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Abstract This paper presents a new Line-integral poly-

nomial Lyapunov functional approach for observer-based

control for a class of polynomial fuzzy systems with time

delay and unmeasured state variables. To guarantee the

global asymptotic stability and estimation error conver-

gence, a design method is proposed. In this work we

consider a Line-integral polynomial Lyapunov function in

which the Lyapunov matrices are polynomial matrices

depending not only of the estimated states but also of the

estimated delayed states and we use the dual system to

reduce the computational efforts. The design conditions are

established in terms of Sum Of Squares (SOS) which can

be numerically and symbolically solved via the recent

developed SOSTOOLS and a Semi-Definite Program sol-

ver. Finally, numerical examples are proposed to show the

validity and applicability of the proposed results.

Keywords Polynomial fuzzy systems � Polynomial fuzzy

observer � Line-integral polynomial Lyapunov function �
Dual system � Sum Of Squares � SOSTOOLS

1 Introduction

The well-known Takagi–Sugeno (T–S) fuzzy model is

recognized as a powerful tool in approximating nonlinear

systems. Since its introduction in 1985 [23], it has been

attracting ever-increasing interest. The fuzzy model-based

control methodology provides a natural, simple and

effective design approach to complement other nonlinear

control techniques (e.g [20]) that require special and rather

involved knowledge.

On the other hand, time delay often occurs in many

practical systems such as chemical processes, telecommu-

nication, and mechanical systems, etc. As a consequence,

T–S fuzzy model has been extended to tackle analysis and

design problems of nonlinear systems with time delay. Lots

of efforts have been made to develop updated stability

analysis methods and various techniques have been

obtained. The standard methods which use common Lya-

punov-Krasovskii Functional, often lead to conservative

results [10, 14, 30, 31]. Recently, different design tech-

niques, aimed at reducing the conservatism, have been

proposed. Thus, a result has been developed in [15] by

applying the fuzzy function approach and the delay dis-

cretisation technique. The delay partitioning method,

where the time delay is divided into several segments, has

been proposed in [33]. It is shown in this work that the

resulting conditions based on this technique are less con-

servatives when the number of partitions increases. More

recently, less conservative result is given in [21] by using a

novel integral inequality based on the Wirtinger inequality.

In [32], the authors have studied stability of T–S fuzzy

systems with time-delay by combining the fuzzy LKF with

the Wirtinger-based integral inequality. We notice that all

the results previously cited give sufficient conditions in

terms of Linear Matrix Inequalities (LMIs) which can be
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easily solved using existing solvers such as the LMI

Toolbox of Matlab software. Although the LMI-based

approaches have received great interest and progress, the

results obtained through LMIs are too conservative.

By the introduction of the Sum Of Squares (SOS)

approach and numerical tools related to SOS program-

minga great interest has been given to analysis and design

problems of polynomial nonlinear systems. SOS pro-

gramming is considered as a powerful technique in auto-

matic and control theory since it provides convex

relaxations to solve optimization problems [16, 17].

Recently, the SOS approach is firstly considered to solve

the polynomial fuzzy control system design problems

[24, 29]. It is a completely different approach from the

existing LMI approaches [5, 28]. SOS approach can sup-

plied more relaxed results than the existing LMI approach,

see [29] and [24].

Latest evolution in SOS programming techniques [4]

make possible to state analysis design problems of poly-

nomial control systems. For instance, novel robust fault

detection design procedure for nonlinear systems has been

developed in [6] via sum of squares decomposition. In [1],

stability analysis of networked control systems is proposed.

In [22], the problems of stability and stabilization are

studied for polynomial fuzzy system with time varying

delay. The SOS based local stabilization of polynomial

fuzzy models with time delay has been investigated in [9]

and the control design with saturation constraint for poly-

nomial fuzzy systems with time delay is proposed in [7].

More latterly, numerous design of observer based con-

trol for polynomial fuzzy systems have been developed

with a classical Lyapunov function in which the Lyapunov

matrix is constant. For example, in [11] the problem of

polynomial fuzzy observer design has been proposed via

sum of squares approach. In [19, 26] and [25], a large class

of free delay polynomial fuzzy models are proposed where

state and control matrices are not dependent on unmea-

surable states. Overall, there exists only very few literature

works on SOS observer-based control designs for polyno-

mial fuzzy systems with state delay. For example, we can

cite [8], where the authors investigated the problem of

observer-based control for nonlinear systems with time-

varying delay, in which the Lyapunov matrix is constant.

In this paper, we introduce a new SOS based design

method of the observer based control for polynomial fuzzy

system with time delay. The framework gives key ideas to

reduce the conservatism, get more relaxed results and

reduce the computational efforts compared to work in [8].

The first key idea concerns the use of the dual system to

reduce the computational efforts. The second key idea

focuses on the analysis of the stability of the observer-

based control system by using the newly proposed line-

integral polynomial Lyapunov function, in which the

polynomial Lyapunov matrix dependent in estimated states

and the estimated delayed states. To the best of our

knowledge, there are no works dealing with polynomial

Lyapunov matrix depending on the same time on estimated

states and estimated delayed states. The third key idea is

that both the polynomial state matrices and the polynomial

input matrices are depending not only on the estimated

states but also on the estimated delayed system states.

