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Abstract In this paper, subject to both fully unknown

dynamics and complex input nonlinearities including

unknown control directions and dead zones, a Nussbaum-

based adaptive fuzzy trajectory tracking control scheme of

an unmanned surface vehicle is addressed by combining

adaptive fuzzy backstepping technique with Nussbaum

approach. The dead-zone input nonlinearity is firstly divi-

ded into input-dependent functions and time-varying input

coefficients which can be treated as system uncertainties.

Together with disturbances, unknown dynamics and

uncertainties, the lumped nonlinearity is online approxi-

mated by employing an adaptive fuzzy approximator.

Within the backstepping framework, a Nussbaum gain

function is further designed to tackle unknown control

directions, and thereby devising an adaptive fuzzy trajec-

tory tracking control scheme which is constructed recur-

sively to deal with complex input nonlinearities and fully

unknown dynamics. Theoretical analysis reveals that all

signals of the closed-loop tracking system are bounded and

tracking errors can converge to an arbitrarily small neigh-

borhood of zero. Simulation studies demonstrate the

effectiveness and superiority of the proposed approach.

Keywords Adaptive fuzzy control � Fuzzy approximation �
Fully unknown dynamics � Complex input nonlinearities �
Unmanned surface vehicles

1 Introduction

Tracking control of an unmanned surface vehicle (USV) is

a critical and challenging issue which has attracted great

attention from both marine and control fields [1–10]. Due

to harsh environments, system uncertainties, unknown

dynamics and complex nonlinearities, etc, it becomes

extremely involved to synthesize an effective model-based

tracking controller for an USV.

Various results have been proposed for nonlinear com-

plex USV systems by using advanced control techniques

including feedback linearization [11], robust control

[12–14] and sliding-mode control [15–18]. Note that the

foregoing approaches require explicit parametric dynamics

and bounded uncertainties and/or disturbances. However,

an USV would inevitably suffer from complex uncertain-

ties, hydrodynamics and unknown disturbances, thereby

resulting in great difficulties in tracking controller design

and synthesis for such a complex USV system.

In recent years, approximation-based control methods

via fuzzy logic systems and/or neural networks [19–23]

have been developed to deal with model uncertainties and

unknown disturbances associated with nonlinear systems.

In [24], a novel adaptive fuzzy control method for tracking

an USV system was proposed, whereby an online con-

structive fuzzy approximator is created to deal with

unmodeled dynamics and external disturbances. Combin-

ing the backstepping technique with adaptive approxima-

tion [25], tracking a fully actuated marine surface vessel

was addressed by an adaptive neural network controller

& Ning Wang

n.wang.dmu.cn@gmail.com

Ying Gao

snoopysong@sina.com

Zhuo Sun

18042684439@163.com

Zhongjiu Zheng

zhengzhongjiu@163.com

1 Center for Intelligent Marine Vehicles, and School of Marine

Electrical Engineering, Dalian Maritime University,

Dalian 116026, China

123

Int. J. Fuzzy Syst. (2018) 20(1):259–268

https://doi.org/10.1007/s40815-017-0387-x

http://orcid.org/0000-0003-1745-1425
http://crossmark.crossref.org/dialog/?doi=10.1007/s40815-017-0387-x&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s40815-017-0387-x&amp;domain=pdf
https://doi.org/10.1007/s40815-017-0387-x


which can tackle multiple output constraints. An finite-time

disturbance observer-based accurate tracking control

scheme for an USV with unknown disturbances was pro-

posed in [26], whereby unknown uncertainties and distur-

bances can be exactly rejected. Leonessa et al. [27]

