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Abstract Cooperative hunting by a multi-AUV system in

unknown 3D underwater environment is not only a

research hot spot but also a challenging task. To conduct

this task, each AUV needs to move quickly without

obstacle collisions and cooperate with other AUVs con-

sidering the overall interests. In this paper, the heteroge-

neous AUVs cooperative hunting problem is studied,

including two main tasks, namely the search and pursuit of

targets, and a novel spinal neural system-based approach is

proposed. In the search stage, a partition and column par-

allel search strategy is used in this paper, and a search

formation control algorithm based on an improved spinal

neural system is proposed. The presented search algorithm

not only accomplishes the search task but also maintains a

stable formation without obstacle collisions. In the coop-

erative pursuit stage, a dynamic alliance method based on

bidirectional negotiation strategy and a pursuit direction

assignment method based on improved genetic algorithm

are presented, which can realize the pursuit task efficiently.

Finally, some simulations are conducted and the results

show that the proposed approach is capable of guiding

multi-AUVs to achieve the hunting tasks in unknown 3D

underwater environment efficiently.

Keywords Heterogeneous AUVs system � Cooperative
hunting � Spinal neural system � Fuzzy rule � Genetic
algorithm

1 Introduction

Autonomous underwater vehicle (AUV) is the key tool for

the future exploration and exploitation of marine world and

can complete various underwater operations, such as

underwater objects search and submarine scientific

research [2, 4, 19, 35, 42]. Multiple AUV system enables

individuals to cooperate with each other to execute difficult

tasks, offering greater advantage over a single AUV in

terms of diversity, robustness, reliability and efficiency, so

it is the inevitable development direction in the AUV

research field [3, 8, 34].

This paper focuses on the cooperative hunting problem

for heterogeneous AUVs system, which is a very important

and challenging task in the field of multiple AUVs. A lot of

work has been done for the cooperative hunting problem.

For example, Cao et al. [5] proposed a multirobot hunting

method based on a distributed control approach using local

coordinate systems. Ni and Yang [22] studied the problem

of real-time cooperative hunting by multirobots in

unknown environments and proposed a bio-inspired neural

network-based method. Song et al. [28] presented a

mathematical model of multirobot cooperative hunting

behavior. However, there are obvious differences between

the hunting tasks for the ground mobile robot and the

underwater robot. For example, the underwater
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environment is very complicated, which is three-dimen-

sional (3D) and has more uncertainties [13, 37, 45]. In

addition, environmental detection is difficult and commu-

nication bandwidth in underwater environment is limited

[10, 44]. So, the general cooperative hunting approaches

for the ground mobile robot cannot be used directly for

multiple AUVs.

Many researches have been proposed to deal with var-

ious tasks in the cooperative hunting task. For example,

Zhu et al. [43] proposed an improved self-organizing map

and velocity synthesis method for the dynamic task

assignment and path planning of multi-AUV system. Jung

et al. [15] proposed a localization method of AUVs by

exploiting visual measurements of underwater structures

and artificial landmarks. Liu et al. [17] presented a col-

laborative path planning method for multi-AUVs under the

influence of time-varying ocean currents, based on the

dynamic programming algorithm. Those methods dis-

cussed above made the foundations for the multi-AUV

hunting task. However, few of those methods above con-

sidered the cooperative hunting task as a whole, and the

complexity of the hunting task in the unknown underwater

environment is ignored.

The method of cooperative hunting for multiple AUVs

should consider not only the safety of the AUVs, but also

the cooperative efficiency [7, 14, 39]. To deal with the

problem of the cooperative hunting for multiple AUVs in

unknown 3D environment, some methods have been pro-

posed. For example, Huang et al. [14] proposed a multi-

AUV cooperative hunting algorithm based on bio-inspired

neural network in 3D underwater environment with

obstacles. Abreu et al. [1] presented a coverage path

planning technique for search operations which takes into

account the vehicle’s position and detection performance

uncertainties. However, there are still some shortcomings

in the existing methods that should be solved, such as the

low efficiency of the target search in the complex 3D

underwater environment, and the complex computation in

the cooperative pursuit method.

There are two main tasks in the cooperative hunting for

multiple AUVs, namely the target search and pursuit, in

which target search is the prerequisite for the hunting task

[4, 40]. There are two kinds of target search methods,

according to the target information. One is based on known

information of target prior distribution, such as heuristic

search methods [9, 32]. The other is based on completely

unknown target information, such as the region search

methods [23]. In the target pursuit stage, a pursuit alliance

should be set up firstly when there are several targets. The

adaptivity of the method to construct an alliance is very

important for the overall efficiency of the cooperative

hunting task.

Recently, more and more researchers focused on the

bio-inspired methods, which is a hot area of research in

multi-AUV control field [20]. For example, Sun et al. [29]

presented a bio-inspired cascaded control approach for

three-dimensional tracking control of unmanned underwa-

ter vehicles. Phillips et al. [24] developed an analytical

model based on a similar mechanism used by fish to predict

which flow frequencies excite the natural vibration modes

of a flexible cylinder. Liu et al. [16] proposed a bio-in-

spired geomagnetic navigation model based on course

constraint strategy under anomalies field disturbing for

AUV. In this paper, to overcome the problems and com-

plete the cooperative hunting task efficiently, a novel bio-

inspired intelligent method is proposed, which is based on

an improved spinal neural system [20, 27].

In the proposed approach, a novel search method is

firstly proposed, where the search area is divided into many

parts based on the underwater operation depth, and a col-

umn parallel search strategy is used to cover the search area

orderly. To keep search formation of multi-AUV system, a

formation control method based on the spinal neural sys-

tem is proposed in this study. After retrieving the target

information, a dynamic alliance for the target pursuit is

determined using a bidirectional negotiation strategy.

