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Abstract Supplier selection is a common and important

problem, which is usually modeled in a multi-criterion

decision-making framework. In this framework, multiple

criteria need to be determined and an expert team needs to

be constructed. Generally, different criteria and experts

always hold different weights. Due to the complexity of the

practical problems, sometimes lots of fuzzy and uncertain

information exists inevitably and the weights are tough to

determine accurately. Interval number is a simple but

effective method to handle the uncertainty. However, most

current papers transform an interval number to a crisp

number to make decisions, which causes loss of informa-

tion more or less. To address this issue, a new evidential

method based on interval data fusion is proposed in this

paper. Dempster–Shafer evidence theory is a widely used

method in a supplier selection problem due to its powerful

ability in handling uncertainty. In our method, the criteria

and decision makers are weighted in the form of interval

numbers to generate interval basic probability probabilities,

which represent the supporting degree to an event in

Dempster–Shafer evidence theory. The obtained interval

basic probabilities assignments are fused to make a final

decision. Due to the properties of interval data, our method

has its own specific advantages, like losing less informa-

tion, providing different strategies for decision making and

so on. The new method is proposed aiming at solving

multi-criterion decision-making problems in which the

reliability of decision makers or weights of criteria are

described in the form of fuzzy data like linguistic terms or

interval data. A numerical example of supplier selection is

used to illustrate our method. Also, the results and com-

parison show the correctness and effectiveness of the new

interval data fusing evidential method.

Keywords Dempster–Shafer evidence theory � Interval

data � Uncertain information � MCDM � Supplier selection

1 Introduction

The supplier selection is a key component of the supply

chain management. Since it is a comprehensive decision-

making problem, multiple criteria rather than a preferred

single criterion are taking into consideration inevitably in

real world. An effective approach to modeling these

problems is a multi-criterion decision-making (MCDM)

framework, which has been one of the fastest-growing

research areas [1]. Compared with those approaches based

on experience and intuition, MCDM is apparently more

objective and reasonable [2, 3]. Granted that many relevant

papers have been proposed [4–6], it is still an open issue to

make a decision in a MCDM framework.

In the practical situation, a suppler selection problem is

often under a condition occupied with fuzzy and uncertain

information. As the complexity of a system grows, the

uncertainty of problems and the fuzziness of human’s

thinking constantly increase accordingly. Hence, it is dif-

ficult for people to judge and distribute the reliability or

importance of information, which is really a necessary part

in a MCDM problem. Although decision making and

optimization under uncertainty has been heavily studied

[7–9], the uncertain information handling is a still open
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issue [10–12]. Among the current methods, Dempster–

Shafer (D–S) evidence theory [13, 14] plays an important

role [15–17]. Based on it, D number is also an extended

tool to handle uncertainty [18, 19]. Due to the efficient

ability of modeling and handling uncertainty, evidence

theory is widely used in many fields, like reliability anal-

ysis [20], relation evaluation [21, 22], game theory [23],

pattern recognition [24] and so on, especially in MCDM

problems [25–27]. Also, fuzzy set theory (FST) proposed

by Zadeh [28] is an effective approach to handling uncer-

tainty [29–32], which has wide applications in MCDM

problems [33–35], like supplier selection [36], group

decision-making [37, 38], quality assessing [39], fault

diagnosis [40], etc. Besides, interval number is another

simple but effective tool to deal with fuzzy and uncertain

data [41–43], which has been widely applied in decision-

making problems [44, 45]. Among them, interval-valued

intuitionistic fuzzy set is a well-developed approach

[46–48]. However, there is still not an authority definition

for the distance of interval-valued intuitionistic fuzzy

numbers. Also, the uncertainty of the reliability of infor-

mation sources is less taken into consideration. In a

MCDM problem under uncertainty, the wights of criteria

and decision makers (DMs) are often given ahead as fuzzy

numbers or interval numbers, or derived by a specific

decision matrix [38, 49]. Sometimes, the interval weights

can be adopted directly to make a decision by measuring

distance between intervals [50, 51]. However under some

circumstances where the interval weights are intersected or

cannot be ranked, some methods to handle the interval

weights are necessary. Most of current methods convert the

interval numbers to crisp numbers to help do the final

decision making [52, 53]. For example, Deng and Chan

[54] converted an interval number to a crisp weight based

on a technique for order preference by similarity to ideal

solution (TOPSIS) method, and proposed a method to

combine D–S evidence theory and fuzzy set theory to

address MCDM problems, whose shortcomings will be

discussed in detail later in Sect. 3. Generally, interval data

represent the uncertain information with less information

lost. The information losing is inevitable when converting

an interval number to a crisp one, which does disbenefit to

a decision making sometimes.

To address the information losing, in this paper, we

propose an evidential method based on interval data fusion

which keeps relatively full information in the decision-

making process to solve a supplier selection problem. In

our method, a MCDM problem is modeled in an evidential

framework, and a basic probabilities assignment (BPA) is

used to represent the supporting degree to suppliers. The

weights of DMs and criteria are represented in interval data

(or fuzzy data which can be transformed to a interval

form). Differing from the methods of converting the

interval data to crisp ones, in our method, interval data are

reserved during fusion process to generate interval BPAs.

The final decision can be made according to the derived

interval BPAs, which has some appreciable properties as

follows: (a) interval data reflect concrete and detailed

information of objects in a great extent as less information

is lost. (b) It provides applications of different decision-

making criteria, which can be adopted in some specific

problems. Sometimes decision can be made based on risk

aversion or risk preference strategy. For example, when the

system requires extremely high degree of accuracy, risk

aversion strategy will be adopted. We can only use the

lower limiting value of interval data and abandon the rest

information to make a decision. (c) The reliability of

information sources or the weights of criteria are allowed

to be modeled as both fuzzy linguistic variables and

interval numbers. The fuzzy linguistic description can be

converted to interval data. This property is quite useful in

that not only quantitative data but also qualitative repre-

sentation is widely used in practical decision-making

problems. (d) The fusion of interval BPAs is a general-

ization of the classical one. Because crisp number is a

special form of interval number (like 0.5 can be seen as

[0.5,0.5]), which conforms with the universal cognition.