introduced neural networks to handle unmodeled dynamics

of the USV, and thereby enhancing the tracking perfor-

mance and the robustness. In [28], a novel self-constructing

fuzzy neural network was developed to approximate sys-

tem uncertainties and unknown disturbances. Unlike pre-

defined-structure approximation approaches, the self-

constructing fuzzy neural network is able to online self-

construct dynamic-structure fuzzy neural approximation by

generating and pruning fuzzy rules and achieve accurate

approximation and trajectory tracking, simultaneously. It

should be pointed out that the aforementioned results in

[24–27] are only available for the USV with exactly known

inertia dynamics. In practice, inertia masses and hydrody-

namics can hardly be identified accurately. To address the

foregoing challenges, a direct adaptive fuzzy tracking

control scheme in [29] is proposed for an USV with fully

unknown inertia dynamics, whereby the backstepping

technique and fuzzy approximation are incorporated such

that tracking errors can converge to an arbitrarily small

neighborhood of zero. It should be noted that previous

results did not consider involved issues on control input

nonlinearites and/or constraints.

Recently, input saturations pertaining to an USV have

been extensively investigated by employing cascaded

kinematic and dynamic linearizations [30], adaptive aux-

iliary compensation [31], and nested saturation [32–35],

respectively. In this context, designed control input signals

can ensure predefined boundedness. In addition to afore-

mentioned input saturation issue, much more involved

input nonlinearities including unknown control directions

and actuator dead zones represent typical nonsmooth con-

straints on control input signals which widely appear in an

USV. In practice, actuator dead zones would critically

degrade control system performance, and give rise to

undesirable inaccuracy, and even would destroy system

stability. However, to our best knowledge, in comparison

with flight vehicles [36, 37], little attention in the literature

has been paid to foregoing issues on complex input non-

linearities composed by unknown control directions and

dead zones pertaining to an USV.

Motivated by above observations, for an USV system

with complex input nonlinearities including unknown

control directions and dead zones in addition to fully

unknown dynamics, a Nussbaum-based adaptive fuzzy

trajectory tracking control approach is investigated in this

paper. To be specific, the dead-zone input nonlinearity is

firstly divided into input-dependent functions and time-

varying input coefficients which can be treated as system

uncertainties. Together with fully unknown dynamics and

disturbances, complex input nonlinearities are encapsulated

into lumped unknown dynamics which can be further

identified online by an adaptive fuzzy approximator. Fur-

thermore, a Nussbaum gain function is employed to solve

the unknown control direction problem, and thereby con-

tributing to the entire control scheme which can deal with

complex input nonlinearities and fully unknown dynamics,

simultaneously. Eventually, trajectory tracking errors can

be rendered to arbitrarily small neighborhood of zero.

The remainder of this paper is organized as follows. The

problem formulation and preliminaries are given in Sect. 2.

An adaptive fuzzy trajectory tracking control scheme is

addressed in Sect. 3, and the corresponding stability anal-

ysis is presented in Sect. 4. Simulation studies are con-

ducted in Sect. 5. Section 6 concludes this work.

2 Problem Formulation

2.1 USV Model

Consider an USV dynamic system with unknown distur-

bances and complex input nonlinearities, as shown in

Fig. 1, as follows:

_g ¼ RðuÞx
_x ¼ �M�1 CðxÞxþ DðxÞx½

þ gðg;xÞ þ sd � qsðmÞ�
ð1Þ

where g ¼ ½x; y;u�T are the position (x, y) and heading

angle ðuÞ of the USV in the earth-fixed frame, x ¼
½u;x; r�T denote the corresponding linear velocities ðu;xÞ
and angular rate (r) in the body-fixed frame, s ¼
½su; sx; sr�T and sd ¼ ½sdu; sdx; sdr�T are control input non-

linearities and the unknown disturbances, respectively, g ¼
½gu; gx; gr�T is the vector of gravitational/buoyancy forces
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Fig. 1 Earth-fixed OXoYo and body-fixed AXY coordinate frames

260 International Journal of Fuzzy Systems, Vol. 20, No. 1, January 2018

123



and moments, 0\q\1 is the bound unknown parameter

and is referred to as the control coefficient.