Then, an improved genetic algorithm is used to assign the

pursuit direction for each AUV toward the target. The

cooperative hunting method in this paper takes full con-

sideration of the obstacles, making the pursuit task more in

line with the actual situation and improving the practicality

of the method.

The main contributions of this paper are summarized as

follows. (1) A cooperative hunting task in 3D unknown

underwater environment is presented, which is completed

by two different types of heterogeneous AUVs. (2) A

biologically inspired spinal neural system-based method is

proposed for this task, which is an integration of several

methods. (3) The ability of the spinal neural system-based

method is improved, considering various actual situations

in the hunting task. (4) Some simulations were conducted

in 3D underwater environments, where various situations

of the hunting task in real underwater environments were

simulated, such as the obstacles in water, underwater

mountains and damage of AUVs.

This paper is organized as follows. Section 2 presents

the problem statement. The proposed cooperative hunting

method for multiple AUVs based on spinal neural system is

given in Sect. 3. Section 4 gives the simulation studies and

the result analysis. The performance of the proposed

approach is discussed in Sect. 5. Finally, conclusions are

given in Sect. 6.
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2 Problem Statement

In this paper, the heterogeneous AUVs cooperative hunting

problem in unknown 3D environment is studied, and a

cooperative hunting approach based on an improved spinal

neural system is proposed. In this study, the environment

information and the location of the target are completely

unknown at the beginning of the hunting task, but each

AUV is considered as an omnidirectional robot, having a

360� visual capability and the abilities to communicate

with other AUVs, recognize each other, identify the target,

detect obstacles and determine their locations in real time.

In the hunting task (denoted by W) studied in this paper,

a heterogeneous AUVs system (denoted by XH) is used,

where the AUV for search (denoted by ASi) is different

from the AUV for pursuit (denoted by APi). The search

AUV is assumed to have some more advanced sensors for

target detection, and bigger energy storage capacity, which

can complete the search task efficiently and more quickly.

The pursuit AUV is assumed to have some special abilities

(such as good mobile abilities and higher intelligence for

cooperation), which is suitable for pursuit. It means that

AUVs are identical for the same tasks, but heterogeneous

for different tasks.

The workflow of the cooperative hunting task by the

heterogeneous AUVs system is as follows: (1) The search

task is conducted by the search AUVs, till the designated

area is completely covered and all the targets in this area

are found. (2) All the targets are marked and their infor-

mation is sent to the pursuit AUVs. (3) The pursuit AUVs

form dynamic alliances and conduct the pursuit task based

on the target information. (4) When all the targets are

caught, the hunting task is completed. The workflow of the

hunting task is shown in Fig. 1, and the solutions for the

three main procedures will be introduced in the next

section.

Remark The main objective of this paper is to study the

cooperative hunting by a multi-AUV system. The concrete

technologies, such as fault diagnosis, environment detec-

tion and underwater communication, are not introduced in

this study, which have been focused in other literature

[11, 36, 38].

3 Proposed Approach

In order to complete the cooperative hunting task for

heterogeneous AUVs system in an unknown 3D under-

water environment, some key problems should be solved

efficiently, including the formation control in the search

stage, the dynamic alliance construction and the pursuit

direction assignment. In this paper, an integrated approach

based on an improved spinal neural system is proposed,

which is presented in details as follows.

3.1 Spinal Neural System-Based Formation Control

for Multi-AUV Search

In the search stage, how to improve the search efficiency

and the search success rate are the key issues. According to

obstacle distribution in underwater environment and the

kinetic characteristic of AUVs, the partition search strategy

based on the underwater depth (as shown in Fig. 2) is used

in this paper, where the search area is divided as follows:

Areai ¼ di to diþ1; i ¼ 1; 2; ...;N ð1Þ

Single
target

Yes

Multiple 
targets

No

Start

Search stage

The environment 
is covered?

Find target?

Dynamic alliance

Directions assignment

All targets caught?

End

Targets pursuit

Yes

No

No target

Fig. 1 The workflow diagram of the hunting task in this study
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where Areai denotes the ith subarea, di is depth and N is the

total number of subareas, which is decided by the detection

ability of AUV and the depth of the environment.

In order to minimize the number of AUVs and expand

the search range, the AUV does not only need to avoid

obstacles, but also it should maintain a certain formation

with other AUVs [12]. So, a column parallel search strat-

egy is used in this study (see Fig. 3). The formation control

is very important for improving the search success rate. In

this study, an improved spinal neural system inspired

method is used for the formation control. The main reason

of using this spinal neural system inspired method is that it

has both the advantages of behavior-based methods and the

empirical methods [18, 26, 27].

The basic work mechanism of this spinal neural system

is as follows: The spinal neural system obtains the input

environmental information of the sensory organs and reacts

after fusion, and then, the simple fundamental movements

(such as jump, claws and other acts) are stimulated. This

method simplifies the fusion of perceptual information and

the rules of behavior decision, so it can make a decision

efficiently, which is suitable for the formation control of

multi-AUV system in the complex unknown underwater

environment.

In this spinal neural system-based method, there are

three procedures, namely sensor data fusion, behavior

mapping of spinal nerve fields and fuzzy control. Here, the

sensory data are assumed to be correct enough, so the

sensor data fusion is not introduced in this study. (The

details can be seen in [27].) The mapping between the input

information and the spinal neural system process is shown

in Fig. 4.