The rest of this paper is organized as follows. The

preliminaries of the basic theory employed are briefly

presented in Sect. 2. Then, our new fusion method based

on interval data is proposed in Sect. 3. Section 4 takes a

numerical example of supplier selection to show the effi-

ciency of the method. Finally, the paper is concluded in

Sect. 5.

2 Preliminaries

In this section, some preliminaries such as interval number,

fuzzy set theory, Dempster–Shafer theory and pignistic

probability transformation (PPT) are briefly introduced.

2.1 Interval Number

Definition 1 (Interval number) An interval number ~a is

defined as ~a ¼ ½aL; aU � ¼ fxjaL � x� aUg where aL is the

lower limiting value and aU is the upper limiting value,

while x 2 0; 1½ �.

Let ~a and ~b be two arbitrary positive closed interval

numbers. The basic algorithm of interval number is given

as follows [55]:

~aþ ~b ¼ ½aL þ bL; aU þ bU �; ð1Þ

~a� ~b ¼ ½aLbL; aUbU �; ð2Þ
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~a� ~b ¼ aL

bL
;
aU

bU

� �
; ð3Þ

k~a ¼ ½kaL; kaU �; ð4Þ

1

~a
¼ 1

aU
;

1

aL

� �
: ð5Þ

For ~a and ~b, let norm k~a� ~bk ¼ jaL � bLj þ jaU � bU j be

the distance between interval numbers ~a and ~b. Apparently,

the larger k~a� ~bk is, the more ~a and ~b differ. Especially,

interval number ~a equals ~b completely when k~a� ~bk ¼ 0.

2.2 Fuzzy Set Theory

Fuzzy set introduced by Zadeh [28] is an extension of

classic set, which is an efficient tool to model linguistic

variables.

2.2.1 Fuzzy Number

A fuzzy set allows its members to have different grades of

membership in the interval [0,1]. It consists of two com-

ponents: a set and a membership function corresponding to

it.

Definition 2 (Fuzzy set) Let X be the collection of objects

denoted by x. ~A is a fuzzy subset of X, which is a set of

ordered pairs [56]:

~A ¼ x; l ~A xð Þjx 2 X
� �� �

; ð6Þ

where l ~A xð Þ is called as the membership function (gener-

alized characteristic function) which maps X to a mem-

bership space M. Its range is the subset of nonnegative real

members whose supreme is finite.

Definition 3 (Triangular fuzzy number) A fuzzy number

is a fuzzy subset of X. Then, a triangular fuzzy number ~A
can be defined by a triplet a; b; cð Þ shown in Fig. 1. Its

membership function is defined as [57]:

l ~A xð Þ ¼

0; x\a
x�a
b�a

; a� x� b
c�x
c�b

; b� x� c

0; x[ c

8>>><
>>>:

ð7Þ

2.2.2 Linguistic Variable

Linguistic variable is a variable with linguistic words in a

natural language [58]. It is widely used in practical life as

one of the most classical fuzzy information [59, 60]. When

dealing with conditions which are too complex or ill-

defined to be accurately described in conventional quanti-

tative expressions, it is convenient and reasonable to do a

qualitative description. Generally, each linguistic variable

corresponds to a fuzzy set. For example, these linguistic

variables can be expressed in positive triangular fuzzy

numbers [61] as Table 1. Virtually, the concrete models

used to represent linguistic items are flexible and change-

able. That which kind of representative method will be

used depends on the realistic application systems and

opinions of experts. Compared with FST, our method

adopts the way of converting linguistic variables into

interval data.

2.3 Dempster–Shafer Evidence Theory

Dempster–Shafer theory is a mathematical theory of evi-

dence which is a powerful tool to combine separate pieces

of evidences. In an evidential framework, the set of pos-

sible hypotheses are collectively called the frame of dis-

cernment H, which is defined as follows [14]:

H ¼ H1;H2;H3; . . .;Hnf g;

where n is the number of exclusive and exhaustive ele-

ments in H. Let P hð Þ denote the power set composed with

2n subsets of H:

Fig. 1 A triangular fuzzy number

Table 1 Linguistic variables for importance in triangular fuzzy

number [61]

Terms Triangular fuzzy number

Very low (VL) (0, 0.1, 0.3)

Low (L) (0.1, 0.3, 0.5)

Medium (M) (0.3, 0.5, 0.7)

High (H) (0.5, 0.7, 0.9)

Very high (VH) (0.7, 0.9, 1.0)
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P hð Þ ¼ ;; H1f g; H2f g; . . .; Hnf g; H1 [ H2f g;f
H1 [ H3f g; . . .; hg;

where ; denotes the empty set. Let A be a subset of P hð Þ,
then a mass function m is defined as m Að Þ 2 0; 1½ � to dis-

tribute the belief across the frame meeting the following

conditions:X
A�P hð Þ

m Að Þ ¼ 1;

m ;ð Þ ¼ 0:

Under these circumstances, the mass functions can only be

assigned to non-empty subsets and must sum to 1. To

combine evidences from multiple sources, for example, to

fuse the evidences m1 and m2, Dempster’s combination rule

(denoted as m12 ¼ m1 	 m2) is defined as:

m12 Að Þ ¼
P

8x;y:x\y¼A m1 Xð Þ � m2 Yð Þ
1 � K

ð8Þ

with

K ¼
X

8X;Y :X\Y¼;
m1 Xð Þ � m2ðYÞ; ð9Þ

where A is an element of P hð Þ, and K is called the conflict

coefficient which reflects the conflict degree of evidences

in some degrees.