To be specific, as shown in Fig. 2, the control input

sðvÞ :¼ ½suðvuÞ; sxðvxÞ; srðvrÞ�T in (1) consists of nonsym-

metric dead zones and is defined as follows:

siðviÞ ¼
bðvi � briÞ; if vi � bri

0; if � bli\vi\bri

bðvi þ bliÞ; if vi � � bli

8
><

>:
ð2Þ

where v :¼ ½vu; vx; vr�T is the input of dead-zone, b stands

for the slopes of the dead-zone characteristic with

0\bmin\b\bmax; br ¼ ½bru; brx; brr�T and bl ¼
½blu; blx; blr�T represent the breakpoints of the input

nonlinearity.

In addition, RðuÞ is a rotation matrix given by

RðuÞ ¼
cosu � sinu 0

sinu cosu 0

0 0 1

2

6
4

3

7
5 ð3Þ

with the following properties:

RTðuÞRðuÞ ¼I; and

kRðuÞk ¼1; 8 u 2 ½0; 2p�
ð4Þ

The inertia matrix MðtÞ ¼ MTðtÞ[ 0; 8t, the skew-sym-

metric matrix CðxÞ ¼ �CTðxÞ of Coriolis and centripetal

and the damping matrix DðxÞ are provided by

M ¼
m11ðtÞ 0 0

0 m22ðtÞ m23ðtÞ
0 m32ðtÞ m33ðtÞ

2

6
4

3

7
5 ð5Þ

CðxÞ ¼
0 0 c13ðxÞ
0 0 c23ðxÞ

�c13ðxÞ � c23ðxÞ 0

2

6
4

3

7
5 ð6Þ

DðxÞ ¼
d11ðxÞ 0 0

0 d22ðxÞ d23ðxÞ
0 d32ðxÞ d33ðxÞ

2

6
4

3

7
5 ð7Þ

where detailed definitions can be found in [38]. Note that

the parameters c13; c23; d11; d22; d23; d32 and d33 are all

regarded as unknown nonlinearities due to the complex

hydrodynamics, thereby resulting in unknown dynamics

which can hardly be obtained accurately in practice.

In order to facilitate our control objective, generic

assumptions are required as follows:

Assumption 1 [29] The inertia matrix MðtÞ satisfies
0\M1 � kð _MðtÞÞ�M2; 8t ð8Þ

where M1 and M2 are unknown constants, kð�Þ denotes the
eigenvalue of a square matrix.

Assumption 2 [39–41] The slope b in the control input

nonlinearity (2) is nonzero, i.e., b 6¼ 0.

In this context, the dead-zone nonlinearity (2) can be

reformulated as a slowly time-varying input-dependent

function in the following form:

sðvÞ ¼ bvþ h ð9Þ

with h :¼ ½hu; hx; hr�T given by

hi ¼
�bbri; if vi � bri

�bvi; if � bli\vi\bri

bbli; if vi � � bli

8
><

>:
ð10Þ

Note that the nonlinearity hðtÞ is bounded, i.e.,

jhij � �hi :¼ bmaxfbri; blig; i 2 fu;x; rg.
Together with (1) and (10), the USV system with control

input nonlinearities can be rewritten as follows:

_g ¼ RðuÞx
_x ¼ �M�1ðtÞ CðxÞxþ DðxÞx½

þ gðg;xÞ þ sd � hðtÞ�
þ �qM�1ðtÞvðtÞ

ð11Þ

where �q ¼ qb.

2.2 Nussbaum Function Properties

In order to deal with unknown control directions, the

Nussbaum gain technique is employed in the sequel.

Definition 1 [42–44] A function NðnÞ is called a Nuss-

baum-type function if it has the following properties:

lim
s!1

sup
1

s

Z s

0

NðnÞdn ¼ 1 ð12Þ

lim
s!1

inf
1

s

Z s

0

NðnÞdn ¼ �1 ð13Þ

From Definition 1, one can find that Nussbaum func-

tions should have infinite gains and infinite switching fre-

quencies. There are many functions satisfying theFig. 2 Control input nonlinearity with dead zones
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foregoing conditions, e.g., expðn2Þ cosððp=2ÞnÞ; n2 cosðnÞ,
and n2 sinðnÞ.

