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Abstract This paper proposes a novel weighting approach

to group decision-making (GDM) with interval-valued

intuitionistic fuzzy preference relations (IVIFPRs) based

on a fuzzy cooperative game method and the continuous

interval-valued intuitionistic fuzzy ordered weighted

averaging (CIVIFOWA) operator. First of all, a continuous

IVIFPR (CIVIFPR) is defined based on the CIVIFOWA

operator, and then considering the contribution of each

decision-maker (DM), an iterative algorithm is designed to

redistribute weights of DMs by using cooperative method.

Moreover, a logarithm least optimal model is developed to

deriving interval priority weights of IFPR and a two-stage

resolution process is proposed for the GDM with IVIFPRs.

Finally, a practical example with cooperation and compe-

tition is provided to verify the feasibility and efficiency of

the proposed method. The characteristics of the proposed

method are as follows: (1) the iterative algorithm is

devoted to deriving DMs’ weights in GDM by using fuzzy

cooperative game based on the CIVIFOWA operator in

which the contribution of each DM’s opinion to the group

indicates the rationality and importance in GDM of their

opinions; (2) the weighting algorithm can be adjusted by

modifying the attitude parameter based on the CIVIFOWA

operator, which makes the proposed method more flexible.

Keywords Group decision-making � Interval-valued
intuitionistic fuzzy preference relations � Shapley value �
CIVIFOWA operator

1 Introduction

Group decision-making (GDM) with preference relations

gained extensive attentions in recent researches. Problems

of GDM with preference relations can be solved by using

the general GDM with suitable aggregation techniques. In

the previous literature, GDM problems with multiplicative

preference relations [1], fuzzy preference relations [2],

linguistic preference relations [3, 4], and intuitionistic

preference relations [5, 6] are finely discussed and

demonstrated. Nevertheless, constrained by the high com-

plexity of socioeconomic environments and the insufficient

level of knowledge in real-life decision-making problems,

it is reasonable for DMs utilizing interval variables [7],

interval linguistic variables [8], or interval-valued intu-

itionistic fuzzy variables [9] to express their preferences

over alternatives. Thus, preference relations are extended

to fuzzy environment, such as the uncertain preference

relations [7, 10–14], the uncertain linguistic preference

relations [8, 15], and the interval-valued intuitionistic fuzzy

preference relations [16, 17].

In GDM problems with preference relations, the absence

of consistency or consensus may lead to misleading con-

clusions, therefore fruitful results are investigated to mea-

sure the consistency and consensus of preference relations.

Saaty and Vargas [18] proposed a consistency degree by

measuring the divergence between any two multiplicative

preference relations. To estimate the consistency of lin-

guistic preference relations, Dong and Herrera-Viedma

[19] converted linguistic preference relations into interval
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preference relations. As for intuitionistic fuzzy preference

relations (IFPRs), a multiplicative consistency definition

was proposed by Xu et al. [20]. To perfect IFPRs consis-

tency, Liao and Xu [16] introduced an advanced consis-

tency index. Aiming at overcoming the deficiencies of

IFPRs consistency, Liao et al. [21] put forward an iterative

algorithm and a consensus model is built to improve the

consensus among experts. Afterward, Liao et al. [22]

enhanced the consensus model constructed in [21] and set

up a reaching model. Moreover, Xu et al. [23] developed

some mathematical programming models to reach consis-

tency and consensus GDM with intuitionistic fuzzy pref-

erence relations, and Liao et al. [24] defined the

multiplicative consistency of IVIFPR. Wan et al. [25]

investigated a GDM method based on additive consistent

IVIFPRs and likelihood comparison algorithm.

To aggregate all information about alternatives’ prefer-

ences precisely, Yager [26] initially introduced the ordered

weighted averaging (OWA) operator, which provides a

family of aggregation operators including the maximum,

the minimum, and the average criteria. Then, Refs.

[13, 14, 26–31] extended the OWA operator to different

forms. Among all extensions, the continuous ordered

weighted averaging (COWA) operator [31] is an excellent

one with certain practicability, where the argument takes

the form of interval number. Owing to flexibility of the

COWA operator, it has been further applied in

[13, 14, 32–35]. Zhou and Chen [34] proposed the CIVI-

FOWA operator on basis of the COWA operator consid-

ering the risk attitude of DMs.

Particularly, when aggregating all evaluations of various

DMs, how much value should every expert share is of great

importance [36–38]. In order to deriving the optimal DMs’

weights regarding GDM problems with AIFPRs, Ureña

et al. [39] introduced a new concept of experts’ confidence,

based on the confidence degree and experts’ consistency, a

new aggregation operator is defined. In view of DMs’ risk

attitudes toward uncertainty, Wan et al. [40] constructed an

intuitionistic fuzzy program and proposed three different

solving methods. In the available literatures regarding

GDM problems with IVIFPRs, different importance values

were investigated to assign them to each DM [24, 41, 42]

objectively.

Particularly, game theory is an efficient tool in decision-

making. Chen and Larbani [43] used a two-person zero-

sum game with an uncertain payoff matrix for deriving the

weights of attributes. By utilizing the cooperative games,

AL-Mutairi [44] proposed a fuzzy preference decision-

making with two DMs. Madani and Lund [45] regarded the

multi-criteria DM problems as strategic game which can be

handled by noncooperative game theory. By the Shapley

value [46], an objective way [47, 48] is provided to

deriving each player’ importance value in the cooperative

game.

The core of the GDM is the DMs who come from var-

ious research areas with different knowledge structure,

analytical ability, and evaluation levels. They will give the

individual preference under their own practical experience

or unique perspective. Hence, it is common to see that the

decision-makers give different degrees of IVIFPRs for the

same GDM problem. So it is meaningful to give each

decision-maker a weight which reflects their corresponding

importance in the group. Ref. [37] proposed a consensus

model which not only deriving the weights to the DMs, but

also give the personal decision suggestion to change their

preferences for a better consistency in the GDM problems.

How to determine the weights of DMs objectively is

playing a dominant role in GDM process. Recently, many

researches have been done for assigning the DMs’ weights.

For example, Xu [49] determined the weights of the DMs

by some formulas which come from the deviation measures

between additive linguistic preference relations. Yue [50]

used the degree of similarity between each individual

preference with an optimistic coefficient parameter to

determine the weights of DMs, but pay no attention to each

DM’s contribution to the group preference. Wan et al. [51]

also pointed out that DMs’ weights play an important role

whether in homogenous or heterogeneous decision envi-

ronments. For the GDM under IVIFPR environment, there

is no investigation on the determination of DMs’ weights

objectively. Some existing methods [24, 41, 42] assumed

that each DM has equal importance or assigned DMs’

weights in advance, which may lead to the subjective

randomness.

However, it is noted that all the aforementioned methods

to determine the DM’s weights always come from the

perspective of the coherence between each individual

preference, but pay no attention to the contribution of each

individual to the group. That is to say, in the process of

GDM, the different contribution of the individual will bring

different group decision effects. And it is more valuable to

obtain the best decision of the group rather than the indi-

vidual. Therefore, one of the main goals of this paper is to

develop a novel approach to deriving the DMs’ weights

under IVIFPRs environment from the perspective of the

contribution of each of decision-makers to the group

decision.

This paper is to develop a new approach to GDM with

IVAIFPRs based on a fuzzy cooperative game method and

the CIVIFOWA operator. We first define a CIVIFPR by

using the CIVIFOWA operator and then put forward an

algorithm to deriving DMs by using the Shapley value

based on the contribution of each DM. We further present a

logarithm least optimal model to determine interval priority

weights of IFPR and develop a two-stage resolution
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process for the GDM with IVIFPRs. And finally, an

example is provided to verify the feasibility and efficiency

of the proposed method.

The rest of paper is organized as follows. In Sect. 2, some

basic concepts are briefly reviewed. Section 3 proposes a

Shapley value method, a weighting algorithm based on the

CIVIFOWAoperator and a logarithm least optimalmodel are

put forward. In Sect. 4, a practical example of the new

approach is presented and a comparison example is illustrated

to verify the feasibility and validity of the proposed method.

At last, in Sect. 5, conclusions of this paper are demonstrated.

2 Preliminaries

In this section, fundamental concepts are briefly reviewed,

including IFPRs, IVIFPRs, CIVIFOWA operator, and

method of Shapley value in cooperative game.

