wm?1 are the weights allocated to experts, E1,

E2,…, Em and W1 ? W2 ? ��� ? Wm?1 = 1.

2.3.3 Fuzzy Inference system

Fuzzy inference system (FIS) is the process of transferring

from a given input mapping to an output mapping using

fuzzy logic. In the fuzzy inference phase, the aggregated

TFNs of RL and RS are converted into matching fuzzy sets

of RV. Therefore, this fuzzy inference system has two

inputs RL and RS and one output variable RV. Here, the

value of the output RV depends on both values of RL and

RS. Therefore, according to fuzzy set theory, the logical

operation between RL and RS is ‘‘fuzzy intersection’’ or

‘‘AND.’’ In other words, according to truth table of stan-

dard Boolean logic, RV is ‘‘truth’’ when both RL and RS

are ‘‘truth.’’ The classical fuzzy operator for this function

is: min, but the fuzzy T-norm operator (i.e., triangular

norm) enables us to customize the AND operator. The

intersection of two fuzzy sets A and B is defined in general

by a binary mapping T, which aggregates two membership

functions as follows:

lA\BðxÞ ¼ TðlAðxÞ; lBðxÞÞ ð2Þ

where binary operator T represents the product of lA xð Þ
and lB xð Þ.

The classical method of fuzzy intersection (i.e., ‘‘min’’)

considers only the minimum value of the two input vari-

ables. This implies that the value of RV is equal to the

minimum value between them that may come from either

RL or RS value ignoring the maximum value. However,

there is great impact of both inputs RL and RS to the output

RV. In this respect, prod operator considers the effects of

both inputs to the output RV, which is desirable.
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2.3.4 Evaluate RV through Defuzzification

Defuzzification of fuzzy numbers is the process of pro-

ducing non-fuzzy number that is needed for decision

making in a fuzzy environment. There are many defuzzi-

fication methods available, any one of which can be

selected according to the requirements for reflecting the

real situation and viewpoints of the decision maker. Cen-

troid, bisector, middle of maximum, largest of maximum,

smallest of maximum and a-cut are the very popular

defuzzification methods. In this phase, the centroid method

is selected as it is relatively easy to apply, which can be

mathematically defined as:

RV ¼
R 1
0
xf ðxÞdx

R 1
0
f ðxÞdx

ð3Þ

where f(x) denotes the membership function of RV.

2.4 Uncertainty Measurement Phase

2.4.1 Determine the Linguistic Variables for Uncertainty

Range

This risk assessment model uses both expert’s judgments

and insufficient historical data in risk analysis. Therefore,

uncertainties are involved in both processes: probabilistic

analysis and subjective judgments. The uncertainties

involved in probabilistic estimations of RV and RS are

basically due to (1) unreliable/insufficient data or (2)

approximation in statistical analysis methods. On the other

hand, the factors influencing the uncertainties in subjective

judgments are: (3) the complexity of work/conditions and

(4) the level of education and experience of the experts.

Based on these four factors, a linguistic variable of ‘‘close

to *’’ type is determined to consider the degree of

uncertainties involved in each risk event as shown in

Table 1. It is seen that five linguistic variables such as

‘‘very very close to,’’ ‘‘very close to,’’ ‘‘close to,’’ ‘‘fairly

close to’’ and ‘‘fairly fairly close to’’ are used to evaluate a

proper uncertainty range. Here, this ‘‘close to *’’ type

linguistic variables are basically used to mean how close

the determined risk value to the actual value (i.e., the RV

with zero degree of uncertainty). In general, four possible

grades of uncertainties such as ‘‘very small,’’ ‘‘small,’’

‘‘normal’’ and ‘‘large’’ are assumed in these four uncer-

tainty factors. Table 1 shows the classification of linguis-

tics variables that represent the degree of uncertainties

according to different combinations of the four possible

uncertainty grades.

2.4.2 Determine Fuzzy Membership Curve for Each Risk

Item

In this step, after determination of appropriate linguistic

variables for the degree of uncertainties involved in each

risk event, a fuzzy membership curve is drawn based on the

determined linguistic variables. The fuzzy membership

functions of ‘‘close to *’’type have been developed earlier

by Choi et al. (2008) to represent the uncertainty range

involved in probability of occurrence. Here, in this paper,

these membership functions are used to compute the

Table 1 Factors for determining uncertainty range of RV (proposed by Choi et al. 2008)

Subjective judgments Probabilistic parameter estimations Determined

uncertainty

rangeComplexity

of work

Level of education, experience

and confidence

Unreliable/

insufficient data

Approximation in

statistical analysis

Very small Very small Very small Very small Very very close

Very small Small Very small Small

Small Very small Small Very small Very close

Very small Normal Very small Normal

Normal Very small Normal Very small

Small Small Small Small Close

Small Normal Small Normal

Normal Small Normal Small

Very small Large Very small Large

Large Very small Large Very small Fairly close

Normal Normal Normal Normal

Small Large Small Large

Large Small Large Small Fairly fairly close

Normal Large Normal Large

Large Large Large Large
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uncertainty interval involved in individual risk event.