As shown in Fig. 4, the final decision in the proposed

spinal neural system-based method is based upon the

environment information F, the location information G and

the team information H, to obtain the behavior B. The

environment information F is obtained from the onboard

sensors, which is marked by:

Y

1d

2d

3d

4d

1Area

2Area

3Area

Underwater mountains Underwater mountains

Obstacles

X

Z

Fig. 2 The partition search strategy based on the underwater

operation depth

(a)

(b)

z

/x y

2R

R

De
pt

h

y

x

2R

AUV

A
U
V

A
U
V

Fig. 3 The column parallel search strategy: a multi-AUV column

formation observed from the x–z or y–z plane; b the AUV

predetermined search path observed from the x–y plane
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f 1i ¼
0; No obstacle up forward of ASi

1; Some obstacles up forward of ASi

�

f 2i ¼
0; No obstacle forward of ASi

1; Some obstacles forward of ASi

�

f 3i ¼
0; No obstacle down forward of ASi

1; Some obstacles down forward of ASi

�
ð2Þ

The location information G is the desired position of the ith

AUV (Asi) to its real position, which is marked by:

gi ¼
�1; It is in the front lower

0; It is in the right ahead

1; It is in the front upper

8><
>: ð3Þ

The team information H is decided by the movement status

of the neighboring AUV to the current AUV (Asi), which is

denoted by:

hki ¼
�1; It is moving down forward

0; It is moving forward

1; It is moving up forward

8><
>: ð4Þ

where k ¼ 1; 2, denotes the neighboring AUV above Ai and

below Ai, respectively. If there is no any AUV above or

below the current AUV, hki is set as 0.

In this study, there are three cases of behavior B, namely

moving up-forward, moving forward and moving down-

forward:

B1 ¼ fVF ;VUg;B2 ¼ fVFg;B3 ¼ fVF;VDg ð5Þ

where VF means moving forward, VU means moving

upward and VD means moving downward.

In the spinal neural system-based method, the fuzzy

control is used for the decision of the movement states of

search AUVs [31], to realize the formation control. The

fuzzy rules are listed in Fig. 5.

The search process of the proposed spinal neural sys-

tem-based method is summarized as follows:

Step 1: Divide the 3D underwater environment to

N subareas, and each subarea is assigned to a search group

with M AUVs.

Step 2: The search group forms a column parallel search

formation and plans a search path;

Step 3: Each AUV in the search group decides its

movement using the spinal neural system-based method,

based on current environment, positions of other AUVs and

the search path.

Step 4: Each AUV begins to search in its own search

area. If the environment is completely searched and all the

targets are found, the search task is end, otherwise, go to

Step 3.

3.2 Dynamic Alliance Based on Bidirectional

Negotiation Method

When the search stage ends, the information of all the

targets will be sent to the pursuit AUVs and the pursuit

stage begins. Before pursuit task begins, each target should

be assigned to a pursuit team, which is a dynamic alliance

problem. In this study, a multi-AUV dynamic alliance

assignment strategy based on the bidirectional negotiation

method is proposed.

In the proposed dynamic alliance assignment strategy,

not only the distance from AUV to target is taken into

account, but also the number of pursuit AUVs for each

target and the balance among all the teams are considered.

1f

2f

3f

g

1h

2h

1B

2B

3B

Spinal Neural 
System

F
Behaviors of 

AUV

G

H

FV

UV

DV

Fig. 4 The mapping between the input information and the behaviors

based on the spinal neural system

1 2 3

1 2 3

1 2 3

1 2 3 1

1 2 3 1

1

(1) If 0 & 1& 1, Then { , }
(2) If 1& 0 & 1, Then { }
(3) If 1& 1& 0, Then { , }
(4) If 1& 1& 1& 1, Then { , }
(5) If 1& 1& 1& 1, Then { , }
(6) If 0

F U

F

F D

F U

F D

f f f B V V
f f f B V
f f f B V V
f f f h B V V
f f f h B V V
f

≠

== == == =

== == == =

== == == =

== == == − =

== == == == − =

==

1 2 3 2

1 2 3 2

2 3 1

1 2 3 1 2

1 2

(12) If 0 & 1 & 0 & 0 & 1, Then { , }

(13) If 0 & 1 & 0 & 0 & 1, Then { , }

& 0 & 1& 1, Then { , }

(17) If 0 & 0 & 0 & 1& 1, Then { }
(18) If 0 & 0 &

F D

F U

F U

F

f f f h g V V
f f f h g V V

f f h B V V

f f f h h B V
f f

== == == == == −

== == == == ≠ −

== == == =

== == == == == − =

== == 3 1 2

1 2 3 1 2

1 2 3 1 2

0 & 1& 1, Then { }
(19) If 0 & 0 & 0 & 1| | 1, Then { , }
(20) If 0 & 0 & 0 & 1 | | 1, Then { , }

F

F U

F D

f h h B V
f f f h h B V V
f f f h h B V V

== == − == =

== == == == == =

== == == == − == − =

Rule Base

Fig. 5 The proposed rule base for the spinal neural system-based

method
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An example of the dynamic alliance assignment method

based on the proposed strategy is shown in Fig. 6.

The AUV chooses the desired pursuit target according to

the target location and its own situation firstly; this is the

choice process. For example, AUV1 (A1) chooses target2

(T2), A4 chooses T1, etc. (see Fig. 6a). After the choice

process of AUVs, the targets begin to choose AUV. As

shown in Fig. 6b, five AUVs are chosen by their desired

targets, except A2. So, it is time for the other round of the

choice. The AUV that is abandoned by its desired target

can choose a new desired target, and then, it will also be

chosen again. After several rounds of this bidirectional

negotiation selection, the dynamic alliance is established

(see Fig. 6c). This kind of strategy is simple and efficient.

The pseudocode of the proposed bidirectional negotiation

method for the dynamic alliance is shown in Fig. 7.

Remark Based on the proposed bidirectional negotiation

strategy, each AUV in the alliance will decide its pursuit

target automatically, when the situations of other AUVs,

the environment and the target change. Hence, the pro-

posed dynamic alliance assignment strategy is distributed.

This performance is very important for the multi-AUVs

cooperation in complex underwater environment, which

has lots of uncertainties.