2.4 Pignistic Probability Transformation

The term ‘‘pignistic’’ proposed by Smets is originated from

the word pignus, meaning ’bet’ in Latin. Pignistic proba-

bility transformation (PPT) is used to assign the basic

probability of multiple-element set to singleton sets. In

other word, a belief interval is distributed into crisp ones

determined as [62]:

Bet Aið Þ ¼
X
Ai�Ak

m Akð Þ
Akj j ; ð10Þ

where Akj j (called as cardinality) denotes the number of

elements in set Ak and Eq. (10) is also called as PPT.

3 Proposed Method

In this section, our new method based on interval data

fusion is proposed. In general, a basic MCDM problem can

be modeled as follows: for a certain problem, there is a

committee of k DMs fDM1;DM2;DM3; . . .;DMkg to

evaluate it. Each DM holds m alternatives A1;A2;A3; . . .;f
Amg. For each alternative, n criteria C1;C2;C3; . . .;Cnf g
are considered to make decisions. Usually, the same

criteria are shared for all the DMs. The following is a

succinct model proposed by Hwang and Yoon [63] to

express MCDM framework in a matrix.

where rmn is the rating of alternative Am with respect to

criteria Cn. In our method, rmn is allowed to be both crisp

and interval. For now, the faced problem is how to acquire

rmn.

In practice, we often consider ranking the alternatives

and making the best selection as the final aim. Hence, the

final scores of every alternative are not cared too much.

Considering that, Hwang and Yoon proposed a technique

for order preference by similarity to ideal solution (TOP-

SIS) method to solve MCDM problems [64]. The principle

is that the chosen alternative should have the shortest dis-

tance to the positive ideal solution and the farthest distance

to the positive ideal solution. TOPSIS method is also

widely applied in complex network [65], multi-objective

optimization [66], best-worst method [67, 68], etc. Based

on TOPSIS, Deng and Chan [54] proposed a method using

FST combining with D–S evidence theory. After deter-

mining the ideal solution and negative ideal solution, the

distances of an alternative between them can be derived.

Then, the classical BPAs are used to describe the distance

from the alternative to both ideal solution and negative

ideal solution.

In the classical TOPSIS method, the weights are in the

form of crisp numbers. Hence, Deng and Chan [54] con-

verted the fuzzy MCDM problem into a crisp one via using

a distance function. However, this method only averages

the lower limitation and the upper limitation of an interval,

and new crisp weights are generated according to the

average in the essence. It means that one criterion holds the

weight of [0.1, 0.9] measures the same as another one

holds [0.4, 0.6], which is apparently not reasonable and

convincing enough. For one criterion whose weight is in an

interval number ~a, a smaller result of aU � aL represents

that the information about this criterion is clearer when the

sum of aL and aU is constant. Considering that, it is rational

for us to distribute a larger crisp weight to a criterion which

weighs [0.4, 0.6] than another one weighting [0.1, 0.9]. To

improve it, the interval data are preserved during the fusion

procedure and interval BPAs are generated in our method.

Based on TOPSIS method, the propositions of our interval

BPA are {IS(ideal solution)}, {NS(negative solution)} and

{IS, NS}. The frame of discernment is {IS, NS}. The
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following is an example of the interval BPA of an

alternative:

mð ISf gÞ ¼ ½aL; aU �;
mð NSf gÞ ¼ ½bL; bU �;
mð IS;NSf gÞ ¼ ½cL; cU �;

which means that: (1) The hypothesis ‘‘the alternative is an

ideal solution’’ is upheld with belief degree from aL to aU .

(2) The hypothesis ‘‘the alternative is a negative ideal

solution’’ is upheld with belief degree from bL to bU . (3)

The hypothesis ‘‘the alternative is perceived as a discern-

ment, namely it is likely to be an ideal solution or a neg-

ative solution’’ is upheld with belief degree from cL to cU .

It is worth mentioning that mðfIS;NSgÞ ¼ 1 � mðfISgÞ
�mðfNSgÞ. Hence, it is easy to know that cL ¼ 1 � aU

�bU and cU ¼ 1 � aL � bL. For an interval BPA

ðfISg; fNSg; fIS;NSgÞ, there is another way to express it

as f½aL; bL; cL�; ½aU ; bU ; cU �g. Then, the left part and right

part can do fusion independently. When it comes to making

a comprehensive decision, we can fuse the interval BPAs

into classical ones. In the ultimate, PPT is used to help rank

the order of alternatives. According to what mentioned

above, our new method can be stated step by step as

follows:

Step 1 Generate classical BPAs based on TOPSIS.

Here, we follow the TOPSIS method used in [54]. Since

it is not the key progress of our method, we only briefly

introduce the process as follows: (1) Determine the ideal

solution and negative ideal solution. (2) Calculate the

decision’s distance from IS and NS, respectively. (3)

Generate classical BPAs of each alternative based on the

calculated distance.

Step 2 Interval BPAs fusion of different criteria.

Convert the criteria’s weights into interval numbers,

which includes three situations: (1) The weights are given

as interval numbers ahead. (2) The weights are given as

crisp numbers. Then extend the crisp number as an interval

whose values of left and right parts are both the crisp

number itself. (3) The weights are described as fuzzy lin-

guistic variables. Same as the fuzzy linguistic variables, in

this case, the transform rules between terms and interval

data differ in different situations. With the basis of Table 1,

here, we adopt the rules illustrated in Table 2. The derived

weight of criterion Ci are denoted as

WCi
¼ ½wL

Ci
;wU

Ci
�; i ¼ 1; 2; . . .; n:

Normalize the weights of criteria as follows:

WCi
¼ wL

Ci
; wU

Ci

h i�
wC max; ð11Þ

where wC max is the largest number among all limit values

of criterion intervals.

