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Abstract Fuzzy logic control, due to its simple control

structure, easy and cost-effective design, has been suc-

cessfully employed to the application of guidance and

control in robotic fields. This paper aims to review fuzzy-

logic-based guidance and control in an important branch of

robots—marine robotic vehicles. First, guidance and

motion forms including the maneuvering, path following,

trajectory tracking, and position stabilization are described.

Subsequently, the application of three major classes of

fuzzy logic control, including the conventional fuzzy

control (Mamdani fuzzy control and Takagi–Sugeno–Kang

fuzzy control), adaptive fuzzy control (self-tuning fuzzy

control and direct/indirect adaptive fuzzy control), and

hybrid fuzzy control (fuzzy PID control, fuzzy sliding

mode control, and neuro-fuzzy control) are presented. In

particular, we summarize the design and analysis process

of direct/indirect adaptive fuzzy control and fuzzy PID

control in marine robotic fields. In addition, two compar-

ative results between hybrid fuzzy control and the corre-

sponding single control are provided to illustrate the

superiority of hybrid fuzzy control. Finally, trends of the

fuzzy future in marine robotic vehicles are concluded based

on its state of the art.

Keywords Fuzzy logic control � Guidance and control �
Unmanned surface vehicles � Autonomous underwater

vehicles � Remotely operated vehicles

1 Introduction

In the last years, a growing number of marine robotic

vehicles including unmanned surface vehicles (USVs),

autonomous underwater vehicles (AUVs), remotely oper-

ated vehicles (ROVs), and underwater gliders (UGs) have

been developed for civil, military, and scientific research

applications [7, 12, 78, 87, 101, 128, 162, 164,

170, 187, 195]. For instance, these vehicles prove their

capabilities in three-dimensional reconstruction of seabed

surface [197], automatic underwater sampling

[175, 194, 217], detection and monitoring of marine gas

seeps [6], subsea pipeline/cable tracking and inspection

[3, 166, 171, 184], monitoring and assisting human divers

[96], flow field mapping [13], and mine countermeasures

[29].

For such vehicles to be capable of undertaking these

missions, they require advanced, intelligent, reliable and

adaptable modeling, planing, navigation, guidance, and

control system [38, 40, 63, 79, 89, 98, 100,

143, 151, 159, 191–193, 200, 201, 212, 214]. As a result,

various methods such as proportional–integral–derivative

(PID) control [11, 41, 83, 188], feedback linearizing con-

trol [10], backstepping control [47, 72, 73, 80, 167,

174, 216], L1 [92], sliding mode control [25, 26, 111, 208],

neural network control [24, 44, 105, 106, 108, 196,

209, 215], robust control [153], model predictive control
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[45], and fuzzy logic control [109, 149] are being widely

applied to guidance and control of marine robotic vehicles.

Particularly, the fuzzy logic control based on fuzzy set

theory by Zadeh exhibits excellent immunity to system

nonlinearity and uncertainties [61, 145, 155, 190]. Based

on the differences of fuzzy control rules and their genera-

tion methods, approaches to fuzzy logic control can be

roughly classified into the following categories: (1) con-

ventional fuzzy control (CFLC); (2) adaptive fuzzy control

(AFLC); (3) hybrid fuzzy control including fuzzy PID

control (FPIDC), fuzzy sliding mode control (FSMC), and

neuro-fuzzy control (NFLC).

In this paper, we aim to survey state of the art of various

fuzzy controllers for the guidance and control of marine

robotic vehicles as well as the design and analysis. Hence,

we hope to provide a valuable guide for learning guidance

and control of marine robotic vehicles based on fuzzy logic

control.

The rest of the paper is organized as follows. The

guidance and control concept of marine robotic vehicles is

defined in the next section. Various fuzzy logic controllers

in guidance and control application are reviewed as well as

the design and analysis in Sect. 3. In Sect. 4, the perfor-

mance comparison between hybrid fuzzy control and other

control is shown. Trends of the future of fuzzy-logic-based

guidance and control in marine robotic vehicles are sum-

marized in Sect. 5, while conclusions are included in

Sect. 6.