2.1 The IFPRs and IVIFPRs

Definition 1 [52] Let X be a non-empty set of universe,

then ~F ¼ fx; ~l ~FðxÞ; ~m ~FðxÞjx 2 Xg is called an intuitionistic

fuzzy set (IFS), where l ~F : X ! ½0; 1� is the degree of

membership, m ~F : X ! ½0; 1� is the degree of non-mem-

bership of x 2 X to ~F, ~p ~F ¼ 1� ~l ~F � ~m ~F is the third

parameter called hesitation degree.

Specially, ~a ¼ ð~l~a; ~m~aÞ is called an intuitionistic fuzzy

number (IFN) [53], where ~l~a 2 ½0; 1�, ~m~a 2 ½0; 1�,
~l~a þ ~m~a 2 ½0; 1�, ~l~a þ ~m~a þ ~p~a ¼ 1.

For any two IFNs ~a1 ¼ ð~l~a1 ; ~m~a1Þ, ~a2 ¼ ð~l~a2 ; ~m~a2Þ and

k� 0, then the operational laws on IFNs are listed as fol-

lows [53]:

(1) Addition operation: ~a1 � ~a2 ¼ ð~l1 þ ~l2 � ~l1�
~l2; ~l1 � ~l2Þ;

(2) Multiplication operation: ~a1 � ~a2 ¼ ð~l1 � ~l2; ~l1
þ~l2 � ~l1 � ~l2Þ;

(3) Scalar multiplication operation: k~a1 ¼ ð1� ð1�
~l1Þk; ~lk2Þ.

Definition 2 [24] ~R ¼ ð~rijÞn�n is called an intuitionistic

fuzzy preference relation, where

~rij ¼ ððxi; xjÞ; ~lðxi; xjÞ; ~mðxi; xjÞÞ, xi denotes the ith criterion

or alternative, 1	 i; j	 n.

As a matter of convenience, set ~rij ¼ ð~lij; ~mijÞn�n, where

~lij and ~mij measure the degree to which xi is preferred and

non-preferred to xj. Furthermore, ~lij and ~mij satisfy the

following condition:

~lij ¼ ~mji; ~mij ¼ ~lji; ~lii ¼ ~mii ¼ 0:5; 0	 ~lij þ ~mij 	 1; 1	 i; j	 n:

Definition 3 [54] ~R ¼ ð~rijÞn�n is called an IVIFPR, where

~rij ¼ ððxi; xjÞ; ~lðxi; xjÞ; ~mðxi; xjÞÞ; i; j ¼ 1; 2; . . .; n; and gen-

erally, ~rij ¼ ð~lij; ~mijÞ satisfies the following conditions:

(1) ~lij ¼ ½~lLij; ~lUij � 
 ½0; 1�, ~mij ¼ ½~mLij; ~mUij � 
 ½0; 1�;
(2) ~lij ¼ ~mji, ~mij ¼ ~lji, ~lii ¼ ~mii ¼ ½0:5; 0:5�;
(3) ~lLij þ ~mLij 	 1, ~lUij þ ~mUij 	 1, i; j ¼ 1; 2; . . .; n.

Xu and Chen [54] called ð~l; ~mÞ ¼ ð½~lL; ~mU �; ½~mL; ~mU �Þ an

interval-valued intuitionistic fuzzy number (IVIFN), where

½~lL; ~lU � 2 ½0; 1�, ½~mL; ~mU � 2 [0, 1], ~mL þ ~lU 	 1.

2.2 CIVIFOWA Operator

The continuous ordered weighted average (COWA) oper-

ator is developed by Yager in 2004 [31], which is an

extension of the OWA (ordered weighted averaging)

operator and can be defined as follows.

Definition 4 [31] A mapping f : M ! Rþ is called the

COWA operator, if

fQð~aÞ ¼ fQð½~aL; ~aU �Þ ¼
Z 1

0

dQðyÞ
dy

ð~aU � yð~aU � ~aLÞÞdy;

ð1Þ

where ~a ¼ ½~aL; ~aU � 2 M;M refers to the set of all non-

negative interval numbers.

If k ¼
R 1
0
QðyÞdy is the attitudinal character of Q, then

the formula of fQð~aÞ can be generally expressed as the

following:

fQð~aÞ ¼ fQð½~aL; ~aU �Þ ¼ k~aU þ ð1� kÞ~aL; ð2Þ

where k ¼ 1 indicates that the DM’s decisional attitude is

absolutely positive, while k ¼ 0 shows that DM’s attitude

is absolutely negative. Obviously, the COWA operator

guided by the function Q is equivalent to an aggregation

where the arguments are valued in ½~aL; ~aU �. Therefore, the
aggregation fQð½~aL; ~aU �Þ can be used to replace the interval

½~aL; ~aU �. For convenience, denote the COWA operator fQ
by fk in the following content.

Definition 5 [35] A mapping g :
P

! X is a continuous

interval-valued intuitionistic fuzzy ordered weighted

averaging (CIVIFOWA) operator, if it is associated with

the monotonic function Q, which is defined on a unit

interval; and

gQð~aÞ ¼ ð~lgQð~aÞ; ~mgQð~aÞÞ ¼ ðfkð½~lL~a ; ~lU~a �; fkð½~mL~a ; ~mU~a �ÞÞ; ð3Þ

where ~a ¼ ð~l~a; ~m~aÞ ¼ ð½~lL~a ; ~lU~a �; ½~mL~a ; ~mU~a �Þ 2
P

, the COWA

operator is determined by Eq. (4) and Q : ½0; 1� ! ½0; 1� is a
monotonic function defined by a basic unit interval with

Qð0Þ ¼ 0;Qð1Þ ¼ 1.
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Theorem 1 [35] Let k be the attitudinal character of Q,

then

gQð~aÞ ¼ ðk~lL~a þ ð1� kÞ~lU~a ; k~mL~a þ ð1� kÞ~mU~a Þ:

Obviously, it can be concluded that gQð~aÞ is an IFN.

Particularly, if ~lU~a ¼ ~lL~a and ~mU~a ¼ ~mL~a , then gQð~aÞ degen-

erates to IFN.

In addition, it also can be concluded that each element

of IVIFPR is a double uncertain value composed by

interval membership degree as well as interval non-mem-

bership degree. This defect may potentially decrease effi-

ciency in data processing. However, the CIVIFOWA

operator can ameliorate this problem by transforming the

IVIFV into IFV by a controlling parameter k. This would
effectively enhance efficiency and decrease complexity of

data processing. Additionally, by utilizing the CIVIFOWA

operator to transform interval-valued preferred and non-

preferred memberships into parametric real numbers,

interval values, and parametric real numbers differ in for-

mat, but in essence they do not change. Therefore, the

using of parametric variables can prevent the loss of the

information. For convenience, we denote CIVIFOWA

operator gQ by gk in following paragraphs.

Definition 6 Let ~A ¼ ð~aijÞn�n ¼ ðð~lij; ~vijÞÞn�n ¼
ðð½~lLij; ~lUij �; ½~mLij; ~mUij �ÞÞn�n be an IVIFPR, and k be the attitu-

dinal character of Q. Then, ~Ak ¼ ð~ak;ijÞn�n is called the

continuous interval-valued intuitionistic fuzzy matrix,

where ~ak;ij satisfies following conditions:

(1) ~ak;ij ¼ ð~lk;ij; ~mk;ijÞ, ~lk;ij ¼ k~lUij þ ð1� kÞ~lLij,
~mk;ij ¼ k~mUij þ ð1� kÞ~mLij, i\j;

(2) ~ak;ij ¼ (0.5, 0.5), i ¼ j

(3) ~ak;ij ¼ ð~mk;ji; ~lk;jiÞ, i[ j.

As we can see, the continuous interval-valued intu-

itionistic fuzzy matrix ~Ak is an IFPR. Thus, the continuous

interval-valued intuitionistic fuzzy matrix is also called the

continuous interval-valued intuitionistic fuzzy preference

relation (CIVIFPR).

In order to measure the distance of two IVIFNs, a

continuous interval-valued intuitionistic fuzzy distance

(CIVIFD) measure is defined as follows.

Definition 7 [55] Let ~B1 ¼ ð½~lL1 ; ~lU1 �; ½~mL1 ; ~mU1 �Þ and ~B2 ¼
ð½~lL2 ; ~lU2 �; ½~mL2 ; ~mU2 �Þ be two IVIFNs, then

dkð~B1; ~B2Þ ¼
1

2
ðjkð~lU1 � ~lU2 Þ þ ð1� kÞð~lL1 � ~lL2Þj

þ jkð~mU1 � ~mU2 Þ þ ð1� kÞð~mL1 � ~mL2ÞjÞ;
ð4Þ

is called the CIVIFD measure.