Then, discount classical BPAs with interval data to

generate the interval BPA of each criterion. Denote the

new weight of criterion Ci as WCi
¼ ½WCimin;WCimax�, then

we can determine the corresponding interval BPA as

follows:

mCi
ð ISf gÞ ¼ aLCi

WCimin; aUCi
WCimax

h i
; ð12Þ

mCi
ð NSf gÞ ¼ bLCi

WCimin; bUCi
WCimax

h i
; ð13Þ

mCi
ð IS;NSf gÞ ¼ 1 � aLCi

WCimin � bLCi
WCimin;

h

1 � aUCi
WCimax � bUCi

WCimax

i
:

ð14Þ

The newly obtained interval BPAs are consisted of two

classical BPAs served as the left part and right part,

respectively. Therefore, the integrated BPA of criterion Ci

is expressed as:

mCi
fISg; fNSg; fIS;NSgð Þ

¼

aLCi
WCimin; a

U
Ci
WCimax

h i
; bLCi

WCimin; bUCi
WCimax

h i
;

1 � aLCi
WCimin � bLCi

WCimin;
h

1 � aUCi
WCimax � bUCi

WCimax

i

0
BBBB@

1
CCCCA:

ð15Þ

which can be also denoted as:

mCi
ðfISg; fNSg; fIS;NSgÞ
¼ mCi

leftð Þ;mCi
rightð Þð Þ

ð16Þ

with

mCi
leftð Þ ¼ aLCi

WCimin; b
L
Ci
WCimin;

h

1 � aLCi
WCimin � bLCi

WCimin

i
;

mCi
rightð Þ ¼ aUCi

WCimin; b
U
Ci
WCimin;

h

1 � aUCi
WCimin � bUCi

WCimin

i

Fuse the left and right parts of the interval BPAs of all n

criteria to obtain the comprehensive evaluation of an

alternative separately from one DM as follows:

Table 2 Convert linguistic

variables into interval data
Terms Interval data

Very low (VL) [0, 0.3]

Low (L) [0.1, 0.5]

Medium (M) [0.3, 0.7]

High (H) [0.5, 0.9]

Very high (VH) [0.7, 1.0]
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mCi
leftð Þ

¼ aLCi
WCimin; b

L
Ci
WCimin; 1 � aLCi

WCimin � bLCi
WCimin

h i
;

ð17Þ

mCi
rightð Þ

¼ aLCi
WCimax; b

L
Ci
WCimax; 1 � aLCi

WCimax � bLCi
WCimax

h i
:

ð18Þ

Repeat the above process to obtain the interval BPAs of all

k DMs.

Step 3 Interval BPAs fusion of different DMs.

Generally, this step follows the same process as step 2,

except for the fusion object is the interval BPAs of dif-

ferent DMs. Convert the decision makers’ weights into

interval numbers with the same method in step 2. Nor-

malize the weights of DMs as follows:

WDMi
¼ wL

DMi
;wU

DMi

h i�
wDM max; ð19Þ

where wDM max is the largest number among all limit values

of DM weight intervals. Similar to Eqs. (12–16), discount

classical BPAs with interval data to generate the interval

BPA of each DM, which is denoted as:

mDMi ¼ mDMi leftð Þ;mDMi rightð Þ
� �

:

Then fuse the left and right parts of the interval BPAs of all

k DMs to obtain the final evaluation of an alternative

separately:

m leftð Þ
¼ mDM1 leftð Þ � � � 	 mDMi leftð Þ � � � 	 mDMn leftð Þ;

ð20Þ

m rightð Þ
¼ mDM1 rightð Þ � � � 	 mDMi rightð Þ � � � 	 mDMn rightð Þ:

ð21Þ

Repeat the above process to obtain the interval BPAs of all

m alternatives.

Step 4 Interval BPAs fusion of left and right parts.

The final evaluation for n criteria from k DMs has been

obtained as two parts. For now, we have been able to make

a decision based on different strategies. If the risk aversion

strategy is adopted, a decision can be made according to

the left part of the interval BPAs m leftð Þ for all alternatives.

Table 3 Data of the supplier selection problem in [54]

Alternatives C1 C2 C3 C4

ðfISg; fNSg; fIS;NSgÞ ðfISg; fNSg; fIS;NSgÞ ðfISg; fNSg; fIS;NSgÞ ðfISg; fNSg; fIS;NSgÞ

DM1 [0.20, 0.45]

Weights [0.20, 0.35] [0.30, 0.55] [0.05, 0.30] [0.25,0.50]

Supplier1 (0.60, 0.20, 0.20) (0.6429, 0.0714, 0.2857) (0.60, 0.20, 0.20) (0.60,0.20,0.20)

Supplier2 (0.60, 0.20, 0.20) (0.6429, 0.0714, 0.2857 (0.50, 0.50, 0) (0.50, 0.50, 0)

Supplier3 (0.50, 0.50, 0) (0.50, 0.50, 0) (0.60, 0.20, 0.20) (0.6667, 0, 0.3333)

Supplier4 (0.66667, 0, 0.3333) (0.6667, 0, 0.3333) (0.50, 0.50, 0) (0.50, 0.50, 0)

Supplier5 (0, 0.6667, 0.3333) (0, 0.6667, 0.3333) (0, 0.6667, 0.3333) (0, 0.6667, 0.3333)

Supplier6 (0.20, 0.60, 0.20) (0.0714, 0.6429, 0.2857) (0.6667, 0, 0.3333) (0, 0.6667, 0.3333)

DM2 [0.35, 0.55]

Weights [0.25, 0.45] [0.20, 0.55] [0.05, 0.3] [0.20, , 0.60]