Figure 3 shows the sample membership curves for a risk

event with RV of 0.5 which are drawn for all the five

defined linguistic variables as described in the previous

subsection. If x be the RV of a risk event, then the fuzzy

membership curve is defined for ‘‘close to x’’ type as

follows:

f x0ð Þ ¼
2x01=y
� �y� �pn o

; for 0:0y � x0 � 0:5y

2� 2x01=y
� �y� �pn o

; for 0:5y � x0 � 1:0y

8
<

:

ð4Þ

where x0 is the transformed axis such that estimated or

determined value of each risk event is located at the mid-

point (0.5) of x-axis. Thus, xy= x0; where y is calculated by

using the value of the fuzzy number at the midpoint, so that

0:5y ¼ x0. Here, y is the midpoint transfer function and p is

the coefficient of power according to linguistic variables.

For example, assume that the risk value (RV) of a risk

event A is determined as 0.204 through fuzzy inference

system, then the corresponding value of midpoint transfer

function y will be 2.293 as shown below:

0:5y ¼ 0:204 or y ¼ 2:293

Table 2 shows the equations which are associated with

the five linguistic variables.

2.4.3 Evaluate Uncertainty Intervals Through

Defuzzification

The uncertainty ranges of these linguistic expressions of

each risk event are evaluated quantitatively by using a-cut
defuzzification method. Although there exist numerous

defuzzification methods, especially for this defuzzification

step, a-cut method is recommended due to its capability to

produce interval data from membership functions. Here, a
represents the degree of membership functions or belief

functions. The optimistic decision makers will have higher

values of a than the pessimistic decision makers.

2.5 Risk Ranking with Uncertainty Intervals

In this section, risks are ranked based on uncertainty range

by applying extended VIKOR method which is developed

by Sayadi et al. [28]. They proposed the model for the

purpose of solving general MCDM problems. However, in

this risk analysis model, the problem is more specific and

ranking or prioritizing of risks is made based on only

uncertainty interval of each risk event. Therefore, a minor

modification is made in order to simplify the model for

ranking risks with the help of uncertainty intervals. The

simplified extended VIKOR method consists of the fol-

lowing steps:

Step 1: Determine the positive ideal solution (PIS) and

negative ideal solution (NIS).

A
� ¼ x�1; x

�
2 . . . x

�
n

� �
¼ min

i
xLij j 2 Jj

� 	
 �
; j ¼ 1; 2; . . .n

ð5aÞ

A
� ¼ x�1; x

�
2 . . . x

�
n

� �
¼ max

i
xUij j 2 Jj

� 	
 �
;

j ¼ 1; 2; . . .n
ð5bÞ

where J denotes cost criteria. A� and A� are PIS and NIS,

respectively.

Fig. 3 Membership curves with different degrees of uncertainty

Table 2 Membership functions to capture uncertainty ranges [7]

Linguistic variable Values (f(x0)) Limit

Very very close (VVC)
2x01=y
� 
yh i4 0:0y � x0 � 0:5y

2� 2x01=y
� 
yh i4 0:5y � x0 � 1:0y

Very close (VC)
2x01=y
� 
yh i2 0:0y � x0 � 0:5y

2� 2x01=y
� 
yh i2 0:5y � x0 � 1:0y

Close (C) 2x01=y
� 
y 0:0y � x0 � 0:5y

2� 2x01=y
� 
y 0:5y � x0 � 1:0y

Fairly close (FC)
2x01=y
� 
yh i1=2 0:0y � x0 � 0:5y

2� 2x01=y
� 
yh i1=2 0:5y � x0 � 1:0y

Fairly fairly close (FFC)
2x01=y
� 
yh i1=4 0:0y � x0 � 0:5y

2� 2x01=y
� 
yh i1=4 0:5y � x0 � 1:0y
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Step 2: In this step, the SLi ; S
U
i

� �
and RL

i ;R
U
i

� �
intervals

are calculated as follows:

S
L
i ¼

X
j2J Wj

xLij � x�j
x�j � x�j

 !

; where; i ¼ 1; 2. . .;m

ð6aÞ

S
U
i ¼

X
j2J Wj

xUij � x�j
x�j � x�j

 !

; where; i ¼ 1; 2. . .;m

ð6bÞ

R
L
i ¼ max Wj

xLij � x�j
x�j � x�j

 !

j 2 Jj
 !( )

; where;

i ¼ 1; 2; . . .;m

ð7aÞ

R
U
i ¼ max Wj

xUij � x�j
x�j � x�j

 !

j 2 Jj
 !( )

; where;

i ¼ 1; 2; . . .;m

ð7bÞ

Step 3: Compute the interval Qi = ½QL
i ,Q

U
i ], i = 1, 2 …

m, by the following equations:

QL
i ¼ m

ðSLi � S�Þ
S� � S�ð Þ þ ð1� mÞ RL

i �R�� �

R� �R�ð Þ ð8aÞ

QU
i ¼ m

ðSUi � S�Þ
S� � S�ð Þ þ ð1� mÞ RU

i �R�� �

R� �R�ð Þ ð8bÞ

where

S
� ¼ min

i
S
L
i ; and S

� ¼ max
i

S
U
i ð9aÞ

R
� ¼ min

i
R
L
i ; and R

� ¼ max
i

R
U
i ð9bÞ

where v represents weight of the strategy of ‘‘the dominant

part of criteria.’’

Note that in this risk assessment problem, the value of v

will always be equal to one, because ‘‘uncertainty interval’’

is the only criterion for ranking the alternatives. For the

same reason, the values of the Qi and Ri interval will be the

same as the Si interval.

