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Abstract Dempster–Shafer evidence theory is widely

adopted in a variety of fields of information fusion.

Nevertheless, it is still an open issue about how to avoid the

counter-intuitive results to combine the conflicting evi-

dences. In order to overcome this problem, an improved

conflicting evidence combination approach based on

similarity measure and belief function entropy is proposed.

First, the credibility degree of the evidences and their

corresponding globe credibility degree are calculated on

account of the modified cosine similarity measure of the

basic probability assignment. Next, according to the globe

credibility degree of the evidences, the primitive evidences

are divided into two categories, namely, the reliable evi-

dences and the unreliable evidences. In addition, for

strengthening the positive effect of the reliable evidences

and alleviating the negative impact of the unreliable evi-

dences, a reward function and a penalty function are

designed, respectively, to measure the information volume

of the different types of the evidences by taking advantage

of the Deng entropy function. Then, the weight value that

obtained from the first step is modified by making use of

the measured information volume. Finally, the modified

weights of the evidences are applied for adjusting the body

of the evidences before using the Dempster’s combination

rule. A numerical example is provided to illustrate that the

proposed method is reasonable and efficient in dealing with

the conflicting evidences with better convergence. The

results show that the proposed method is not only efficient,

but also reliable. It outperforms other related methods

which can recognise the target more accurate by 98.92%.

Keywords Belief entropy � Dempster–Shafer evidence

theory � Evidential conflict � Information fusion � Similarity

measure � Sensor network

1 Introduction

In the applications of wireless sensor networks, the data

collected from the sensors are often imprecise and uncer-

tain. It is still an open issue about how to model and cope

with the uncertainty information. To overcome this pro-

blem, many useful math tools are proposed, such as the

rough sets theory [1, 2], fuzzy sets theory [3–8], evidence

theory [9, 10], D numbers theory [11, 12], and Z numbers

[13–15]. In addition, the approaches with hybrid intelligent

algorithms are used for decision-making [16–20], supplier

selection [21], sensor networks [22] classification recog-

nition [23], risk analysis [24], uncertain information pro-

cessing [25, 26], optimisation problem [27–29], product

development [30, 31], and influence diagram [32].

Dempster–Shafer evidence theory, as an efficient

uncertainty reasoning tool, was firstly proposed by

Dempster [9] and then had been developed by Shafer [10].

On account of the flexibility and effectiveness in modelling

the uncertainty and imprecision without relying on prior

information, Dempster–Shafer evidence theory is widely

used in many fields of information fusion [33–36]. In spite

of having a lot of advantages, Dempster–Shafer evidence

theory may generate counter-intuitive results, when it

combines very conflicting evidences. To solve this pro-

blem, many approaches were proposed and they are clas-

sified into two types of methodologies [37–39]. One of the
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methodologies intends to modify the Dempster’s combi-

nation rule, and the other one of the methodologies

attempts to pretreat the bodies of the evidences before

using the Dempster’s combination rule. The main research

works focusing on the first methodology include Yager’s

method [40], Dubois and Prade’s method [41], and Smets’s

method [42]. In fact, the good properties, like commu-

tativity and associativity, are often broken due to modify-

ing the combination rule. Additionally, if the counter-

intuitive results are caused by the sensor failure, such a

modification is regarded as inconsequence. Therefore,

researchers tend to pretreat the bodies of the evidences for

the sake of resolving the problem of combining the con-

flicting evidences.

As to the second methodology, it is very difficult to

determine the weight vector. At present, the main research

works focusing on the second methodology include Mur-

phy’s method [43], Deng et al.’s method [44], Zhang

et al.’s method [45], and Yuan et al.’s method [46]. Mur-

phy [43] proposed to modify and average the bodies of the

evidences first, and then combining the averaged evi-

dences. Deng et al.’s weighted average approach [44]

overcame the weakness of Murphy’s method to some

extent by regarding the distance of evidences. Zhang et al.

[45] made an improvement based on Deng et al.’s method

and introduced the concept of vector space to handle the

conflicting evidences. However, the effect of evidence

itself on the weight is ignored. Later on, in order to express

the effect of evidence itself to further improve the perfor-

mance of the fusion result, Yuan et al. [46] introduced the

belief entropy [47, 48].