Furthermore, the polynomial delayed state matrices are

depending on the estimated delayed system states. These

ideas provide some added advantages of the relaxation. The

stability of the control system is analysed using the newly

proposed time-delay line-integral Lyapunov function,

which provides more decision variables than the classical

Lyapunov function. In addition, by introducing a novel

integral inequality, we formulate the proposed stability

conditions in terms of SOS. Two numerical examples are

introduced. In the first example we compare our result with

the result of [8] and we demonstrate that our approach

improves the result in [8] for several main aspects. The

second example is given to validity and illustrate the pro-

posed approach.

The remainder paper is organized as follows. In Sect. 2,

some preliminaries are proposed. Next in Sect. 3, the

problem formulation of polynomial fuzzy models and the

polynomial fuzzy observer-based are described. Section 4

presents a SOS design method for polynomial fuzzy con-

troller and observer. In Sect. 5, numerical examples are

given to demonstrate the effectiveness of the proposed

method. Finally, Sect. 6 provides the conclusion.

2 Preliminaries

The following definitions and lemmas are helpful for next

developments.

Definition 1 A polynomial Y(x(t)) is an SOS if there

exists a set of polynomials qiðxðtÞÞ; i ¼ 1; . . .; s such that:

YðxðtÞÞ ¼
Xs

i¼1

q2i ðxðtÞÞ ð1Þ

So if Y(x(t)) is SOS that signify YðxðtÞÞ[ 0; 8xðtÞ.

Definition 2 Let x� ¼ 0 be an equilibrium of the auton-

omous system _xðtÞ ¼ gðxðtÞÞ, if VðxðtÞÞ : Rn ! R is a

continuous scalar function satisfying the conditions as

follows:

(1) Vð0Þ ¼ 0.

(2) VðxðtÞÞ[ 0, 8xðtÞ 2 Rnn0n (globally positive

definite).

(3) xðtÞk k ! 1 ) VðxðtÞÞ ! 1 (radially unbounded).
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(4) V(x(t)) is a continuously differentiable function.

then, V(x(t)) is a Lyapunov function candidate to

prove global asymptotic stability of the underlying

system.

Lemma 1 [12] If the time derivative of the Lyapunov

function candidate V(x(t)) of the autonomous system _xðtÞ ¼
gðxðtÞÞ is globally negative definite, i.e., _VðxðtÞÞ\0,

8xðtÞ 2 Rnn0n, then the equilibrium of the underlying

system is proven to be globally asymptotically stable.

Lemma 2 [18] Let gð~xÞ ¼ g1ð~xÞ; . . .; gnð~xÞ½ �T . A neces-

sary and sufficient condition for Vð~xÞ to be a path-inde-

pendent function is

ogið~xÞ
o~xj

¼ ogjð~xÞ
o~xi

ð2Þ

for i; j ¼ 1; . . .; n.

3 Problem Formulation

Consider a nonlinear system with time delay represented

by the following delayed Polynomial Fuzzy Model (PFM)

with r plant rules.

Rule i ði ¼ 1; 2; . . .; rÞ:
If h1ðxðtÞÞ is li1 and . . . and hpðxðtÞÞ is lip Then

_xðtÞ ¼ AiðxðtÞ; xðt � sÞÞxðtÞ þ Asiðxðt � sÞÞxðt � sÞ
þ BiðxðtÞ; xðt � sÞÞuðtÞ

yðtÞ ¼ CixðtÞ
xðtÞ ¼ wðtÞ; t 2 ½�s; 0�

8
>>><

>>>:

ð3Þ

where hjðxðtÞÞðj ¼ 1; . . .; pÞ are the premise variables. Note

that hjðxðtÞÞ are assumed to be independent of the states

x(t) to be estimated. In other words, each hjðxðtÞÞ is a

measurable time-varying quantity that may be measurable

external variables, outputs and/or time. This has been also

assumed in the existing works of the T–S fuzzy observer-

based designs [27, 28]. lijði ¼ 1; . . .; r; j ¼ 1; . . .; pÞ are the
fuzzy sets; wðtÞ is a continuous vector-valued initial

function on �s 0½ �; xðtÞ 2 Rnx is the state vector, uðtÞ 2
Rnu is the control input vector and yðtÞ 2 Rny is the output

vector. AiðxðtÞ; xðt � sÞÞ and BiðxðtÞ; xðt � sÞÞ are polyno-

mial matrices in ðxðtÞ; xðt � sÞÞ, Asiðxðt � sÞÞÞ are poly-

nomial matrices in xðt � sÞ, Ci are known constant real

matrices. r is the number of IF-THEN rules. Delay s is

assumed to be known and constant.

Remark 1 We note that the state and control matrices not

only depend on the system states but also on delayed

system states. Hence, this class of nonlinear system is more

general than the polynomial fuzzy systems that can be met

in literature.

After deffuzzication process of model (3), the global

system dynamics is given by the following equation :

_xðtÞ ¼
Xr

i¼1

hiðhðxðtÞÞÞfAiðxðtÞ; xðt � sÞÞxðtÞ

þ Asiðxðt � sÞÞxðt � sÞ þ BiðxðtÞ; xðt � sÞÞ
uðtÞg

yðtÞ ¼
Xr

i¼1

hiðhðxðtÞÞÞCixðtÞ

8
>>>>>>>>><

>>>>>>>>>:

ð4Þ

in which

hiðhðxðtÞÞÞ ¼ miðhðxðtÞÞÞPr

i¼1
miðhðxðtÞÞÞ

, miðhðxðtÞÞÞ ¼
Qp

j¼1

lijðhjðtÞÞ is

the membership function.