Step 3: According to the VIKOR method, the alternative

which has minimum Qi is the best alternative and it is

chosen as compromise solution. However, here in risk

analysis model, the risks with higher values of Qi will get

higher priority in the ranking order, which is opposite to

the VIKOR method because in this risk assessment model,

the worst alternative will get higher priority in the ranking.

To rank all construction risks with Qi interval numbers,

pairwise comparisons among all risks are made. The next

step shows the method for comparison of two interval

numbers.

Step 4: Suppose that aL; aU½ � and bL; bU½ � are two

interval numbers and the maximum interval number has to

be chosen from them. Therefore, these two interval num-

bers may have four possible states:

(a) If there is no intersection between these two interval

numbers, the maximum interval is that one which

has higher values. In different words: If aU � bL,

then interval bL; bU½ � is the maximum one.

(b) If two interval numbers are the same, then two have

similar priority.

(c) In circumstances that aL � bL\bU � aU ; the maxi-

mum interval number is computed as follows: If

b bL � aLð Þ	 1� bð Þ aU � bUð Þ; then bL; bU½ � is the

maximum interval number, else aL; aU½ � is maximum

interval number.

(d) In circumstances that aL\bL\aU\bU ; and if

b bL � aLð Þ	 1� bð Þ bU � aUð Þ; then bL; bU½ � is the

maximum interval number, else aL; aU½ � is maximum

interval number.

Here, b is introduced as optimism level of the decision

maker 0\b� 1ð Þ. The optimistic decision maker will use

higher value of b than the pessimistic decision maker. In

this situation, the final ranking is obtained by the proposed

modified VIKOR method with pairwise comparisons of

interval numbers.

Therefore, once the ranking of the construction project

risk is obtained by the method described above, risk

response strategies are taken against only for the higher-

order risks due to the limitation of time and money. In the

following section, two practical example problems have

been illustrated to demonstrate the applicability of the

proposed risk assessment methodology.

3 Numerical Examples

In this section, in order to illustrate the effectiveness and

applicability of the proposed risk assessment model, it was

applied to two types of building construction projects: (1) a

steel-frame structured building in Bangladesh and (2) a

rehabilitation project of a building in University of Carta-

gena, Spain. Although the model is applied to building

construction project, the method and procedure can be

applied to various types of other construction projects,

namely bridges, highways, other types of buildings, with

minor modification according to the characteristics of the

projects.

3.1 Example-1: A Case Study on Building

Construction Project

The studied steel-frame structured commercial building

project was located at Ashulia Industrial Area, Savar,
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Dhaka. As the construction project is associated with a

large numbers of risk events, nevertheless a very few

common risk events are considered in this building con-

struction project’s risk assessment case study as shown in

Fig. 4. After a critical review of these risks data, all the

possible risks events that involved in a construction project

can be categorized into some major groups such as tech-

nical risks, operational risks, managerial risks, political

risks. For example, the risk events, design mistakes and

design changes can be grouped into the technical risk,

whereas delays, injuries/accidents, construction mistakes

are the operational type risk. To demonstrate the proposed

model and to simplify the calculations, only the technical

and operational risks are assessed in this case study. Rest of

the risk groups can also be assessed in the similar way.

The step-by-step risk assessment procedures of the

proposed model are discussed in the following subsections.

3.1.1 Preliminary Phase

3.1.1.1 Establish a Risk Assessment Team A risk

assessment team of three members were formed for

undertaking risk assessment of the building construction

project by using the proposed methodology. The team was

made by a project manager with 12 years of experience, a

construction manager with 10 years of experience and a

chief engineer with 15 years of experience. A team leader

was selected from the members based on their knowledge,

experiences and qualifications. This team has carried out

the whole risk assessment process from data collection to

the final risk ranking. All the members of the risk assess-

ment team were allowed to give their own judgments about

risks as well data obtained from other sources.

3.1.1.2 Review Risk Data and Define the Linguistic Vari-

ables First, the risk data of similar previous projects were

critically reviewed by the risk assessment team and the

potential risks with their sources were identified. Before

data collections, all the linguistic variables related to RL

and RS were defined by the risk assessment team. These

linguistic variables helped the team in collecting data from

experts in the form of defined linguistic terms. In this case

study, five simple linguistic variables such as ‘‘very high,’’

‘‘high,’’ ‘‘medium,’’ ‘‘low’’ and ‘‘very low’’ are defined for

both RL and RS with different meanings. For clarification,

in case of RL, linguistic variable ‘‘low’’ means ‘‘unlikely to

occur,’’ while for the case of RS, it means ‘‘involved small

impact.’’ Table 3 describes the parameters that have been

used in this case study. The linguistic variables under each

parameter with their corresponding interpretations are

shown in Table 4.