Supplier1 (0.60, 0.20, 0.20) (0.6429, 0.0714, 0.2857) (0.50, 0.50, 0) (0.60, 0.20, 0.20)

Supplier2 (0.60, 0.20, 0.20) (0.6429, 0.0714, 0.2857) (0, 0.6667, 0.3333) (0.50, 0.50, 0)

Supplier3 (0.50, 0.50, 0) (0.50, 0.50, 0) (0.6667, 0, 0.3333) (0.6667, 0, 0.3333)

Supplier4 (0.66667, 0, 0.3333) (0.6667, 0, 0.3333) (0.50, 0.50, 0) (0.50, 0.50, 0)

Supplier5 (0, 0.6667, 0.3333) (0, 0.6667, 0.3333) (0, 0.6667, 0.3333) (0.20, 0.60, 0.20)

Supplier6 (0.20, 0.60, 0.20) (0.0714, 0.6429, 0.2857) (0.6667, 0, 0.3333) (0, 0.6667, 0.3333)

DM3 [0.70, 0.95]

Weights [0.20, 0.55] [0.20, 0.70] [0.10, 0.40] [0.20, 0.60]

Supplier1 (0.60, 0.20, 0.20) (0.6429, 0.0714, 0.2857) (0.5714, 0.2857, 0.1429) (0.6667, 0, 0.3333)

Supplier2 (0.60, 0.20, 0.20) (0.6429, 0.0714, 0.2857 (0.6667, 0, 0.3333) (0.2857, 0.5714, 0.1429)

Supplier3 (0.50, 0.50, 0) (0.50, 0.50, 0) (0.6667, 0, 0.3333) (0.6667, 0, 0.3333)

Supplier4 (0.66667, 0, 0.3333) (0.6667, 0, 0.3333) (0.5714, 0.2857, 0.1429) (0.6667, 0, 0.3333)

Supplier5 (0, 0.6667, 0.3333) (0, 0.6667, 0.3333) (0, 0.6667, 0.3333) (0.2857, 0.5714, 0.1429)

Supplier6 (0.20, 0.60, 0.20) (0.0714, 0.6429, 0.2857) (0.6667, 0, 0.3333) (0, 0.6667, 0.3333)
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On the contrary, if the risk preference strategy is adopted, a

decision can be made according to the right part of the

interval BPAs m rightð Þ for all alternatives. However, if we

want to make a decision based on the comprehensive

evaluation, we can continue to fuse the left part and right

part of interval BPAs to obtain the final evaluation of each

alternative as follows:

m ¼ m leftð Þ 	 m rightð Þ: ð22Þ

One advantage of using interval data is that it can preserve

original information as much as possible during the fusion

process. The fusion result is relatively more reliable as less

information is lost during the previous steps.

Step 5 Rank the order.

Sometimes, the proposition IS;NSf g may cause diffi-

culty to make a decision. To address it, one of the most

classical methods is using PPT [Eq. (10)] to transform

BPA to a probability distribution. Here, we follow this

method, and rank the order of alternatives by comparing

Bet ISf gð Þ of m alternatives.

4 Numerical Example

Supplier selection is a typical MCDM problem where lots

of fuzzy and uncertain information exists. In reality,

although managers claim that quality is the most important

attribute for a supplier, they actually choose suppliers

based largely on cost and delivery performance. Actually,

in the modern society, the decision making has become

increasingly complex [69]. Various risk factors can influ-

ence the supplier selection greatly. To decrease risk and

obtain a comprehensive evaluation, a company usually

requires a group of experts in the decision-making process.

To compare our new interval data fusion method with the

existing ones, the numerical example used in [54, 70] is

adopted in this section. The initial conditions, such as

classical BPAs of each alternative, the weights of criteria

and DMs are shown in Table 3. In this problems, three

DMs (DM1 to DM3) provide their evaluation results toward

six suppliers (supplier1 to supplier6). There are four cri-

teria (C1 to C4) taken into consideration, including product

late delivery, cost, risk factor and suppliers’ service per-

formance detailed as following:

C1: Product late delivery. The delivery process can

reflect the service ability of a supplier. It is considered to

investigate whether the supplier can supply stable and

constant appreciation serve for the enterprise.

C2: Cost. A good price measures quite a lot in reducing

cost and increasing competitive force.

C3: Risk factor. If we want to make long-term cooper-

ation with a supplier, then we must take its risk factor

(political factor, economic factor, the reputation, etc.) into

account.

C4: Supplier’s service performance. Service perfor-

mance means the sustaining promotion of the product and

service (like product quality acceptance level, technologi-

cal support, information process), which is deemed as the

core factor.

Before applying our method, a flow chart is illustrated in

Fig. 2 to summarize the whole procedure of applying our

method in a supplier selection problem. Based on it, the

detailed processes is illustrated step by step in the

following.

Step 1 Generate classical BPAs based on TOPSIS.

Since the classical BPAs of alternatives are already

given in Table 3, we will implement the following steps

directly.

Step 2 Interval BPAs fusion of different criteria.