In this paper, an even Nussbaum function is chosen as

n2 cosðnÞ. A key result on the property of Nussbaum

function gain is frequently used in controller design and

recalled here.

Lemma 1 [40, 45] Consider a special Nussbaum function

NðnÞ ¼ n2 cosðnÞ, and let V(t) and nðtÞ be smooth functions

defined on ½0; tf Þ with VðtÞ� 0 8t 2 ½0; tf Þ. If the following

inequality satisfies

_VðtÞ� � aV þ ð�qN 0ðnÞ � 1Þd _nþ b ð14Þ

where N 0ðnÞ ¼ oNðnÞ=on; a[ 0 and b[ 0 are constants,

�q is a nonzero constant, and d is some suitable constant,

then Vð�Þ; nð�Þ, and ð�qN 0ðnÞ � 1Þd _n must be bounded on

½0; tf Þ.

2.3 Control Objective and Implementation

In this context, our control objective is to design a Nuss-

baum-based adaptive fuzzy control scheme for trajectory

tracking the complex USV system in (1) with the ability to

tackle both complex input nonlinearities and fully

unknown dynamics, simultaneously, such that the actual

trajectory g can track the desired trajectory gd as precise as
possible.

To be specific, the proposed Nussbaum-based adaptive

fuzzy control scheme will be implemented by incorporat-

ing adaptive fuzzy approximation and Nussbaum gain

function into the backstepping framework. In this context,

adaptive fuzzy approximation and Nussbaum gain function

techniques are expected to deal with complex unknowns

and input nonlinearities, respectively.

3 Adaptive Fuzzy Tracking Control Scheme

In this section, a trajectory tracking controller is designed

by combining the backstepping technique with fuzzy

approximation.

Define tracking errors as follows:

z1 ¼ g� gd ð15Þ

z2 ¼ x� a ð16Þ

where gd is the desired trajectory, and a is a virtual control

signal designed as follows:

a ¼ RTðuÞð�K1z1 þ _gdÞ ð17Þ

where K1 ¼ KT
1 [ 0 is the design parameter.

Taking time derivatives of tracking errors z1 and z2
along (11) yields

_z1 ¼ �K1z1 þ RðuÞz2 ð18Þ

_z2 ¼ M�1ðtÞ fðg;x; _aÞ þ �qvðtÞ½ � ð19Þ

where

f ðg;x; _aÞ ¼ �CðxÞx� DðxÞx� gðg;xÞ
� sd þ hðtÞ �M _a

ð20Þ

with

_a ¼ � _R
T
K1g� RTK1Rxþ _R

T
K1gd

þ ð _Rþ RTK1Þ _gd þ RT€gd
ð21Þ

Note that the term f ðg;x; _aÞ is a lumped unknown non-

linearity encapsulated by unknown dynamics, input non-

linearities and disturbances. The universal approximation

ability of a fuzzy approximator is used in [46–48], the

nonlinearity f in (20) can be optimally approximated as

follows:

f ðxÞ ¼ h�TuðxÞ þ e ð22Þ

where x ¼ ½gT; vT; _aT�T; e is the optimal approximation

error and is bounded, i.e., kek� e�, and h� is optimal

parameters given by

h� ¼ argmin
h

sup
x2Ux

hTuðxÞ � fðxÞ
�
�

�
�

� �

ð23Þ

However, the optimal parameter h� cannot be known in

advance and requires adaptive mechanism.

In this context, a fuzzy approximator f̂ ð�Þ is devised to

adaptive estimate the lumped unknown dynamics f ð�Þ
online, and is designed as follows:

f̂ ðxÞ :¼ ½f̂1; f̂2; . . .; f̂n�T ¼ ĥTuðxÞ ð24Þ

where x ¼ ½gT; vT; _aT�T, and the output weight estimate

matrix ĥ and regressor vector uðxÞ are defined as follows:

ĥ ¼ ½ĥ1; . . .; ĥn� 2 RN�n; ĥj ¼ ½ĥ1j ; . . .; ĥ
N
j �

T ð25Þ

uðxÞ ¼ ½u1ðxÞ;u2ðxÞ; . . .;uNðxÞ�T ð26Þ

where the regressor vector uðxÞ can be composed by

Gaussian functions and can refer to [29] for details.

