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Abstract This paper investigates neutrosophic optimiza-

tion (NSO) approach to optimize the cost of welding of a

welded steel beam, while the maximum shear stress in the

weld group, maximum bending stress in the beam, maxi-

mum deflection at the tip and buckling load of the beam

have been considered as flexible constraints. The problem

of designing an optimal welded beam consists of dimen-

sioning a welded steel beam such as height, length, depth,

width of welded beam, so as to minimize its cost, subject to

the constraints as stated above. The purpose of the present

study firstly is to investigate the effect of truth, indeter-

minacy and falsity membership function in NSO in per-

spective of welded beam design in imprecise environment

and secondly is to analyze the results obtained by different

optimization methods like fuzzy, intuitionistic fuzzy and

several deterministic methods so that the welding cost of

the welded steel beam become most cost-effective.

Specifically based on truth, indeterminacy and falsity

membership function, a single-objective NSO algorithm

has been developed to optimize the welding cost, subjected

to a set of flexible constraints. It has been shown that NSO

is an efficient method in finding out the optimum value in

comparison with other iterative methods for nonlinear

welded beam design in precise and imprecise environment.

Numerical example is also given to demonstrate the effi-

ciency of the proposed NSO approach.

Keywords Neutrosophic set � Single-valued neutrosophic

set � Neutrosophic optimization � Single-objective welded

beam optimization

1 Introduction

In today’s highly competitive market, the pressure on a

construction agency is to find better ways to attain the

optimal solution. In conventional optimization problems, it

is assumed that the decision maker is sure about the precise

values of data involved in the model. But in real-world

applications, all the parameters of the optimization prob-

lems may not be known precisely due to uncontrollable

factors. Such type of imprecise data is well represented by

fuzzy number introduced by Zadeh [1].

In reality, a decision maker may assume that an object

belongs to a set to a certain degree, but it is probable that

he is not sure about it. In other words, there may be

uncertainty about the membership degree. The main pre-

mise is that the parameters’ demand across the problem is

uncertain. So, they are known to fall within a prescribed

uncertainty set with some attributed degree. In fuzzy set

(FS) theory, there is no means to incorporate this hesitation

in the membership degree. To incorporate the uncertainty

in the membership degree, intuitionistic fuzzy set (IFS)

proposed by Atanassov [2] is an extension of FS theory. In

IFS theory along with degree of membership, a degree of

non-membership is usually considered to express ill-known

quantity. This degree of membership and non-membership

functions are so defined as they are independent to each

other, and sum of them is less or equal to one. Hence, IFS

is playing an important role in decision making under

uncertainty and has gained popularity in recent years.

However, an application of the IFSs to optimization
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problems is introduced by Angelov [3]. His technique is

based on maximizing the degree of membership and min-

imizing the degree of non-membership, and the crisp model

is formulated using the IF aggregation operator.

Now the fact is that in IFS indeterminate information is

partially lost, as hesitant information is taken in consider-

ation by default. So indeterminate information should be

considered in decision-making process. Smarandache [4]

defined neutrosophic set that could handle indeterminate

and inconsistent information. In neutrosophic sets, inde-

terminacy is quantified explicitly as indeterminacy mem-

bership along with truth membership and falsity

membership functions which are independent. Wang et al.

[5] define single-valued neutrosophic set which represents

imprecise, incomplete, indeterminate, inconsistent infor-

mation. Thus, taking the universe as a real line, we can

develop the concept of single-valued neutrosophic set as

special case of neutrosophic sets. This set is able to express

ill-known quantity with uncertain numerical value in

decision-making problem. It helps more adequately to

represent situations where decision makers abstain from

expressing their assessments.

In this way, neutrosophic set provides a richer tool to

grasp impression and ambiguity than the conventional FS

as well as IFSs. Although exactly known, partially

unknown and uncertain information handled by fully uti-

lizing the properties of transition rate matrices, together

with the convexification of uncertain domains [6–8], NSO

is more realistic in application of optimum design. These

characteristics of neutrosophic set led to the extension of

optimization methods in neutrosophic environment (NSE).

Besides, it has been seen that the current research on

fuzzy mathematical programming is limited to the range of

linear programming introduced by Ziemmermann [9]. It

has been shown that the solutions of fuzzy linear pro-

gramming problems (FLPPs) are always efficient. The

most common approach for solving fuzzy linear program-

ming problem is to change it into corresponding crisp

linear programming problem.

But practically there exist so many nonlinear structural

designs such as welded beam design problem in various

fields of engineering. So development of nonlinear pro-

gramming is also essential. Recently, a robust and reliable

static output feedback (SOF) control for nonlinear systems

[24] and for continuous-time nonlinear stochastic systems

[25] with actuator fault in a descriptor system framework

has been studied. However, welding can be defined as a

process of joining metallic parts by heating to a suit-

able temperature with or without the application of pres-

sure. This cost of welding should be economical, and

welded beam should be durable one.

Since decades, deterministic optimization has been

widely used in practice for optimizing welded connection

design. These include mathematical traditional optimiza-

tion algorithms such as David–Fletcher–Powell with a

penalty function (DAVID) [10], Griffith and Stewart’s

successive linear approximation (APPROX) [10], simplex

method with penalty function (SIMPLEX) [10], Recherd-

son’s random method (RANDOM) [10], harmony search

method [11], GA-based method [12, 13], improved har-

mony search algorithm [14], simple constrained particle

swarm optimizer (SiC-PSO) [15], Mezura [16], constrained

optimization via PSO algorithm (COPSO) [17], GA based

on a coevolution model (GA1) [13], GA through the use of

dominance-based tournament selection (GA2) [18], evo-

lutionary programming with a cultural algorithm (EP) [19],

coevolutionary particle swarm optimization (CPSO) [20],

hybrid particle swarm optimization (HPSO) with a feasi-

bility-based rule [21], hybrid Nelder–Mead simplex search

method and particle swarm optimization (NM-PSO) [22],

particle swarm optimization (PSO) [23], simulate anneling

(SA) [23], Goldlike (GL) [23], cuckoo search (Cuckoo)

[23], firefly algorithm (FF), flower pollination (FP) [23],

ant lion optimizer (ALO) [23], gravitational search algo-

rithm (GSA) [23], multi-verse optimizer (MVO) [23]. All

these deterministic optimizations aim to search the opti-

mum solution under given constraints without considera-

tion of uncertainties.