Since all the original weights of criteria are given in the

form of interval data, what we need to do is to normalize

interval numbers based on Eq. (11). Let take the weights of

Fig. 2 Supplier selection based on interval data fusion
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DM1’s four criteria as an example, the normalized weights

are obtained as following, respectively:

WC1
¼ 0:20; 0:35½ �

	
0:70 ¼ 0:2857; 0:5½ �;

WC2
¼ 0:30; 0:55½ �

	
0:70 ¼ 0:4286; 0:7857½ �;

WC3
¼ 0:20; 0:35½ �

	
0:70 ¼ 0:0714; 0:4286½ �;

WC4
¼ 0:20; 0:35½ �

	
0:70 ¼ 0:3571; 0:7142½ �:

Then, let us take DM1’s evaluation to C1 of supplier1 as an

example to normalize the weights:

mCi
ISf gð Þ ¼ 0:2875 � 0:6; 0:5 � 0:6½ � ¼ 0:1714; 0:3½ �;

mC1
NSf gð Þ ¼ 0:2875 � 0:2; 0:5 � 0:2½ � ¼ 0:0571; 0:1½ �;

mC1
IS;NSf gð Þ ¼ ½0:7715; 0:6�:

Table 4 Generate the interval BPAs of four criteria respectively

Alternatives C1 C2 C3 C4

ðfISg; fNSg; fIS;NSgÞ ðfISg; fNSg; fIS;NSgÞ ðfISg; fNSg; fIS;NSgÞ ðfISg; fNSg; fIS;NSgÞ

DM1

Weights [0.2857, 0.5] [0.4286, 0.7857] [0.0714, 0.4286] [0.3571, 0.7143]

Supplier1 ([0.1714, 0.3], [0.0571, 0.1],

[0.7715, 0.6])

([0.2755, 0.5051], [0.0306,

0.0561], [0.6939, 0.4388])

([0.0428, 0.2572], [0.0143,

0.0857], [0.9429, 0.6571])

([0.2143, 0.4286], [0.0714,

0.1429], [0.7143, 0.4285])

Supplier2 ([0.1714, 0.3], [0.0571, 0.1],

[0.7715, 0.6])

([0.2755, 0.5051], [0.0306,

0.0561], [0.6939, 0.4388])

([0.0357, 0.2143], [0.0357,

0.2143], [0.9286, 0.5714])

([0.1785, 0.3572], [0.1785,

0.3572], [0.6430, 0.2856])

Supplier3 ([0.1429, 0.25], [0.1429,

0.25], [0.7142, 0.5])

([0.1429, 0.3928], [0.1429,

0.3928], [0.7242, 0.2144])

([0.0428, 0.2572], [0.0143,

0.0857], [0.9429, 0.6571])

([0.2381, 0.4762], [0, 0],

[0.7619, 0.5238])

Supplier4 ([0.1905, 0.3333], [0, 0],

[0.8095, 0.6667])

([0.2857, 0.5238], [0, 0],

[0.7143, 0.4762])

([0.0357, 0.2143], [0.0357,

0.2143], [0.9286, 0.5714])

([0.1785, 0.3572], [0.1785,

0.3572], [0, 0])

Supplier5 ([0, 0], [0.1905, 0.3333],

[0.8095, 0.6667])

([0, 0], [0.2857, 0.5238],

[0.7143, 0.4762])

([0, 0], [0.0476, 0.2857],

[0.9524, 0.7143])

([0, 0], [0.2381, 0.4762],

[0.7619, 0.5238])

Supplier6 ([0.0571 0.1], [0.0714, 0.3],

[0.7715, 0.6])

([0.0306 0.0561], [0.2755,

0.5051], [0.6939, 0.4388])

([0.0476 0.2857], [0, 0],

[0.9524, 0.7143])

([0, 0], [0.2381, 0.4762],

[0.7619, 0.5238])

DM2

Weights [0.3571, 0.6428] [0.2857, 0.7857] [0.0714, 0.4286] [0.2857, 0.8571]

Supplier1 ([0.2143, 0.3857], [0.0714,

0.1286], [0.7143, 0.4857])

([0.1837, 0.5051], [0.0204,

0.0561], [0.7957, 0.4388])

([0.0357, 0.2143], [0.0357,

0.2143], [0.9286, 0.5714])

([0.1714, 0.5143], [0.0571,

0.1714], [0.7715, 0.3143])

Supplier2 ([0.2143 0.3857], [0.0714,

0.1286], [0.7143, 0.4857])

([0.1837, 0.5051], [0.0204,

0.0561], [0.7957, 0.4388])

([0, 0], [0.0476, 0.2857],

[0.9524, 0.7143])

([0.1429, 0.4285], [0.1429,

0.4285], [0.7142, 0.1430])

Supplier3 ([0.1785, 0.3214], [0.1785,

0.3214], [0.6430, 0.3572])

([0.1429, 0.3928], [0.1429,

0.3928], [0.7142, 0.2144])

([0.0476, 0.2857], [0, 0],

[0.9524, 0.7143])

([0.1905, 0.5714], [0, 0],

[0.8095, 0.4286])

Supplier4 ([0.2381, 0.4286], [0, 0],

[0.7619, 0.5714])

([0.1905, 0.5238], [0, 0],

[0.8095, 0.4762])

([0.0357, 0.2143], [0.0357,

0.2143], [0.9286, 0.5714])

([0.1429, 0.4285], [0.1429,

0.4285], [0.7142, 0.1430])

Supplier5 ([0, 0], [0.2381, 0.4286],

[0.7619, 0.5714])

([0, 0], [0.1905, 0.5238],

[0.8095, 0.4762])

([0, 0], [0.0476, 0.2857],

[0.9524, 0.7143])

([0.0571, 0.1714], [0.1714,

0.5143], [0.7715, 0.3143])

Supplier6 ([0.0714, 0.1286], [0.2143,

0.3857], [0.7143, 0.4857])

([0.0204, 0.0561], [0.1837,

0.5031], [0.7957, 0.4388])

([0.0476, 0.2857], [0, 0],

[0.9524, 0.7143])

([0, 0], [0.1905, 0.5714],

[0.8095, 0.4286])

DM3

Weights [0.2857, 0.7857] [0.2857, 1] [0.1429, 0.5714] [0.2857, 0.8571]

Supplier1 ([0.1714, 0.4714], [0.0571,

0.1571], [0.7715, 0.3715])

([0.1837, 0.6429], [0.0204,

0.0714], [0.7957, 0.2857])