Nevertheless to say, most of the above methods

employed Jousselme distance as one of the critical factors

to determine the weight vector for modifying the bodies of

the evidences, whereas the similarity measure of the evi-

dences [49] based on the modified cosine similarity of the

evidence that regards the three factors, i.e. angle, distance,

and vector norm, is much more precisely for indicating the

clarity of the evidence comparing with the Jousselme dis-

tance. It can thus be seen that there is still some room to

obtain more appropriate weight for each evidence to

achieve more accurate combination results in sensor fusion.

Therefore, in this paper, an improved combination

method is proposed to solve the problem of conflicting

evidence combination based on the similarity measure of

the evidences [49] and belief function entropy [47]. The

contribution of this paper is represented below. Based on

the modified cosine similarity measure of the basic prob-

ability assignment, both of the credibility degree of the

evidences and their corresponding globe credibility degree

are first calculated. Next, according to the globe credibility

degree of the evidences, the primitive evidences are divi-

ded into two categories, namely, the reliable evidences and

the unreliable evidences. In addition, in order to measure

the information volume of the different categories of the

evidences, a reward function and a penalty function are

designed, respectively, for not only enhancing the positive

effect of the reliable evidences, but also alleviating the

negative impact of the unreliable evidences on account of

the Deng entropy function. Then, the weight value obtained

from the first step is modified by making use of the mea-

sured information volume. Finally, the modified weight of

the evidences is obtained and applied in adjusting the body

of the evidences before using the Dempster’s combination

rule with ðt � 1Þ times, when there are t number of evi-

dences. The experimental results illustrate that the pro-

posed method is reasonable and efficient in coping with the

conflicting evidences with fast convergence.

The rest of this paper is organised as follows. Section 2

briefly introduces the preliminaries of this paper. After that,

Sect. 3 proposes the improved method that is based on the

similarity measure and belief function entropy. Section 4

illustrates a numerical example to show the effectiveness of

the proposed method. Finally, Sect. 5 gives a conclusion.

2 Preliminaries

2.1 Dempster–Shafer Evidence Theory

Dempster–Shafer evident theory [9, 50] is applied to deal

with uncertain information, belonging to the category of

artificial intelligence. Because of the flexibility and effec-

tiveness in modelling both of the uncertainty and impre-

cision without prior information, Dempster–Shafer evident

theory requires weaker conditions than the Bayesian theory

of probability. When the probability is confirmed, Demp-

ster–Shafer evident theory could convert into Bayesian

theory, so it is considered as an extension of the Bayesian

theory. Dempster–Shafer evident theory has the advantage

that it can directly express the ‘‘uncertainty’’ by allocating

the probability into the subsets of the set which consists of

multiple objects, rather than to an individual object. Fur-

thermore, it is capable of combining the bodies of the

evidences to derive a new evidence. The basic concepts are

introduced as below.

Definition 1 (Frame of discernment) Let U be a set of

mutually exclusive and collectively exhaustive, indicated

by

U ¼ fE1;E2; . . .;Ei; . . .;ENg: ð1Þ

The set U is called frame of discernment. The power set of

U is indicated by 2U , where
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2U ¼
f;; fE1g; . . .; fENg; fE1;E2g; . . .; fE1;E2; . . .;Eig; . . .;Ug;

ð2Þ

and ; is an empty set. If A 2 2U , A is called a proposition.

Definition 2 (Mass function) For a frame of discernment

U, a mass function is a mapping m from 2U to [0, 1],

formally defined by

m :¼ 2U ! ½0; 1�; ð3Þ

which satisfies the following condition:

mð;Þ ¼ 0 and
X

A22U

mðAÞ ¼ 1: ð4Þ

In the Dempster–Shafer evident theory, a mass function

can be also called as a basic probability assignment (BPA).

If m(A) is greater than 0, A will be called as a focal ele-

ment, and the union of all of the focal elements is called as

the core of the mass function.