2 Guidance and Control

According to [38], the terms guidance and control are

defined as: (1) Guidance is the action of determining the

course, attitude, and speed of a marine robotic vehicle,

relative to some reference frame; (2) Control is the

development and application to a marine robotic vehicle of

appropriate forces and moments for operating point con-

trol, tracking and stabilization, which is related to design

the feedforward and feedback control laws. A guidance and

control system for automatic weather routing of a ship is

shown in Fig. 1.

The control of marine robotic vehicles can be divided

into single degree of freedom (1-DOF) maneuvering, point

stabilization, path following, and trajectory tracking

[31, 94, 174, 213], as shown in Fig. 2.

1-DOF maneuvering, as shown in Fig. 2a: 1-DOF

maneuvering includes zigzag maneuver, heading control,

tuning motion, and roll stabilization.

Point stabilization, as shown in Fig. 2b: The point sta-

bilization problem usually means that a vehicle is stabilized

in a desired goal posture (position and orientation) from a

given initial configuration.

Path following, as shown in Fig. 2c: In the path fol-

lowing task, the assigned Cartesian path is usually given in

a parameterized form expressing the desired motion in

terms of a path parameter, i.e., the arc length s along the

path. A vehicle is required to follow this path with spatial

convergence alone, without any temporal specification.

Trajectory tracking, as shown in Fig. 2d: In the trajec-

tory tracking task, the vehicle must track a time-parame-

terized trajectory, i.e., a geometric path with an associated

timing specification t. Hence, it inherently mixes the time

and space assignments into one assignment.

Remark, Maneuvering trials are often performed to

assess the path keeping and path changing ability of a

Fig. 1 Guidance and control system for automatic weather routing of

ships

Fig. 2 Basic control tasks for marine robotic vehicles: amaneuvering;

b point stabilization; c path following; d trajectory tracking
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marine robotic vehicle. Point stabilization task can often be

achieved for a fully actuated marine robotic vehicle where

the number of control inputs is the same as that of degrees

of freedom. For path following, time dependence is not

relevant because one is concerned only with the geometric

displacement between the vehicle and the path. In this

sense, the time evolution of the path parameter is usually

free. Yet, the evolution of the trajectory parameter in tra-

jectory tracking is time dependent

[21, 30, 31, 39, 58, 66, 122, 154, 174, 205, 207].

3 Fuzzy Logic Application and Analysis

This section reviews the application of three kinds of fuzzy

control in guidance and control of marine robotic vehicles.

3.1 Conventional Fuzzy Control (CFLC)

Generally, the CFLC can be divided in two types: Mam-

dani fuzzy control [95] and Takagi–Sugeno–Kang (TSK)

fuzzy control [132], which need to deal with fuzzification,

fuzzy inference, and defuzzification operations, as shown

in Fig. 3. Here, the inputs of CFLC are usually composed

of the error e and the error rate _e and the output can be

directly given to the onboard actuator.

3.1.1 Mamdani Fuzzy Control

In terms of guidance, the fuzzy logic system was used to

generate a new safe heading angle, yaw rate, or rudder

angle for an AUV in order to avoid obstacle [8, 9, 127]. It

was also applied in a submarine to evade the attack from a

torpedo [124]. Moreover, an outer-loop Mamdani fuzzy

logic controller with triangular membership functions for

the inputs and output was designed to generate the desired

rudder angle of path following [42]. Besides its application

for safe maneuvering and command guidance, the fuzzy

comprehensive evaluation method was applied to evaluate

the motion performance of an AUV, which can provide a

valuable and scientific guide for layout scheme decision-

making at the preliminary design stage [85].

Mamdani fuzzy control also plays an important role in

motion control of marine robotic vehicles. A Mamdani

fuzzy logic controller with triangular membership func-

tions was designed for fixed and varying heading control of

a tank [102, 147]. In [69], the Mamdani fuzzy control

system was developed for classifying the transverse of

terrain and performing pipeline following by a ROV. In

addition to the above heading control and path following, a

hierarchical closed-loop fuzzy control system was applied

for horizontal-plane trajectory tracking of an under-actu-

ated AUV [113]. The single Mamdani fuzzy logic con-

troller was also used in horizontal-plane trajectory tracking

of an USV [74] and vertical-plane trajectory tracking of an

AUV [90, 117].

3.1.2 TSK Fuzzy Control

The difference is that unlike the Mamdani method, the

output membership functions of the TSK method are only

constants (singletons/zero-order) or have linear relationship

(first-order) with respect to the input, which obviously

simplifies the defuzzification process. In this sense, the

TSK fuzzy control seems to be more popular in guidance

and control fields of marine robotic vehicles.