3.1.1.3 Define Matching MFs for each Linguistic Vari-

able In this step, a matching TFN was defined for each

linguistic term to evaluate the risks of building construction

project. The matching TFNs for each linguistic variable of

both factors RL and RS are shown in the last column of

Table 4. It is seen that the matching TFNs are defined for

the linguistic terms ‘‘very high’’ as (0.75, 1, 1), whereas for

the linguistic term ‘‘high,’’ it is (0.5, 0.75, 1) and so on for

the rest. Experts were allowed to give their judgments

about RL and RS with these defined linguistic terms as well

as with TFN directly. For instance, it is possible to put any

intermediate value of TFN for both RL and RS, if any

expert wishes to do that. Therefore, (0.20, 0.3, 0.45) is also

possible to take as TFN for RL or RS. In Table 5, it is seen

that expert E2 gave his judgments about RL and RS for risk

Project Risks

Technical Risks: - Design mistakes
- Design Changes

Operational Risks: - Delays
- Injuries/Accidents
- Construction mistakes

Management Risks: - Inexperience team members
- Lack of adequate process
- Lack of resource

Financial Risks: - Cost overrun

Logistics: - Raw materials supply delay

Political: - Political instability

Natural: - Flood
- Heavy rainfall, etc.

Fig. 4 Risks in building construction project

Table 3 Descriptions of WDS, RL, RS and RV

Parameters General interpretation

Weights to the data sources

(WDS)

Different data sources have different impact on risks related decision making. Therefore, weights (Wi) are given to

individual data source based on their quality, preciseness and quantity of data. Note that summation of all WDS

must be equal to one, i.e.,
P

Wi=1.0

Risk likelihood (RL) This parameter denotes how likely a risk event to occur, i.e., probability of occurrence

Risk severity (RS) It expresses that if a risk occurs, then how much it can affect the project objectives, i.e., consequences of a risk

Risk value (RV) Here, the parameter RV has been used to present the output of fuzzy inference system, where RL and RS are two

input parameters
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Table 4 Descriptions of the

parameters under WDS, RL, RS

and RV

Weights of the data source (WDS) Descriptions Weight (Wi)

Expert 1 (E1) Project manager (team leader) W1 = 0.23

Expert 2 (E2) Construction manager W2 = 0.20

Expert 3 (E3) Chief engineer W3 = 0.30

Statistical data (SD) Data from previous project W4 = 0.27

Total
P

Wi=1.0

Risk likelihood (RL) Descriptions Fuzzy number

Very low Very rarely to occur (0.0, 0.0, 0.25)

Low Unlikely to occur (0.0, 0.25, 0.5)

Medium Occurrence is usual (0.25, 0.5, 0.75)

High Very likely to occur (0.5, 0.75, 1.0)

Very high Occurrence is almost inevitable (0.75, 1.0, 1.0)

Risk severity (RS) Descriptions Fuzzy number

Very low Impact is quite negligible (0.0, 0.0, 0.25)

Low Involved small impact (0.0, 0.25, 0.5)

Medium Moderate impact is involved (0.25, 0.5, 0.75)

High Involved highly impact (0.5, 0.75, 1.0)

Very high Very high impact is involved (0.75, 1.0, 1.0)

Table 5 Aggregated (Ag.) and

individual source’s TFNs of RL

and RS parameters

Risks Data sources Measure of RL Measure of RS

Design mistakes E1 (0.25, 0.50, 0.75) (0.50, 0.75, 1)

E2 (0.25, 0.35, 0.50) (0.50, 0.70, 0.90)

E3 (0.20, 0.30, 0.40) (0.25, 0.40, 0.60)

SD (0.30, 0.30, 0.30) (0.35, 0.35, 0.35)

Ag. (0.258, 0.356, 0.474) (0.384, 0.527, 0.686)

Changes in design E1 (0.30, 0.50, 0.75) (0.40, 0.70, 0.90)

E2 (0.30, 0.45, 0.65) (0.50, 0.70, 0.90)

E3 (0.20, 0.35, 0.50) (0.25, 0.40, 0.60)

SD (0.32, 0.32, 0.32) (0.29, 0.29, 0.29)

Ag. (0.275, 0.396, 0.539) (0.345, 0.498, 0.645)

Delays E1 (0.50, 0.75, 1.0) (0.25, 0.50, 0.75)

E2 (0.50, 0.75, 1.0) (0.50, 0.75, 1.0)

E3 (0.50, 0.75, 1.0) (0.25, 0.50, 0.75)

SD (0.63, 0.63, 0.63) (0.30, 0.30, 0.30)

Ag. (0.585, 0.768, 0.9) (0.314, 0.496, 0.678)

Injuries/accidents E1 (0.0, 0.25, 0.50) (0.0, 0.25, 0.50)

E2 (0.25, 0.50, 0.75) (0.25, 0.50, 0.75)

E3 (0.0, 0.25, 0.50) (0.25, 0.50, 0.75)

SD (0.26, 0.26, 0.26) (0.28, 0.28, 0.28)

Ag. (0.12, 0.303, 0.485) (0.201, 0.383, 0.565)

Construction mistakes E1 (0.0, 0.25, 0.50) (0.0, 0.25, 0.50)

E2 (0.25, 0.50, 0.75) (0.25, 0.50, 0.75)

E3 (0.20, 0.40, 0.60) (0.15, 0.25, 0.45)

SD (0.10, 0.10, 0.10) (0.25, 0.25, 0.25)

Ag. (0.137, 0.305, 0.472) (0.163, 0.3, 0.467)
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event ‘‘design mistakes’’ with his own defined TFNs such

as (0.25, 0.35, 0.50) for RL and (0.50, 0.70, 0.90) for RS,

respectively.

3.1.2 Data Collection Phase

3.1.2.1 Collect Data from Diversified Sources For the

purpose of risk assessment of the illustrated building con-

struction project, data were collected from three experts

working in diversified working areas to reduce biasness.