It is obvious that fuzzy weighting functions hiðhðxðtÞÞÞ
satisfy

Pr

i¼1

hiðhðxðtÞÞ ¼ 1

0� hiðhðxðtÞÞÞ� 1

8
<

: ð5Þ

In the sequel, for brevity time t is dropped. hiðhðxðtÞÞÞ and
xðt � sÞ are respectively denoted by hi and xs.

Usually, since the output vector can be measured by

sensors in many real systems, we assume C1 ¼ � � � ¼ Cr ¼
C such that the polynomial fuzzy model can be rewritten as

_x ¼
Xr

i¼1

hifAiðx; xsÞxþ AsiðxsÞxs þ Biðx; xsÞug

y ¼ Cx

8
><

>:
ð6Þ

Let consider the following polynomial fuzzy observer

based PDC (Parallel Distributed Compensation) controller:

_bx ¼
Xr

i¼1

hifAiðbx;bxsÞbx þ AsiðbxsÞbxs þ Biðbx; bxsÞu

þ LiðbxÞðy� byÞg
by ¼ Cbx

u ¼ �
Xr

i¼1

hiFiðbxÞbx

8
>>>>>>>>><

>>>>>>>>>:

ð7Þ

where bx 2 Rnx is the estimated state, by 2 Rny is the esti-

mated output vector, LiðbxÞ and FiðbxÞ are the polynomial

observer gains and polynomial controller gains to be

designed, respectively.

The augmented polynomial fuzzy model based observer

control system is written as
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_ex ¼
Xr

i¼1

Xr

j¼1

hihjfGijðx; xs; bx; bxsÞex þMiðxs; bxsÞexsg

ex ¼ ew; t 2 ½�s; 0�;

8
>><

>>:
ð8Þ

where

ex ¼
bx

x� bx

� �
; exs ¼

bxs
xs � bxs

� �
; ew ¼

w
bw

" #

Gijðx; xs; bx;bxsÞ ¼
G11

ij ðbx; bxsÞ G12
ij ðbxÞ

G21
ij ðx; xs; bx; bxsÞ G22

ij ðx; xs;bx

" #

G11
ij ðbx; bxsÞ ¼ Aiðbx; bxsÞ � Biðbx; bxsÞFjðbxÞ

G12
ij ðbxÞ ¼ LiðbxÞC

G21
ij ðx; xs; bx;bxsÞ ¼ ðAiðx; xsÞ � Aiðbx; bxsÞÞ � ðBiðx; xsÞ
� Biðbx;bxsÞÞFjðbxÞ

G22
ij ðx; xs; bxÞ ¼ Aiðx; xsÞ � LiðbxÞC

Miðxs;bxsÞ ¼
AsiðbxsÞ 0

AsiðxsÞ � AsiðbxsÞ AsiðxsÞ

� �

ð9Þ

Lemma 3 There exist two orthogonal matrices U 2
Rny�ny and Z 2 Rnx�nx , such that

UTCZ ¼ eC 0
h i

ð10Þ

where eC ¼ diag
�
c1; c2; . . .; cny

�
and ci ði ¼ 1; . . .; nyÞ are

nonzero singular values of C.

Proof Since rankðCÞ ¼ ny. h

A new SOS framework will be presented in Sect. 4. The

usefulness of the new SOS design framework will be

demonstrated in design examples.

4 Main results

Before proceeding, knowing that the dual system of system

(8) is asymptotically stable, if and only if system (8) is

asymptotically stable, then we simply use the stability of

the dual system.

The proposed line-integral polynomial Lyapunov func-

tion has the following form:

VðexÞ ¼ V1ðbx; bxsÞ þ V2ðexÞ þ V3ðexÞ ð11Þ

where Vi 2 I3 is a Lyapunov functional that is described as

follows:

V1ðbx;bxsÞ ¼ 2

Z

C
gðwÞ:dw ð12Þ

V2ðexÞ ¼ eTx P2ex ð13Þ

V3ðexÞ ¼
Z t

t�s
exTðaÞSðexÞexðaÞda ð14Þ

where C is paths from the origin to bx, w 2 Rn is the dummy

vector, dw 2 Rn is an infinitesimal displacement vector,

ex ¼ x� bx is the estimation error via the observer, SðexÞ is
symmetric positive definite matrix to be determined,

gðwÞ 2 Rn is vector function and has the following form

gðbx; bxsÞ ¼ eP1ðbx; bxsÞbx ð15Þ

with eP1ðbx; bxsÞ 2 Rn�n is a symmetric positive definite

matrix such as

eP1ðbx;bxsÞ¼

d11ðbx1;bxs1Þ p12ðx̂;bxsÞ � � � p1nðbx;bxsÞ
p12ðbx;bxsÞ d22ðbx2;bxs2Þ � � � p2nðbx;bxsÞ

..

. ..
. . .

. ..
.

p1nðbx;bxsÞ p2nðbx;bxsÞ � � � dnnðbxn;bxsnÞ

2
66664

3
77775

where pklðbx;bxsÞ is written as

pklðbx; bxsÞ ¼
Xq

p¼1

Cpðbxpkbx
p
lþbxpskbx

p
slÞ þ pklð�x; �xsÞ ð16Þ

such that �x � bx, �xs � bxs, bxsk ; bxslg\f �xs ¼ ; and

bxk;bxlg\f �x ¼ ;.
and P2 2 Rn�n is a symmetric positive definite matrix

and has the following form:

P2 ¼ ZeP2Z
T ð17Þ

eP2 ¼
eP11
2 0

0 eP22
2

� �
ð18Þ

The following lemma shows that proposed V1ðbx;bxsÞ is

suitable polynomial Lyapunov candidate for (8)

Lemma 4 V1ðbx; bxsÞ is path-independent, positive definite
and continuously differentiable.