The zero-order TSK fuzzy controller was designed for

dynamic positioning [137], vertical-plane variable depth

trajectory tracking [112, 118], and three-dimensional path

following control [49, 182]. Actually, the zero-order TSK

fuzzy control is a special case of the first-order TSK fuzzy

control which is more general. For instance, the first-order

TSK fuzzy logic was used to generate the desired heading

angle in the underwater docking mission [135, 136].

Besides the guidance application, it was also applied to the

heading, pitch and depth control of an AUV [123]. Com-

pared with the above 1-DOF control, the first-order TSK

fuzzy design for the coupled motion is relatively compli-

cated, such as point stabilization of an AUV [15], vertical-

plane trajectory tracking and path following of an AUV

[64, 65]. Different form these two linear output functions,

the yaw control of an AUV is based on a TSK fuzzy

controller where the output of each rule is a nonlinear

Gaussian function with respect to double inputs [130]. In

[160], the nonlinear fuzzy output combined a smoothing

function with a switch function.

Note that the above TSK fuzzy controller has two

inputs. It implies that if the number of membership func-

tions for each input is n, the number of fuzzy rules will be

n2. Based on the following signed distance method

Fig. 3 Basic structure of a CFLC system
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d ¼ _eþ ke
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ k2
p ð1Þ

with k being a constant slope and d being the signed dis-

tance, the single input fuzzy controller using d as its input

was proposed in [22] and applied to the control of marine

robotic vehicles, such as the heading control of a chemical

ship tanker [60], vertical-plane trajectory tracking of an

AUV [2, 56, 57], and three-dimensional (3D) path fol-

lowing [183]. As shown in [56], the number of rules of the

single input fuzzy controller can be reduced from n2 to

n and the computational time was reduced form 1500 to

10 ls.
In summary, the CFLC-based documents in guidance

and control of marine robotic vehicles are listed in Table 1.

3.1.3 Stability Analysis

The stability of the Mamdani fuzzy system was rarely

reported in the listed documents, while the stability of the

TSK fuzzy system can be based on common quadratic

Lyapunov functions, piecewise quadratic Lyapunov func-

tions, or fuzzy Lyapunov functions. The authors can refer

to [37] for the details and in this paper it is omitted.

3.2 Adaptive Fuzzy Control (AFLC)

Fuzzy control design is composed of three important

stages, namely fuzzy rules, scaling factors, and member-

ship functions. Generally, the CFLC has a fixed set of IF-

THEN rules, usually derived from experts’ knowledge. The

membership functions of the associated input and output

linguistic variables are generally predefined on a common

universe of discourse. For the successful design, the proper

selection of input and output scaling factors is also

important.

As we all known, the marine robotic vehicle is a non-

linear second-order system and often has system uncer-

tainties including hydrodynamic modeling inaccuracy and

unknown environmental disturbances. Hence, the CFLC

with a fixed number of IF-THEN rules, fixed valued scaling

factors and predefined membership functions may be not

enough sufficient to get a satisfactory control performance.

In this subsection, we list three kinds of AFLC: self-tuning

fuzzy control, direct adaptive fuzzy control, and indirect

adaptive fuzzy control.

3.2.1 Self-tuning Fuzzy Control (SFLC)

If a fuzzy logic controller has self-tuning membership

functions, scaling factors, or fuzzy rules, it can be called

SFLC. An adaptive fuzzy controller with self-tuning

membership functions was proposed for the obstacle

avoidance of an AUV [35]. To achieve better track-keeping

performance in the presence of external disturbances, the

scaling factors of a fuzzy controller for the ship autopilot

were changed by an adjustable mechanism with the object

distance and the heading angle as its inputs [139]. In [75], a

learning control algorithm automatically generated the

fuzzy controller’s knowledge base online as new infor-

mation on how to control the ship, as shown in Fig. 4.

However, the stability of the above SFLC was not

analyzed.

3.2.2 Direct Adaptive Fuzzy Control (DAFLC)

Before introducing DAFLC, we should first review the

fuzzy approximation theorem, which is the basis of

DAFLC and the subsequent indirect adaptive fuzzy control

(IAFLC).