The first expert is a project manager with 12 years of

experience, second expert is a construction manager with

10 years of experience, and third expert is a chief engineer

with 15 years of experience. All the collected data are

shown in Table 5, in the form of TFN system. Here, E1, E2

and E3 represent the first, second and third experts,

respectively. The data from historical source of previously

completed similar projects are also taken into account in

this risk analysis method. The simple frequency analysis

method was employed to analyze the statistical data (SD).

A crisp or single numerical value about RL and RS for each

risk event was obtained from statistical source by proba-

bilistic analysis. However, this value was also converted

into TFN to make ease in calculation with the data from

subjective judgment. For example, in Table 5, RL value for

design mistakes is found as 0.20 by statistical analysis and

then converted to the corresponding TFN value as (0.20,

0.20, 0.20).

3.1.2.2 Allocate Weights to the Data Sources Weights

(Ws) were allocated to three experts on the basis of their

experience, knowledge and expertise and to the statistical

data on the basis of quality, quantity and credibility. These

weights are allocated by risk assessment team. Here, for

four data sources such as E1, E2, E3 and SD, the weights are

determined as W1, W2, W3 and W4, respectively. Table 4

shows the weights for four data sources as W1 = 0.23,

W2 = 0.20, W3 = 0.30 and W4 = 0.27, respectively.

3.1.3 Risk Measurement Phase

3.1.3.1 Convert the Data of RL and RS into Matching

TFN The risk data of RL and RS are found in different

forms from different sources. For example, data from

experts—some were found in the linguistic forms, and

some were found as TFNs directly—and data from statis-

tical source were found as point data by probabilistic

analysis. Therefore, in this step, all the collected data from

different sources in different forms were converted into

matching TFN as defined in Sect. 3.1.1.3. Table 5 shows

the summary of data from four sources about RL and RS in

the converted TFN forms.

3.1.3.2 Aggregate TFN of RL and RS into Group TFN In

this step, the collected risk data of RL and RS from four

individual sources were aggregated into group TFN. The

aggregation of TFN scores was performed by applying

fuzzy weighted triangular averaging operator which is

defined in Eq. (1) as illustrated in Sect. 2.3.2. This aggre-

gated TFN scores of RL and RS were used as inputs in the

next fuzzy inferences phase to evaluate output RV. The

aggregated TFNs of RV are shown in Table 5.

3.1.3.3 Fuzzy Inference Phase In the fuzzy inference

process, there are two input variables RL and RS and one

output variable RV. The aggregated TFNs of RL and RS

were converted into TFN of RV through the fuzzy infer-

ence system where fuzzy intersection operator was

employed. Using Eq. (2), described in Sect. 2.3.3, the input

TFNs of RL and RS were converted into output TFN of

RV. The RV values in TFN forms are shown in the fourth

column of Table 6.

3.1.3.4 Evaluate RV Through Defuzzification Since the

output RV of fuzzy inference system is a fuzzy number, an

appropriate defuzzification method was employed to con-

vert it into matching numerical value. Center of area or

centroid method (Eq. (3)) is applied as defuzzification

method to convert the triangular fuzzy number into

matching numerical value of RV. The defuzzied RVs are

shown in the last column of Table 6.

3.1.4 Uncertainty Measurement Phase

3.1.4.1 Determine the Linguistic Variable for each Risk

Event The linguistic variables that represent the degree of

uncertainties involved in each risk event were selected

based on four factors as described in Sect. 2.4.1. Table 7

Table 6 Evaluation of RV

through defuzzification
Risks RL RS TFN of RV RV

Design mistakes (0.258, 0.356, 0.474) (0.384, 0.527, 0.686) (0.096, 0.188, 0.324) 0.204

Changes in design (0.275, 0.396, 0.539) (0.345, 0.498, 0.645) (0.095, 0.198, 0.348) 0.214

Delays (0.585, 0.768, 0.9) (0.314, 0.496, 0.678) (0.183, 0.381, 0.611) 0.392

Injuries/accidents (0.12, 0.303, 0.485) (0.201, 0.383, 0.565) (0.024, 0.116, 0.274) 0.138

Construction mistakes (0.137, 0.305, 0.472) (0.163, 0.3, 0.467) (0.022, 0.091, 0.221) 0.111
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shows the determined linguistic variables for five risk

events that were selected subjectively considering the four

uncertainty factors as described Sect. 2.4.1. For instance,

the linguistic variable ‘‘fairly close’’ was selected for the

risk event ‘‘design mistakes.’’ It means that the calculated

RV is fairly close to the actual RV indicating that a high

level of uncertainty is involved.

3.1.4.2 Determine the Fuzzy Membership Curve for each

Risk Event Fuzzy membership function for each risk

event was selected based on linguistic variables as descri-

bed in Sect. 2.4.2. The fuzzy membership curves for the

representation of the degrees of uncertainty for the risk

events are shown in Figs. 5, 6, 7, 8 and 9.

3.1.4.3 Evaluate Uncertainty Intervals Through Defuzzifi-

cation The uncertainty ranges for each risk event were

evaluated quantitatively through the application of appro-

priate defuzzification process. In this step, a-cut defuzzi-
fication method was employed because of its pertinence.