Definition 3 (Belief function) For a proposition A � U,

the belief function Bel : 2U ! ½0; 1� is defined as

BelðAÞ ¼
X

B�A

mðBÞ: ð5Þ

The plausibility function Pl : 2U ! ½0; 1� is defined as

PlðAÞ ¼ 1 � Belð�AÞ ¼
X

B\A6¼;
mðBÞ; ð6Þ

where �A ¼ U � A.

Apparently, Pl(A) is equal or greater than Bel(A), where

the function Bel is the lower limit function of proposition

A and the function Pl is the upper limit function of pro-

position A.

Definition 4 (Dempster’s rule of combination) Let two

BPAs m1 and m2 on the frame of discernment U and

assuming that these BPAs are independent, Dempster’s

rule of combination, denoted by m ¼ m1 � m2, which is

called as the orthogonal sum, is defined as below:

mðAÞ ¼
1

1 � K

X

B\C¼A

m1ðBÞm2ðCÞ; A 6¼ ;;

0; A ¼ ;;

8
><

>:
ð7Þ

with

K ¼
X

B\C¼;
m1ðBÞm2ðCÞ; ð8Þ

where B and C are also the elements of 2U , and K is a

constant that presents the conflict between two BPAs.

Notice that the Dempster’s combination rule is only

practicable for the two BPAs with the condition K\1.

2.2 Modified Cosine Similarity Measure of BPAs

The similarity between two bodies of the evidences is used

to determine whether two evidences are conflict or not. The

high similarity means that there is little conflict between

the two bodies of the evidences, while the low similarity

means that there is high conflict between the two bodies of

the evidences. Cosine similarity [51, 52] measures the

similarity between two vectors of an inner product space,

namely, measuring the cosine of the angle between two

vectors based on the direction, but ignoring the impact of

the distance of two vectors. Zhang et al. [52] presented an

integrated similarity measurement on the basis of distance

and angle. Although the integrated similarity measurement

considers the strengths of the distance and direction of two

vectors, deficiencies still exist. In order to measure the

similarity between two vectors more precisely, the mod-

ified cosine similarity measure [49] is proposed based on

three important factors, i.e. angle, distance, and vector

norm.

Definition 5 (Modified cosine similarity of vectors) Let

B ¼ ½b1; b2; . . .; bn� and C ¼ ½c1; c2; . . .; cn� be two vectors

of Rn. The modified cosine similarity between vectors

B and C is defined as

¼
1

2
a�d þ min

jBj
jCj ;

jCj
jBj

� �� �
sicosðB;CÞ; B 6¼ 0;C 6¼ 0;

0; B ¼ 0 or C ¼ 0;

8
<

:

ð9Þ

where a is a constant whose value is greater than 1, d is the

Euclidean distance between vectors B and C, a�d is the

distance-based similarity measurement, min
jBj
jCj ;

jCj
jBj

� �
is the

minimum of
jBj
jCj and

jCj
jBj, and sicosðB;CÞ is the cosine simi-

larity. The larger the a is, the greater the distance impact on

vector similarity will be.

Definition 6 (New similarity of BPAs based on the

modified cosine similarity) Under the frame of discernment

H ¼ fv1; v2; . . .; vNg, let m1 and m2 be the BPAs of two

evidence sources, respectively. The two vectors are

expressed as

Beli ¼ ½Beliðv1Þ;Beliðv2Þ; . . .;BeliðvNÞ�; i ¼ 1; 2;

Pli ¼ ½Pliðv1Þ;Pliðv2Þ; . . .;PliðvNÞ�; i ¼ 1; 2:

ð10Þ

Then, on the basis of the modified cosine similarity, the

belief function vector similarity, denoted as SIðBel1;Bel2Þ
and the plausibility function vector similarity, denoted as

SIðPl1;Pl2Þ can be calculated. The new similarity of BPAs

is defined as
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SIBPA ¼ ð1 � kÞ � SIðBel1;Bel2Þ þ k � SIðPl1;Pl2Þ; ð11Þ

with

0� k� 1; ð12Þ

where k is the total uncertainty of BPAs, which is defined

as

k ¼
P2

i¼1

PN
j¼1ðPliðvjÞ � BeliðvjÞÞ

P2
i¼1

PN
j¼1ðPliðvjÞÞ

: ð13Þ

Because PliðvjÞ	BeliðvjÞ and Bel	 0, if PliðvjÞ ¼
BeliðvjÞ, then k ¼ 0; otherwise, if BeliðvjÞ ¼ 0, then k ¼ 1.