Proof A necessary and sufficient condition for V1ðbx; bxsÞ
to be path-independent is

ogiðbx;bxsÞ
obxj

¼ ogjðbx; bxsÞ
obxi

for i; j ¼ 1; . . .; n: ð19Þ

where giðbx; bxsÞ is the ith row of the vector function gðbx; bxsÞ
and bxj is the jth element of column vector bx. On the other

hand expanding (15), the ith row of gðbx;bxsÞ becomes:

giðbx;bxsÞ ¼ diiðbxi; bxsiÞbxi þ
Xn

k 6¼i

pikðbx; bxsÞbxk ð20Þ

For j 6¼ i, taking a partial derivative with respect to bxj, we
obtain:
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ogiðbx; bxsÞ
obxj

¼ odiiðbxi; bxsiÞ
obxj

bxi þ pijðbx; bxsÞ

þ opijðbx; bxsÞ
obxj

bxj

¼ pijðbx;bxsÞ þ pCpbxpi bx
p
j ; 8 1� i� n

ð21Þ

Similarly

ogjðbx;bxsÞ
obxi

¼ pjiðbx;bxsÞ þ pCpbxpj bx
p
i ; 8 1� j� n ð22Þ

We already set pijðbx; bxsÞ ¼ pjiðbx;bxsÞ for 1� i; j� n. This

implies that (19) holds, and thus V1ðbx;bxsÞ is path-

independent.

Moreover, considering Theorem 2 of [18], it can be

easily proved that V1ðbx;bxsÞ is positive definite and

continuously differentiable because eP1ðbx;bxsÞ is positive

definite matrix. h

Theorem 1 Consider polynomial fuzzy model (6) with

observer based control (7). If there exist matrices

eP1ðbx; bxsÞ, eP11
2 2 Rny�ny , eP22

2 2 Rðnx�nyÞ�ðnx�nyÞ, S1ðexÞ,
S2ðexÞ, WF

j ðbxÞ, WL
j ðbxÞ such that the following SOS-based

conditions are satisfied:

vT1 ðeP1ðbx; bxsÞ � �1ðbx;bxsÞIÞv1 is SOS ð23Þ

vT2 ðP2 � �2IÞv2 is SOS ð24Þ

vT3 ðS1ðexÞ � �3ðexÞIÞv3 is SOS ð25Þ

vT3 ðS2ðexÞ � �3ðexÞIÞv3 is SOS ð26Þ

� egTð� ijðx; xs;bx; bxsÞ þ � jiðx; xs;bx; bxsÞ
þ �4ðx; xs;bx; bxsÞIÞeg is SOS 8i� j

ð27Þ

where

P2 ¼ ZeP2Z
T ð28Þ

eP2 ¼
eP11
2 0

0 eP22
2

� �
ð29Þ

U 2 Rny�ny , Z 2 Rnx�nx and eC are given by applying

lemma 3.

� ijðx; xs; bx;bxsÞ ¼
� 1

ijðx; xs;bx; bxsÞ � 2
ijðxs;bx; bxsÞ

� � 3
ijð~xÞ

" #

� 1
ijðx; xs; bx;bxsÞ ¼

� 11
ij ðbx;bxsÞ � 12

ij ðx; xs; bx;bxsÞ
� � 22

ij ðx; xs; bx;bxsÞ

" #

� 2
ijðx; xs; bx;bxsÞ ¼

� 13
ij ðbx;bxsÞ � 14

ij ðxs; bx;bxsÞ
� � 24

ij ðxs; bx;bxsÞ

" #

� 3
ijð~xÞ ¼

�S1ð~xÞ 0

� � S2ð~xÞ

� �

� 11
ij ðbx; bxsÞ ¼ Aiðbx; bxsÞeP1ðbx;bxsÞ � Biðbx; bxsÞWF

j ðbxÞ
þ eP1ðbx;bxsÞAiðbx; bxsÞT

� WF
j ðbxÞ

T
Biðbx;bxsÞT þ S1ð~xÞ

� 12
ij ðx; xs; bx; bxsÞ ¼ WL

i ðbxÞC þ eP1ðbx;bxsÞðAiðx; xsÞ
� Aiðbx; bxsÞÞT �WF

j ðbxÞ
TðBiðx; xsÞ

� Biðbx; bxsÞÞT

� 13
ij ðbx; bxsÞ ¼ eP1ðbx;bxsÞAsiðbxsÞ

T

� 14
ij ðxs; bx;bxsÞ ¼ eP1ðbx; bxsÞðAsiðxsÞ � AsiðbxsÞÞ

T

� 22
ij ðx; xs; bx; bxsÞ ¼ Aiðx; xsÞP2 �WL

i ðbxÞC
þ P2Aiðx; xsÞT � CTWL

i ðbxÞ
T

þ S2ð~xÞ
� 24

ij ðxs; bx;bxsÞ ¼ P2ðbx;bxsÞAsiðxsÞ
T

ð30Þ

v1, v2 and v3 denote vectors that are independent of x, xs, bx
and bxs, and eg denotes vectors dependent of x, xs, bx and bxs.
�iðxÞis a slack variable (a radially unbounded positive

definite polynomial) to keep the positivity of the SOS

condition.