([0.0817, 0.3265], [0.0408,

0.1632], [0.8775, 0.5103])

([0.1905, 0.5714], [0, 0],

[0.8095, 0.4286])

Supplier2 ([0.1714, 0.4717], [0.0571,

0.1571], [0.7715, 0.3715])

([0.1837, 0.6429], [0.0204,

0.0714], [0.7957, 0.2857])

([0.0952, 0.3810], [0, 0],

[0.9048, 0.6190])

([0.0816, 0.2449], [0.1632,

0.4897], [0.7552, 0.2654])

Supplier3 ([0.1429, 0.3928], [0.1429,

0.3928], [0.7142 0.2144])

([0.1429, 0.5], [0.1429, 0.5],

[7142, 0])

([0.0952, 0.3810], [0, 0],

[0.9048, 0.6190])

([0.1905, 0.5714], [0, 0],

[0.8095, 0.4286])

Supplier4 ([0.1905, 0.5238], [0, 0],

[0.8095, 0.4762])

([0.1905, 0.6667], [0, 0],

[0.8095, 0.3333])

([0.0817, 0.3265], [0.0408,

0.1632], [0.8775, 0.5103])

([0.1905, 0.5714], [0, 0],

[0.8095, 0.4286])

Supplier5 ([0, 0], [0.1905, 0.5238],

[0.8095, 0.4762])

([0, 0], [0.1905, 0.6667],

[0.8095, 0.3333])

([0, , 0], [0.0952, 0.3810],

[0.9048 0.6190])

([0.0816, 0.2449], [0.1632,

0.4897], [0.7552, 0.2654])

Supplier6 ([0.0571, 0.1571], [0.1714,

0.4714], [0.7715, 0.3715])

([0.0204, 0.0714], [0.1837,

0.1429], [0.7959, 0.2857])

([0.0952, 0.3810], [0, 0],

[0.9048, 0.6190])

([0, 0], [0.1905, 0.5714],

[0.8095, 0.4286])

1166 International Journal of Fuzzy Systems, Vol. 20, No. 4, April 2018

123



By using Eq. (15), the rest interval BPAs of each alterna-

tive are generated (listed in Table 4).

Following, we do the interval BPAs fusion of all criteria.

Fig. 3 illustrates the process of fusing DM1’s evaluation to

supplier1. Then, by using Eqs. (17) and (18), the four left

and right part BPAs are fused together separately. In the

same way, we can obtain all the interval BPAs which

represent the evaluation (considering all criteria) of each

supplier from each DM (shown as Table 5).

Step 3 Interval BPAs fusion of different DMs.

This step is similar to step 2. It aims to fuse the evalu-

ation from all DMs for one supplier. First of all, using

Eq. (19) to normalize the weights of DMs:

WDM1
¼ 0:20; 0:45½ �

	
0:95 ¼ 0:2105; 0:4739½ �;

WDM2
¼ 0:35; 0:55½ �

	
0:95 ¼ 0:3684; 0:5789½ �;

WDM3
¼ 0:70; 0:95½ �

	
0:95 ¼ 0:7368; 1½ �:

In the following, discount the interval BPAs and do the

fusion like in step 2. Still take supplier1 as an example, the

results are obtained in Table 6. After the fusion, we can

obtain the final interval BPA which represents the overall

information about suppiler1. Repeat the above process, all

the suppliers’ final interval BPAs are obtained (shown in

Table 7). The rest steps are to compare these interval BPAs

and rank order to make a decision.

Step 4 Interval BPAs fusion of left and right parts.

For the moment, we consider making a decision based

on the comprehensive evaluation first. Hence, use Eq. (22)

to fuse the two parts of an interval BPA.

Step 5 Rank the order.

According to Eq. (10), m IS;NSf gð Þ can be handled as

follows:

Fig. 3 Fuse DM1’s evaluation to supplier1

Table 5 Fuse interval data to

get comprehensive information

containing all criteria

Alternatives The left part of interval BPAs The right part of interval BPAs

ðfISg; fNSg; fIS;NSgÞ ðfISg; fNSg; fIS;NSgÞ

DM1

Supplier1 (0.5133, 0.0980, 0.3887) (0.8009, 0.0987, 0.1004)

Supplier2 (0.4596, 0.1772, 0.3632) (0.6881, 0.2353, 0.0766)

Supplier3 (0.4003, 0.1895, 0.4102) (0.6817, 0.2520, 0.0663)

Supplier4 (0.4938, 0.1246, 0.3815) (0.7447, 0.1782, 0.0771)

Supplier5 ( 0, 0.5804, 0.4196) ( 0, 0.8812, 0.1188)

Supplier6 (0.0734, 0.5131, 0.4135) (0.1203, 0.7369, 0.1428)

DM2

Supplier1 (0.4502, 0.1128, 0.4370) (0.8108, 0.1268, 0.0624)

Supplier2 (0.3929, 0.1800, 0.4271) (0.6438, 0.3116, 0.0446)

Supplier3 (0.3920, 0.2114, 0.3966) (0.7549, 0.1995, 0.0456)

Supplier4 (0.4502, 0.1086, 0.4412) (0.7774, 0.1821, 0.0405)

Supplier5 (0.0343, 0.5015, 0.4642) (0.0387, 0.8905, 0.0708)

Supplier6 (0.0854, 0.4518, 0.4628) (0.0996, 0.7475, 0.1529)

DM3

Supplier1 (0.4722, 0.0699, 0.4579) (0.9206, 0.0456, 0.0338)

Supplier2 (0.4015, 0.1829, 0.4155) (0.8124, 0.1506, 0.0370)

Supplier3 (0.4015, 0.1829, 0.4155) (0.7903, 0.2097, 0)

Supplier4 (0.5034, 0.0221, 0.4746) (0.9460, 0.0131, 0.0409)