3 A Novel GDM with IVIFPRs

In this section, a new approach to GDM with IVIFPRs is

developed, in which a method to obtain weights of DMs is

put forward based on Shapley value [56–58] and a loga-

rithm least optimal model is presented to deriving the

priority weights.

3.1 To Deriving DMs’ Weights by Using Fuzzy

Cooperative Game

Assume that a set of DMs give their opinions on a finite set

X ¼ fx1; x2; . . .; xng ðn� 2Þ of possible alternatives indi-

cated as R̂ ¼ f~Rð1Þ; ~Rð2Þ; . . .; ~RðKÞg (K � 2). where ~RðkÞ ¼
ð~rðkÞij Þn�n represents the kth DM’s opinion (judgment) of

pairwise comparison on xi over xj using the IVIFPR, and

~r
ðkÞ
ij ¼ ð~lijk; ~mijkÞ. Therefore, GDM with IVIFPRs is capable

of possible best options selection based on

f~RðkÞ
k ; k 2 f1; 2; . . .;Kgg. Note that GDM with the IVIFPRs

is presented as \X; R̂[ below.

With \X; R̂[ , it is possible for individuals to expect

their personal opinions to be in line with decision of the

group. Despite deviation, the new method contributes to

develop a modified solution which balances up all forms of

deviation.

Definition 8 [54] Let ~RðkÞ ¼ ð~rðkÞij Þn�n ¼
ðð½u�ij;k; uþij;k�; ½v�ij;k; vþij;k�ÞÞn�n be the IVIFPRs provided by

kth DM, and w ¼ ðw1;w2; . . .;wKÞT be a weighting vector

satisfying wk � 0 and
PK

k¼1 wk ¼ 1. If ~R ¼ ð~rðkÞij Þn�n ¼
ðð½u�ij ; uþij �; ½v�ij ; vþij �ÞÞn�n satisfies:

u�ij ¼
XK
k¼1

wku
�
ij;k; u

þ
ij ¼

XK
k¼1

wku
þ
ij;k;

v�ij ¼
XK
k¼1

wkv
�
ij;k; v

þ
ij ¼

XK
k¼1

wkv
þ
ij;k;

ð5Þ

then ~R is called the group interval-valued intuitionistic

fuzzy matrix. Clearly, ~R is an IVIFPR. For each xi 2 X, the

following deviation of each individual and the group

IVIFPR is defined to measure the distance between each

individual and the group.

Definition 9 Let ~RðkÞ ¼ ð~rðkÞij Þn�n be the IVIFPR provided

by kth DM, and ~R ¼ ð~rijÞn�n be the group IVIFPR, then

deqk;ik ¼
Xn
j¼1

dkð~rðkÞij ; ~rijÞ; ð6Þ

is called the continuous interval-valued intuitionistic fuzzy

deviation measure of kth DM and the group on ith
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alternative with k, where dk is the continuous interval-

valued intuitionistic fuzzy distance measure.

Proposition 1 deqk;ik ¼ deqk;ki.

Definition 10 Assume that deqk;ik is as before. Then,

Cdeqk ¼ ðdeqk;ikÞn�K is called a continuous complete

deviation matrix with k.

Definition 11 Let Cdeqk be the continuous complete

deviation matrix with k, then for a certain k, Ek ¼ CdeqTk �
Cdeqk ¼ ðek;ijÞK�K is called a continuous group decision

error information matrix with k.

Proposition 2 The continuous group decision error

information matrix Ek is symmetric.

The proof is straightforward from Definition 11,

because the element on the primary diagonal of Ek is the

expression of the decision error of each corresponding

individual.

3.2 Algorithm to Determine DMs’ Weights

This subsection proposes a novel algorithm in which

cooperative game is applied to deriving weighting vector of

DMs by using the reciprocal of mean error. The goal of

each stage and computing methods within are explained in

detail as follows.

Algorithm 1

Step 1. To define an initial weighting vector of DMs

The initial weighting vector of DMs is defined as wk ¼
ðwk;1;wk;2; . . .; wk;KÞT by using the following formula:

wk;k ¼
XK
k¼1

e�1
k;kk

 !�1

�e�1
k;kk; k ¼ 1; 2; . . .;K; ð7Þ

where ek;kk is the kth diagonal element of Ek.

Step 2. Characteristic functions of coalitions

For the set of DMs, there are 2K coalitions of DMs.

Using the initial weighting vector, a characteristic function

of coalition s 2 2K can be obtained as below:

qkðsÞ ¼ �KT
s Ek;sKs: ð8Þ

where Ks ¼ fk1; k2; . . .; k sj jg, ki is the weights of ith DM in

coalition s, and Ek;s ¼ ðek;tkÞjsj�jsj, |s| is the cardinality of s.

Step 3. Determining individual’s contribution in GDM

The cooperative result of the coalition s can bemeasured as

the characteristic value qkðsÞ. For the ith DM, his/her con-

tribution to the coalition is calculated according to Eq. (5).

Step 4. Determining the new weighting vector of DMs

The Shapley [46] value is defined as

/iðN; mÞ ¼ mðN \ ½1; i�Þ � mðN \ ½1; i� 1�Þ: ð9Þ

There are a finite number of N game players (the grand

coalition s) in the cooperative games, with a feature

function m : 2N ! R coming from all available payers in

relation to another payment set meeting at mð/Þ ¼ 0.

Therefore, each player’s contribution in GDM can be

represented by the average of the contribution above,

denoted as /iðqÞ, i ¼ fi; . . .;Kg, which is calculated as

/iðqÞ ¼
X
i2s

ðk � jsjÞ! � ðjsj � 1Þ!
K!

½qðsÞ � qðs� figÞ�;

ð10Þ

Owen [59] has proved that:

XK
k¼1

/iðqÞ ¼ qðsÞ; ð11Þ

where s ¼ f1; 2; . . .;Kg the largest coalition. Equation (5)

indicates that the sum of the individual’s contributions is

equal to the result of the group’s cooperation.

Thus, the weight of a DM should be in proportion to his/

her ‘‘contribution,’’ because the ‘‘contribution’’ is mea-

sured by using the decision error, so a new weight can be

computed by using the following formula:

wk;t ¼
1

/k;kðqÞ

,XK

k¼1

1

/k;kðqÞ
; k ¼ 1; 2; . . .;K: ð12Þ

Assume that d is the stopping condition, if

wT
k;tEk;twk;t � wT

k;tþ1Ek;tþ1wk;tþ1 	 d; ð13Þ

then the iteration process of the algorithm is finished,

otherwise, return to stage 2.

Based on stages as above, the new algorithm for deter-

mining the DMs’ weights in GDM with IFPRs is depicted

in Fig. 1.

Theorem 2 Let Ek;t be the decision error information

matrix and wk;t be the weighting vector of DMs in t-th

iteration of Algorithm 1, respectively. Then it follows that

wT
k;tEk;twk;t �wT

k;tþ1Ek;tþ1wk;tþ1: ð14Þ

Proof Owen [59] deduced that Eq. (13) is a valid payment

plan for vkðMÞ, which satisfies the following conditions:

vkð;Þ ¼ 0 and vkðMÞ�
XK
k¼1

vkðkÞ:

h

Similarly, for the payment plan of the new coalition

~vkðMÞ, we have ~vkð;Þ ¼ 0 and ~vkðMÞ�
PK

k¼1 ~vkðkÞ, where
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~vkðMÞ ¼
PK
k¼1

~sk;kðvÞ, ~sk;kðvÞ is the payment of kth DM in the

new coalition. Assume that ~TkðvÞ ¼ ð~sk;1ðvÞ; ~sk;2ðvÞ; . . .;
~sk;KðvÞÞ represents the Shapley value of the cooperative

game corresponding to the weighting vector w.

When redistributing the earning of coalition by utilizing

the weighting vector, it can be derived that ~sk;kðvÞ� sk;kðvÞ,
k ¼ 1; 2; . . .;K, otherwise, such redistribution would be

discontinued. Therefore, the result can be obtained directly

as follows:

~vkðMÞ ¼
XK
k¼1

~sk;kðvÞ�
XK
k¼1

sk;kðvÞ ¼ vkðMÞ: ð15Þ

Since vkðMÞ ¼ �KTEkK and ~mkðMÞ ¼ �wT
kEkwk, then by

Eq. (14),

�wT
kEkwk � � KTEkK: ð16Þ

Therefore, with the inequality (15),

wT
k;tEk;twk;t �wT

k;tþ1Ek;tþ1wk;tþ1 can be proved.