For a real continuous function f(x) whose analytic

expression is unknown, given a sufficiently large number N

of fuzzy rules and any small tolerance �e, there exists an

optimal output weight matrix -� such that

Table 1 Application classification for conventional fuzzy control

Term Mamdani TSK

Guidance [8, 9, 42, 85, 124

127]

[135, 136]

1-DOF

maneuvering

[102, 147] [60, 123, 130]

Path following [69] [65, 182, 183]

Trajectory

tracking

[74, 90, 113, 117] [2, 56, 57, 64, 112, 118]

Point stabilization – [15, 137]

Fig. 4 Basic structure of self-tuning fuzzy control
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-� ¼ arg min
-2Rn

sup
x2X

->nðxÞ � fðxÞ
� �

� �

ð2Þ

and

f ðxÞ ¼ -�>nðxÞ þ e ð3Þ

with the minimal functional approximation error e satis-

fying jej � �e [62, 146, 157].
DAFLC uses the fuzzy approximation theorem to esti-

mate the optimal control laws dependent on accurate

dynamics model. For instance, an optimal control law was

first developed based on full-state feedback control. Then,

the fuzzy approximation was used to estimate the

unknown terms in the optimal control law for a fully

actuated USV [134, 148]. The general framework is given

as follows:

The kinematic and dynamic models of a marine robotic

vehicle can be described in the following vectorial strict-

feedback form

g ¼ RðXÞt

_t ¼ �M�1 CðtÞtþ DðtÞtþ gðgÞ þ d þ sð Þ

(

ð4Þ

where g denotes the position and orientation vector with

coordinates in the earth-fixed inertial frame; R is a trans-

formation matrix which is related through the functions of

the Euler angles X; t denotes the linear and angular

velocity vector with coordinates in the body-fixed frame;

M is the inertia matrix; C is the matrix of Coriolis and

centripetal terms; D is the damping matrix; g is the vector

of gravitational forces and moments; s is used to describe

the forces and moments acting on the vehicle in the body-

fixed frame; and d denotes the environmental disturbances

in the body-fixed frame.

Assume that the desired position and orientation vector

is gd. Define error variables z1 ¼ g� gd and z2 ¼ t� a1
where a1 is a virtual velocity vector. The first step is to

consider the Lyapunov function candidate V1 ¼ 0:5zT1 z1
and then differentiating V1 yields the virtual control law

a1 ¼ RðXÞTð _gd � K1z1Þ where K1 is a diagonal matrix.

The second step is to choose the Lyapunov function can-

didate V2 ¼ V1 þ 0:5zT2Mz2 to obtain the optimal control

law

s� ¼ �RðXÞTz1 � K2z2 þ CðtÞtþ DðtÞtþ gðgÞ � d þM _a1

ð5Þ

where K2 is also a diagonal matrix.

However, since M;CðtÞ;DðtÞ; gðgÞ; d are difficult to

measure precisely and usually all unknown or part known,

the model-based optimal control law is not feasible

[150, 152]. To overcome this difficulty, the fuzzy

approximation can be used to approximate the unknown

terms:

-�>nþ e ¼ CðtÞtþ DðtÞtþ gðgÞ � d þM _a1 ð6Þ

Combining the control framework in (5) with the fuzzy

approximation of unknown dynamics, the final direct

adaptive fuzzy controller can be designed as

s ¼ �RðXÞTz1 � K2z2 þ b-
>
n ð7Þ

where the updated law of b- can be resorted to [134, 148].

The same is that tracking errors are proven to be uniformly

ultimately bounded due to the existence of the approxi-

mation error e.

3.2.3 Indirect Adaptive Fuzzy Control (IAFLC)

Different from the DAFLC, the IAFLC uses the fuzzy

approximation to estimate the unknown dynamics model.

In [4, 179], adaptive fuzzy control was used to approximate

the nonlinear unknown terms in order to achieve the Lya-

punov stability of the ship roll stabilization system. It was

also used to approximate unknown function in the ship

steering systems [114, 180]. In addition, the IAFLC iden-

tified the unknown nonlinear parts of the vertical-plane

dynamic model of a submarine [115].

In summary, the AFLC used in guidance and control of

marine robotic vehicles is listed in Table 2.