Supplier5 (0.0500, 0.4868, 0.4631) (0.0309, 0.9357, 0.0334)

Supplier6 (0.1051, 0.4620, 0.4833) (0.0982, 0.8494, 0.0524)
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Bet ISf gð Þ ¼ m ISf gð Þ þ m IS;NSf gð Þ
	

2 ð23Þ

The final evaluations of each supplier are shown in

Table 8. According to the data, the order is easily ranked as

supplier4 
 supplier1 
 supplier2 
 supplier3 
 supplier6


 supplier5. Apparently, supplier4 is the best selection,

which coincides with the results presented in paper [54]. In

addition, the Bet ISf gð Þ of our method is higher than the

classical one, which proves the feasibility and validity of

our new method. However, in some particular situations,

the decision can be made based on a risk aversion strategy

or risk preference strategy. In this case, a decision can be

made with the basis of the data in Table 7. The results of

order ranking based on different strategies are shown in

Fig. 4, where the labels above cylinders represent the

ranking order of suppliers. If the decision maker adopts a

risk aversion strategy, the ranking order will be supplier4 

supplier1 
 supplier3 
 supplier2 
 supplier6 
 supplier5,

which is slightly different from Table 8. In a similar way,

the ranking order based on a risk preference strategy can be

obtained as supplier4 
 supplier1 
 supplier3 
 supplier2


 supplier6 
 supplier5. As we can see, when taking a

comprehensive consideration of all information, the results

of our method is same as the original ones. However, when

taking different strategies to make a decision, the results

are slightly different, which is rational as only a part of

information is used in the decision-making process. In sum,

our method has following advantages:

1. Fuzzy and uncertain information is well handled in the

form of interval data.

Table 6 Fuse the evaluation of

supplier1 from three DMs
The left part of interval BPA The right part of interval BPA

ðfISg; fNSg; fIS;NSgÞ ðfISg; fNSg; fIS;NSgÞ

DM1 (0.1080, 0.0206, 0.8714) (0.3795, 0.0468, 0.5737)

DM2 (0.1659, 0.0416, 0.7925) (0.4694, 0.0734, 0.4572)

DM3 (0.3479, 0.0515, 0.6006) (0.9206, 0.0456, 0.0338)

Fusion result (0.4950, 0.0733, 0.4317) (0.8849, 0.1017, 0.0135)

Table 7 Fuse the evaluation of

all suppliers from three DMs
Alternatives The left part of interval BPAs The right part of interval BPAs

ðfISg; fNSg; fIS;NSgÞ ðfISg; fNSg; fIS;NSgÞ

Supplier1 (0.4950, 0.0733, 0.4317 (0.9696, 0.0201, 0.0103)

Supplier2 (0.4106, 0.1516, 0.4378) (0.8849, 0.1017, 0.0135)

Supplier3 (0.4019, 0.1878, 0.4104) (0.8851, 0.1149, 0)

Supplier4 (0.5135, 0.0485, 0.4380) (0.9765, 0.0110, 0.0125)

Supplier5 (0.0336, 0.5337, 0.4328) (0.0096, 0.9811, 0.0094)

Supplier6 (0.0845, 0.4895, 0.4260) (0.0473, 0.9339, 0.0189)

Table 8 Convert interval BPAs

back to classical BPAs
Alternatives Combining results Bet ISf gð Þ Bet ISf gð Þ in [54] Final ranking order

Supplier1 (0.9833, 0.0119, 0.0048 0.9857 0.9775 2

Supplier2 (0.9177, 0.0752, 0.0072) 0.9213 0.9008 3

Supplier3 (0.9129, 0.0873, 0) 0.9129 0.8888 4

Supplier4 (0.9879, 0.0063, 0.0058) 0.9908 0.9864 1

Supplier5 (0.0050, 0.9910, 0.0042) 0.0071 0.0130 6

Supplier6 (0.0287, 0.9625, 0.0090) 0.0332 0.0445 5

Fig. 4 Order ranking based on different strategies
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2. The decision made in comprehensive consideration is

more rational as less information is lost.

3. Different decision-making strategies, like risk aversion

strategy and risk preference strategy, can be adopted in

our method, which is very useful in some specific

applications.

4. In some degrees, our method is the generalization of

the classical one in [54] as an interval number will

degenerate into a crisp number when no uncertainty

exists.

5 Conclusion

Supplier selection is common and significant problem

which is always modeled in a MCDM framework. In

reality, a mass of fuzzy information exists in MCDM

problems inevitably. Sometimes, uncertainty exists in the

decision opinions from different DMs and the weights of

both different criteria and DMs. To handle the uncertainty,

an evidential method based on interval data fusion is pro-

posed in this paper. We follow the classical D–S evidence

theory to handle the uncertainty of decision opinions. As

for the uncertainty of different weights, interval number is

adopted to handle it since interval number is a simple but

quiet effective tool to handle fuzzy and uncertain infor-

mation. When uncertainty exists in the weights, our method

degenerates to a classical one in [54]. The interval weights

are used to discount and generate interval BPAs. Then, we

do the fusion of different criteria, DMs in sequence to

make a final decision. Compared with the most current

paper, the interval data are conserved in the fusion process.

It means that relatively full information is used to make a

comprehensive decision in our method as the information

will be lost inevitably when convert an interval number to a

crisp one. Also, different strategies can be adopted in our

method, which could bring some difference to the final

decision making. It is very useful in some specific appli-

cations, like it is better to adopt risk aversion strategy in a

military application. An example of supplier selection is

used to illustrate the detailed procedures of our method.

The ranking result agrees with the original methods when

making a decision with the usage of full information;

however, some slight differences occur when adopting

other decision-making strategies. In future research, we

will try to apply the interval fusion method to other models

rather than fixed in an evidential framework.
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