Repeating Algorithm 1, series of weighting vectors can

be obtained as wk;1;wk;2;wk;3; . . ., the decision error

information matrices are derived as Ek;1;Ek;2;Ek;3; . . ..

From Theorem 3, we can get that

wT
k;0Ek;0wk;0 �wT

k;1Ek;1wk;1 �wT
k;2Ek;2wk;2 � � � � : ð17Þ

The following theorem can be obtained.

Theorem 3 Let SkðtÞ ¼ wT
k;tEk;twk;t be the sum of deci-

sion errors in t-th iteration of Algorithm 1. Then, the

sequence fSkðtÞg is convergent as t ! þ1.

Proof For the sequence of fSkðtÞg, it is monotonic in

reduction as it can be directly obtained from Eq. (16). The

weights and the decision error matrix constructed by the

distance measure are positive, so SkðtÞ� 0, which means

that sequence fSkðtÞg has lower bound. This makes the

sequence fSkðtÞg convergent which completes the proof of

Theorem 4. h

Theorem 3 suggest that a weighting vector of DMs for

the GDM derived from the Algorithm 1 in accordance with

Shapley Value is reasonable and objective. As a result,

Shapley function can be appropriately used in obtaining

weights, in line with the contribution of each individual

DM.

The main advantages of Algorithm 1 are as follows:

• The redistributing process of the algorithm aims to get

an optimal DM’s combination, in which the contribu-

tion of each DM’s opinions (judgments) to the group

indicates their opinions (judgments)’s rationality and

importance in GDM.

• On the basis of the decision accuracy and certain

computation efficiency that the DMs prefer, the stop-

ping condition of the iteration can be adjusted flexibly.

• DMs can revise the algorithm by adjusting the param-

eter k based on their decision-making attitude, and after

a constant iterating process, the initial information still

can be preserved to the maximum.

3.3 The Logarithm Least Optimal Model

to Deriving Priority Weights

In the following section, based on the Gong’s optimization

model developed in [60], a new optimal model is intro-

duced for getting the priority vector of group IFPR in

which the priority weights are represented as interval val-

ues. Suppose that group IFPR ~Rk ¼ ð~rk;ijÞn�n ¼
ð~lk;ij; ~mk;ijÞn�n and ni ¼ ½nil; niu� is the ith weight,

i ¼ 1; 2; . . .; n. According to the consistency condition and

Definition 4, we have

nil � ~l0k;ijniu ¼ 0niu � ~v0k;ijnil ¼ 0; i; j 2 N; ð18Þ

where ~l0k;ij ¼ 35ð~lk;ij�0:5Þ, ~m0k;ij ¼ 35ð0:5�~mk;ijÞ. However, in

practical environment, the equality given by Eq. (18) does

not always hold, i.e., the deviation cannot avoid. Hence, the

Input

Individual
IFPRs,threshold and 

initial weighting vector

Renew the initial weighting vector by 
Eq.(7) and redistribute the sum of error by 

Eq.(6)

Obtain redistributed novel 
weighting vector by Eq.(12)

Stopping
condition?

Final weighting 
vector

Output

t=t+1

No

Yes

Iteration
Process

Fig. 1 Algorithm for determining weighting vector of DMs via

cooperative method
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following logarithm least optimal model is proposed to

obtain the priority vector for GDM.

min J ¼
Xn
i¼1

Xn
j¼1

log nil � ~l0k;ijnju
���

���þ log niu � ~v0k;ijnjl
���

���

s:t:

nil þ
Pn

j¼1;j 6¼i

nju � 1; i 2 N;

niu þ
Pn

j¼1;j 6¼i

njl � 1; i 2 N;

niu � nil � 0; i 2 N;

niu � 0; nil � 0; i 2 N:

8>>>>>>>><
>>>>>>>>:

ð19Þ

In this model, the goal is to minimize the consistency of

group IFPR. The smaller the logarithm values, the better

the consistency of group IFPR. By considering the optimal

priority vector of group IFPR, it can be seen that the greater

the value of ni ¼ ½nil; niu� is, the more important of the ith

alternative is.

Note that professional software, such as MATLAB and

Lingo, can be applied into the process of solving the

optimal model.

3.4 Resolution Process of the GDM Problem

In this subsection, a two-stage resolution process is pro-

posed for the GDM with IVIFPRs.

Stage 1 Aggregation

In this stage, after transforming all individual IVIFPRs

into individual IFPRs and by aggregating all individual

IFPRs ~R
ðkÞ
k ¼ ð~rðkÞk;ijÞn�n ¼ ðuðkÞk;ij; v

ðkÞ
k;ijÞn�n, k ¼ 1; 2; . . .;K,

through the final weighting vector w ¼ fw1;w2; . . .; wKgT,
the group IFPR [61] ~Rk ¼ ð~rk;ijÞn�n ¼ ððuk;ij; vk;ijÞÞn�n is

calculated according to Eq. (1), where

uk;ij ¼
XK
k¼1

wku
ðkÞ
k;ij; vk;ij ¼

XK
k¼1

wkv
ðkÞ
k;ij: ð20Þ

Note that before aggregating individual’s IFPRs, the con-

sistency should be tested and readjusted through the

method developed by Wan et al. [51].

Stage 2 Selection

In this stage, the rank of alternatives is determined. By

utilizing the logarithm least optimal model, the interval

priority vector nk;i ¼ ½nk;il; nk;iu� of group IFPR can be

obtained. Construct the priority vector as

n0k;i ¼ ðnk;il; 1� nk;iuÞ, and the score of each alternative is

defined as Dxk;i ¼ nk;il þ nk;iu � 1, which can be used to

rank and select the best alternative(s). The bigger the score

is, the better the alternative is. And the whole process for

the aggregation and selection stage is shown in Fig. 2.

4 Illustrative Example

In this section, a practical example is used to demonstrate

the application of proposed method. Meanwhile, the ideal

superiorities of proposed method are revealed by compar-

ison analysis.

In this constantly changeable market environment, it is

increasingly challenging for an enterprise to meet demand

of market by itself alone. Under this circumstance, virtual

enterprise is established based on multiple members, who

share kinds of resources such as fund and techniques within

the ‘‘group.’’

For an enterprise that is developing a new product, it is

possible that the product cannot be produced by the

enterprise alone. Therefore, enterprise leaders may turn to

other competent enterprises (member) for help. Once the

production begins to run, the key and member enterprises

give all their best for whole process. Obviously, efficient

member enterprises will contribute to production. There-

fore, based on the cooperative manner, selecting appro-

priate partners is crucial for the key enterprise.

Take AHEAD Information Technology Co., LTD as an

example, which is a reputable software company in China

[50]. AHEAD has been concentrating on medical infor-

mation integrating and service since 2003 when its estab-

lishment was started. The target of AHEAD is to up a

brand-new rural cooperative medical care management

information system, which comprises a hardware device

(with chips integrated) and software (some essential soft-

ware systems). As an information company, AHEAD is

deeply troubled by the hardware device. Therefore, it is

necessary for AHEAD to select a suitable and responsible

partner to take charge of producing hardware device.

First of all, AHEAD chose four candidates and asked

three DMs to test the four candidates in order to make the

best choice. For this purpose, the proposed cooperative

Aggregation
stage

The individual IVIFPRs

The individual IFPRs

The group IFPR

Resolution of the GDM

CIVIFOWA operators

Weighting algorithm hinged 
on fuzzy cooperative game

The optimal priority model
Selection

stage

Fig. 2 The process of GDM
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method is applied to obtain the best choice out of four

candidates.