3.3 Pursuit Direction Assignment Method Based

on Genetic Algorithm

The final and important stage is to round up the target, after

the dynamic alliance is established. So, each AUV in the

same alliance should be assigned a pursuit direction to the

target to achieve the pursuit task efficiently, which is an

optimal solution search problem [30, 41]. In this paper, the

AUV is not explicitly assigned a pursuit location coordi-

nate, but distributed a direction (direction is expressed by

an angle of altitude h and azimuth /). After these

directions are determined, AUV adjusts the pursuit location

coordinate according to the distance between AUV and

target during the pursuit process.

(c)(b)(a)

1T
4pA

1pA

3T
3pA

2pA

6pA

5pA

2T

1T
4pA

1pA

3T
3pA

2pA

6pA

5pA

2T

1T
4pA

1pA

3T
3pA

2pA

6pA

5pA

2T

Fig. 6 An example of the proposed bidirectional negotiation dynamic alliance assignment strategy: a AUVs choose pursuit targets; b targets

choose pursuit AUVs; c the results of dynamic alliance assignment

1 Initialize: , ; ,

     % Initialize the information of AUVs and targets;  

2 Calculate:

%Calculate the distance of each target to every AUV;
3

     %  is a function to judge the energy consumption of AUV and  is 
a function to get current energy of AUV; 

4  The AUVs choose the target: 

5 The targets choose AUV based on the choice of AUV:  

6 If there are some AUVs with enough energy left, go to (4), otherwise the 
bidirectional negotiation process is end and the dynamic alliance is 
constructed.  

Algorithm 1: The proposed dynamic alliance method

Fig. 7 The pseudocode of the proposed bidirectional negotiation

method for the dynamic alliance
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In this paper, a target pursuit direction assignment

method based on an improved genetic algorithm (GA) is

proposed. In the proposed method, the length of the chro-

mosome of GA-based method can change adaptively with

the number of members in the alliance, and a new fitness

function is presented, which will be introduced in detail as

follows.

(a) The coding schemewith adaptive length chromosome:

The primary task of using GA for optimal search is the

coding problem. In this study, solution of the optimal pursuit

directions assignment problem is a sequential set of the

corresponding directions for each AUV. So the chromosome

length should be equal to the AUV number (denoted by

NumA). Because the number of AUVs in each alliance is not

same and may be changed during the pursuit task, the length

of the chromosome needs to be adjusted adaptively based on

the number of AUVs, which is expressed as:

p ¼ fðhi;1;/i;1Þ; ðhi;2;/i;2Þ; :::; ðhi;NumA;/i;NumAÞg ð6Þ

where p is the chromosome used in the proposed GA-based

method.

(b) Fitness function: The fitness function is used to test

the fitness value of each solution. In this direction assign-

ment task, the fitness function should consider the fol-

lowing factors: (1) Whether there are any obstacles on the

temporary pursuit location. (2) Whether the pursuit direc-

tions are distributed evenly around the target. (3) Whether

the sum of the distances of each AUV to the pursuit

location is as small as possible. According to these factors

above, a new fitness function f(p) is presented:

f ðpÞ ¼ bðpÞ wCir

gapVarCirðpÞ þ 1
þ wDis

totalDisðpÞ þ 1

� �
ð7Þ

where bð�Þ is used to judge whether there is an obstacle;

gapVarCirð�Þ is a function to calculate the distribution

degree of directions; wCir is the weight of the distribution;

wDis is the weight of distance; and totalDis(p) is a function

to calculate the sum of distances between the current

position of AUV and the target.

(c) Genetic operators: In this paper, the genetic opera-

tors of the genetic algorithm are improved: (1) The muta-

tion operator is changed to the internal mutation operator

and the external mutation operator. The internal mutation

operator is a mutation in different parts of a chromosome,

and the external mutation operator is a mutation in dif-

ferent chromosomes. Namely, the internal mutation oper-

ator is to randomly change some genes of one

chromosome, and the external mutation operator is to

randomly replace one chromosome by a new one (see [25]

and [33] for details). (2) The population migration operator

is used. A part of the new individuals is produced into the

population according to the probability of migration, taking

the place of individuals with low fitness, increasing the

diversity of the population greatly, avoiding premature

convergence into the local extreme. In the selection pro-

cess, a roulette selection strategy is used [6, 25], where the

higher the fitness value is, the higher the selection proba-

bility is. The probability PðpiÞ of the ith individual pi
chosen to the next generation is calculated by

PðpiÞ ¼
f ðpiÞPPopSize

i¼1 f ðpiÞ
ð8Þ

After the pursuit direction for each pursuit AUV is decided,

the round-up position for each pursuit will be calculated. In

this study, the round circle concentration strategy (namely

the radius of the circle concentration will be reduced with

the movement of the AUVs) is used. Then the intersection

point of the pursuit direction and the round circle is the

next round-up position for the certain pursuit AUV.

Finally, the AUV will navigate to this position using some

navigation methods. In this study, a bio-inspired neural

network-based method is used for the AUV real-time path

planning (which can be seen in our previous work [21] for

details).

The whole workflow of the proposed method in the

cooperative hunting task is summarized as follows:

Step 1: Divide the 3D underwater environment and the

search AUVs begin the search stage based on the spinal

neural system;

Step 2: If the environment is completely searched, the

dynamic alliances for the pursuit AUVs are constructed by

the bidirectional negotiation method;

Step 3: Each AUV in the dynamic alliance is assigned a

pursuit direction based on the proposed GA-based method

and begins the pursuit stage;

Step 4: Each AUV is navigated to the target based on its

pursuit direction, by using the real-time path planning

method;

Step 5: If all the targets are caught, the hunting task is

end.

4 Simulation Studies

To test the effectiveness of the proposed method for the

heterogeneous AUVs cooperative hunting in unknown 3D

dynamic environment, some simulations are carried out by

a computer with 4G RAM and i5-4460S 2.9 GHz CPU at

the platform of MATLAB. To simplify the realization, the

assumptions in this study are as follows: (1) The AUVs and

targets are assumed as points without any shapes. (2) The

target is assumed to have some simple intelligence to avoid

being caught by the AUV system. (3) The AUV velocity is

greater than the target velocity, otherwise it will be difficult

to catch the targets. (4) The minimum number of the

678 International Journal of Fuzzy Systems, Vol. 20, No. 2, February 2018
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pursuit AUVs used to catch one target is 4. The parameters

in all the simulations are the same and given in Table 1.