So these traditional techniques cannot be applicable in

optimizing welded beam design when impreciseness is

involved in information. Thus, the research on optimization

for nonlinear programming under fuzzy, IF and neutro-

sophic environment is not only necessary in the fuzzy

optimization theory but also has great and wide value in

application to welded beam design problem of conflicting

and imprecise nature. This is the motivation of our present

investigation.

In this regard, it can be cited that Das et al. [26]

developed neutrosophic nonlinear programming with

numerical example and application of real-life problem

recently. A single-objective plane truss structure [27] and a

multi-objective plane truss structure [28] have been opti-

mized in IF environment. A multi-objective structural

model has been optimized by IF mathematical program-

ming with IF number for truss structure [29], welded beam

structure [36] and neutrosophic number for truss design

[35] as coefficient of objective by Sarkar et al. With the

help of linear membership [30] and nonlinear membership

[31, 32], single-objective truss design and multi-objective

truss design [33] have been optimized in neutrosophic

environment. A multi-objective goal programming tech-

nique [34], T-norm and T-conorm-based IF optimization
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technique [37] have been developed to optimize cost of

welding in neutrosophic and IF environment, respectively.

The aim of this paper is to show the efficiency of single-

objective NSO technique in finding optimum cost of

welding of welded beam in imprecise environment and to

make a comparison of results obtained from different

deterministic methods.

The paper is organized as follows. In Sect. 2, we have

presented mathematical preliminaries on neutrosophic set.

In Sect. 3, we have developed mathematical algorithm

to solve a single-objective nonlinear programming prob-

lem. In Sect. 4, we have studied in detail formulation of

welded beam by solving it using NSO technique. In

Sect. 5, we have solved welded beam design model

numerically. Lastly in Sect. 6, we arrive at a conclusion.

2 Mathematical Preliminaries

In the following, we briefly describe some basic concepts

and basic operational laws related to neutrosophic set

[1, 2, 5, 26].

2.1 Fuzzy Set (FS) [1]

Let X be a fixed set. A fuzzy set ~A of X is an object having

the form

~A ¼ x; T ~A xð Þ
� ���x 2 X
� �

ð1Þ

where the function T ~A : X ! 0; 1½ � stands for the truth

membership of the element to the set ~A.

2.2 Intuitionistic Fuzzy Set (IFS) [2]

Let a set X be fixed. An intuitionistic fuzzy set or IFS ~Ai in

X is an object of the form

~Ai ¼ X; T ~Ai xð Þ;F ~Ai xð Þ
� �

x 2 Xj
� �

ð2Þ

where T ~Ai : X ! 0; 1½ � and F ~Ai : X ! 0; 1½ � define the truth

membership and falsity membership, respectively, for

every element of x 2 X such that 0� T ~Ai xð Þ þ F ~Ai xð Þ� 1.

2.3 Single-Valued Neutrosophic Set (SVNS) [5]

Let a set X be the universe of discourse. A single-valued

neutrosophic set ~An over X is an object having the form

~An ¼ x; T ~An xð Þ; I ~An xð Þ;F ~An xð Þ
� �

x 2 Xj
� �

ð3Þ

where T ~An : X ! 0; 1½ �; I ~An : X ! 0; 1½ � and F ~An : X !
0; 1½ � are truth indeterminacy and falsity membership

functions, respectively, so as to 0� T ~An xð Þ þ I ~An xð Þ þ
F ~An xð Þ� 3 for all x 2 X.

2.4 Union of Neutrosophic Sets (NSs) [26]

The union of two single-valued neutrosophic sets ~An and ~Bn

is a single-valued neutrosophic set ~Un denoted by

~Un ¼ ~An [ ~Bn ¼ x; T ~Un xð Þ; I ~Un xð Þ;F ~Un xð Þ
� �

x 2 Xj
� �

ð4Þ

and is defined by the following conditions

(i) T ~Un xð Þ ¼ max T ~An xð Þ; T ~Bn xð Þ
� �

;

(ii) I ~Un xð Þ ¼ max I ~An xð Þ; I ~Bn xð Þ
� �

;

(iii) F ~Un xð Þ ¼ min F ~An xð Þ;F ~Bn xð Þ
� �

for all x 2 X for

Type-I

Or in another way by defining following conditions

(i) T ~Un xð Þ ¼ max T ~An xð Þ; T ~Bn xð Þ
� �

;

(ii) I ~Un xð Þ ¼ min I ~An xð Þ; I ~Bn xð Þ
� �

(iii) F ~Un xð Þ ¼ min F ~An xð Þ;F ~Bn xð Þ
� �

for all x 2 X for

Type-II,

where T ~Un xð Þ; I ~Un xð Þ; I ~Un xð Þ; F ~Un xð Þ represent truth

membership, indeterminacy membership and falsity

membership functions of union of neutrosophic sets.

Example

Let ~An ¼ \0:3; 0:4; 0:5[ =x1 þ\0:5; 0:2; 0:3[ =x2þ
\0:7; 0:2; 0:2[ =x3 and ~Bn ¼ \0:6; 0:1; 0:2[ =x1 þ
\0:3; 0:2; 0:6[ =x2 þ\0:4; 0:1; 0:5[ =x3 be two neu-

trosophic sets. Then, the union of ~An and ~Bn is a single-

valued neutrosophic set that can be calculated for Type-I as

~An [ ~Bn ¼ \0:6; 0:4; 0:2[ =x1 þ\0:5; 0:2; 0:3[ =x2
þ\0:7; 0:2; 0:2[ =x3

ð5Þ

and for Type-II as

~An [ ~Bn ¼ \0:6; 0:1; 0:2[ =x1 þ\0:5; 0:2; 0:3[ =x2
þ\0:7; 0:1; 0:2[ =x3

ð6Þ

2.5 Intersection of Neutrosophic Sets [26]

The intersection of two single-valued neutrosophic sets ~An

and ~Bn is a single-valued neutrosophic set ~En that is

denoted by

~En ¼ ~An \ ~Bn ¼ x; T ~En xð Þ; I ~En xð Þ;F ~En xð Þð Þ x 2 Xj
� �

ð7Þ

and is defined by the following conditions

(i) T ~En xð Þ ¼ min T ~An xð Þ; T ~Bn xð Þ
� �

;

(ii) I ~En xð Þ ¼ min I ~An xð Þ; I ~Bn xð Þ
� �

;

(iii) F ~En xð Þ ¼ max F ~An xð Þ;F ~Bn xð Þ
� �

for all x 2 X for

Type-I

Or in another way by defining following conditions

(i) T ~En xð Þ ¼ min T ~An xð Þ; T ~Bn xð Þ
� �

;

(ii) I ~En xð Þ ¼ max I ~An xð Þ; I ~Bn xð Þ
� �
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(iii) F ~En xð Þ ¼ max F ~An xð Þ;F ~Bn xð Þ
� �

for all x 2 X for

Type-II,

where T ~En xð Þ; I ~En xð Þ; F ~En xð Þ represent truth membership,

indeterminacy membership and falsity membership func-

tions of union of neutrosophic sets.