By conducting pairwise comparisons on four partners,

DMs furnish their IVIFPRs as

~Rð1Þ ¼

ð½0:5000; 0:5000�; ½0:5000; 0:5000�Þ ð½0:4500; 0:5000�; ½0:1000; 0:2000�Þ ð½0:5000; 0:6000�; ½0:0271; 0:0707�Þ ð½0:8000; 0:8500�; ½0:0028; 0:0167�Þ
ð½0:1000; 0:2000�; ½0:4500; 0:5000�Þ ð½0:5000; 0:5000�; ½0:5000; 0:5000�Þ ð½0:7500; 0:8000�; ½0:1500; 0:2000�Þ ð½0:6500; 0:7000�; ½0:0094; 0:0254�Þ
ð½0:0271; 0:0707�; ½0:5000; 0:6000�Þ ð½0:1500; 0:2000�; ½0:7500; 0:8000�Þ ð½0:5000; 0:5000�; ½0:5000; 0:5000�Þ ð½0:8500; 0:8500�; ½0:0500; 0:1000�Þ
ð½0:0028; 0:0167�; ½0:8000; 0:8500�Þ ð½0:0094; 0:0254�; ½0:6500; 0:7000�Þ ð½0:0500; 0:1000�; ½0:8000; 0:8000�Þ ð½0:5000; 0:5000�; ½0:5000; 0:5000�Þ

0
BBB@

1
CCCA

~Rð2Þ ¼

ð½0:5000; 0:5000�; ½0:5000; 0:5000�Þ ð½0:6500; 0:6700�; ½0:0500; 0:3300�Þ ð½0:6200; 0:6500�; ½0:0360; 0:3171�Þ ð½0:7800; 0:8200�; ½0:0060; 0:1246�Þ
ð½0:0500; 0:3300�; ½0:6500; 0:7000�Þ ð½0:5000; 0:5000�; ½0:5000; 0:5000�Þ ð½0:5000; 0:5500�; ½0:3000; 0:4000�Þ ð½0:7500; 0:7500�; ½0:1000; 0:2000�Þ
ð½0:0360; 0:3171�; ½0:6200; 0:6500�Þ ð½0:3000; 0:4000�; ½0:5000; 0:5500�Þ ð½0:5000; 0:5000�; ½0:5000; 0:5000�Þ ð½0:7000; 0:7500�; ½0:1000; 0:2000�Þ
ð½0:0060; 0:1246�; ½0:7800; 0:8200�Þ ð½0:0800; 0:1800�; ½0:7500; 0:8000�Þ ð½0:1000; 0:2000�; ½0:7000; 0:7500�Þ ð½0:5000; 0:5000�; ½0:5000; 0:5000�Þ

0
BBB@

1
CCCA

~Rð3Þ ¼

ð½0:5000; 0:5000�; ½0:5000; 0:5000�Þ ð½0:4500; 0:5000�; ½0:1000; 0:2000�Þ ð½0:5000; 0:6000�; ½0:271; 0:0707�Þ ð½0:8000; 0:8500�; ½0:0028; 0:0167�Þ
ð½0:1000; 0:2000�; ½0:4500; 0:5000�Þ ð½0:5000; 0:5000�; ½0:5000; 0:5000�Þ ð½0:7500; 0:8000�; ½0:1500; 0:2000�Þ ð½0:6500; 0:7000�; ½0:0094; 0:0254�Þ
ð½0:0271; 0:0707�; ½0:5000; 0:6000�Þ ð½0:1500; 0:2000�; ½0:7500; 0:8000�Þ ð½0:5000; 0:5000�; ½0:5000; 0:5000�Þ ð½0:8500; 0:8500�; ½0:0500; 0:1000�Þ
ð½0:0028; 0:0167�; ½0:8000; 0:8500�Þ ð½0:0094; 0:0254�; ½0:6500; 0:7000�Þ ð½0:0500; 0:1000�; ½0:8000; 0:8000�Þ ð½0:5000; 0:5000�; ½0:5000; 0:5000�Þ

0
BBB@

1
CCCA

Step 1 Transform the IVIFPRs into the IFPRs by utilizing

the CIVIFOWA operator, without loss of generality, we

take QðyÞ ¼ y2=3 and then k ¼
R 1
0
QðyÞdy ¼ 0:6, the IFPRs

~R
ðkÞ
k ¼ ð~rðkÞk;ijÞn�n, k ¼ 1; 2; 3; are as follows:

~R
ð1Þ
k ¼

½0:5000; 0:5000� ½0:1400; 0:6500� ½0:6200; 0:0860� ½0:8300; 0:0230�
½0:6500; 0:1400� ½0:5000; 0:5000� ½0:7300; 0:0400� ½0:9000; 0:0094�
½0:0860; 0:6200� ½0:0400; 0:7300� ½0:5000; 0:5000� ½0:5500; 0:1000�
½0:0234; 0:8300� ½0:0094; 0:9000� ½0:1000; 0:5500� ½0:5000; 0:5000�

0
BBB@

1
CCCA;

~R
ð2Þ
k ¼

½0:5000; 0:5000� ½0:6500; 0:0500� ½0:6200; 0:0360� ½0:7800; 0:0060�
½0:0500; 0:6500� ½0:5000; 0:5000� ½0:5000; 0:3000� ½0:7500; 0:0800�
½0:0360; 0:6200� ½0:3000; 0:5000� ½0:5000; 0:5000� ½0:7000; 0:1000�
½0:0060; 0:7800� ½0:0800; 0:7500� ½0:1000; 0:7000� ½0:5000; 0:5000�

0
BBB@

1
CCCA;

~R
ð3Þ
k ¼

½0:5000; 0:5000� ½0:4500; 0:1000� ½0:5000; 0:0271� ½0:8000; 0:0028�
½0:1000; 0:4500� ½0:5000; 0:5000� ½0:7500; 0:1500� ½0:6500; 0:0094�
½0:0271; 0:5000� ½0:1500; 0:7500� ½0:5000; 0:5000� ½0:8000; 0:0500�
½0:0028; 0:8000� ½0:0094; 0:6500� ½0:0500; 0:8000� ½0:5000; 0:5000�

0
BBB@

1
CCCA:

Step 2 By giving initial weighting vector w0 ¼
ð0:4232; 0:1819; 0:3949Þ and Eqs. (6)–(8), we obtain the

deviation matrix and decision error matrix:

IDL1 IDL2 IDL3

deq ¼

x1

x2

x3

x4

0:0234 0:0143 0:0090

0:0560 0:0364 0:0213

0:0700 0:0500 0:0323

0:0833 0:0547 0:0416

0
BBB@

1
CCCA

IDL1 IDL2 IDL3

E0:6 ¼
IDL1

IDL2

IDL3

0:0155 0:0104 0:0071

0:0104 0:0070 0:0048

0:0071 0:0048 0:0033

0
B@

1
CA

Then, set the threshold d ¼ 10�6 and the iterative process

of the Algorithm 1 is finished. The results are listed in

Table 1, and the final weighting vector of three DMs is

(0.2349, 0.5115, 0.2536).

Step 3 Solve the logarithm least optimal model Eq. (19) for

deriving the IFPR priority weighting vector of alternatives

based on the group IFPR, and we have the optimal

solution is

n0:6 ¼ ð½0:0831; 0:2042�; ½0:1764; 0:4150�; ½0:1374; 0:2815�;
½0:2690; 0:5363�Þ:

Step 4 Employ the score function to determine the values

of alternatives:

Dx1 ¼ � 0:7795;Dx2 ¼ � 0:5143;Dx3 ¼ � 0:5546;

Dx4 ¼ � 0:0488:

which indicates that x4 � x2 � x3 � x1.

In order to measure how the parameter k plays the role

on DMs’ weights, priority weights of group IFPR, and the

ranking of alternatives, we consider k ¼ 0; 0:1; 0:2,

. . .; 0:9; 1; and the results of DMs’ weights, priority

weights of group IFPR, and the ranking of alternatives with

different k are listed in Table 2, and the results of DMs’

weights and score function values of alternatives are shown

in Figs. 3 and 4.

From Fig. 3, we can see that three weights are fluctu-

ating between 0.2 and 0.55, with different k, each DM gets

the chance to be dominant, means that giving the most

contribution to the group IFPRs. However, w1 [w3 [w2

as k\0:1425, which means that if DMs are very pes-

simistic, then the opinion of d1 is the most important

decision. Similarly, w1 [w2 [w3 as k[ 0:6519, which

indicates that if DMs are optimistic, then the opinion of d1
is also the most important.

From Fig. 4, when k\0:1326 and k[ 0:6575, the best

alternative is x2, while 0:1326	 k	 0:6575, x4 is superior

to other alternatives.

Furthermore, by using different attitudal characters for

different DMs, we can obtain the weights of DMs and the

ranking results, which are shown in Table 3. From Table 3,

we can see when the attitudes of the DMs as well as their

judgments are different, the weight of each DM changes

while the ranking order reserves. The results illustrate that

the attitudinal character will not produce a loss of infor-

mation and the ranking result is stable under any given

conditions.