Here, a represents the degree of belief function that is

represented by y axis of the fuzzy membership curve. At

a = 0.8, uncertainty range for the risk event ‘‘delays’’ was

obtained as 0.31–0.48, from the membership curve shown

Table 7 Degree of uncertainties involved in each risk event

Risks Subjective judgments Probabilistic parameter estimations Determined

linguistic

variableComplexity

of work

Level of education

and experience

Unreliable/

insufficient data

Approximation in

statistical analysis

Design mistakes Small Large Small Large Fairly close

Changes in design Very small Normal Very small Normal Very close

Delays Very small Large Very small Large Close

Injuries/accidents Very small Small Very small Small Very very close

Construction mistakes Normal Large Normal Large Fairly fairly close

Fig. 5 Membership curve for ‘‘design mistakes’’

Fig. 6 Membership curve for ‘‘changes in design’’

Fig. 7 Membership curve for ‘‘delays’’
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in Fig. 7. The ranges of uncertainties of all technical and

operational risks at a = 0.8 are shown in Table 8.

3.1.5 Risk Ranking with Uncertainty Intervals

In this subsection, the proposed modified extended VIKOR

method was used to rank the risks with their uncertainty

intervals. In order to solve the example problem by

modified extended VIKOR method, risk assessment team

went through the following steps:

(1) PIS and NIS were computed by Eqs. (5a) and (5b),

respectively, as shown in Table 9.

(2) The Qi intervals were computed by using Eqs. (8a)

and (8b). The results are presented in Table 10.

(3) Using step 4, described in Sect. 2.5 and taking

optimism level b = 0.8, final ranking of technical

and operational risks was obtained by pairwise

comparison as follows:

Pairwise comparisons

Design mistakes > Changes in design
Design mistakes < Delays

Design mistakes > Injuries/Accidents
Design mistakes > Construction mistakes

Changes in design < Delays
Changes in design > Injuries/Accidents

Changes in design > Construction mistakes
Delays > Injuries/Accidents

Delays > Construction mistakes
Injuries/Accidents > Construction mistakes

The final ranking was obtained as follows:

! Delays[Design mistakes[Changes in design

[Construction mistakes[ Injuries=Accidents

3.2 Example-2: A Rehabilitation Project

of a Building

In order to compare the effectiveness of the proposed risk

assessment methodology with the existing similar methods,

another case problem on rehabilitation project of a building

in University of Cartagena, Spain, was adopted from Nieto-

Morote and Ruz-Vila [24] and solved by the proposed

methodology.

The project completion time was identified as the criti-

cal objective as per project requirements. Therefore, the

risk sources which can lead to the time overrun were

needed to be assessed for securing the success of the pro-

ject. There were many possible risk sources, such as lack of

resources, design changes, lack of supply quality and so on.

This kind of risks was difficult to assess due to the lack of

information and uncertainties involved. Thus, a risk

assessment group of four experts, formed on the basis of

Fig. 8 Membership curve for ‘‘injuries/accidents’’

Fig. 9 Membership curve for ‘‘construction mistakes’’

Table 8 Calculated uncertainty

interval for each risk event
Risks RV Degree of uncertainty Uncertainty range

Design mistakes 0.204 Fairly close 0.13–0.298

Changes in design 0.214 Very close 0.185–0.243

Delays 0.392 Close 0.31–0.48

Injuries/accidents 0.138 Very very close 0.13–0.146

Construction mistakes 0.111 Fairly fairly close 0.046–0.22
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their experience and qualification, identified the risks and

constructed a risk hierarchy as shown in Fig. 10. The team

was made by a civil engineer, an architect, an archeologist

and a project manager; all of them are experts in rehabil-

itation of buildings. However, the defined risk hierarchy

consists of four groups, namely ‘‘engineering risks,’’ ‘‘ex-

ecution risks,’’ ‘‘suppliers’ risks’’ and ‘‘project manage-

ment risks.’’ For instance, under project management

group, there are four major risks which might affect the

completion time of the rehabilitation project. These are

‘‘lack of adequate process,’’ ‘‘lack of resources,’’ ‘‘inex-

perienced team members’’ and ‘‘lack of motivating atti-

tudes.’’ In the following subsection, all the risks are

assessed by using the proposed methodology.

3.2.1 Risks Measurement Phase

From the beginning to this phase, the proposed risk

assessment methodology is almost similar to the method

carried out by Nieto-Morote and Ruz-Vila [24]. However,

they used different symbols and techniques for defining the

same parameters and operations, respectively. For instance,

instead of using risk likelihood (RL), risk severity (RS) and

risk value (RV), they used Risk Probability (RP), Risk

Impact (RI) and Overall Risk Factor (ORF), respectively.

For the data aggregation process, they used simple fuzzy

arithmetic average, whereas weighted fuzzy triangular

averaging technique has been used in the proposed model.

Another difference is that they used trapezoidal fuzzy

number (TPFN), while triangular fuzzy number (TFN) has

been used in the proposed methodology. However, in both

models, centroid method is employed as a defuzzification

process for converting fuzzy numbers into sharp numerical

value. It is clear that the basic concepts for evaluating RV

are quite analogous in both models. Nevertheless, the

consideration of degree of uncertainties that involved in

individual risk and determining the ranking based on the

interval numbers have made the proposed model different

from the existing models.