3.3 Hybrid Control Combining Fuzzy Control

with Other Algorithms

In this subsection, we will present several kinds of hybrid

control combining fuzzy control with other algorithms,

which can generate a better behavior than either of them.

3.3.1 Fuzzy PID Control (FPIDC)

It is well known that the conventional PID controller is the

most widely adopted controller in industry, due to its

simple structure, ease of design, and low cost in imple-

mentation [37]. Yet, the conventional PID controller might

not perform satisfactorily if the system to be controlled is

highly nonlinear, coupled, or uncertain. On the other hand,

fuzzy control has been well known for its ability to reject

nonlinearities and uncertainties by the use of fuzzy set

Table 2 Application classification for adaptive fuzzy control

Term SFLC DAFLC IAFLC

Guidance [35] – –

1-DOF maneuvering [75, 139] – [4, 114, 179, 180]

Path following – – –

Trajectory tracking – [134, 148] [115]

Point stabilization – – –
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theory. Hence, it can be believed that by integrating these

two methods, a better control system called FPIDC can be

designed.

Usually, an adaptive PID controller with self-tuning

parameters adjusted by fuzzy control is designed to offer

the robustness with respect to the system uncertainties,

including inaccurate hydrodynamic parameters and time-

varying environmental disturbances, such as longitudinal

control [133], heading control [76, 93], variable depth

tracking control [88], three-dimensional trajectory tracking

[68], and three-dimensional path following [173]. Here, the

most commonly used control law si in certain degree of

freedom is

siðtÞ ¼ kpðtÞeðtÞ þ kiðtÞ
Z t

0

eðsÞdsþ kdðtÞ _eðtÞ ð8Þ

where the self-tuning parameters are updated by

kpðtÞ ¼ kp0 þ DkpðeðtÞ; _eðtÞÞ

kiðtÞ ¼ ki0 þ DkiðeðtÞ; _eðtÞÞ

kdðtÞ ¼ kd0 þ DkdðeðtÞ; _eðtÞÞ

8

>

>

<

>

>

:

ð9Þ

with the initial control gains kp0; ki0; kd0 and the time-

varying incremental gains Dkp;Dki;Dkd.
In order to get the gains Dkp;Dki;Dkd , a fuzzy logic

controller is usually adopted. If the fuzzy linguistic vari-

ables are defined as NB, NM, NS, ZE, PS, PM, PB, the

fuzzy rules for Dkp;Dki;Dkd can be listed in Tables 3, 4

and 5. For each table, the first column represents the dif-

ferent fuzzy subsets of the tracking error e, the first row

represents the different fuzzy subsets of the tracking error

ratio _e, and the other cells in the table are outputs of IF-

THEN rules in different cases. The subsequent defuzzifi-

cation step can be achieved by the use of the center of area

method.

3.3.2 Fuzzy Sliding Mode Control (FSMC)

As we all know, sliding mode control (SMC) is a robust

approach to control a nonlinear system with internal and

external uncertainties [28, 43, 138, 169]. Usually, a sliding

mode surface is first defined, i.e.,

sðtÞ ¼ _eðtÞ þ k1eðtÞ ð10Þ

or

sðtÞ ¼ _eðtÞ þ k2eðtÞ þ k3

Z t

0

eðsÞds ð11Þ

where k1; k2; k3 are control gains. Then, a switching func-

tion rsgnðsÞ with a proper gain r is necessary in the control

law design. Yet, it often results in chattering phenomena

due to its discontinuous switching function. Actually, the

combination of fuzzy control and sliding mode control can

weaken the chattering phenomena and realize the advan-

tages of both techniques. For instance, the fuzzy logic is

used to adjust the gain (i.e., r) of the sliding mode

switching part in order to suppress chattering. This kind of

applications can be seen in roll stabilization [17], heading

control [34], and depth tracking control [110].

On the one hand, fuzzy logic control is also used to

approximate the system modeling based on the fuzzy

approximation and then sliding mode control rejects the

rest uncertainty, such as heading control [119, 189], depth

control [186], trajectory tracking [5, 71, 149], and path

following [48, 67, 81, 82, 158].