Then closed-loop polynomial fuzzy system (8) is asymp-

totically stable and polynomial controller and observer

gains are given by:

FiðbxÞ ¼ WF
i ðbxÞeP�1

1 ðbx; bxsÞ ð31Þ

LiðbxÞ ¼ WL
i ðbxÞU eCðeP11

2 Þ�1 eC�1UT ð32Þ

Proof Since the stability of the system implies the sta-

bilization of its dual, we will be interested in the stability of

the dual system, many papers [2, 3, 13] had investigated

with the dual systems. So, we can deal with the stability of

the dual system.

Deriving Lyapunov function (11), we obtain:
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_VðexÞ ¼ 2
d

dt

Z t

0

x̂T ~P1ðx̂Þ
dx̂

dt
dt þ _eTx ~P2ex þ eTx

~P2 _ex

þ exTSðexÞex � exTs SðexÞexs

¼ 2
d

dt

Z t

0

x̂T ~P1ðx̂Þ _̂x dt þ _eTx ~P2ex þ eTx
~P2 _ex

þ exTSðexÞex � exTs SðexÞexs
¼ 2bxT eP1ðbx; bxsÞ _bx þ 2eTx P2 _ex þ exTSðexÞex
� exTs SðexÞexs

¼ 2exT ePðbx;bxsÞ _ex þ exTSðexÞex � exTs SðexÞexs

ð33Þ

where

ePðbx; bxsÞ ¼
eP1ðbx; bxsÞ 0

0 P2

" #
and ex ¼

bx
ex

� �
ð34Þ

Changing _ex by its expression of the dual system, function
_VðexÞ will be of the form:

_Vð~xÞ ¼ 2
Xr

i¼1

Xr

j¼1

hihj~x
T ~Pðx̂; x̂sÞ

�
GT

ijðx; xs; x̂; x̂sÞ~x

þ Mi
Tðxs; x̂sÞ~xs

�
þ ~xTSð~xÞ~x� ~xTs Sð~xÞ~xs

ð35Þ

The time derivative of Vð~xÞ satisfies
_VðexÞ ¼

Pr
i¼1 h

2
i egTXiiðx; xs; bx; bxsÞeg þ

Pr
i¼1

Pr
i\j hihjegT

ðXijðx; xs;bx; bxsÞ þ Xjiðx; xs;bx; bxsÞÞeg
ð36Þ

where egT ¼ ½exT ; exTs �
T
.

Xijðx; xs; bx; bxsÞ ¼
X11

ij ðx; xs;bx; bxsÞ X12
ij ðx; xs;bx; bxsÞ

� �SðexÞ

" #

X11
ij ðx; xs;bx; bxsÞ ¼ ePðbx;bxsÞGT

ijðx; xs; bx;bxsÞ
þ Gijðx; xs; bx;bxsÞePðbx;bxsÞ þ SðexÞ

X12
ij ðx; xs;bx; bxsÞ ¼ ePðbx;bxsÞMT

i ðxs;bxsÞ ð37Þ

If the following conditions hold, _VðexÞ\0 at ex 6¼ 0

Xijðx; xs; bx;bxsÞ þ Xjiðx; xs;bx; bxsÞ 	 0 ð38Þ

By applying Lemma 3 and taking into account that P2 is in

form of (28)–(29), we obtain

Liðx̂ÞCP2 ¼ Liðx̂ÞU ~C 0
� �

ZTZ
~P11
2 0

0 ~P22
2

" #
ZT

¼ Liðx̂ÞU ~C ~P11
2 0

� �
ZT

¼ Liðx̂ÞU ~C ~P11
2
~C�1UTU ~C 0

� �
ZT

Let WL
i ðbxÞ ¼ LiðbxÞU eCeP11

2
eC�1UT , we obtain:

LiðbxÞCP2 ¼ WL
i ðbxÞC ð39Þ

Define

SðexÞ ¼
S1ðexÞ 0

0 S2ðexÞ

� �
; WF

i ðbxÞ ¼ FiðbxÞeP1ðbx; bxsÞ

ð40Þ

Substituting (40) into (30), we obtain

� ijðx; xs; bx;bxsÞ þ � jiðx; xs; bx;bxsÞ 	 0 ð41Þ

The SOS conditions in Theorem 1 imply (41), then, we

have _VðexÞ\0. Therefore, dual system is asymptotically

stable. h

Remark 2 Thanks to equivalence principle between the

closed loop systems and its dual, the polynomial fuzzy

model based control system (8) is guaranteed to be

asymptotically stable if the SOS-based conditions in The-

orem 1 are satisfied.

Remark 3 Unlike the classical fuzzy Lyapunov function

approach in [11, 25] in which the Lyapunov matrix is a

constant matrix, our approach focuses on the analysis of the

stability of the observer-based control system by using the

newly polynomial fuzzy Lyapunov in which the polyno-

mial Lyapunov matrix dependent on the estimated states

and the estimated delayed states as well. Therefore, the

proposed stability conditions are more relaxed than those

obtained using the conventional Lyapunov function

approaches even if the system doesn’t deal with the delay

problem.

5 Illustrative Examples

To show the effectiveness of the developed approach and

the less conservativeness of Theorem 1 using the new line-

integral polynomial Lyapunov function, we present three

numerical examples of the polynomial fuzzy system, where

in the first one we compare our result with the result of

algorithm 1 in [8].