The larger the uncertainty k is, the higher the influence on

the similarity of BPA will be.

2.3 Belief Entropy

A novel belief entropy which is called as the Deng entropy

is first proposed by Deng [47]. As the generalisation of the

Shannon entropy [53, 54], the Deng entropy is an efficient

math tool to measure the uncertain information. It can be

used in evidence theory, in which the uncertain information

is expressed by the BPA. In such a situation that the

uncertainty is expressed by probability distribution, the

uncertain degree that is measured by the Deng entropy will

be the same as the uncertain degree that is measured by the

Shannon entropy. The basic concepts are introduced below.

Let Ai be a hypothesis of the belief function m, jAij is the

cardinality of set Ai. Deng entropy Ed of set Ai is defined as

follows:

Ed ¼ �
X

i

mðAiÞ log
mðAiÞ

2jAij � 1
: ð14Þ

When the belief value is only allocated to the single ele-

ment, Deng entropy degenerates to Shannon entropy, i.e.

Ed ¼ �
X

i

mðAiÞ log
mðAiÞ

2jAij � 1

¼ �
X

i

mðAiÞ log mðAiÞ:
ð15Þ

The greater the cardinality of hypotheses is, the greater the

Deng entropy of evidence is, so that the evidence contains

more information. When an evidence has a big Deng

entropy, it is supposed to be better supported by other

evidences, which indicates that this evidence plays an

important role in the final combination.

The following examples show the effectiveness of the

Deng entropy.

Example 1 Supposing there exists a mass function m(A) =

1, its corresponding Shannon entropy, denoted as H and

Deng entropy, denoted as Ed, can be obtained as below:

H ¼ �1 
 log2

1

1
¼ 0;

Ed ¼ �1 
 log2

1

21 � 1
¼ 0:

Example 2 Supposing there exists the mass function

mðAÞ ¼ mðBÞ ¼ mðCÞ ¼ mðDÞ ¼ 1=4 in a frame of dis-

cernment X ¼ fA;B;C;Dg, its corresponding Shannon

entropy, denoted as H and Deng entropy, denoted as Ed,

can be obtained as below:

H ¼ � 1

4

 log2

1

4
� 1

4

 log2

1

4
� 1

4

 log2

1

4

� 1

4

 log2

1

4
¼ 2;

Ed ¼ � 1

4

 log2

1=4

21 � 1
� 1

4

 log2

1=4

21 � 1

� 1

4

 log2

1=4

21 � 1
� 1

4

 log2

1=4

21 � 1
¼ 2:

Example 3 Supposing there exists the mass function

mðA;B;C;DÞ ¼ 1 in a frame of discernment

X ¼ fA;B;C;Dg, its corresponding Deng entropy, denoted

as Ed, can be obtained as below:

Ed ¼� 1 
 log2

1

24 � 1
¼ 3:9069:

From Examples 1 and 2, we can notice that when the belief

is only allocated to the single elements, the Deng entropy

and Shannon entropy are the same. Example 3 shows that

the Deng entropy can efficiently measure the uncertainty

when the belief is assigned to the multiple elements.

3 The Proposed Method

Formal problem statement Assuming that there are

t number of evidences with the bodies of the evidences mi

ði ¼ 1; . . .; t), the pretreatment of the bodies of the evi-

dences can be defined as

WAEðmÞ ¼
Xt

i¼1

wimi;

s:t:
Xt

i¼1

wi ¼ 1;

ð16Þ

where WAE(m) represents the weighted average evidence

BPA of the primitive t evidences, and wi represents the
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corresponding weight degree of mi. Then, the final fusing

result can be calculated by taking advantage of the

Dempster’s rule to combine the weighted average evidence

WAE(m) for t � 1 times. From Eq. (16), we recognise that

it is critical to find an appropriate weight wi for each pri-

mitive evidence mi, because it directly impacts the per-

formance of the final fusing result.