Table 4 Fuzzy control rules for Dki

Dki NB NM NS ZE PS PM PB

NB NB NB NM NM NS ZE ZE

NM NB NB NM NS NS ZE ZE

NS NB NM NS NS ZE PS PS

ZE NM NM NS ZE PS PM PM

PS NM NS ZE PS PS PM PB

PM ZE ZE PS PS PM PB PB

PB ZE ZE PS PM PM PB PB

Table 3 Fuzzy control rules for Dkp

Dkp NB NM NS ZE PS PM PB

NB PB PB PM PM PS ZE ZE

NM PB PB PM PS PS ZE NS

NS PB PM PM PS ZE NS NS

ZE PB PM PS ZE NS NM NM

PS PS PS ZE NS NS ZM NM

PM PS ZE NS NM NM NM NB

PB ZE ZE NM NM NM NB NB

Table 5 Fuzzy control rules for Dkd

Dkd NB NM NS ZE PS PM PB

NB PS NS NB NB NB NM PS

NM PS NS NB NM NM NS ZE

NS ZE NS NM NM NS NS ZE

ZE ZE NS NS NS NS NS ZE

PS ZE ZE ZE ZE ZE ZE ZE

PM PS NS PS PS PS PB PB

PB PS PM PM PM PS PS PB
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3.3.3 Neuro-Fuzzy Control (NFLC)

Since neural network control has strong learning capabili-

ties and high computation efficiency in parallel imple-

mentation [27, 46, 50, 52, 99, 104, 120, 142, 156, 172, 177,

178, 203] and fuzzy control has a powerful framework for

expert knowledge representation, the combination of these

two methods has attracted lots of attention from control

community. A typical combination is the so-called NFLC,

which is basically a fuzzy control augmented by neural

networks to enhance its characteristics like flexibility, data

processing capability, and adaptability [37, 51, 51, 55].

In general, the NFLC has three kinds of control frame-

works, as shown in Fig. 5. The first one is the linear

superposition of them in Fig. 5a. For instance, a fuzzy PD

control plus neural network control was designed for an

underwater vehicle-manipulator system [176]. The second

one is fuzzy control adjusted by neural network control

shown in Fig. 5b. For instance, artificial neural network

was used to tune the consequent portion of the fuzzy

conditional statements [131]. A neuro-fuzzy system was

used to reform the membership functions and rules of a

collision avoidance system [1]. The weight of NFLC in

path following task of the ODIN AUV was adjusted online

to minimize the error function by using a simplified

learning and retrieving procedure [70]. The third one is the

complete integration of them shown in Fig. 5c. A typical

example is that the NFLC was used to model the inverse

dynamics of the ODIN AUV and the feedback-error-

learning method or other method online tuned the param-

eters of the recurrent neuro-fuzzy controller [77, 144].

Similarly, the unknown dynamic function in trajectory

tracking, heading control, and dynamic positioning was

identified by the NFLC [23, 84, 97, 165]. In addition, the

NFLC was introduced to approximate a backstepping

control law [86].

3.3.4 Other Hybrid Fuzzy Control

In addition to the aforementioned FPIDC, FSMC, and

NFLC, there are other algorithms combined with fuzzy

control, such as parallel distributed compensation

[14, 16, 53], genetic algorithm [36, 54, 59], H1 [116], and

particle swarm optimization [198]. In summary, the hybrid

fuzzy control used in guidance and control of marine

robotic vehicles is listed in Table 6.

4 Comparative Results

In this section, we will give two simulation comparisons

between the fuzzy-logic-based hybrid controller and the

corresponding single controller. In the authors’ opinion, the

comparison of CFLC/AFLC and the other control (i.e.,

backstepping, neural network) seems not to be very

equitable because the performance also depends on the

design of control systems and the choice of control gains.

From the simulated results, it can be concluded that the

fuzzy-logic-based hybrid controller can perform better than

the corresponding single controller, which is due to making

full use of advantages of fuzzy logic in the hybrid control.

Table 6 Application classification for hybrid fuzzy control

Term FPIDC FSMC NFLC Other

Guidance – – [1] –

1-DOF

maneuvering

[93, 133] [17, 34] [16, 116]

[76, 88] [110, 189] [131] [54, 198]

[119, 186]

Path following [173] [48, 158] [70] [59]

[67, 81, 82]

Trajectory

tracking

[68] [5, 71] [144, 176]

[149] [77, 84] [36]

[86]

Point stabilization – – [165] [14, 53]
Fig. 5 Basic structure of NFLC
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4.1 FPIDC Versus PID

In the first simulation, the algorithms of FPIDC and PID

are taken from [173]. All the parameters of the whole

simulated system are the same as it. Here, we give the

following paths and errors under two different controllers,

as shown in Figs. 6 and 7, respectively. Note that the

external environmental disturbances and model uncertain-

ties simultaneously act on the AUV from 160 to 350s.