Table 9 Interval decision matrix and PIS and NIS

Risks Uncertainty range PIS and NIS

Design mistakes 0.13–0.298 A� ¼ x� ¼ 0:046
A� ¼ x� ¼ 0:48




Changes in design 0.185–0.243

Delays 0.31–0.48

Injuries/accidents 0.13–0.146

Construction mistakes 0.046–0.22

Table 10 Qi interval numbers

Risks [QL
i , Q

U
i ]

Design mistakes [0.194, 0.581]

Changes in design [0.320, 0.454]

Delays [0.608, 1.000]

Injuries/accidents [0.194, 0.230]

Construction mistakes [0.000, 0.401]
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Table 11 shows the results of the rehabilitation project

that obtained by Nieto-Morote and Ruz-Vila [24]. The

details of the calculation can be found in their work. To

apply the proposed model to this project, the values of RV

have been taken directly from the original work as they

used quite similar method. The values of RV in the third

column in Table 11 have been calculated by employing

defuzzification method from the trapezoidal fuzzy numbers

of RV as given in the second column. These trapezoidal

fuzzy numbers were obtained as outputs in fuzzy inference

system. While they concluded their work by making the

ranking based on RV, the proposed method has calculated

uncertainty intervals considering degree of uncertainties

involved in each risk for determining the final ranking. The

details of calculation of uncertainty intervals are given in

the following subsection.

3.2.2 Uncertainty Measurement Phase

Basically, this phase of the proposed risk assessment model

makes it different from the existing models. In this phase,

degree of uncertainties involved in individual risk is mea-

sured in terms of interval numbers. It is quite natural that

degree of uncertainties involved in individual risk will vary

from risk to risk, owing to the variation in quality and

quantity of available data. Therefore, in order to measure

the degree of uncertainties involved in the rehabilitation

project’s risks, linguistic variables for drawing fuzzy

membership curves are arbitrarily assumed. The deter-

mined linguistic variables are shown in the second column

in Table 12. Based on these linguistic variables, the fuzzy

membership curve for individual risk is drawn; for the sake

of illustration, membership curves for the risks under

‘‘project management risks’’ group are shown in Figs. 11,

12, 13 and 14. Thereafter, uncertainty intervals (shown in

Table 11 Outputs of fuzzy

inference system
Risks Trapezoidal fuzzy number of RV RV Ranking

R1: Lack of adequate process (0.0065, 0.0544, 0.1222, 1.2320) 0.6369 1

R2: Lack of resources (0.0031, 0.0201, 0.0348, 0.2303) 0.1934 7

R3: Inexperienced team members (0.0128, 0.1016, 0.1883, 1.8119) 0.5977 2

R4: Lack of motivating attitudes (0.0220, 0.1044, 0.1818, 0.8612) 0.0508 10

R5: Design errors (0.0363, 0.2888, 0.4385, 7.2472) 0.3183 3

R6: Design changes (0.0239, 0.1050, 0.1584, 1.0540) 0.2460 5

R7: Mistakes construction (0.0406, 0.2266, 0.4531, 3.9401) 0.1106 9

R8: Low productivity (0.0032, 0.0219, 0.0369, 0.2725) 0.0426 12

R9: Lack of previous experience (0.0258, 0.1326, 0.2524, 1.7567) 0.0406 13

R10: Accidents (0.0086, 0.0549, 0.1783, 1.8078) 0.1806 8

R11: Technical problems (0.0074, 0.0482, 0.0842, 0.6112) 0.0450 11

R12: Delay in supply (0.0068, 0.0254, 0.0385, 0.1514) 0.2742 4

R13: Lack of quality (0.0029, 0.0192, 0.0314, 0.1871) 0.1978 6

Table 12 Measurement of

uncertainty intervals and

calculations of Qi interval

Risks Degree of uncertainty Uncertainty intervals PIS and NIS [QL
i , Q

U
i ]

R1 Very very close 0.603–0.669 A� ¼ 0:016
A� ¼ 0:784



0.764–0.850

R2 Close 0.155–0.236 0.181–0.286

R3 Fairly close 0.378–0.784 0.471–1.000

R4 Very close 0.043–0.583 0.035–0.738

R5 Fairly fairly close 0.129–0.568 0.147–0.718

R6 Very close 0.227–0.287 0.275–0.353

R7 Fairly close 0.072–0.152 0.073–0.177

R8 Close 0.032–0.053 0.021–0.048

R9 Fairly fairly close 0.016–0.087 0.000–0.092

R10 Very close 0.161–0.201 0.188–0.241

R11 Very close 0.040–0.051 0.031–0.045

R12 Close 0.220–0.329 0.266–0.407

R13 Fairly close 0.125–0.290 0.142–0.357
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the third column in Table 12) are calculated by applying a-
cut defuzzification method as described in Sect. 2.4.3.

Here, the value of a is taken as equal to 0.8. For making the

final ranking based on uncertainty intervals, extended

VIKOR method is employed as illustrated in Sect. 2.5.

Using Eqs. (5a)–(5b), PIS and NIS are calculated as shown

in the fourth column in Table 12. The Qi intervals given in

the last column in Table 12 are calculated using Eqs. (8a)–

(8b). Then, the final ranking is made by pairwise com-

parison as shown later in the last column of Table 14. To

compare between two intervals, b value is taken as 0.8.