Example

Let ~An ¼ \0:3; 0:4; 0:5[ =x1 þ\0:5; 0:2; 0:3[ =x2þ
\0:7; 0:2; 0:2[ =x3 and ~Bn ¼ \0:6; 0:1; 0:2[ =x1þ
\0:3; 0:2; 0:6[ =x2 þ\0:4; 0:1; 0:5[ =x3 be two neu-

trosophic sets. Then, the intersection of ~Anand ~Bn is a single-

valued neutrosophic set that can be measured for Type-I as

~An \ ~Bn ¼ \0:3; 0:1; 0:5[ =x1 þ\0:3; 0:2; 0:6[ =x2
þ\0:4; 0:1; 0:5[ =x3

ð8Þ

and for Type-II as

~An \ ~Bn ¼ \0:3; 0:4; 0:5[ =x1 þ\0:3; 0:2; 0:6[ =x2
þ\0:4; 0:2; 0:5[ =x3

ð9Þ

3 Mathematical Analysis

Decision making is nothing but a process of solving the

problem that achieves goals under constraints. The out-

come of the problem is a decision which should in an

action. Decision making plays an important role in differ-

ent subjects such as field of economic and business, man-

agement sciences, engineering and manufacturing, social

and political science, biology and medicine, military,

computer science. It faces difficulty in progress due to

factors like incomplete and imprecise information which is

often present in real-life situations. In the decision-making

process, the decision maker’s main target is to find the

value from the selected set with the highest degree of

membership in the decision set and these values support the

goals under constraints only. But while vegueness exists in

available information there may arise situations where

some values from selected set cannot support, rather such

values strongly against the goals under constraints which

are non-admissible. In this case, we find such values from

the selected set with least degree of non-membership in the

decision sets. IFSs can only handle incomplete information

not the indeterminate information and inconsistent infor-

mation which exists commonly belief in system. In neu-

trosophic set, indeterminacy is quantified explicitly and

truth membership, indeterminacy membership and falsity

membership are independent to each other. So it is natural

to adopt for that purpose the value from the selected set

with highest degree of truth membership, highest degree or

least degree of indeterminacy membership and least degree

of falsity membership on the decision set. These factors

indicate that a decision-making process takes place in

neutrosophic environment.

3.1 Neutrosophic Optimization (NSO) Technique

to Solve Single-Objective Nonlinear

Programming Problem (SONLPP)

A nonlinear programming problem (NLPP) may be con-

sidered in the following form

Minimize gðxÞ ð10Þ

subject to,

gj xð Þ� bj; j ¼ 1; 2; . . .;m ð11Þ

x� 0 ð12Þ

Usually constraint goals are considered as fixed quan-

tity. But in real-life problems, the constraint goals cannot

be always exact. So we can consider the constraint goals

for minimization type non-linear programming problem at

least bj, and it may be possible to extend to bj þ b0j for

j ¼ 1; 2; . . .;m. This fact seems to take the constraint goals

as a neutrosophic set, and it will be more realistic

descriptions than others. Then, NSO problem with neu-

trosophic goals can be described as follows:

Minimize g xð Þ ð13Þ

subject to,

gj xð Þ ~� nbj; j ¼ 1; 2; . . .;m ð14Þ

x�0 where ~� n represents inequality in neutrosophic sense:

ð15Þ

In the case of degree of falsity membership and inde-

terminacy membership, it is to define simultaneously with

degree of truth membership of the objective and constraint

and while all these three degrees are independent of each

other, NSO can be used as a more general tool to describe

this uncertainty. Considering maximization of the degree of

truth membership together with minimization or maxi-

mization of the degree of indeterminacy as per decision

maker’s choice and minimizing degree of falsity mem-

bership of neutrosophic fuzzy objective and constraints, we

can formulate a NSO technique to solve a neutrosophic

nonlinear programming (NSNLP) (Eqs. 13–15) problem.

To solve the NSNLP (Eqs. 13–15), following Warner’s

[38] and Angelov [3] we are presenting a solution proce-

dure by successive steps as follows:

Step-1 Following Warner’s approach, solve the SONLPP

without tolerance in constraints, with tolerance of truth

membership in constraints (i.e., gj xð Þ� bj þ b0j ) by appro-

priate nonlinear programming technique. Here they are,
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Subproblem 1

Minimize g xð Þ ð16Þ

subject to,

gj xð Þ� bj; j ¼ 1; 2; . . .;m ð17Þ

x� 0 ð18Þ

Subproblem 2

Minimize g xð Þ ð19Þ

subject to,

gj xð Þ� bj þ b0j ; j ¼ 1; 2; . . .;m ð20Þ

x� 0 ð21Þ

we may get optimal solutions x� ¼ x1; g x�ð Þ ¼ g x1ð Þ and

x� ¼ x2; g x�ð Þ ¼ g x2ð Þ for subproblems 1 and 2, respectively.