The initial positions of the search AUVs are

As1 ¼ ð10; 10; 16Þ, As2 ¼ ð10; 10; 32Þ, As3 ¼ ð10; 10; 48Þ,
and As4 ¼ ð10; 10; 64Þ.

Remark (1) The shape of the AUV is a very important

factor that should be considered in the control of actual

AUVs. To deal with this problem, the obstacles are

enlarged properly in the simulations. (2) The orientation

angle of the AUV is just the movement direction in this

study. (3) If the number of the usable pursuit AUVs in the

system for one target is less than 4, the task is failed.

4.1 Single Target Simulation

In this simulation, there is only one target in the environ-

ment. Firstly, the search AUVs start to search from their

initial positions with a uniform column (shown in Fig. 8a).

The search process of the AUVs is shown in Fig. 8b. To

show the multiple AUVs formation control in the cooper-

ative search process, a Y-plane screenshot of the search

trajectories of the AUVs is shown in Fig. 8c (where

Y ¼ 58). The results in Fig. 8 show that the search AUVs

can adjust the search formation adaptively based on the

information of obstacles and the distance between neigh-

boring AUVs, and finally find the target efficiently. The

coordinate of the target is T1 ¼ ð50; 55; 15Þ, which will be

sent back to the pursuit AUV system immediately.

Since there is only one target, just one alliance is needed

for the pursuit task. After the alliance is set up, six AUVs

are assigned to the pursuit task. The initial positions of the

6 pursuit AUVs are Ap1 ¼ ð10; 10; 5Þ, Ap2 ¼ ð30; 20; 15Þ,
Ap3 ¼ ð15; 75; 15Þ, Ap4 ¼ ð15; 90; 30Þ, Ap5 ¼ ð80; 15; 20Þ,
Ap6 ¼ ð85; 65; 20Þ (see Fig. 9a). Firstly, each pursuit AUV

will obtain a pursuit direction calculated by the proposed

GA-based method and then start to pursue the target (see

Fig. 9b). The target will run toward the area of no hunters

when the pursuit AUVs come into the detection range of

the target (see Fig. 9c). Despite this, the target is caught by

pursuit AUVs from all directions at the position

(57, 62, 32) (shown in Fig. 9d). In this simulation, the

number of steps to catch the target is 551, and the total

response time of the spinal neural system-based method is

0.0915 s. So the response efficiency of the formation

controller is 0.0332 (ms/step). The result indicates that the

response speed of the spinal neural system-based method is

fast, which is very important for the cooperative hunting

task.

4.2 Multiple Targets Simulation

To test the performance of the proposed approach in

multiple targets hunting task, this simulation is conducted.

In this simulation, there are two targets, and the search

results are shown in Fig. 10. As shown in Fig. 10, two

targets are found successfully, and their positions are T1 ¼
ð40; 72; 15Þ and T2 ¼ ð70; 45; 20Þ. After the search stage is

completed, the target information is sent to the pursuit

AUV system.

Because there are two targets found in the environment,

two alliances should be constructed by the proposed bidi-

rectional negotiation strategy firstly. In this simulation, the

number of AUVs assigned to the pursuit task is 11, and

their initial positions are Ap1 ¼ ð10; 10; 8Þ,
Ap2 ¼ ð30; 10; 15Þ, Ap3 ¼ ð60; 15; 10Þ, Ap4 ¼ ð15; 85; 12Þ,
Ap5 ¼ ð30; 95; 15Þ, Ap6 ¼ ð10; 40; 10Þ, Ap7 ¼ ð95; 20; 10Þ,
Ap8 ¼ ð80; 15; 18Þ, Ap9 ¼ ð85; 65; 28Þ, Ap10 ¼ ð5; 60; 24Þ,
Ap11 ¼ ð90; 90; 30Þ, which are shown in Fig. 11a. Based on

the alliance strategy, the pursuit alliances for the targets are

T1=fAp3, Ap7, Ap8, Ap9, Ap11g and T2=fAp1, Ap2, Ap4, Ap5,

Ap6, Ap10g, respectively.
If all the pursuit AUVs are working normally, the AUV

in each alliance will catch its own target and not interfere

with other AUVs. The results in this normal states are

shown in Fig. 11. The two targets are caught at the position

T1 ¼ ð30; 79; 26Þ and T2 ¼ ð58; 76; 51Þ , respectively

(shown in Fig. 11d). The simulation results show that the

proposed cooperative hunting method for the heteroge-

neous AUVs is effective and practical.

4.3 AUV Damage Simulation

During the pursuit process, the AUV may break down due

to some accident. To further test the performance of the

proposed method in this state, a simulation is conducted,

where all the initial conditions and the search process are

the same as the simulation in Sect. 4.2, expect one pursuit

Table 1 Parameters of the proposed method and the simulations

Parameters Values Remarks

M 4 Number of search AUVs

R 10 Detection range of AUV (m)

S 100� 100� 70 Size of environment (m3)

PopSize 80 Size of population

Generation 100 Generation of population

CrossProb 0.6 Crossover probability

MutInProb 0.15 Internal mutation probability

MutOutProb 0.1 External mutation probability

SuppleProb 0.2 Migration probability
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AUV will break down. The simulation results in this state

are shown in Fig. 12.

In this simulation, the pursuit AUV AP8 in the alliance

for target T1 is assumed to fail at position (78, 43, 29)

when the pursuit process is at the 30th step (see Fig. 12b).