5.1 Example 1

In the first example , we design an observer based control

for polynomial fuzzy systems with time delay:

_x ¼
X2

i¼1

hifAiðx; xsÞxþ AsiðxsÞxs þ Biðx; xsÞug

y ¼ Cx

8
><

>:
ð42Þ

where
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A1ðx; xsÞ ¼
1 � 0:6x22

�10 � 3� x22

" #

A2ðx; xsÞ ¼
�0:2172 �0:6x22
�10 � 3� x22

" #

B1ðx; xsÞ ¼ B2ðx; xsÞ ¼
1

0

� �
;C ¼ 1 0½ �

As1ðxsÞ ¼
0:1 0

0:1 0

� �
; As2ðxsÞ ¼

�0:1 0

0:1 0

� �

The membership functions are defined as

h1 ¼ 0:5ð1� sinðx1ÞÞ; h2 ¼ 1� h1:

Remark 4 The goal is to find more relaxed result. For this,

we propose to compare our result with the result presented

in [8]. The proposed result is especially interesting from

computational load point of view. Thus, the use the dual

system allowed to introduce a vector dependent of x, xs, x̂

and x̂s. Consequently, we reduce not only the computa-

tional efforts but also the conservatism. Secondly, both

polynomial state matrices Ai and polynomial input matrices

Bi are depending on both the estimated system states and

the estimated delayed system states. Finally, in our method

we adopt a new Line-integral polynomial Lyapunov func-

tion in which the Lyapunov matrices eP1ðbx;bxsÞ, S1ðexÞ and
S2ðexÞ are not constant but polynomial matrices depending

on the estimated states and the estimated delayed states. we

can conclude that our approach improves the result in [8]

for many main aspects.

The SOS conditions in algorithm 1 of [8] are infeasible

if Lyapunov matrices X1, X2, eS1 and eS2 are constant

matrices. However, our SOS conditions in Theorem 1 are

feasible if we select eP1ðbx; bxsÞ, S1ðexÞ and S2ðexÞ as poly-

nomial matrices. Thus, the polynomial Lyapunov function

in (11) with the polynomial Lyapunov matrices is more

useful than the Lyapunov function in [8]. This shows the

utility of our SOS based approach.

We choose �1ðbx; bxsÞ ¼ �2 ¼ �3ðexÞ ¼ �4ðx; xs;bx; bxsÞ
¼ 10�4, degree of eP1ðbx; bxsÞ is 2 in bx and bxs, degree of P2 is

0, degrees of S1ðexÞ and S2ðexÞ are 2 in bx2 and the degrees of

WF
j ðbxÞ and WL

j ðbxÞ, j ¼ 1; 2, are 2 in bx2.
By solving the SOS conditions in Theorem 1, we obtain

the following solution:

~P1ðx̂; x̂sÞ ¼
~P11
1 ðx̂; x̂sÞ ~P12

1 ðx̂; x̂sÞ
� ~P22

1 ðx̂; x̂sÞ

" #
ð43Þ

where

~P11
1 ðx̂; x̂sÞ ¼ �1:548e�8x̂21 � 4:19e�16x̂1 þ 0:1525

~P12
1 ðx̂; x̂sÞ ¼ 9:742e�9x̂1x̂2 � 3:631e�4

~P22
1 ðx̂; x̂sÞ ¼ 1:641e�8x̂22 � 8:292e�14x̂2 þ 8:439e�3

P2 ¼
8:256e�3 0

� 2:54e�3

� �
ð44Þ

S1ðx̂2Þ ¼
S111 ðx̂2Þ S121 ðx̂2Þ

� S221 ðx̂2Þ

" #
ð45Þ

with

S111 ðx̂2Þ ¼ 0:9606x̂22 � 7:654e�11x̂2 þ 1:671

S121 ðx̂2Þ ¼ �6:302e�6x̂22 þ 1:758e�11x̂2 þ 1:868e�3

S221 ðx̂2Þ ¼ 7:501e�3x̂22 � 4:523e�13x̂2 þ 2:908e�2

S2ðx̂2Þ ¼
S112 ðx̂2Þ S122 ðx̂2Þ

� S222 ðx̂2Þ

" #
ð46Þ

where

S112 ðx̂2Þ ¼ 0:3048x̂22 þ 3:826e�11x̂2 þ 0:6666

S122 ðx̂2Þ ¼ 1:664e�4x̂22 þ 3:03e�13x̂2 þ 6:769e�3

S222 ðx̂2Þ ¼ 2:364e�3x̂22 þ 4:642e�14x̂2 þ 1:096e�2

WF
1 ðx̂2Þ ¼ WF11

1 ðx̂2Þ WF12

1 ðx̂2Þ
� �

ð47Þ

WF11

1 ðx̂2Þ ¼ 1:099x̂22 � 4:515e�10x̂2 þ 2:492

WF12

1 ðx̂2Þ ¼ �6:177e�3x̂22 þ 1:207e�11x̂2 � 1:562

WF
2 ðx̂2Þ ¼ WF11

2 ðx̂2Þ WF12

2 ðx̂2Þ
� �

WF11

2 ðx̂2Þ ¼ 1:099x̂22 þ 3:955e�10x̂2 þ 2:316

WF12

2 ðx̂2Þ ¼ �6:174e�3x̂22 þ 4:995e�12x̂2 � 1:562

WL
1 ðx̂2Þ ¼

0:323x̂22 � 8:703e�10x̂2 þ 1:852

�3:817e�4x̂22 þ 7:848e�12x̂2 � 6:829e�2

" #

WL
2 ðx̂2Þ ¼

0:323x̂22 þ 8:721e�10x̂2 þ 1:843

�3:804e�4x̂22 � 3:938e�12x̂2 � 6:823e�2

" #

ð48Þ

The simulation was carried out from the initial states,

xð0Þ ¼ 6 � 1½ �T , x̂ð0Þ ¼ 1 � 1:5½ �T and a constant time

delay s ¼ 1. Figure 1 shows the states of open-loop system

(42). It is seen that unforced open-loop system (42) is

unstable.