Jousselme distance [55] is widely applied in reflecting

the evidence’s clarity, in which the higher the uncertainty

of the evidence is, the lower the reliability of the evidence

is, while the lower the uncertainty of the evidence is, the

higher the reliability of the evidence is. Nevertheless to

say, Jousselme distance is not good enough to precisely

describe the characteristics of conflict in some certain cases

[49]. Comparing with the Jousselme distance, the modified

cosine similarity of the evidence [49] that regards the three

factors, i.e. angle, distance, and vector norm, is much more

precisely for further indicating the clarity of the evidence.

Additionally, ambiguity measure is widely applied in

uncertainty measure, whereas because of lacking of the

information in the Pignistic probability conversion process,

a novel belief entropy called as Deng entropy can better

measure the uncertainty of the evidence comparing with

the ambiguity measure. The below examples depict the

Deng entropy’s effectiveness.

Example 4 Supposing there exists the mass function

mðAÞ ¼ mðBÞ ¼ mðCÞ ¼ 1=3 in a frame of discernment

X ¼ fA;B;Cg, its corresponding ambiguity measure,

denoted as AM and Deng entropy, denoted as Ed, can be

obtained as below:

AM ¼ � 1

3

 log2

1

3
� 1

3

 log2

1

3
� 1

3

 log2

1

3
¼ 1:5850;

Ed ¼ � 1

3

 log2

1=3

21 � 1
� 1

3

 log2

1=3

21 � 1

� 1

3

 log2

1=3

21 � 1
¼ 1:5850:

Example 5 Supposing there exists the mass function

mðAÞ ¼ 0:05, mðBÞ ¼ 0:05, mðCÞ ¼ 0:05, mðABCÞ ¼ 0:85

in a frame of discernment X ¼ fA;B;Cg, its corresponding

ambiguity measure, denoted as AM and Deng entropy,

denoted as Ed , can be obtained as below:

AM ¼ 1:5850;

Ed ¼ 3:2338:

Examples 4 and 5 illustrate the effectiveness of the

Deng entropy which can better measure the uncertainty of

the evidence comparing with the ambiguity measure.

Specifically, m in Example 4 is supposed to be more cer-

tainty than m in Example 5. However, the value of AM in

Examples 4 and 5 is identical. Conversely, the Deng

entropy Ed ¼ 3:2338 in Example 4 is more bigger than the

Deng entropy Ed ¼ 1:5850 in Example 2 where this result

is consistent with the intuition.

Furthermore, due to the environment or the sensor

failure problems, the collected evidences are supposed to

be divided into two categories, namely, the reliable evi-

dences and the unreliable evidences. Hence, how to iden-

tify them and adjust the weights of the reliable evidences

and the unreliable evidences, respectively, to further

strengthen the positive impact of the reliable evidences and

mitigate the negative impact of the unreliable evidences

play a very important role in the performance of the final

fusing results.

Ultimately, we leverage the modified cosine similarity

of the evidence to judge the reliability of the evidences.

When the similarity measure between the target evidence

and other alternative evidence is great, which means that

the target evidence is supported by this evidence, so that

the target evidence is supposed to be regarded as a reliable

evidence. Otherwise, when the similarity measure between

the target evidence and other alternative evidence is small,

which means that the target evidence is not supported by

this evidence, so that the target evidence is supposed to be

regarded as an unreliable evidence. In order to enhance the

positive effects of the reliable evidences, the greater weight

should be allocated to the reliable evidences. On the other

hand, in order to weaken the negative effects of the unre-

liable evidences, the smaller weight should be allocated to

the unreliable evidences. On this basis, we design a reward

function and a penalty function to further adjust the

weights of the evidences in terms of different types of the

evidences.

Definition 7 (Reward function) For a reliable evidence mi

ði ¼ 1; . . .; t) with Deng entropy Ed, the reward function is

formally defined by

InVi ¼ exp½EdðmiÞ�: ð17Þ

Property 1 The reward function is a monotone increas-

ing function.

Proof According to the property of the exp½�� function,

the reward function is a monotone increasing function.