Because there are just four pursuit AUVs for target T1,

which cannot complete the task of target hunting effi-

ciently, and the balance between the alliances for T1 and T2
is broken, the alliances for the two targets should be

modified based on the real-time conditions. Then the

bidirectional negotiation process starts, based on the

information of the targets, the pursuit AUVs and the

environment. In this simulation, the pursuit AUV AP2 goes

to the first alliance. The two new alliances are T1 = fAp2,

Ap3, Ap7, Ap9, Ap11g and T2 = fAp1, Ap4, Ap5, Ap6, Ap10g,
respectively (see Fig. 12c). Finally, the two teams catch the

targets successfully at the position T1 ¼ ð44; 76; 47Þ and

T2 ¼ ð75; 78; 53Þ (as shown in Fig. 12d). The simulation

results show that even if the AUV failure occurs in the

hunting process, the proposed algorithm can adjust the

assignment as soon as possible and finally realize the multi-

target hunting task.

5 Discussions

The results of the simulations in Sect. 4 show that the

proposed method can achieve the heterogeneous AUVs

cooperative hunting task effectively in an unknown 3D

environment. The performances of the proposed method

are discussed in this section.

In order to verify the success rate of the proposed spinal

neural system-based search algorithm, it is compared with

the general random search algorithm. The workflow of the

random algorithm is that all the AUVs search the envi-

ronment randomly without any search strategies [23].

Some comparison simulations are conducted, where the

environment is the same as the first simulation in Sect. 4.1.

If the number of the maximum search steps is 600, the

proposed search strategy in 10 repetitive simulations can

ensure a 100% success rate; however, the success rate of

the random search algorithm is only 70%. In addition, the

communication between the AUVs in the proposed algo-

rithm is very small, where only the movement states of the

neighboring AUV are needed. But the information of all

the other AUVs should be communicated in the search

system based on the random search algorithm. This
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performance of the proposed algorithm is very important

for the AUV’s task, because the communication is very

difficult in the underwater environment.

To illustrate the advantage of the proposed pursuit

direction assignment method based on the improved

genetic algorithm, another comparison simulation is con-

ducted, where the proposed method is compared to the

fixed direction assignment strategy based on the negotia-

tion method (see [22, 43] for details). To easily show the

effectiveness of the pursuit direction assignment method,

here the pursuit positions for each AUV are used to eval-

uate the pursuit direction assignment methods. The pursuit

positions for AUVs based on the two methods are shown in

Fig. 13, where there are six AUVs for the pursuit task, and

their initial positions are Ap1 ¼ ð5; 2; 2Þ, Ap2 ¼ ð7; 2; 2Þ,
Ap3 ¼ ð9; 2; 2Þ, Ap4 ¼ ð11; 2; 2Þ, Ap5 ¼ ð13; 2; 2Þ,
Ap6 ¼ ð15; 2; 2Þ. The position of the target is

T1 ¼ ð10; 10; 10Þ. The evaluation results are listed in

Table 2. The results in Fig. 13 and Table 2 show that both

of the two methods can form a good round circle; however,

the results obtained by the proposed method are more

suitable, because each direction for the AUV is capable of

forming a round circle, and the distance between all the

AUVs and the pursuit positions is smaller than that of the

fixed direction assignment strategy.

6 Conclusions

The heterogeneous multi-AUV cooperative hunting prob-

lem in an unknown 3D environment is studied in this paper,

and a novel integrated method is proposed. In the proposed

method, an improved spinal neural system-based method is

presented for the multi-AUV search. In the pursuit stage, a

bidirectional negotiation method is proposed to construct

the dynamic alliance for multiple pursuit AUVs, and an

improved GA-based method is used to realize the pursuit

direction assignment. The proposed method can deal with

the problems in the cooperative hunting task efficiently.

The communication burden of the proposed method is less

than other methods, and the adaptivity of the proposed

method is high, which is very suitable for the cooperative

hunting of multiple AUVs in the complex 3D underwater

environment. In the future work, the real experiments for
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multiple AUVs hunting will be conducted to test the

practical performance of the proposed method. In addition,

the bio-inspired method will be studied further, to present

some more efficient methods for the applications in

heterogeneous multiple AUVs.

Acknowledgements The authors would like to thank the National

Natural Science Foundation of China (61203365, 61573128), the

Fundamental Research Funds for the Central Universities

(2015B20114), the National Key Research Program of China

(2016YFC0401606) and the Jiangsu Province Natural Science

Foundation (BK2012149) for their support of this paper.

References

1. Abreu, N., Cruz, N., Matos, A.: Accounting for uncertainty in

search operations using AUVs. In: 2017 IEEE OES International

Symposium on Underwater Technology. Haeundae, Busan,

Korea (2017)

2. Alaaeldeen, M.E.A., Duan, W.Y.: Overview on the development

of autonomous underwater vehicles (AUVs). J. Ship Mech. 20(6),
768–787 (2016)

3. Belbachir, A., Ingrand, F., Lacroix, S.: A cooperative architecture

for target localization using multiple AUVs. Intel. Serv. Robot.

5(2), 119–132 (2012)

4. Cao, X., Zhu, D., Yang, S.X.: Multi-AUV target search based on

bioinspired neurodynamics model in 3-D underwater environ-

ments. In: IEEE Transactions on Neural Networks and Learning

Systems PP(99) (2015). http://dx.doi.org/10.1109/TNNLS.2015.
2482501

5. Cao, Z.Q., Zhang, B., Wang, S., Tan, M.: Cooperative hunting of

multiple mobile robots in an unknown environment. Acta Autom.

Sin. 29(4), 536–543 (2003)

6. Chen, W.J., Jhong, B.G., Chen, M.Y.: Design of path planning

and obstacle avoidance for a wheeled mobile robot. Int. J. Fuzzy

Syst. 18(6), 1080–1091 (2016)

7. Couillard, M., Fawcett, J., Davison, M.: Optimizing constrained

search patterns for remote mine-hunting vehicles. IEEE J. Ocean.