Figure 2 shows the evolution of state variables and their

estimated values, for the same initial states as Fig. 1, by the

polynomial controller and observer using Theorem 1. In

fact, the controller guarantees the global asymptotic sta-

bility of the controlled system.
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5.2 Example 2

Consider the following polynomial fuzzy model with time

delay

_x ¼
X2

i¼1

hifAiðx; xsÞxþ AsiðxsÞxs þ Biðx; xsÞug

y ¼ Cx

8
><

>:
ð49Þ

where

A1ðx; xsÞ ¼
1 � 0:3xs2

�1:5 � 2� x22

� �

A2ðx; xsÞ ¼
�0:2172 � 0:3xs2

�1:5 � 2� x22

� �

B1ðx; xsÞ ¼ B2ðx; xsÞ ¼
1

0

� �
;C ¼ 1 0½ �

As1ðxsÞ ¼
0:1 0

�0:1xs1 0

� �
; As2ðxsÞ ¼

0:1 0

0:1 0

� �

The membership functions are the same as in example 1.

Figure 3 shows the behavior of the nonlinear system

with u ¼ 0. System (49) is unstable.

By solving the SOS conditions in Theorem 1, we obtain

the following solution:

~P1ðx̂; x̂sÞ ¼
~P11
1 ðx̂; x̂sÞ ~P12

1 ðx̂; x̂sÞ
� ~P22

1 ðx̂; x̂sÞ

" #
ð50Þ

where

~P11
1 ðx̂; x̂sÞ ¼ �5:866e�9x̂21 þ 6:068e�9x̂1 þ 0:02433

~P12
1 ðx̂; x̂sÞ ¼ �1:785e�11x̂s1 x̂s2 þ 1:503e�4

~P22
1 ðx̂; x̂sÞ ¼ 7:022e�9x̂22 � 4:634e�10x̂2 þ 0:1746

P2 ¼
9:133e�4 0

� 5:512e�2

� �
ð51Þ

S1ðx̂2Þ ¼
S111 ðx̂2Þ S121 ðx̂2Þ

� S221 ðx̂2Þ

" #
ð52Þ

S111 ðx̂2Þ ¼ 0:837x̂22 � 7:171e�5x̂2 þ 1:369

S121 ðx̂2Þ ¼ 3:678e�5x̂22 þ 7:542e�5x̂2 þ 5:378e�4

S221 ðx̂2Þ ¼ 0:1601x̂22 þ 6:012e�5x̂2 þ 0:5299

S2ðx̂2Þ ¼
S112 ðx̂2Þ S122 ðx̂2Þ

� S222 ðx̂2Þ

" #
ð53Þ

S112 ðx̂2Þ ¼ 0:2688x̂22 þ 5:223e�5x̂2 þ 0:5262

S122 ðx̂2Þ ¼ 1:47e�5x̂22 � 1:388e�6x̂2 � 6:827e�5

S222 ðx̂2Þ ¼ 5:722e�2x̂22 � 8:123e�6x̂2 þ 0:1935

WF
1 ðx̂2Þ ¼ WF11

1 ðx̂2Þ WF12

1 ðx̂2Þ
� �

ð54Þ

Fig. 1 Response of open-loop state system (42)

Fig. 2 Response of the state x(t) and its estimated

Fig. 3 Behaviors in x1ðtÞ � x2ðtÞ plane (without feedback)
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WF11

1 ðx̂2Þ ¼ 0:9624x̂22 þ 2:982e�4x̂2 þ 1:778

WF12

1 ðx̂2Þ ¼ 2:528e�5x̂22 þ 7:81e�5x̂2 � 3:769e�2

WF
2 ðx̂2Þ ¼ WF11

2 ðx̂2Þ WF12

2 ðx̂2Þ
� �

WF11

2 ðx̂2Þ ¼ 0:9622x̂22 þ 2:316e�4x̂2 þ 1:745

WF12

2 ðx̂2Þ ¼ 1:923e�4x̂22 þ 6:547e�5x̂2 � 3:784e�2

WL
1 ðx̂2Þ ¼

0:2791x̂22 þ 2:097e�5x̂2 þ 1:386

�3:894e�5x̂22 þ 1:231e�5x̂2 � 1:444e�3

" #

WL
2 ðx̂2Þ ¼

0:2792x̂22 � 6:175e�5x̂2 þ 1:365

�1:328e�5x̂22 � 3:478e�6x̂2 � 1:514e�3

" #

ð55Þ

Figure 4 shows control results, for several initial states, by

the polynomial controller and observer using Theorem 1.

In fact, the controller guarantees the global asymptotic

stability of the controlled system.

Figure 5 shows the evolution of state variables and their

estimated values, from the initial states, xð0Þ ¼ 6 � 3½ �T ,
x̂ð0Þ ¼ 1 � 1½ �T and a constant time delay s ¼ 1:5.