Obviously, the added fuzzy logic control makes the fol-

lowing process smoother and the robustness against dis-

turbances stronger.

4.2 FSMC Versus SMC

In the second simulation, the algorithms of FSMC and

SMC are taken from [181]. All the parameters of the whole

simulated system are also the same as it. Here, we give the

following paths and control inputs under two different

controllers, as shown in Figs. 8 and 9, respectively.

Although there seems to be no difference between the two

actual following paths, the control inputs under FSMC are

smoother than those of SMC, which illustrates that the

added fuzzy logic control suppresses the inherent chatter-

ing of the conventional SMC.

5 Trends for the Future

Based on state of the art of fuzzy logic application in

marine robotic vehicles, it can be concluded that more

attention should be paid to the following aspects:

The first one is the fuzzy application for new control

scenarios, such as motion control with thruster fault

[129, 161, 163, 210], motion control with input saturation

[121, 126, 141, 185, 206, 209, 211], and formation control of

150 200 250 300 350 400
−0.02

0

0.02

t[s]

x e[m
]

150 200 250 300 350 400
−2

0

2

t[s]

y e[m
]

150 200 250 300 350 400
−1

0

1

t[s]

z e[m
]

PID
FPIDC

Fig. 7 Path following errors under FPIDC and PID

0 20 40 60 80 100 120 140 160
7

8

9

10

11

12

13

x[m]

z[
m

]

 

 

Desired Path
SMC Path
FSMC Path

Fig. 8 2D Path following under FSMC and SMC

50 55 60 65 70 75 80

−200

0

200

400

t[s]

τ u[N
]

SMC FSMC

50 55 60 65 70 75 80
−3000

−2000

−1000

0

1000

2000

t[s]

τ q[N
.m

]

Fig. 9 Control inputs under FSMC and SMC

−500
0

500
1000

1500 −20
0

20
40

60
−2

0

2

4

y[m]x[m]

z[
m
]

Desired Path
PID
FPIDC
Start Point

Fig. 6 3D Tanh path following under FPIDC and PID

X. Xiang et al.: Survey on Fuzzy-Logic-Based Guidance and Control… 579

123



multiple vehicles [18–20, 32, 33, 91, 103, 107,

125, 140, 168, 202]. The above topics are hotspots of present

control fields in marine robotic vehicles, and it is expected

that the fuzzy logic theory will play a greater role due to its

simple control structure, easy and cost-effective design.

The second one is the fuzzy generalization in a guidance

layer. Fuzzy logic control has shown the outperformance in

various control scenarios. Yet, the guidance behavior is

usually the basis of motion control, especially for an under-

actuated marine robotic vehicle. Hence, we believe the

fuzzy logic method will be also more applied to the guid-

ance loop of marine robotic vehicles because most of

existing marine robotic vehicles are under-actuated.

The third one is the design and analysis of fuzzy logic

system itself. From Sect. 3, the design of most fuzzy logic

controllers is coupled with other algorithms, i.e., PID. Yet,

how to analyze the stability of FPIDC seems a difficult

problem. Maybe the switching theory should be introduced.

The fourth one is the implementation of fuzzy-logic-

based guidance and control in actual onboard system of

marine robotic vehicles. It can be found that most of

published papers presented simulation results except for

[8, 48, 85, 119, 136, 199, 204]. Hence, the future work

should focus on the application of various advanced

adaptive fuzzy controllers in field tests.

6 Conclusion

In this paper, we review three major classes of fuzzy logic

control, including CFLC, AFLC, and HFLC used in the

marine robotic field. Due to its simple control structure,

easy and cost-effective design, it can be seen that they are

widely used in guidance and control of marine robotic

fields, especially in control field. Subsequently, two com-

parative results between fuzzy-logic-based hybrid control

and the corresponding single control are given to illustrate

the superiority of fuzzy-logic-based hybrid control. Besides

the review, trends of the fuzzy future in marine robotic

vehicles are summarized, which can provide some potential

research topics for the readers.
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