Compared to [51], we observe:

(1) Reference [51] mainly focuses on the consistency

test of individual IVIFPR and consistency adjusting

for finishing the GDM process. The proposed

method is devoted to deriving DMs’ weights in

GDM by using fuzzy cooperative game based on the

CIVIFOWA operator, which is different from [51].

(2) Reference [51] built an optimization model to get

DMs weights by minimizing the deviations between

each individual IVIFPR and the collective one, while

the proposed method developed an iterative algo-

rithm to get optimal DMs’ weights in which the

contribution of each DM to the group is calculated
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based on Shapley value method and the CIVIFOWA

operator.

(3) The weighting algorithm proposed in this paper can

be adjusted by modifying the attitude parameter

based on the CIVIFOWA operator, which makes the

proposed method more flexible.

In the following, the proposed method is applied to the

Xu’s example [62]. Results of Xu’s method and proposed

method are compared, and the advantages of proposed

method are demonstrated.

Step 1 Take the IVIFPRs from Xu’s example [62] are as

follows,

~Cð1Þ ¼

ð½0:5; 0:5�; ½0:5; 0:5�Þ ð½0:6; 0:7�; ½0:1; 0:2�Þ ð½0:5; 0:6�; ½0:2; 0:3�Þ ð½0:3; 0:5�; ½0:2; 0:4�Þ
ð½0:1; 0:2�; ½0:6; 0:7�Þ ð½0:5; 0:5�; ½0:5; 0:5�Þ ð½0:4; 0:6�; ½0:1; 0:2�Þ ð½0:6; 0:7�; ½0:1; 0:3�Þ
ð½0:2; 0:3�; ½0:5; 0:6�Þ ð½0:1; 0:2�; ½0:4; 0:6�Þ ð½0:5; 0:5�; ½0:5; 0:5�Þ ð½0:3; 0:4�; ½0:5; 0:6�Þ
ð½0:2; 0:4�; ½0:3; 0:5Þ ð½0:1; 0:3�; ½0:6; 0:7�Þ ð½0:5; 0:6�; ½0:3; 0:4�Þ ð½0:5; 0:5�; ½0:5; 0:5�Þ

0
BBB@

1
CCCA

~Cð2Þ ¼

ð½0:5; 0:5�; ½0:5; 0:5�Þ ð½0:2; 0:3�; ½0:5; 0:6�Þ ð½0:5; 0:7�; ½0:1; 0:2�Þ ð½0:2; 0:4�; ½0:1; 0:3�Þ
ð½0:5; 0:6�; ½0:2; 0:3�Þ ð½0:5; 0:5�; ½0:5; 0:5�Þ ð½0:5; 0:8�; ½0:1; 0:2�Þ ð½0:3; 0:6�; ½0:2; 0:3�Þ
ð½0:1; 0:2�; ½0:5; 0:7�Þ ð½0:1; 0:2�; ½0:5; 0:8�Þ ð½0:5; 0:5�; ½0:5; 0:5�Þ ð½0:4; 0:6�; ½0:1; 0:4�Þ
ð½0:1; 0:3�; ½0:2; 0:4�Þ ð½0:2; 0:3�; ½0:3; 0:6�Þ ð½0:1; 0:4�; ½0:4; 0:6�Þ ð½0:5; 0:5�; ½0:5; 0:5�Þ

0
BBB@

1
CCCA

~Cð3Þ ¼

ð½0:5; 0:5�; ½0:5; 0:5�Þ ð½0:4; 0:5�; ½0:2; 0:3�Þ ð½0:6; 0:7�; ½0:1; 0:2�Þ ð½0:5; 0:7�; ½0:2; 0:3�Þ
ð½0:2; 0:3�; ½0:4; 0:5�Þ ð½0:5; 0:5�; ½0:5; 0:5�Þ ð½0:5; 0:6�; ½0:2; 0:4�Þ ð½0:7; 0:8�; ½0:1; 0:2�Þ
ð½0:1; 0:2�; ½0:6; 0:7�Þ ð½0:2; 0:4�; ½0:5; 0:6�Þ ð½0:5; 0:5�; ½0:5; 0:5�Þ ð½0:6; 0:7�; ½0:1; 0:3�Þ
ð½0:2; 0:3�; ½0:5; 0:7�Þ ð½0:1; 0:2�; ½0:7; 0:8�Þ ð½0:1; 0:3�; ½0:6; 0:7�Þ ð½0:5; 0:5�; ½0:5; 0:5�Þ

0
BBB@

1
CCCA

Step 2 Transform the IVIFPRs into the IFPRs by using the

CIVIFOWA operator and predefine the parameter k ¼ 0:6.

~C
ð1Þ

k ¼

½0:50; 0:50� ½0:64; 0:14� ½0:54; 0:24� ½0:38; 0:28�
½0:14; 0:64� ½0:50; 0:50� ½0:48; 0:14� ½0:64; 0:18�
½0:24; 0:54� ½0:14; 0:48� ½0:50; 0:50� ½0:34; 0:54�
½0:28; 0:38� ½0:18; 0:64� ½0:54; 0:34� ½0:50; 0:50�

0
BBB@

1
CCCA

~C
ð2Þ

k ¼

½0:50; 0:50� ½0:24; 0:54� ½0:58; 0:14� ½0:28; 0:18�
½0:54; 0:24� ½0:50; 0:50� ½0:62; 0:14� ½0:42; 0:24�
½0:14; 0:58� ½0:14; 0:62� ½0:50; 0:50� ½0:48; 0:22�
½0:18; 0:28� ½0:24; 0:42� ½0:22; 0:48� ½0:50; 0:50�

0
BBB@

1
CCCA

~C
ð3Þ

k ¼

½0:50; 0:50� ½0:44; 0:24� ½0:64; 0:14� ½0:58; 0:24�
½0:24; 0:44� ½0:50; 0:50� ½0:54; 0:28� ½0:74; 0:14�
½0:14; 0:64� ½0:28; 0:54� ½0:50; 0:50� ½0:64; 0:18�
½0:24; 0:58� ½0:14; 0:74� ½0:18; 0:64� ½0:50; 0:50�

0
BBB@

1
CCCA

Step 3 Utilize Algorithm 1 for computing the weighting

vector according to Eqs. (6)–(8), and the deviation matrix

and decision error matrix can be obtained:

And the final weights of DMs are w ¼ (0.4284, 0.2589,

0.3127). The results of iterative process are listed in

Table 3. The final weighting vector of DMs is

(0.4284, 0.2589, 0.3127).

Step 4 Solve the logarithm least optimal model Eq.(19) for

deriving the IFPR priority vector of alternatives based on

the group IFPRs. The optimal solution is

n ¼ ð½0:1772; 0:3310�; ½0:1531; 0:2505�; ½0:1895; 0:2967�;
½0:2665; 0:4344�Þ:

Then, employing the score function, the alternatives values

are

Dx1 ¼ � 0:4918;Dx2 ¼ � 0:5965;Dx3 ¼ � 0:5138;

Dx4 ¼ � 0:2991:

It indicates that the ranking order is x4 � x1 � x3 � x2 and

the best alternative is x4. Priority vectors and ranking of

alternatives with different k are listed in Table 4 and shown

in Figs. 5 and 6.

As we can see from Fig. 5, w1 is monotonically

increasing as k increases, while w2 and w3 decrease

monotonically as k increases. However, when k\0:267,

w3 [w1 [w2, and when k[ 0:267, w1 [w3 [w2, while

k ¼ 0:267, w1 ¼ w3 [w2. The results indicate that when

k\0:267, d3 is the most important DM, while k[ 0:267,

w1 takes up the dominant degree in GDM, and the

importance degree of d2 is stable.

From Fig. 6, it is obvious that alternative x4 is at optimal

status throughout this changing process of k. Although

each sequencing value has a change corresponding to k, the
superiority and inferiority of the alternatives are apparent

and not changed (Table 5).

Moreover, compared to [62], we find:

(1) The focuses of the approach developed in Ref. [62]

and the proposed method are different. Method [62]

investigated the aggregating the IVIFPRs into a

collective one by using interval-valued intuitionistic

fuzzy aggregation operators, while the proposed

method focuses on deriving DMs’ weights in GDM

by using fuzzy cooperative game based on the

CIVIFOWA operator.