Step-2 From the result of step 1, we now find the lower

bound and upper bound of objective functions. Let

UT
g xð Þ;U

I
g xð Þ;U

F
g xð Þ be the upper bounds of truth, indetermi-

nacy, falsity membership function for the objective,

respectively, and LTg xð Þ; L
I
g xð Þ; L

F
g xð Þ be the lower bound of

truth, indeterminacy, falsity membership functions of

objective, respectively, using following rules

UT
g xð Þ ¼ max g x1

� �
; g x2
� �� �

ð22Þ

LTg xð Þ ¼ min g x1
� �

; g x2
� �� �

ð23Þ

But in single-valued NSO technique, the degree of truth,

indeterminacy and falsity membership are considered so

that the sum of these degree of membership values is less

than three. To define the falsity and indeterminacy mem-

bership function of NLP (Eqs. 10–12), let us consider

UF
g xð Þ; L

F
g xð Þ and UI

g xð Þ; L
I
g xð Þ be the upper and lower bounds

of objective function g xð Þ such that

UF
g xð Þ ¼ UT

g xð Þ ð24Þ

LFg xð Þ ¼ LTg xð Þ þ t UT
g xð Þ � LTg xð Þ

� �
where 0\t\1 ð25Þ

LIg xð Þ ¼ LTg xð Þ ð26Þ

UI
g xð Þ ¼ LTg xð Þ þ s UT

g xð Þ � LTg xð Þ

� �
where 0\s\1 ð27Þ

The initial neutrosophic model (Model-I) with aspiration

levels of objectives can be formulated as

Find x ð28Þ

So as to satisfy

g xð Þ� nLTg xð Þ with tolerance UT
g xð Þ � LTg xð Þ

� �

for degree of truth membership
ð29Þ

g xð Þ� nLIg xð Þ with tolerance UI
g xð Þ � LIg xð Þ

� �

for degree of indeterminacy membership
ð30Þ

g xð Þ� nUF
g xð Þ with tolerance UF

g xð Þ � LFg xð Þ

� �

for degree of falsity membership
ð31Þ

gj xð Þ� nbj with tolerance b0j

for degree of truth membership
ð32Þ

gj xð Þ� nbj with tolerance ngj xð Þ

� �

for degree of indeterminacy membership
ð33Þ

gj xð Þ� nbj þ b0j with tolerance bj þ b0j

� �
� bj þ egj xð Þ

� �� �

for degree of falsity membership

ð34Þ

for j ¼ 1; 2; . . .m; egj xð Þ ¼ t UT
gj xð Þ � LTgj xð Þ

� �
; t 2 0; 1ð Þ

and ngj xð Þ ¼ s UT
gj xð Þ � LTgj xð Þ

� �
; s 2 0; 1ð Þ and for Mode-II,

it can be formulated as

Find x ð35Þ

So as to satisfy

g xð Þ� nLTg xð Þ with tolerance UT
g xð Þ � LTg xð Þ

� �

for degree of truth membership
ð36Þ

g xð Þ� nUI
g xð Þ with tolerance UI

g xð Þ � LIg xð Þ

� �

for degree of indeterminacy membership
ð37Þ

g xð Þ� nUF
g xð Þ with tolerance UF

g xð Þ � LFg xð Þ

� �

for degree of falsity membership
ð38Þ

gj xð Þ� nbj with tolerance b0j

for degree of truth membership
ð39Þ

gj xð Þ� n bj þ ngj xð Þ

� �
with tolerance ngj xð Þ

� �

for degree of indeterminacy membership
ð40Þ

gj xð Þ� nbj þ b0j with tolerance bj þ b0j

� �
� bj þ egj xð Þ

� �� �

for degree of falsity membership

ð41Þ

for j ¼ 1; 2; . . .m; egj xð Þ ¼ t UT
gj xð Þ � LTgj xð Þ

� �
; t 2 0; 1ð Þ

and ngj xð Þ ¼ s UT
gj xð Þ � LTgj xð Þ

� �
; s 2 0; 1ð Þ

Here ‘� n’ denotes inequality in neutrosophic sense.

Step-3 Here for simplicity linear membership Tg xð Þ for

truth, Ig xð Þ for indeterminacy and Fg xð Þ for falsity member-

ship functions of objective function are defined as follows:
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Tg xð Þ g xð Þð Þ ¼

1 if g xð Þ� LTg xð Þ
UT

g xð Þ � g xð Þ
UT

g xð Þ � LT
g xð Þ

 !

if LTg xð Þ � g xð Þ�UT
g xð Þ

0 if g xð Þ�UT
g xð Þ

8
>>>><

>>>>:

ð42Þ

Ig xð Þ g xð Þð Þ ¼

1 if g xð Þ� LIg xð Þ
UI

g xð Þ � g xð Þ
UI

g xð Þ � LI
g xð Þ

 !

if LIg xð Þ � g xð Þ�UI
g xð Þ

0 if g xð Þ�UI
g xð Þ

8
>>>><

>>>>:

ð43Þ

Fg xð Þ g xð Þð Þ ¼

0 if g xð Þ� LFg xð Þ
g xð Þ � LFg xð Þ
UF

g xð Þ � LF
g xð Þ

if LFg xð Þ � g xð Þ�UF
g xð Þ

1 if g xð Þ�UF
g xð Þ

8
>>><

>>>:

ð44Þ

Step-4 Using linear membership function Tgj xð Þ for truth,
Igj xð Þ for indeterminacy and Fgj xð Þ for falsity membership

functions, we can calculate the membership functions of

constraints as follows:

Tgj xð Þ gj xð Þ
� �

¼

1 if gj xð Þ� bj

bj þ b0j � gj xð Þ
b0j

 !

if bj � gj xð Þ� bj þ b0j

0 if gj xð Þ� b0j

8
>>><

>>>:

ð45Þ

Igj xð Þ gj xð Þ
� �

¼

1 if gj xð Þ� bj

bj þ ngj xð Þ

� �
� gj xð Þ

ngj xð Þ
if bj � gj xð Þ� bj þ ngj xð Þ

0 if gj xð Þ� bj þ ngj xð Þ

8
>>><

>>>:

ð46Þ

Fgj xð Þ gj xð Þ
� �

¼

0 if gj xð Þ� bj þ egj xð Þ
gj xð Þ � bj � egj xð Þ

b0j � egj xð Þ
if bj þ egj xð Þ � gj xð Þ� bj þ b0j

1 if gj xð Þ� bj þ b0j

8
>>><

>>>:

ð47Þ

for j ¼ 1; 2; . . .m 0\egj xð Þ; ngj xð Þ\b0j . and

Step-5 Now using NSO [30] for single-objective opti-

mization with linear truth, indeterminacy and falsity

membership functions, the NSNLP (Eqs. 13–15) can be

formulated as

Model-I

Maximize Tg xð Þ g xð Þð Þ; Tgj xð Þ gj xð Þ
� �� �

ð48Þ

Maximize Ig xð Þ g xð Þð Þ; Igj xð Þ gj xð Þ
� �� �

ð49Þ

Minimize Fg xð Þ g xð Þð Þ;Fgj xð Þ gj xð Þ
� �� �

ð50Þ

Such that

Tg xð Þ xð Þ þ Ig xð Þ xð Þ þ Fg xð Þ xð Þ� 3; ð51Þ

Tgj xð Þ þ Igj xð Þ þ Fgj xð Þ� 3; ð52Þ

Tg xð Þ xð Þ� I
g xð Þ xð Þ;

Tg xð Þ xð Þ�F
g xð Þ xð Þ; ð53Þ

Tgj xð Þ� Igj xð Þ; ð54Þ

Tgj xð Þ�Fgj xð Þ; ð55Þ

Tg xð Þ xð Þ; Ig xð Þ xð Þ;Fg xð Þ xð Þ 2 0; 1½ �

Tgj xð Þ; Igj xð Þ;Fgj xð Þ 2 ½0; 1�

x[ 0 j ¼ 1; 2; . . .;m ð56Þ

Model-II

Maximize Tg xð Þ g xð Þð Þ; Tgj xð Þ gj xð Þ
� �� �

ð57Þ

Minimize Ig xð Þ g xð Þð Þ; Igj xð Þ gj xð Þ
� �� �

ð58Þ

Minimize Fg xð Þ g xð Þð Þ;Fgj xð Þ gj xð Þ
� �� �

ð59Þ

subject to the same constraints as Model-I.

All these crisp nonlinear programming problems

(Model-I) and (Model-II) can be solved by appropriate

mathematical algorithm.

4 Welded Beam Design (WBD) and its
Optimization in Neutrosophic Environment

Welding, a process of joining metallic parts with the appli-

cation of heat or pressure or the both, with or without added

material, is an economical and efficient method for obtain-

ing permanent joints in the metallic parts. These welded

joints are generally used as a substitute for riveted joint or

can be used as an alternative method for casting or forging.

The welding processes can broadly be classified into fol-

lowing two groups: the welding process that uses heat alone

to join two metallic parts and the welding process that uses a

combination of heat and pressure for joining (Bhandari.

V. B). However, above all the design of welded beam should

preferably be economical and durable one.

4.1 WBD Formulation

The optimum welded beam design ([37], Fig. 1) can be

formulated considering some design criteria such as cost of
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welding, i.e., cost function, shear stress, bending stress and

deflection, derived as follows:

4.1.1 Cost Function Formulation

The performance index appropriate to this design is the

cost of weld assembly. The major cost components of such

an assembly are (i) setup labor cost, (ii) welding labor cost,

(iii) material cost, i.e.,

C Xð Þ � C0 þ C1 þ C2 ð60Þ

where C Xð Þ ¼ cost function; C0 ¼ setup cost; C1 ¼
welding labor cost; C2 ¼ material cost. Now

Setup cost C0 The company has chosen to make this

component a weldment, because of the existence of a

welding assembly line. Furthermore, assume that fixtures

for setup and holding of the bar during welding are readily

available. The cost C0 can therefore be ignored in this

particular total cost model.

Welding labor cost C1 Assume that the welding will be

done by machine at a total cost of $10/h (including oper-

ating and maintenance expense). Furthermore, suppose that

the machine can lay down a cubic inch of weld in 6 min.

The labor cost is then

C1 ¼ 10
$

h

	 

1

60

$

min

	 

6
min

in3

	 

Vw ¼ 1

$

in3

	 

Vw ð61Þ

where Vw = weld volume, in3

Material cost C2 : C2 ¼ C3Vw þ C4VB ð62Þ

where C3 = cost per volume per weld material, $=in3 ¼
ð0:37Þð0:283Þ; C4 = cost per volume of bar stock,

$=in3 ¼ ð0:37Þð0:283Þ; VB = volume of bar, in3.

From geometry Vw ¼ h2l; volume of the weld material,

in3; Vweld ¼ x21x2 and VB ¼ tb Lþ lð Þ; volume of bar, in3;

Vbar ¼ x3x4 Lþ x2ð Þ.
Therefore, cost function become

C Xð Þ ¼ h2lþ C3h
2lþ C4tb Lþ lð Þ

¼ 1:10471x21x2 þ 0:04811x3x4 14:0þ x2ð Þ ð63Þ

4.1.2 Constraints Derivation from Engineering

Relationship

Figure 1.

4.1.3 Maximum Shear Stress in Weld Group

To complete the model, it is necessary to define important

stress states

Direct or primary shear stress, i.e.,

s1 ¼
Load

Throat area
¼ P

A
¼ P

ffiffiffi
2

p
hl

¼ P
ffiffiffi
2

p
x1x2

ð64Þ

Since the shear stress produced due to turning moment

M ¼ P � e at any section is proportional to its radial dis-

tance from center of gravity of the joint ‘G’, stress due to

M is proportional to R and is in a direction at right angles to

R. In other words,

s2
R

¼ s
r
¼ constant ð65Þ

Therefore R ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l

2

	 
2

þ hþ t

2

	 
2
s

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x22
4
þ x1 þ x3ð Þ2

4

s

ð66Þ

where s2 is the shear stress at the maximum distance R and

s is the shear stress at any distance r. Consider a small

section of the weld having area dA at a distance r from ‘G.’

Therefore, shear force on this small section is ¼ s	 dA

and turning moment of the shear force about center of

gravity is

dM ¼ s	 dA	 r ¼ s2
R
	 dA	 r2 ð67Þ

Therefore, total turning moment over the whole weld

area is

M ¼ s2
R

Z
dA	 r2 ¼ s2

R
J: ð68Þ

where J = polar moment of inertia of the weld group about

center of gravity.

Therefore, shear stress due to the turning moment is

Secondary shear stress; s2 ¼
MR

J
ð69Þ

In order to find the resultant stress, the primary and

secondary shear stresses are combined vectorially. There-

fore, the maximum resultant shear stress that will be pro-

duced at the weld group is

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s21 þ s22 þ 2s1s2 cos h

q
; ð70Þ

where h = angle between s1 and s2.