Therefore, for the reliable evidences, the greater entropy

the evidence has, the better support the evidence has from

other evidences and the greater weight can be assigned to

the reliable evidence. h

Definition 8 (Penalty function) For an unreliable evi-

dence mi ði ¼ 1; . . .; t) with Deng entropy Ed, the penalty

function is formally defined by

InVi ¼ exp � Emax
d ðmiÞ � EdðmiÞ

� 	
 �
: ð18Þ
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Property 2 The penalty function is a monotone increas-

ing function.

Proof Supposing there are two bodies of the evidences

mp and mq with Deng entropy EdðmpÞ and EdðmqÞ where

EdðmqÞ[EdðmpÞ ð1� p\q� t), then

InVq � InVp ¼ exp � Emax
d ðmiÞ � EdðmqÞ

� 	
 �

� exp � Emax
d ðmiÞ � EdðmpÞ

� 	
 �

¼ exp½ðEdðmqÞ � EdðmpÞÞ�:

Because EdðmqÞ[EdðmpÞ, according to the property of the

exp½�� function,

exp½ðEdðmqÞ � EdðmpÞÞ�[ exp½0�;where exp½0� ¼ 1:

Hence, InVq � InVp [ 0, and InVq [ InVp.

In short, it is a monotone increasing function. Therefore,

for the unreliable evidences, the smaller entropy the

evidence has, the less support the evidence has from other

evidences and the smaller weight can be assigned to the

unreliable evidence. h

In summary, an improved combination method is pro-

posed in terms of the similarity measure of the evidences

and belief function entropy. The flow chart of the proposed

method is shown in Fig. 1. And the concrete procedures are

listed as below.

Step 1 The similarity measure SIBPAðijÞ
(i; j ¼ 1; 2; . . .; t) between the bodies of the

evidences mi and mj can be obtained by

Eqs. (9)–(13). Then, a similarity measure

matrix (SMM) can be constructed as follows:

SMM ¼

SIBPAð11Þ � � � SIBPAð1iÞ � � � SIBPAð1tÞ
..
. ..

. ..
. ..

. ..
.

SIBPAði1Þ � � � SIBPAðiiÞ � � � SIBPAðitÞ
..
. ..

. ..
. ..

. ..
.

SIBPAðt1Þ � � � SIBPAðtiÞ � � � SIBPAðttÞ

2
666666664

3
777777775

: ð19Þ

Step 2 The support degree of the body of

the evidence mi is defined as follows:

SupðmiÞ ¼
Xt

j¼1;j 6¼i

SIBPAðijÞ; i; j ¼ 1; 2; . . .; t: ð20Þ

Step 3 The credibility degree Crdi of the body of

the evidence mi is defined as follows:

Crdi ¼
SupðmiÞPt
i¼1 SupðmiÞ

; i ¼ 1; 2; . . .; t: ð21Þ

Step 4 The global credibility degree, denoted as

Crdglobal can be obtained as follows:

Crdglobal ¼
Pt

i¼1 Crdi

t
; i ¼ 1; 2; . . .; t: ð22Þ

Step 5 The primitive evidences mi ði ¼ 1; 2; . . .; tÞ
are classified as the reliable evidences and

the unreliable evidences:

mi ¼
reliableevidence; Crdi 	Crdglobal;

unreliableevidence; Crdi\Crdglobal:

�
ð23Þ

Step 6 The Deng entropy Ed of each body of evidence

can be calculated based on Eq. (14).

Step 7 On account of the reward function, i.e. Eq. (17),

and penalty function, i.e. Eq. (18), the

information volume InVi ði ¼ 1; 2; . . .; tÞ
is used to measure the uncertain information

for the reliable evidences and the unreliable

evidences, respectively.