(2) Ref. [62] proposed a new weighting method to

obtain DMs weights based on the normal distribu-

tion, while the proposed method developed a

weighting iterative algorithm to get optimal DMs’

weights based on Shapley value method and the

Table 1 Iterative results of weighting vector and iterative times

The number of iterations w0:6;1 w0:6;2 w0:6;3

0 0.4232 0.1819 0.3949

1 0.5311 0.2398 0.2291

2 0.2675 0.2408 0.4917

3 0.2453 0.5233 0.2314

4 0.2618 0.3217 0.4165

5 0.2349 0.5115 0.2536
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CIVIFOWA operator which takes the contribution of

each DM to the group into account.

In the following, we will compare the proposed approach

with other previous methods. In [17], Xu developed a

method based on distance measure for group decision-

making with IVIFPRs. We firstly denote ~R
ðkÞ
i ¼

ð~RðkÞ
i1 ; ~R

ðkÞ
i2

~R
ðkÞ
i3

~R
ðkÞ
i4 Þ as the final preference vector

corresponding to the alternative xi and the kth DM. Then,

we use the proposed measure to calculate the distance

between the preference vector ~R
ðkÞ
i and the uncertain intu-

itionistic fuzzy ideal solution ~a� ¼ ð ~a1�; ~a2�; ~a3�; ~a4�Þ, we
obtain:

Table 2 DM’s weights, priority

weights, and the ranking with

different k

k wk nk Ranking

0 (0.4602, 0.2501, 0.2897) ([0.1593, 0.3224][0.1649, 0.2433] x2 � x4 � x3 � x1

[0.2024, 0.3773][0.2308, 0.2824])

0.1 (0.4602, 0.2501, 0.2897) ([0.1543, 0.3211][0.1546, 0.2129] x2 � x4 � x3 � x1

[0.2026, 0.3839][0.2239, 0.2590])

0.2 (0.2252, 0.5448, 0.2300) ([0.0956, 0.2032][0.1757, 0.4183] x4 � x2 � x3 � x1

[0.1286, 0.2451][0.2348, 0.4991])

0.3 (0.2588, 0.5246, 0.2316) ([0.0090, 0.1279][0.1997, 0.2489] x4 � x2 � x3 � x1

[0.1728, 0.2387][0.4120, 0.5013])

0.4 (0.2569, 0.3070, 0.4361) ([0.0092, 0.1499][0.1983, 0.2718] x4 � x2 � x3 � x1

[0.1871, 0.2684][0.4119, 0.5230])

0.5 (0.2519, 0.3131, 0.4278) ([0.0838, 0.1423][0.1865, 0.2621] x4 � x2 � x3 � x1

[0.1736, 0.2565][0.3815, 0.4926])

0.6 (0.2349, 0.5115, 0.2536) ([0.0831, 0.2042][0.1764, 0.4150] x4 � x2 � x3 � x1

[0.1374, 0.2815][0.2690, 0.5363])

0.7 (0.5106, 0.2543, 0.2351) ([0.1359, 0.3312][0.1434, 0.1904] x4 � x2 � x3 � x1

[0.2236, 0.4565][0.2450, 0.2526])

0.8 (0.4897, 0.2689, 0.2414) ([0.1274, 0.2199][0.3189, 0.4530] x4 � x2 � x3 � x1

[0.1461, 0.2545][0.2023, 0.2737])

0.9 (0.4691, 0.2834, 0.2475) ([0.1217, 0.3136][0.1519, 0.2192] x4 � x2 � x3 � x1

[0.2206, 0.4592][0.2699, 0.3026])

1.0 (0.4816, 0.2746, 0.2438) ([0.1213, 0.2284][0.3203, 0.4804] x4 � x2 � x3 � x1

[0.1501, 0.2747][0.2108, 0.2970])

Fig. 3 DM’s weights change with k
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Table 3 DM’s weights and ranking results with different attitudes of the DMs

k1 k2 k3 x (Dx1;Dx2;Dx3;Dx4) Ranking

0.2 0.2 0.2 (0.2252, 0.5448, 0.2300) (- 0.7758, - 0.5518, - 0.5895, - 0.0825) x4 � x2 � x3 � x1

0.5 (0.2298, 0.2414, 0.5287) (- 0.7822, - 0.6010, - 0.5701, - 0.0591) x4 � x2 � x3 � x1

0.8 (0.2457, 0.5227, 0.2316) (- 0.7659, - 0.5305, - 0.5936, - 0.1358) x4 � x2 � x3 � x1

0.5 0.2 (0.5145, 0.2515, 0.2340) (- 0.6435, - 0.2476, - 0.6326, - 0.5750) x2 � x4 � x3 � x1

0.5 (0.5005, 0.2613, 0.2381) (- 0.6508, - 0.2627, - 0.6299, - 0.5594) x2 � x4 � x3 � x1

0.8 (0.4842, 0.2728, 0.2430) (- 0.6596, - 0.2812, - 0.6269, - 0.5402) x2 � x4 � x3 � x1

0.8 0.2 (0.4569, 0.2920, 0.2511) (- 0.6765, - 0.2901, - 0.5990, - 0.4762) x2 � x4 � x3 � x1

0.5 (0.4235, 0.3163, 0.2602) (- 0.6952, - 0.3290, - 0.5920, - 0.4275) x2 � x4 � x3 � x1

0.8 (0.3923, 0.3412, 0.2665) (- 0.6830, - 0.2995, - 0.5446, - 0.3169) x2 � x4 � x3 � x1

0.4 0.2 0.2 (0.4741, 0.2460, 0.2799) (- 0.6148, - 0.2228, - 0.5745, - 0.4622) x2 � x4 � x3 � x1

0.5 (0.4695, 0.2474, 0.2831) (- 0.6251, - 0.2440, - 0.5839, - 0.4701) x2 � x4 � x3 � x1

0.8 (0.4726, 0.2465, 0.2809) (- 0.6575, - 0.3079, - 0.6249, - 0.5269) x2 � x4 � x3 � x1

0.5 0.2 (0.2372, 0.5036, 0.2592) (- 0.7868, - 0.5437, - 0.5803, - 0.1012) x4 � x2 � x3 � x1

0.5 (0.2591, 0.3131, 0.4278) (- 0.7739, - 0.5513, - 0.5699, - 0.1259) x4 � x2 � x3 � x1

0.8 (0.2418, 0.2698, 0.4884) (- 0.7659, - 0.5469, - 0.5389, - 0.0301) x4 � x3 � x2 � x1

0.8 0.2 (0.4753, 0.2790, 0.2457) (- 0.6376, - 0.2005, - 0.5666, - 0.4610) x2 � x4 � x3 � x1

0.5 (0.4571, 0.2919, 0.2510) (- 0.6460, - 0.2178, - 0.5598, - 0.4312) x2 � x4 � x3 � x1

0.8 (0.4373, 0.3061, 0.2566) (- 0.6559, - 02381, - 0.5535, - 0.3985) x2 � x4 � x3 � x1

0.6 0.2 0.2 (0.4642, 0.2490,0.2869) (- 0.6500, - 0.2918, - 0.6008, - 0.4879) x2 � x4 � x3 � x1

0.5 (0.4585, 0.2506, 0.2909) (- 0.6208, - 0.2330, - 0.5643, - 0.4355) x2 � x4 � x3 � x1

0.8 (0.4506, 0.2529, 0.2965) (- 0.6361, - 0.2649, - 0.5770, - 0.4435) x2 � x4 � x3 � x1

0.5 0.2 (0.2517, 0.4548, 0.2935) (- 0.7795, - 0.5342, - 0.5759, - 0.1243) x4 � x2 � x3 � x1

0.5 (0.2448, 0.4782, 0.2770) (- 0.7822, - 0.5357, - 0.5781, - 0.1173) x4 � x2 � x3 � x1

0.8 (0.2272, 0.5378, 0.2350) (- 0.7905, - 0.5444, - 0.5823, - 0.0921) x4 � x2 � x3 � x1

0.8 0.2 (0.2522, 0.4532, 0.2947) (- 0.7953, - 0.5391, - 0.5766, - 0.1361) x4 � x2 � x3 � x1

0.5 (0.5030, 0.2596, 0.2374) (- 0.6479, - 0.2181, - 0.6046, - 0.5429) x2 � x4 � x3 � x1

0.8 (0.4897, 0.2689, 0.2414) (- 0.6527, - 0.2281, - 0.5994, - 0.5241) x2 � x4 � x3 � x1

Fig. 4 Alternative values change with k
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dð~Rð1Þ
1 ; ~a�Þ ¼ 1:6154; dð~Rð1Þ