Fig. 1 Shear stresses in the weld group
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As cos h ¼ l=2

R
¼ x2

2R
; ð71Þ

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s21 þ s22 þ 2s1s2

x2

2R

r
: ð72Þ

Now the polar moment of inertia of the throat area Að Þ
about the center of gravity is obtained by parallel axis

theorem,

J ¼ 2 Ixx þ Aþ x2
� 

¼ 2
A	 l2

12
þ A	 x2

� �

¼ 2A
l2

12
þ x2

	 

¼ 2

ffiffiffi
2

p
x1x2

x22
12

þ x1 þ x3ð Þ2

2

" #( )

ð73Þ

where A = throat area =
ffiffiffi
2

p
x1x2, l = length of the weld,

x ¼ Perpendicular distance between two parallel axes

¼ t

2
þ h

2
¼ x1 þ x3

2

ð74Þ

4.1.4 Maximum Bending Stress in Beam

Now maximum bending moment = PL, maximum bend-

ing stress = T
Z
, where T = PL; Z = section modulus =

I
y
; I ¼ moment of inertia ¼ bt3

12
;y ¼ distance of extreme

fiber from center of gravity of cross section = t
2
; therefore,

Z ¼ bt2

6
.

So bar bending stress r xð Þ ¼ T

Z
¼ 6PL

bt2
¼ 6PL

x4x
2
3

: ð75Þ

4.1.5 Maximum Deflection in Beam

Maximum deflection at cantilever tip d xð Þ ¼ PL3

3EI
¼ PL3

3E bt3

12

¼ 4PL3

Ebt3
¼ 4PL3

Ex4x
2
3

ð76Þ

4.1.6 Buckling Load of Beam

Buckling load can be approximated by PC xð Þ

¼ 4:013
ffiffiffiffiffiffiffiffi
EIC

p

l2
1� a

l

ffiffiffiffiffi
El

C

r !

ð77Þ

¼
4:013

ffiffiffiffiffiffiffiffiffiffi
E t2b6

36

q

L2
1� t

2L

ffiffiffiffiffiffi
E

4G

r !

¼
4:013

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EGx63x

6
4=36

q

L2
1� x3

2L

ffiffiffiffiffiffi
E

4G

r !

ð78Þ

where I = moment of inertia ¼ bt3

12
; torsional rigidity

C ¼ GJ ¼ 1
3
tb3G;l ¼ L; a ¼ t

2
:

4.2 Crisp Formulation of WBD

In design formulation, a welded beam ([10], Fig. 2) has to

be designed at minimum cost whose constraints are shear

stress in weld sð Þ, bending stress in the beam rð Þ, buckling
load on the bar (P) and deflection of the beam dð Þ. The

design variables are

x1
x2
x3
x4

2

664

3

775 ¼

h

l

t

b

2

664

3

775 where h is the weld

size, l is the length of the weld, t is the depth of the welded

beam, and b is the width of the welded beam.

The single-objective crisp welded beam optimization

problem can be formulated as follows:

Minimize C Xð Þ � 1:10471x21x2 þ 0:04811 14þ x2ð Þx3x4
ð79Þ

such that

g1 xð Þ � s xð Þ � smax � 0 ð80Þ
g2 xð Þ � r xð Þ � rmax � 0 ð81Þ
g3 xð Þ � x1 � x4 � 0 ð82Þ

g4 xð Þ � 0:10471x21x2 þ 0:04811x3x4 14þ x2ð Þ � 5� 0

ð83Þ
g5 xð Þ � 0:125� x1 � 0 ð84Þ
g6 xð Þ � d xð Þ � dmax � 0 ð85Þ
g7 xð Þ � P� PC xð Þ� 0 ð86Þ

Fig. 2 Design of the welded beam
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x1; x2; x3; x4 2 0; 1½ � ð87Þ

where s xð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s21 þ 2s1s2

x2
2R

þ s22

q
; s1 ¼ Pffiffi

2
p

x1x2
; s2 ¼ MR

J
;

M ¼ P Lþ x2
2

� �
; R ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2
2

4
þ x1þx3

2

� �2
q

; J ¼ x1x2ffiffi
2

p x2
2

12
þ

hn

x1þx3
2

� �2�g; r xð Þ ¼ 6PL
x4x

2
3

; d xð Þ ¼ 4PL3

Ex4x
2
3

; PC xð Þ ¼
4:013

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EGx6

3
x6
4
=36

p
L2

1� x3
2L

ffiffiffiffiffi
E
4G

q� �
as derived as Eqs. (70), (64),

(69), (68), (66), (73), (75), (76), (78), respectively. Again

P ¼ Force on beam; L ¼ Beam length beyond weld;

x1 ¼ Height of the welded beam; x2 ¼ Length of the

welded beam; x3 ¼ Depth of the welded beam; x4 ¼
Width of the welded beam; s xð Þ ¼ Design shear stress;

r xð Þ ¼ Design normal stress for beam material;

M = Moment of P about the center of gravity of the weld,

J = Polar moment of inertia of weld group; G = Shearing

modulus of Beam Material; E = Young modulus; smax ¼
Design Stress of the weld; rmax ¼ Design normal stress

for the beam material; dmax ¼ Maximum deflection; s1 ¼
Primary stress on weld throat; s2 ¼ Secondary torsional

stress on weld.

4.3 WBD Formulation in Neutrosophic

Environment

Sometimes slight change in stress or deflection enhances

the weight of structures and indirectly cost of processing.

In such situation when decision maker (DM) is in doubt to

decide the stress constraint goal, the DM can induce the

idea of acceptance boundary, hesitancy response or nega-

tive response margin of constraints goal. This fact seems to

take the constraint goal as a NS instead of FS and IFS. It

may be more realistic description than FS and IFS. When

the sheer stress, normal stress and deflection constraint

goals are NS in nature, the above crisp welded beam design

(Eqs. 79–87) can be formulated as

Minimize C Xð Þ � 1:10471x21x2 þ 0:04811 14þ x2ð Þx3x4
ð88Þ

Such that

g1 xð Þ � s xð Þ ~� nsmax ð89Þ

g2 xð Þ � r xð Þ ~� nrmax ð90Þ
g3 xð Þ � x1 � x4 � 0 ð91Þ

g4 xð Þ � 0:10471x21x2 þ 0:04811x3x4 14þ x2ð Þ � 5� 0

ð92Þ
g5 xð Þ � 0:125� x1 � 0 ð93Þ

g6 xð Þ � d xð Þ ~� ndmax ð94Þ
g7 xð Þ � P� PC xð Þ� 0 ð95Þ

x1; x2; x3; x4 2 0; 1½ � ð96Þ

where all the parameters have their usual meaning as stated

in Sect. 4.2. Here constraint goals are characterized by

neutrosophic sets

~snmax ¼ smax x1; x2ð Þ; T~snmax
smax x1; x2ð Þð Þ; I~snmax

smax x1; x2ð Þð Þ;
�

F~snmax
smax x1; x2ð Þð Þ

�

ð97Þ

with T~snmax
smax x1; x2ð Þð Þ; I~snmax

smax x1; x2ð Þð Þ;
F~snmax

smax x1; x2ð Þð Þ as the degree of truth, indeterminacy and

falsity membership functions of neutrosophic set ~snmax;