Eventually, design the Nussbaum-based adaptive fuzzy

control law v as follows:

v ¼ N 0ðnÞ �K2z2 � RTðuÞz1 � ĥTuðxÞ
h i

ð27Þ

where

_n ¼ zT2
d

�K2z2 � RTðuÞz1 � ĥTuðxÞ
h i

ð28Þ

_̂hi ¼ ciz2iuðxÞ þ riĥi; i ¼ 1; 2; 3 ð29Þ
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where d is an appropriate constant, ci [ 0 and ri [ 0.

Remark 1 Unlike previous works focusing on input sat-

urations [30–35], complex input nonlinearities including

unknown control directions and actuator dead zones have

been intensively addressed by virtue of a Nussbaum-based

adaptive fuzzy control scheme governed by (27)–(29),

which can tackle both complex input constraints and fully

unknown dynamics, simultaneously.

Remark 2 From (27), one can see that in addition to

adaptive fuzzy control effort, a dynamic Nussbaum-de-

pendent term N 0ðnÞ is deployed to regulate the control

input, thereby achieving composite adaptation to unknown

control directions, actuator dead zones and fully unknown

dynamics, simultaneously. Clearly, adaptive approxima-

tion-based approaches [7, 19, 23, 24, 27–29] which cannot

tackle input nonlinearities become special cases (i.e.,

N 0ðnÞ ¼ 1) of the proposed Nussbaum-based framework in

(27).

4 Stability Analysis

It is essential to prove that the proposed tracking control

scheme can guarantee the stability of a closed-loop USV

tracking system, and the tracking error can converge to an

arbitrarily small neighborhood of zero.

Theorem 1 Under Assumptions 1 and 2, consider the

USV dynamic system (1) using the controller (27) with

adaptive laws (28)–(29) and the virtual control signal (17),

all signals of the closed-loop system are bounded, and the

tracking error can converge to an arbitrarily small

neighborhood of zero.

Proof Applying (22) to (18)–(19) yields

_z1 ¼ �K1z1 þ RðuÞz2 ð30Þ

_z2 ¼ M�1 ĥTuðxÞ þ �qvðtÞ � ~hTuðxÞ þ e
h i

ð31Þ

where ~h ¼ ĥ� h� ¼ ½~h1; ~h2; ~h3�.
Consider the following Lyapunov function:

V ¼ 1

2
zT1 z1 þ zT2Mz2 þ tr ~hTC�1~h

n o� �
ð32Þ

Differentiating V along (30)–(31) yields

_V ¼ �zT1K1z1 þ zT1RðuÞz2
þ zT2 ĥTuðxÞ � eþ �qvðtÞ � ~hTuðxÞ

h i

þ 1

2
zT2

_Mz2 þ
X3

i¼1

c�1
i

~hTi
_̂hi

ð33Þ

Using Assumption 1 and the Young’s inequalities, we have

zT2
_Mz2 �M2 z2k k2 ð34Þ

� zT2 e�
1

2
z2k k2þ 1

2
e�2 ð35Þ

Substituting control law (27) and inequalities (34)–(35)

into (33) gives

_V � � zT1K1z1 � zT2K2z2 þ ð�qN 0ðnÞ � 1Þd _n

þ
X3

i¼1

c�1
i

~hTi
_̂hi � ciz2iuðxÞ

� �

þ 1

2
ðM2 þ 1Þ z2k k2þ 1

2
e�2

ð36Þ

Using adaptive law (29) and the following inequality:

�~hTi ĥi � � 1

2
k~hik2 þ

1

2
kh�i k

2 ð37Þ

we further have

_V � � zT1K1z1 � zT2K2z2

þ 1

2
ðM2 þ 1Þ z2k k2þ 1

2
e�2

þ ð�qN 0ðnÞ � 1Þd _n� 1

2

X3

i¼1

ri
ci
k~hik2

þ 1

2

X3

i¼1

ri
ci
kh�i k

2

� � kminðK1Þ z1k k2

� ðkminðK2Þ �M2 �
1

2
Þ z2k k2

þ ð�qN 0ðnÞ � 1Þd _n

� kminðrÞ
2

tr ~hTC�1~h
n o

þ kmaxðrÞ
2

tr h�TC�1h�
� �

þ 1

2
e�2

� � aV þ ð�qN 0ðnÞ � 1Þd _nþ b

ð38Þ

where

a ¼ min 2kminðK1Þ;
2kminðK2Þ � 2M2 � 1

kmaxðMÞ ; kminðrÞ
� �

b ¼ kmaxðrÞ
2

tr h�TC�1h�
� �

þ 1

2
e�2

with parameters K1;K2 and r satisfying

kminðK1Þ[ 0; kminðK2Þ �M2 � 1=2[ 0 and kminðrÞ[ 0.

From (38), we have
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0�VðtÞ�Vð0Þ

þ e�at

Z t

0

dð�qN 0ðnÞ � 1Þ _neasdsþ b
ð39Þ

Using Lemma 1, we immediately obtain ð�qN 0ðnÞ � 1Þd _n is

bounded on ½0; tf Þ. Accordingly, define bmax ¼
maxt2½0;tf Þð�qN 0ðnÞ � 1Þ d _n. Together with (39), we further

have

_V � � aV þ �b ð40Þ

where �b ¼ bþ bmax.

It follows that

VðtÞ� e�atVð0Þ þ �b=a ð41Þ

In this context, choosing appropriate parameters would

make all signals g;x; a; _a; ĥðtÞ and vðtÞ are bounded. From
(41), we have g� gdk k�

ffiffiffiffiffiffiffiffiffiffiffiffi
2Vð0Þ

p
e�at þ

ffiffiffiffiffiffiffiffiffiffi
2�b=a

p
. Clearly,

the term ð2�b=aÞ
1
2 can be made as small as possible by

choosing parameters K1;K2 and r appropriately. Denotes

ð2�b=aÞ
1
2 � l=2. There exists a finite time T such that

gðtÞ � gdðtÞk k� l; 8t� T . This concludes the proof. h

5 Simulation Studies

To demonstrate the effectiveness and superiority of the

proposed Nussbaum-based adaptive fuzzy control scheme,

simulation studies on a well-known surface vehicle

CyberShip II [49] with unknown dynamics are conducted.

The desired trajectory gd ¼ ½sinðtÞ; cosðtÞ; sinðtÞ�T which is

expected to be tracked by the proposed scheme with high accu-

racy. The initial conditions of the USV are as follows: gð0Þ ¼
½�0:5;�0:5; 0:5�T and xð0Þ ¼ ½0:2; 0; 0�T. Define the fuzzy

setsUx ¼ ½�2; 2�6 	 R6 with the widths uniformly set as 2.

For the sake of simulation studies, external disturbances

are assumed as follows:

sd ¼
5þ 0:1u3

2þ 0:1u2

�0:1r3 þ sinðxÞ

2

6
4

3

7
5;

and unknown dynamics are assumed as follows:

c13ðxÞ ¼ �24:6612x� 1:0948r;

c23ðxÞ ¼ 25:8u;

d11ðxÞ ¼ 0:7225þ 1:3274 uj j þ 5:8664u2;

d22ðxÞ ¼ 0:8612þ 36:2823 xj j þ 8:05 rj j;
d23ðxÞ ¼ �0:1079þ 0:845 xj j þ 3:45 rj j;
d32ðxÞ ¼ �0:1052� 5:0437 xj j � 0:13 rj j; and

d33ðxÞ ¼ 1:9� 0:08 xj j þ 0:75 rj jand:

In addition, unknown inertia parameters are assumed as

follows:

m11ðtÞ ¼ 20þ 50 sin2ð0:1ptÞ;
m22ðtÞ ¼ 20þ 50 sin2ð0:2ptÞ;
m23ðtÞ ¼ 1þ cos2ð0:1ptÞ;
m32ðtÞ ¼ 1þ cos2ð0:1ptÞ; and

m33ðtÞ ¼ 10þ 20 sin2ð0:5ptÞ:

Input nonlinearity parameters are as follows:

b ¼ 1; br ¼ ½30; 30; 30�T, and bl ¼ ½30; 30; 30�T.
The user-defined parameters of the Nussbaum-based

adaptive fuzzy controller are selected as follows: K1 ¼
diagð0:7; 0:7; 0:7Þ;K2 ¼ diagð16; 16; 16Þ;C1 ¼ 0:1; C2 ¼
0:1;C3 ¼ 0:1; r1 ¼ 0:05; r2 ¼ 0:05; r3 ¼ 0:05; q ¼ 0:8,

and d ¼ 30.

Furthermore, in order to demonstrate the superiority of

the proposed Nussbaum-based adaptive fuzzy control

scheme, we conduct comprehensive comparisons of our

proposed approach with Nussbaum-based adaptive fuzzy

control without considering control coefficients (i.e., W/O

Coef., q ¼ 1) and without considering dead zones (i.e.,

W/O DZ, sðvÞ ¼ v), respectively.

Simulation results and comparisons are shown in

Figs. 3, 4, 5 and 6, which clearly demonstrate that the

proposed Nussbaum-based adaptive fuzzy control

scheme can track the USV with complex input nonlinear-

ities and fully unknown dynamics to the desired trajectory

with high accuracy while the W/O Coef. and W/O DZ

approaches can only track roughly the desired trajectory.

To make matters worse, if control coefficients and/or

actuator dead zones cannot be addressed, i.e., the W/O

Coef. and W/O DZ approaches, both position and velocity

tracking errors of surge and sway dynamics become

Fig. 3 Desired and actual states x, y and u
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significantly large. In fact, the proposed Nussbaum-based

adaptive fuzzy control scheme can render actual trajecto-

ries adapt to complex input constraints in addition to

unknown dynamics, while the W/O Coef. and W/O DZ

approaches cannot compensate unknown control coeffi-

cients and/or dead zones, and thereby leading to apparent

tracking delays which can be clearly observed from

Figs. 3, 4, 5 and 6. In this context, the superiority and

effectiveness can be sufficiently validated. In essence,

dead-zone-hold control inputs v ¼ ½vu; vx; vr�T shown in

Fig. 7 contribute to the remarkable tracking performance.

To be specific, actuators stay idle whenever the required

control efforts fall into dead zones, and thereby not only

avoiding frequent chattering within dead zones but also

enhancing adaptation to input nonlinearities. As a bypass

advantage, the proposed Nussbaum-based adaptive fuzzy

control scheme can prevent unwanted wear and tear of

actuators.

6 Conclusion

In this paper, a novel Nussbaum-based adaptive fuzzy

control scheme for trajectory tracking of an USV in the

presence of complex unknown nonlinearities and fully

unknown dynamics has been proposed. By virtue of

adaptive fuzzy approximation, the lumped unknown non-

linearity involves input nonlinearities, unknown dynamics

and disturbances can be approximated online. In combi-

nation with the backstepping technique and the Nussbaum

gain property, a Nussbaum-based adaptive fuzzy tracking

control scheme has been developed to handle complex

input nonlinearities and fully unknown dynamics, simul-

taneously, which have not been addressed in the literature.

Fig. 4 Tracking errors of x, y and u

Fig. 5 Desired and actual states u;x; r

Fig. 6 Tracking errors of u;x; r

Fig. 7 Control inputs vu; vx; vr
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Moreover, stability analysis guarantees high tracking

accuracy since tracking errors can converge to an arbi-

trarily small neighborhood of zero. The effectiveness and

superiority of the proposed control scheme have also been

demonstrated by simulation studies. In future work, the

proposed Nussbaum-based adaptive fuzzy control

scheme is expected to apply to experimental prototypes.
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