2 ; ~a�Þ ¼ 1:0180;

dð~Rð1Þ
3 ; ~a�Þ ¼ 2:4510; dð~Rð1Þ

4 ; ~a�Þ ¼ 3:0851;

dð~Rð2Þ
1 ; ~a�Þ ¼ 1:2516; dð~Rð2Þ

2 ; ~a�Þ ¼ 1:8525;

dð~Rð2Þ
3 ; ~a�Þ ¼ 2:0592; dð~Rð2Þ

4 ; ~a�Þ ¼ 2:9869;

dð~Rð3Þ
1 ; ~a�Þ ¼ 1:3358; dð~Rð3Þ

2 ; ~a�Þ ¼ 1:6236;

dð~Rð3Þ
3 ; ~a�Þ ¼ 2:2156; dð~Rð3Þ

4 ; ~a�Þ ¼ 3:1315;

where ~aj ¼ ð½1; 1�; ½0; 0�Þ; j ¼ 1; 2; 3; 4: Based on the

weighting vector k ¼ ð0:4; 0:3; 0:3Þ and the weighted

averaging operator, all the distances can be aggregated as

dð~R1; ~a
�Þ ¼ 1:4224; dð~R2; ~a

�Þ ¼ 1:4500;

dð~R3; ~a
�Þ ¼ 2:2628; dð~R4; ~a

�Þ ¼ 3:0696;

Thus, we rank all the alternative xi (i ¼ 1; 2; . . .; n) as

follows:

x4 � x3 � x2 � x1:

These rankings of the alternatives are slightly different. For

instance, the alternative x4 and x1 are ranked first and last,

respectively, and the rankings of the other two alternatives

are reversed. The algorithm is simple and efficient, but the

weights of the DMs are predefined subjectively.

Moreover, Xu and Chen [54] proposed some aggrega-

tion operators to deal with the interval-valued intuitionistic

fuzzy preferences. Now, we follow Xu and Chen’s

approach to solve the problem we mentioned above. First

of all, we use the IIFA operator which was introduced in

paper [54] to aggregate all the elements ~R
ðkÞ
ij , i ¼ 1; 2; 3; 4,

and we obtain:

~R
ð1Þ
1 ¼ ð½0:5918; 0:6673�; ½0:1599; 0:2692�Þ;
~R
ð1Þ
2 ¼ ð½0:7378; 0:7985�; ½0:0716; 0:1133�Þ;
~R
ð1Þ
3 ¼ ð½0:3334; 0:3661�; ½0:3879; 0:4745�Þ;
~R
ð1Þ
4 ¼ ð½0:1877; 0:2297�; ½0:6732; 0:7117�Þ;
~R
ð2Þ
1 ¼ ð½0:6522; 0:6807�; ½0:0482; 0:2842�Þ;
~R
ð2Þ
2 ¼ ð½0:5064; 0:5833�; ½0:2972; 0:3941�Þ;
~R
ð2Þ
3 ¼ ð½0:4360; 0:5243�; ½0:3528; 0:4348�Þ;
~R
ð2Þ
4 ¼ ð½0:1991; 0:2680�; ½0:6727; 0:7043�Þ;
~R
ð3Þ
1 ¼ ð½0:5928; 0:6500�; ½0:0441; 0:1042�Þ;
~R
ð3Þ
2 ¼ ð½0:5545; 0:6064�; ½0:1335; 0:1888�Þ;
~R
ð3Þ
3 ¼ ð½0:4637; 0:5141�; ½0:3112; 0:3936�Þ;
~R
ð3Þ
4 ¼ ð½0:1724; 0:1896�; ½0:6753; 0:7091�Þ;

Then, we use the interval-valued intuitionistic hybrid

averaging operator [54] with the predefined DMs’ weights

vector w ¼ ð0:4; 0:3; 0:3Þ to aggregate the preferences:

~R1 ¼ ð½0:6149; 0:6689�; ½0:0579; 0:1601�Þ;
~R2 ¼ ð½0:6614; 0:7260�; ½0:1117; 0:1662�Þ;
~R3 ¼ ð½0:4347; 0:4917�; ½0:3307; 0:4142�Þ;
~R4 ¼ ð½0:1935; 0:2450�; ½0:6681; 0:7023�Þ;

In order to compare the IVIFNs, we calculate the scores

[54] of ~Ri:

Table 4 Iterative results of weighting vector and iterations

Iterations w1 w2 w3

0 0.4232 0.1819 0.3949

1 0.4284 0.2589 0.3127
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sð~R1Þ ¼ 0:5329; sð~R1Þ ¼ 0:5548; sð~R3Þ ¼ 0:0907;

sð~R4Þ ¼ �0:4660:

By using the same method for the comparison in [54], we

have ~R2 [ ~R1 [ ~R3 [ ~R4, and thus the ranking of the

alternatives is x2 � x1 � x3 � x4.

In the above-mentioned example, the rankings of the

alternatives derived by the two approaches are different.

The reason is that Xu and Chen’s approach for the weights

of DMs is predefined rather than using the individual’s

opinions. And the proposed method emphasizes the con-

tribution of each DMs in the GDM, which makes it more

reasonable and distinctive.

5 Conclusions

In this paper, based on cooperative games method, we

introduced a new weighting algorithm for GDM with

IVIFPRs by using the CIVIFOWA operator. After using

the CIVIFOWA operator to transform the IVIFPRs into

CIVIFPRs, an iterative weighting algorithm was designed

on the basis of Shapley value method. Meanwhile, by

reallocating the sum of the continuous group decision error,

we can deriving a new weighting vector in each iteration,

which is measured by the continuous interval-valued

intuitionistic fuzzy distances between decision information

of each individual and the weighted group decision infor-

mation. Then, a novel optimal model is raised, which will

be used to rank the alternatives. At last, we illustrate some

practical examples, including a numerical example and

some comparative examples, to demonstrate its efficiency

and application area. What can be generalized is that the

proposed method can be applied to GDM with other fuzzy

relations [63–65] with great efficiency.
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Table 5 Priority vectors and

ranking of alternatives with

different k

w n Ranking order

0 (0.3513, 0.2679, 0.3808) ([0.1803, 0.2490][0.1627, 0.1930] x4 � x3 � x1 � x2

[0.2368, 0.2576][0.3515, 0.3691])

0.1 (0.3536, 0.2681, 0.3782) ([0.2324, 0.2673][0.3430, 0.3848] x4 � x3 � x1 � x2

([0.1795, 0.2625][0.1621, 0.2023])

0.2 (0.3609, 0.2685, 0.3705) ([0.1724, 0.2648][0.1545, 0.2034] x4 � x3 � x1 � x2

[0.2162, 0.2464][0.3515, 0.3824])

0.3 (0.3681, 0.2686, 0.3633) ([0.1716, 0.2768][0.1527, 0.2121] x4 � x1 � x3 � x2

[0.2986, 0.2761][0.3025, 0.3941])

0.4 (0.3751, 0.2683, 0.3566) ([0.1834, 0.3106][0.1622, 0.2377] x4 � x1 � x3 � x2

[0.2163, 0.2993][0.3109, 0.4365])

0.5 (0.3869, 0.2672, 0.3459) ([0.1813, 0.3225][0.1588, 0.2458] x4 � x1 � x3 � x2

[0.2053, 0.3023][0.2922, 0.4422])

0.6 (0.4073, 0.2638, 0.3288) ([0.1772, 0.3310][0.1530, 0.2505] x4 � x1 � x3 � x2

[0.1895, 0.2967][0.2665, 0.4344])

0.7 (0.4123, 0.2628, 0.3249) ([0.1767, 0.3467][0.1520, 0.2626] x4 � x1 � x3 � x2

[0.1845, 0.3067][0.2571, 0.4515])

0.8 (0.4138, 0.2625, 0.3238) ([0.1746, 0.3602][0.1500, 0.2734] x4 � x1 � x3 � x2

[0.1795, 0.3165][0.2481, 0.4692])

0.9 (0.4141, 0.2624, 0.3236) ([0.1724, 0.3738][0.1479, 0.2844] x4 � x1 � x3 � x2

[0.1747, 0.3270][0.2396, 0.4882])

1.0 (0.4140, 0.2624, 0.3236) ([0.1702, 0.3878][0.1459, 0.2960] x4 � x1 � x3 � x2

[0.1703, 0.3382][0.2317, 0.5086])
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