~rnmax ¼ rmax x3; x4ð Þ; T~rnmax
rmax x3; x4ð Þð Þ; I~rnmax

rmax x3; x4ð Þð Þ;
�

F~rnmax
rmax x3; x4ð Þð Þ

�

ð98Þ

with T~rnmax
rmax x3; x4ð Þð Þ; I~rnmax

rmax x3; x4ð Þð Þ;F~rnmax
rmax x3;ðð

x4ÞÞ as the degree of truth, indeterminacy and falsity

membership functions of neutrosophic set ~rnmax; and

~dnmax ¼ dmax x3; x4ð Þ; T~dnmax
dmax x3; x4ð Þð Þ; I~dnmax

dmax x3; x4ð Þð Þ;
�

F~dnmax
dmax x3; x4ð Þð Þ

�

ð99Þ

with T~dnmax
dmax x3; x4ð Þð Þ; I~dnmax

dmax x3; x4ð Þð Þ; F~dnmax
dmax x3;ðð

x4ÞÞ as the degree of truth, indeterminacy and falsity

membership functions of neutrosophic set ~dnmax

4.4 Optimization of WBD in Neutrosophic

Environment

To solve the WBD (Eqs. 88–96), step 1 of Sect. 3.1 is used

and we will get optimum solutions of two subproblem as

X1 and X2. After that according to step 2, we find upper and

lower bounds of membership function of objective function

as UT
C Xð Þ;U

I
C Xð Þ;U

F
C Xð Þ and LTC Xð Þ;L

I
C Xð Þ; L

F
C Xð Þ where

UT
C Xð Þ ¼ max C X1ð Þ;C X2ð Þ

� �
;

LTC Xð Þ ¼ min C X1ð Þ;C X2ð Þ
� �

;

therefore,

UF
C Xð Þ ¼ UT

C Xð Þ; L
F
C Xð Þ

¼ LTC Xð Þ þ eC Xð Þ where 0\eC Xð Þ\ UT
C Xð Þ � LTC Xð Þ

� �

ð100Þ

LIC Xð Þ ¼ LTC Xð Þ;U
I
C Xð Þ

¼ LTC Xð Þ þ nC Xð Þ where 0\nC Xð Þ\ UT
C Xð Þ � LTC Xð Þ

� �

ð101Þ

Let the linear membership functions for objective be,
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TC Xð Þ C Xð Þð Þ ¼

1 if C Xð Þ� LTC Xð Þ
UT

C Xð Þ � C Xð Þ
UT

C Xð Þ � LT
C Xð Þ

 !

if LTC Xð Þ �C Xð Þ�UT
C Xð Þ

0 if C Xð Þ�UT
C Xð Þ

8
>>>><

>>>>:

ð102Þ

IC Xð Þ C Xð Þð Þ ¼

1 if C Xð Þ� LTWT Að Þ

LTC Xð Þ þ nC Xð Þ

� �
� C Xð Þ

nC Xð Þ

0

@

1

A if LTC Xð Þ �C Xð Þ�LTC Xð Þ þ nC Xð Þ

0 if WT Að Þ� LTC Xð Þ þ nC Xð Þ

8
>>>>><

>>>>>:

ð103Þ

FC Xð Þ C Xð Þð Þ ¼

0 if C Xð Þ� LTC Xð Þ þ eC Xð Þ

C Xð Þ � LTC Xð Þ þ eC Xð Þ

� �

UT
C Xð Þ � LT

C Xð Þ � eC Xð Þ

0

@

1

A if LTC Xð Þ þ eC Xð Þ �C Xð Þ�UT
C Xð Þ

1 if C Xð Þ�UT
C Xð Þ

8
>>>>><

>>>>>:

ð104Þ

and constraints be,

Tri Xð Þ ri Xð Þð Þ ¼

1 if ri Xð Þ� ri
ri þ r0i
� �

� ri Xð Þ
r0i

	 

if ri � ri Xð Þ� ri þ r0i

0 if ri Xð Þ� ri þ r0i

8
>><

>>:

ð105Þ

Iri Xð Þ ri Xð Þð Þ ¼

1 if ri Xð Þ� ri
ri þ nri Xð Þ
� �

� ri Xð Þ
nri Xð Þ

 !

if ri � ri Xð Þ� ri þ nri Xð Þ

0 if ri Xð Þ� ri þ nri Xð Þ

8
>>><

>>>:

ð106Þ

Fri Xð Þ ri Xð Þð Þ ¼

0 if ri Xð Þ� ri þ eri Xð Þ

ri Xð Þ � ri � eri Xð Þ

r0i � eri Xð Þ

 !

if ri þ eri Xð Þ � ri Xð Þ� ri þ r0i

1 if ri Xð Þ� ri þ r0i

8
>>><

>>>:

ð107Þ

for j ¼ 1; 2; . . .;m 0\eri Xð Þ; nri Xð Þ\r0i then NSO problem

(Eqs. 88–96) can be formulated as the following crisp

linear programming problem by considering linear mem-

bership as follows:

Type-I

Maximize a� bþ cð Þ ð108Þ

Such that

C Xð Þ þ a UT
C Xð Þ � LTC Xð Þ

� �
�UT

C Xð Þ; ð109Þ

C Xð Þ þ c UT
C Xð Þ � LTC Xð Þ � nC Xð Þ

� �
� LTC Xð Þ þ nC Xð Þ;