InVi ¼
exp½EdðmiÞ�; ifmi belongs to the reliable evidence

exp � Emax
d ðmiÞ � EdðmiÞ

� 	
 �
; if mi belongs to the unreliable evidence

:

8
>><

>>:
ð24Þ

Step 8 Based on both of the credibility degree Crdi
and the information volume InVi of the evidence,

the modified weight Mod Crdi of the body of

the evidence is defined as follows:

Mod Crdi ¼
Crdi 
 InViPt

i¼1ðCrdi 
 InViÞ
; i ¼ 1; 2; . . .; t: ð25Þ

Step 9 On the basis of the modified weight of the

body of the evidence Mod Crdi, the weighted

average evidence WAE(m) can be obtained as

follows:

WAEðmÞ ¼
Xt

i¼1

ðMod Crdi 
 miÞ; i ¼ 1; 2; . . .; t: ð26Þ

Step 10 The weighted average evidence WAE(m) is

combined through Dempster’s combination

rule, i.e. Eq. (7) by t � 1 times, if there are t

number of evidences. Then, the final

combination result of multiple evidences can be

obtained.
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4 Application

In this section, for the sake of demonstrating the effec-

tiveness of the proposal, a numerical example is illustrated.

Example 6 Supposing there are three objects A, B, and

C in a multiple sensor-based target recognition system. The

frame of discernment is provided as H ¼ fA;B;Cg that is

complete. Suppose that there are five different types of

sensors to detect the objects, and five BPAs are collected

by the system which are shown in Table 1.

Fig. 1 Flow chart of the proposed method

Table 1 BPAs for the example

fAg fBg fCg fA;Cg

S1 : m1ð�Þ 0.41 0.29 0.30 0.00

S2 : m2ð�Þ 0.00 0.90 0.10 0.00

S3 : m3ð�Þ 0.58 0.07 0.00 0.35

S4 : m4ð�Þ 0.55 0.10 0.00 0.35

S5 : m5ð�Þ 0.60 0.10 0.00 0.30

Table 2 Support degree of the evidences

Item m1;m2 m1;m2;m3 m1;m2;m3;m4 m1;m2;m3;m4;m5

Supðm1Þ 0.3946 1.1810 1.9902 2.7900

Supðm2Þ 0.3946 0.5173 0.6664 0.8110

Supðm3Þ – 0.9091 1.8873 2.8722

Supðm4Þ – – 1.9365 2.9211

Supðm5Þ – – – 2.9139

Table 3 The (global) credibility degree of the evidences

Item m1;m2 m1;m2;m3 m1;m2;m3;m4 m1;m2;m3;m4;m5

Crd1 0.5000 0.4529 0.3071 0.2267

Crd2 0.5000 0.1984 0.1028 0.0659

Crd3 – 0.3487 0.2912 0.2334

Crd4 – – 0.2988 0.2373

Crd5 – – – 0.2367

Crdglobal 0.5000 0.3333 0.2500 0.2000
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4.1 Evidence Combination Based on the Proposed

Method

First, according to Eqs. (19) and (20), the support degree of

each body of evidence is calculated as shown in Table 2.

Secondly, by leveraging Eq. (21), the credibility degree

of each body of evidence is obtained as shown in Table 3.

Thirdly, by using Eq. (22), the global credibility degree

of the evidences can be obtained as shown in Table 3.

Fourthly, by adopting Eq. (23), the primitive evidences

are divided into the reliable evidences and the unreliable

evidences as shown in Table 4.

Fifthly, based on Eq. (14), the Deng entropy of each

body of evidence can be calculated as shown in Table 5.

Sixthly, by applying Eq. (24), the uncertain information

for the reliable evidences and the unreliable evidences are

measured, respectively, as shown in Table 6.

Seventhly, on the basis of Eq. (25), the modified weight

of each body of evidence is generated as shown in Table 7.

Eighthly, according to Eq. (26), the weighted average

evidence is computed as shown in Table 8.