5.3 Example 3

Consider the following polynomial fuzzy model with time

delay

_x ¼
P2

i¼1 hifAiðx; xsÞxþ AsiðxsÞxs þ Biðx; xsÞug
y ¼ Cx

(
ð56Þ

where

A1ðx; xsÞ ¼
xs1 5

�1 � x22

� �

A2ðx; xsÞ ¼
�0:2172xs1 5

�1 � x22

� �

B1ðx; xsÞ ¼ B2ðx; xsÞ ¼
x22 þ 5

0

� �
;C ¼ 1 0½ �

As1ðxsÞ ¼
0:1 0

�0:1xs1 0

� �
; As2ðxsÞ ¼

0:1 0

0:1 0

� �

The membership functions are defined as

h1 ¼
sinðx1Þ þ 0:2172x1

1:2172x1
; h2 ¼ 1� h1:

The membership functions of the polynomial fuzzy model

have only x1 that is measurable.

By solving the SOS conditions in Theorem 1, we obtain

the following solution:

~P1ðx̂; x̂sÞ ¼
~P11
1 ðx̂; x̂sÞ ~P12

1 ðx̂; x̂sÞ
� ~P22

1 ðx̂; x̂sÞ

" #
ð57Þ

where

~P11
1 ðx̂; x̂sÞ ¼ 2:215e�8x̂21 � 3:682e�7x̂1 þ 1:683e�5

~P12
1 ðx̂; x̂sÞ ¼ 6:632e�15x̂s1 x̂s2 þ 6:745e�6

~P22
1 ðx̂; x̂sÞ ¼ 6:737e�7x̂22 � 4:797e�9x̂2 þ 6:685e�5

P2 ¼
3:82e�5 0

� 2:58e�5

� �
ð58Þ

S1ðx̂2Þ ¼
S111 ðx̂2Þ S121 ðx̂2Þ

� S221 ðx̂2Þ

" #
ð59Þ

S111 ðx̂2Þ ¼ 3:656e�5x̂22 � 5:74e�9x̂2 þ 2:886e�5

S121 ðx̂2Þ ¼ 1:531e�5x̂22 � 2:212e�7x̂2 � 7:717e�7

S221 ðx̂2Þ ¼ 4:026e�5x̂22 þ 2:071e�8x̂2 þ 4:957e�6

S2ðx̂2Þ ¼
S112 ðx̂2Þ S122 ðx̂2Þ

� S222 ðx̂2Þ

" #
ð60Þ

S112 ðx̂2Þ ¼ 6:759e�5x̂22 � 1:579e�7x̂2 þ 7:352e�5

S122 ðx̂2Þ ¼ 3:792e�6x̂22 � 4:133e�7x̂2 � 4:793e�7

S222 ðx̂2Þ ¼ 3:077e�5x̂22 þ 2:2e�10x̂2 � 4:631e�9

WF
1 ðx̂2Þ ¼ WF11

1 ðx̂2Þ WF12

1 ðx̂2Þ
� �

ð61Þ

Fig. 4 Behaviors in x1ðtÞ�x2ðtÞ plane (with feedback)

Fig. 5 Response of the state x(t) and its estimated
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WF11

1 ðx̂2Þ ¼ 1:86e�6x̂22 þ 4:041e�8x̂2 þ 5:549e�5

WF12

1 ðx̂2Þ ¼ �1:393e�7x̂22 þ 3:552e�8x̂2 þ 7:184e�5

WF
2 ðx̂2Þ ¼ WF11

2 ðx̂2Þ WF12

2 ðx̂2Þ
� �

WF11

2 ðx̂2Þ ¼ 1:97e�6x̂22 � 3:756e�8x̂2 þ 5:038e�5

WF12

2 ðx̂2Þ ¼ �1:743e�7x̂22 � 9:279e�8x̂2 þ 7:195e�5

WL
1 ðx̂2Þ ¼

1:313e�4x̂22 � 2:257e�6x̂2 þ 7:73e�4

1:872e�5x̂22 � 6:508e�7x̂2 þ 8:683e�5

" #

WL
2 ðx̂2Þ ¼

1:277e�4x̂22 � 1:336e�6x̂2 þ 6:92e�4

2:049e�5x̂22 � 2:503e�7x̂2 þ 8:646e�5

" #

ð62Þ

Figure 6 shows control results, for several initial states, by

the polynomial controller and observer using Theorem 1. In

fact, the controller guarantees the global asymptotic sta-

bility of the controlled system.

Figure 7 shows the evolution of state variables and their

estimated values, from the initial states, xð0Þ ¼ 0:3 � 8½ �T ,
x̂ð0Þ ¼ �0:1 3½ �T and a constant time delay s ¼ 4. It can be

found that the estimated state converges to the real state

during the stabilizing control.

6 Conclusion

In this paper, we have presented a SOS based design

approach of the observer and the controller for polynomial

fuzzy system with time delay. We have proposed a poly-

nomial fuzzy observer to estimate the states of the poly-

nomial fuzzy system. A key feature of the SOS design

conditions is the use of the dual system to reduce the

computational efforts and a new Line-integral polynomial

Lyapunov function in which the polynomial Lyapunov

matrix is depending on the estimated states and estimated

delayed states. In addition, all the design conditions are

represented in terms of SOS and can symbolically and

numerically be solved via the recent developed SOS-

TOOLS and an SDP solver. To illustrate the validity of the

design approach, illustrative examples have been provided.

This examples have shown the utility of our SOS approach

for the polynomial fuzzy observer-based control design.

As a future work, the authors intend to derive SOS

observer design conditions for polynomial fuzzy systems

wiyh time delay considering unmeasurable premise

variables.
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