Eng. 37(1), 75–84 (2012)

8. Cui, R., Li, Y., Yan, W.: Mutual information-based multi-AUV

path planning for scalar field sampling using multidimensional

RRT�. IEEE Trans. Syst. Man Cybern. Syst. 46(7), 993–1004
(2016)

9. Dadgar, M., Jafari, S., Hamzeh, A.: A PSO-based multi-robot

cooperation method for target searching in unknown environ-

ments. Neurocomputing 177, 62–74 (2016)

10. Das, B., Subudhi, B., Pati, B.B.: Co-operative control coordina-

tion of a team of underwater vehicles with communication con-

straints. Trans. Inst. Meas. Control 38(4), 463–481 (2016)

11. Eickstedt, D.P., Schmidt, H.: A low-frequency sonar for sensor-

adaptive, multi-static, detection and classification of underwater

targets with AUVs. In: Oceans Conference Record (IEEE),

vol. 3, pp. 1440–1447. San Diego, CA, USA (2003)

12. Hao, L., Gu, H., Kang, F., Yang, H.: Virtual-leader based for-

mation control with constant bearing guidance for underactuated

AUVs. ICIC Express Lett. 11(1), 117–125 (2017)

13. Huang, H., Zhu, D., Ding, F.: Dynamic task assignment and path

planning for multi-AUV system in variable ocean current envi-

ronment. J. Intell. Robot. Syst. Theory Appl. 74(3–4), 999–1002
(2014)

14. Huang, Z., Zhu, D., Sun, B.: A multi-AUV cooperative hunting

method in 3-D underwater environment with obstacle. Eng. Appl.

Artif. Intell. 50, 192–200 (2016)

15. Jung, J., Li, J.H., Choi, H.T., Myung, H.: Localization of AUVs

using visual information of underwater structures and artificial

landmarks. Intel. Serv. Robot. 10(1), 67–76 (2017)

16. Liu, K., Liu, M., Zhang, X., Li, H.: A bio-inspired geomagnetic

navigation model based on course constraint strategy under

anomalies field disturbing for AUV. In: OCEANS 2016-Shang-

hai. Shanghai, China (2016)

17. Liu, M., Xu, B., Peng, X.: Cooperative path planning for multi-

AUV in time-varying ocean flows. J. Syst. Eng. Electron. 27(3),
612–618 (2016)

18. Mataric, M.J.: Getting humanoids to move and imitate. IEEE

Intell. Syst. 15(4), 18–24 (2000)

19. Mon, Y.J., Lin, C.M.: Supervisory recurrent fuzzy neural network

guidance law design for autonomous underwater vehicle. Int.

J. Fuzzy Syst. 14(1), 54–64 (2012)

20. Ni, J., Wu, L., Fan, X., Yang, S.X.: Bioinspired intelligent

algorithm and its applications for mobile robot control: a survey.

Comput. Intell. Neurosci. 2016 Article ID: 3810903 (2016)

21. Ni, J., Wu, L., Shi, P., Yang, S.X.: A dynamic bioinspired neural

network based real-time path planning method for autonomous

underwater vehicles. Computational Intelligence and Neuro-

science 2017, Article ID: 9269742 (2017)

22. Ni, J., Yang, S.X.: Bioinspired neural network for real-time

cooperative hunting by multirobots in unknown environments.

IEEE Trans. Neural Netw. 22(12), 2062–2077 (2011)

23. Ni, J., Yang, S.X.: A fuzzy-logic based chaos GA for cooperative

foraging of multi-robots in unknown environments. Int. J. Robot.

Autom. 27(1), 15–30 (2012)

24. Phillips, A., Blake, J., Smith, B., Boyd, S., Griffiths, G.: Nature in

engineering for monitoring the oceans: towards a bio-inspired

flexible autonomous underwater vehicle operating in an unsteady

flow. Proc. Inst. Mech. Eng. Part M J. Eng. Maritime Environ.

224(4), 267–278 (2010)

25. Qu, H., Xing, K., Alexander, T.: An improved genetic algorithm

with co-evolutionary strategy for global path planning of multiple

mobile robots. Neurocomputing 120, 509–517 (2013)

26. Rusu, P., Petriu, E.M., Whalen, T.E., Cornell, A.: Behavior-based

neuro-fuzzy controller for mobile robot navigation. IEEE Trans.

Instrum. Meas. 52(4), 1335–1340 (2003)

27. Siddique, N.H., Amavasai, B.P.: Bio-inspired behaviour-based

control. Artif. Intell. Rev. 27(2–3 SPEC. ISS.), 131–147 (2007)

28. Song, Y., Li, Y., Li, C., Ma, X.: Mathematical modeling and

analysis of multirobot cooperative hunting behaviors. J. Robot.

2015, Article ID: 184256 (2015)

Table 2 The comparison results of the two pursuit direction assignment strategies

Assignment strategy The distance between AUV and the respective target (m) The total distances (m)

Ap1 Ap2 Ap3 Ap4 Ap5 Ap6

The proposed method 11.36 14.9 7.87 6.78 12.85 15.91 69.67

The fixed directions 9.9 11.49 15.3 12 15.56 9.9 74.14

684 International Journal of Fuzzy Systems, Vol. 20, No. 2, February 2018

123

http://dx.doi.org/10.1109/TNNLS.2015.2482501
http://dx.doi.org/10.1109/TNNLS.2015.2482501


29. Sun, B., Zhu, D., Yang, S.X.: A bio-inspired cascaded approach

for three-dimensional tracking control of unmanned underwater

vehicles. Int. J. Robot. Autom. 29(4), 349–358 (2014)

30. Tsalatsanis, A., Yalcin, A., Valavanis, K.P.: Dynamic task allo-

cation in cooperative robot teams. Robotica 30(5), 721–730

(2012)

31. Wong, C.C., Cheng, C.T., Huang, K.H., Yang, Y.T.: Fuzzy

control of humanoid robot for obstacle avoidance. Int. J. Fuzzy

Syst. 10(1), 1–10 (2008)

32. Wu, F., Yang, R.J., Gao, Q.W.: Heuristic search for moving

underwater targets based on Markov process. J. Electron. Inf.