4 Results and Discussion

Table 13 shows the ranking of operational and technical

risks of the studied steel-frame structured building con-

struction project based on both RV and uncertainty inter-

vals. It is seen that ranking based on uncertainty intervals is

slightly different from the ranking based on RV. In both

cases, the risk ‘‘delays’’ comes first in the ranking, but the

ranking of the rest of the risks has been changed. For

example, the risk ‘‘design mistakes’’ comes up with posi-

tion 2 in the ranking based on uncertainty interval, whereas

it was at position 3 in the ranking based on RV. The

consideration of the degree of uncertainty involved in the

individual risk event has brought this change into the

results. This is due to the fact that the degree of uncertainty

Fig. 11 Membership curve for ‘‘lack of adequate process’’

Fig. 12 Membership curve for ‘‘lack of resources’’

Fig. 13 Membership curve for ‘‘inexperienced team members’’

Fig. 14 Membership curve for ‘‘lack of motivating attitudes’’
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involved in risk event ‘‘design mistakes’’ is higher than that

of the risk ‘‘changes in design.’’

The same picture in the ranking orders is also observed

for the rehabilitation project of a building in University of

Cartagena as shown in Table 14. The ranking based on

uncertainty intervals, which is obtained by the proposed

method, is quite different from the ranking based on RV

obtained by the existing similar model. Therefore, both

results indicate that there is a great impact of the degree of

uncertainty involved in individual risk in case of risk

ranking or prioritization. Since the preventive actions are

taken against only higher-order risks, a logical question

arises that which ranking should be followed for better

performances.

The application of the proposed risk assessment

methodology to both types of the building construction

projects leads to the following conclusions. In real-life

problems, the involvement of uncertainty level varies from

one risk event to another due to the existence of variations

in the data availability, data quality and complexity level.

Therefore, its quantification is quite logical and effective

for risk ranking. Not only does the proposed risk assess-

ment model consider the mean values of risks, but it also

considers their associated uncertainty ranges in the risk

ranking process. Thus, the result obtained by the proposed

model is expected to be more robust in comparison with the

ones obtained by the existing models. In the proposed

model, degree of uncertainties involved in individual risk

has been expressed with interval number, which basically

represents the possible range of deviation from the calcu-

lated mean value (i.e., uncertainty range). The higher

degree of uncertainties is involved in a risk, and the larger

interval number is obtained to express it. Since risk arises

as a consequence of uncertainty, risk ranking based on the

uncertainty interval using the proposed method is quite

reasonable and effective. As the preventive actions are

taken against only higher-order risks, this result will pro-

vide valuable information to the risk management team in

making effective risk response strategies. Note, however,

that change in a value may lead to changes in risk ranking.

5 Conclusions

The construction projects are becoming more complex and

dynamic in nature day by day. Additionally, the sources of

uncertainties are also increasing with the involvement of

too many stakeholders. Therefore, project risk management

is an essential and crucial task for the project team to avoid

project losses. This paper proposes a fuzzy-based risk

assessment methodology for construction project incorpo-

rating epistemic uncertainties into conventional risk

assessment framework. Because of the fact that determin-

ing the sharp or exact value of the risk is difficult or even

Table 13 Risk ranking of steel-

frame structured building
Risks Ranking based on RV Ranking based on uncertainty interval

Design mistakes 3 2

Changes in design 2 3

Delays 1 1

Injuries/accidents 4 5

Construction mistakes 5 4

Table 14 Risk ranking of

rehabilitation project of a

building

Risks Ranking based on RV Ranking based on uncertainty intervals

R1: Lack of adequate process 1 2

R2: Lack of resources 7 6

R3: Inexperienced team members 2 1

R4: Lack of motivating attitudes 10 12

R5: Design errors 3 5

R6: Design changes 5 3

R7: Mistakes construction 9 9

R8: Low productivity 12 10

R9: Lack of previous experience 13 13

R10: Accidents 8 7

R11: Technical problems 11 11

R12: Delay in supply 4 4

R13: Lack of quality 6 8
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impossible, it is more appropriate to consider them as

interval numbers. This paper presents the risks values as

interval numbers and ranks them by using modified

extended VIKOR method with their associated interval

numbers. Basically, risks are assessed at the earlier stage

for taking preventive measures against only the identified

top-order risks that have tremendous impact on project

failure or loss. It is not always possible and not even be a

wise decision to take actions against too many risk events

because of the limitations in time and budget. Also,

impacts of all risks to the project objectives are not severe

and considerable.

Based on the results from the case studies, it may be

stated that the proposed risk assessment and uncertainty

representation methodology is capable of solving any

construction risk assessment problem effectively and effi-

ciently. In conclusions, the proposed methodology can be

very much useful for risk assessment problem, especially

where epistemic uncertainty exists. The proposed

methodology is quite general and can be successfully

applied to any kind of project risk assessment with only

minor modifications.

There are many factors that are responsible for the

uncertainty involvement in a project. These factors have

not always been dealt with adequately, often resulting in

poor performance with increasing costs and delays. In this

paper, four major factors are considered in uncertainty

evaluation process. Therefore, this research can be expan-

ded with the consideration of more uncertainty factors. In

additions, other types of fuzzy membership functions like

Gaussian, trapezoidal and S-shaped membership functions

can also be applied to estimate the uncertainties in risk

assessment process. Many methods for ranking with

interval numbers are available such as extended TOPSIS,

fuzzy intuitionistic approach, which could also be applied

in this situation.
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