Table 4 Classification of the

evidences
m1;m2 m1;m2;m3 m1;m2;m3;m4 m1;m2;m3;m4;m5

Reliable evidences m1;m2 m1;m3 m1;m3;m4 m1;m3;m4;m5

Unreliable evidences – m2 m2 m2

Table 5 Deng entropy of the evidences

Item m1 m2 m3 m4 m5

Ed 1.5664 0.4690 1.8092 1.8914 1.7710

Table 6 Uncertain information measurement

Item m1;m2 m1;m2;m3 m1;m2;m3;m4 m1;m2;m3;m4;m5

InV1 4.7894 4.7894 4.7894 4.7894

InV2 1.5984 0.2618 0.2411 0.2411

InV3 – 6.1056 6.1056 6.1056

InV4 – – 6.6286 6.6286

InV5 – – – 5.8767

Table 7 Modified weight of the

evidences
Item m1;m2 m1;m2;m3 m1;m2;m3;m4 m1;m2;m3;m4;m5

Mod Crd1 0.7498 0.4987 0.2799 0.1977

Mod Crd2 0.2502 0.0119 0.0047 0.0029

Mod Crd3 – 0.4894 0.3384 0.2595

Mod Crd4 – – 0.3770 0.2865

Mod Crd5 – – – 0.2534

Table 8 Weighted average evidence

Item m1;m2 m1;m2;m3 m1;m2;m3;m4 m1;m2;m3;m4;m5

m(A) 0.3074 0.4883 0.5184 0.5412

m(B) 0.4426 0.1896 0.1468 0.1321

m(C) 0.2500 0.1508 0.0844 0.0596

m(AC) 0 0.1713 0.2504 0.2671

Fig. 2 Comparison of the BPA of target A based on different

combination rules
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Ninthly, by leveraging Eq. (7), the final combination

result of multiple evidences can be obtained in Table 9

through combining the weighted average evidence with

four times.

4.2 Discussion

Apparently, we can see that m2 is highly conflict with other

evidences in Example 6. The fusing results by making use

of different combination approaches are presented in

Table 9. The comparisons of the BPA of the objectives

based on different combination rules are shown in Figs. 2,

3, 4, and 5.

For the Dempster’s combination rule [9], it generates

counter-intuitive results B and C, when the number of

evidences increases from 2 to 5, although the other evi-

dences support the target A.

When there are three evidences, Murphy [43] and Deng

et al. [44]’s methods cannot make decisions, because the

belief degree assigned to the object A by these two methods

is less than 50%. Although Jiang et al. [49], Yuan et al.

[46], and the proposed method recognise that the target is

A, the belief degree assigned to the target A by the pro-

posed method achieves up to 87.51%, while the belief

degree assigned to the target A by Jiang et al. [49] and

Yuan et al. [46]’s methods is 57.61 and 82.74%, respec-

tively. It is obvious that the proposed method is not only

efficient but also reliable, even if there are only three

evidences which include the highly conflicting evidence

m2.

As the number of evidences increases to 5, the accuracy

of recognition by the proposed method is improved to

98.92%, which is more greater than Murphy [43], Deng

et al. [44], Jiang et al. [49], and Yuan et al. [46]’s methods.

Consequently, the proposed method can deal with the

conflicting evidences effectually and present reasonable

results with better convergence.

In short, the proposed method outperforms other

approaches. This is because the proposed method first takes

advantage of the modified cosine similarity measure of

basic probability assignment. Moreover, the proposed

method considers different categories of the evidences and

makes use of the Deng entropy function to measure the

information volume in terms of the evidence types, where a

reward function and a penalty function are designed. After

implementing these procedures, the weight of reliable

evidences is increased, while the weight of unreliable

evidences is decreased, so that the positive effects and

negative impacts of the evidences can be enhanced and

alleviated, respectively, on the final fusing results than

other approaches.

Fig. 3 Comparison of the BPA of target B based on different

combination rules

Fig. 4 Comparison of the BPA of target C based on different

combination rules

Fig. 5 Comparison of the BPA of target AC based on different

combination rules
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5 Conclusion

In this paper, a new combination approach of the con-

flicting evidences based on similarity measure of the evi-

dences and belief function entropy was proposed by

regarding the similarity among the evidences and the effect

of the evidence itself on the weight. The proposed method

is a kind of pretreatment of the bodies of the evidences that

is effective and feasible to cope with the conflicting evi-

dence combination problem under sensor environment. A

numerical example was illustrated to show the efficiency of

the proposal with fast convergence.

In the future research work, more factors that may

impact the weight of each evidence will be analysed and

taken into account to generate more appropriately averaged

evidence in the decision-making process.
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