Technol. 32(5), 1088–1093 (2010)

33. Wu, X., Feng, Z., Zhu, J., Allen, R.: GA-based path planning for

multiple AUVs. Int. J. Control 80(7), 1180–1185 (2007)

34. Xiang, X., Liu, C., Lapierre, L., Jouvencel, B.: Synchronized path

following control of multiple homogenous underactuated AUVs.

J. Syst. Sci. Complex. 25(1), 71–89 (2012)

35. Xiang, X., Yu, C., Niu, Z., Zhang, Q.: Subsea cable tracking by

autonomous underwater vehicle with magnetic sensing guidance.

Sensors (Switzerland) 16(8), Article number: 1335 (2016)

36. Xiang, X., Yu, C., Zhang, Q.: On intelligent risk analysis and

critical decision of underwater robotic vehicle. Ocean Eng. 140,
453–465 (2017)

37. Xiang, X., Yu, C., Zhang, Q.: Robust fuzzy 3D path following for

autonomous underwater vehicle subject to uncertainties. Comput.

Oper. Res. 84, 165–177 (2017)

38. Xiao, G., Wang, B., Deng, Z., Fu, M., Ling, Y.: An acoustic

communication time delays compensation approach for master-

slave AUV cooperative navigation. IEEE Sens. J. 17(2), 504–513
(2017)

39. Xing, W., Zhao, Y., Karimi, H.R.: Convergence analysis on

multi-AUV systems with leader-follower architecture. IEEE

Access 5, 853–868 (2017)

40. Xu, M., Pan, Z., Lu, H., Ye, Y., Lv, P., Rhalibi, A.E.: Moving-

target pursuit algorithm using improved tracking strategy. IEEE

Trans. Comput. Intell. AI Games 2(1), 27–39 (2010)

41. Yi, X., Zhu, A., Yang, S.X., Luo, C.: A bio-inspired approach to

task assignment of swarm robots in 3-D dynamic environments.

IEEE Trans. Cybern. 47(4), 974–983 (2017)

42. Yoon, S., Qiao, C.: Cooperative search and survey using auton-

omous underwater vehicles (AUVs). IEEE Trans. Parallel Distrib.

Syst. 22(3), 364–379 (2011)

43. Zhu, D., Huang, H., Yang, S.X.: Dynamic task assignment and

path planning of multi-AUV system based on an improved self-

organizing map and velocity synthesis method in three-dimen-

sional underwater workspace. IEEE Trans. Cybern. 43(2),
504–514 (2013)

44. Zhu, D., Li, W., Yan, M., Yang, S.X.: The path planning of AUV

based on D-S information fusion map building and bio-inspired

neural network in unknown dynamic environment. Int. J. Adv.

Robot. Syst. 11(1), 415–429 (2014)

45. Zhu, D., Lv, R., Cao, X., Yang, S.X.: Multi-AUV hunting algo-

rithm based on bio-inspired neural network in unknown envi-

ronments. Int. J. Adv. Robot. Syst. 12(11), 689–700 (2015)

Jianjun Ni received his Ph.D.

degree in Department of Infor-

mation and Electrical Engi-

neering from China University

of Mining and Technology,

Xuzhou, China, in 2005. He was

a Visiting Professor with the

Advanced Robotics and Intelli-

gent Systems (ARIS) Labora-

tory at the University of Guelph

in Canada from November 2009

to October 2010. He is currently

a Professor of College of IOT

Engineering at Hohai Univer-

sity, China. He has published

over 100 papers in related international conferences and journals. He

serves as an Associate Editor of International Journal of Complex

Systems and Editorial Member of several other journals. His research

interests include fuzzy systems, neural networks, robotics, machine

intelligence and multi-agent system.

Liu Yang received the B.S.

degree from Hohai University,

China, in 2016. Currently, she is

working toward the M.S. degree

at the Department of Detection

Technology and Automatic

Equipment, College of IOT

Engineering, Hohai University.

Her research interests include

heterogeneous robots coopera-

tion and bio-inspired intelligent

algorithms.

Liuying Wu received the B.S.

degree from Hohai University,

China, in 2014. Currently, she is

working toward the M.S. degree

at the Department of Detection

Technology and Automatic

Equipment, College of IOT

Engineering, Hohai University.

Her research interests include

robot control and bio-inspired

intelligent algorithms.

J. Ni et al.: An Improved Spinal Neural System-Based Approach… 685

123



Xinnan Fan received the Ph.D.

degree from the College of

Computer and Information

Engineering, Hohai University,

Nanjing, China, in 2009. Cur-

rently, he is a Professor of the

College of IOT Engineering,

Hohai University, China. Since

2013, he has been the Director

of Hohai University Changzhou

Campus. He has been a reviewer

of a number of international

journals. His research interests

include robotics, machine intel-

ligence, intelligent image pro-

cessing and automation.

686 International Journal of Fuzzy Systems, Vol. 20, No. 2, February 2018

123


	An Improved Spinal Neural System-Based Approach for Heterogeneous AUVs Cooperative Hunting
	Abstract
	Introduction
	Problem Statement
	Proposed Approach
	Spinal Neural System-Based Formation Control for Multi-AUV Search
	Dynamic Alliance Based on Bidirectional Negotiation Method
	Pursuit Direction Assignment Method Based on Genetic Algorithm

	Simulation Studies
	Single Target Simulation
	Multiple Targets Simulation
	AUV Damage Simulation

	Discussions
	Conclusions
	Acknowledgements
	References