ð110Þ

C Xð Þ � b UT
C Xð Þ � LTC Xð Þ � eC Xð Þ

� �
� LTC Xð Þ þ eC Xð Þ; ð111Þ

ri Xð Þ þ a UT
ri Xð Þ � LTri Xð Þ

� �
�UT

ri Xð Þ; ð112Þ

ri Xð Þ þ c UT
ri Xð Þ � LTri Xð Þ � nri Xð Þ

� �
�UT

ri Xð Þ þ nri Xð Þ;

ð113Þ

ri Xð Þ � b UT
ri Xð Þ � LTri Xð Þ � eri Xð Þ

� �
� LTri Xð Þ þ eri Xð Þ;

ð114Þ
aþ bþ c� 3; a� b; a� c; a; b; c 2 0; 1½ �

Model-II

Maximize a� b� cð Þ ð115Þ

Subject to the same constraints as Model-I (Eqs. 108–

115). All these crisp nonlinear programming problems can

be solved by appropriate mathematical algorithm.

5 Numerical Illustration

Input data of welded beam design problem (Eqs. 79–87)

are given in Table 1 as follows:

Solution: According to step 2 of Sect. 3.1, we find upper

and lower bound of membership function of objective

function as UT
C Xð Þ;U

I
C Xð Þ;U

F
C Xð Þ and LTC Xð Þ; L

I
C Xð Þ; L

F
C Xð Þ

where UT
C Xð Þ ¼ 1:861642 ¼ UF

C Xð Þ; L
T
C Xð Þ ¼ 1:858613 ¼

LIC Xð Þ;L
F
C Xð Þ ¼ 1:858613þ eC Xð Þ, with 0\eC Xð Þ\:003029;

and UI
C Xð Þ ¼ LTC Xð Þ þ nC Xð Þ with 0\nC Xð Þ\:003029

Now using the bounds, we calculate the membership

functions for objective as follows:

TC Xð Þ C Xð Þð Þ ¼

1 if C Xð Þ� 1:858613
1:861642� C Xð Þ

:003029

	 

if 1:858613�C Xð Þ� 1:861642

0 if C Xð Þ� 1:861642

8
>><

>>:

ð116Þ
IC Xð Þ C Xð Þð Þ ¼

1 if C Xð Þ� 1:858613

1:858613þ nC Xð Þ
� �

� g xð Þ
nC Xð Þ

 !

if 1:858613�C Xð Þ� 1:858613þ nC Xð Þ

0 if C Xð Þ� 1:858613þ nC Xð Þ

8
>>>><

>>>>:

ð117Þ

FC Xð Þ C Xð Þð Þ ¼

0 if C Xð Þ� 1:858613þ eC Xð Þ
C Xð Þ � 1:858613� eC Xð Þ

:003029� eC Xð Þ

	 

if 1:858613þ eC Xð Þ �C Xð Þ � 1:861642

1 if C Xð Þ� 1:861642

8
>><

>>:

ð118Þ

similarly the membership functions for shear stress con-

straint are,

Tg1 xð Þ g1 xð Þð Þ ¼

1 if g1 xð Þ� 13; 600
13600� g1 xð Þ

50

	 

if 13; 600� g1 xð Þ� 13; 650

0 if g1 xð Þ� 13; 650

8
>><

>>:

ð119Þ
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Ig1 xð Þ g1 xð Þð Þ ¼

1 if g1 xð Þ� 13; 600

13600þ ng1 xð Þ
� �

� g1 xð Þ
ng1 xð Þ

 !

if 13600� g1 xð Þ� 13; 600þ ng1 xð Þ

0 if g1 xð Þ� 13; 600þ ng1 xð Þ

8
>>><

>>>:

ð120Þ

Fg1 xð Þ g1 xð Þð Þ ¼

0 if g1 xð Þ� 13; 600þ eg1 xð Þ
g1 xð Þ � 13600� eg1 xð Þ

50� eg1 xð Þ

	 

if 13600þ eg1 xð Þ � g1 xð Þ� 13; 650

1 if g1 xð Þ� 13; 650

8
>><

>>:

ð121Þ
where 0\eg1 xð Þ; ng1 xð Þ\:003209

and the membership functions for normal stress constraint

are,

Tg2 xð Þ g2 xð Þð Þ ¼
1 if g2 xð Þ� 30; 000
30000� g2 xð Þ

50

	 

if 30; 000� g2 xð Þ� 30; 050

0 if g2 xð Þ� 30; 050

8
>><

>>:

ð122Þ

Ig2 xð Þ g2 xð Þð Þ ¼

1 if g2 xð Þ� 30; 000

30000þ ng2 xð Þ
� �

� g2 xð Þ
ng2 xð Þ

 !

if 30; 000� g2 xð Þ� 30; 000þ ng2 xð Þ

0 if g2 xð Þ� 30; 000þ ng2 xð Þ

8
>>><

>>>:

ð123Þ

Fg2 xð Þ g2 xð Þð Þ ¼

0 if g2 xð Þ� 30000þ eg2 xð Þ
g2 xð Þ � 30000� eg2 xð Þ

50� eg2 xð Þ

	 

if 30000þ eg2 xð Þ � g2 xð Þ� 30050

1 if g2 xð Þ� 30050

8
>><

>>:

ð124Þ
where 0\eg2 xð Þ; ng2 xð Þ\50

and the membership functions for deflection constraint

are,

Tg6 xð Þ g6 xð Þð Þ ¼
1 if g6 xð Þ� 0:25
0:25� g6 xð Þ

0:05

	 

if 0:25� g6 xð Þ� 0:3

0 if g6 xð Þ� 0:3

8
>><

>>:

ð125Þ

Ig6 xð Þ g6 xð Þð Þ ¼

1 if g6 xð Þ� 0:25

0:25þ ng6 xð Þ
� �

� g6 xð Þ
ng6 xð Þ

 !

if 0:25� g6 xð Þ� 0:25þ ng6 xð Þ

0 if g6 xð Þ� 0:25þ ng6 xð Þ

8
>>><

>>>:

ð126Þ

Fg6 xð Þ g6 xð Þð Þ ¼
0 if g6 xð Þ� 0:25þ eg6 xð Þ

g6 xð Þ � 0:25� eg6 xð Þ
0:05� eg6 xð Þ

	 

if 0:25þ eg6 xð Þ � g6 xð Þ� 0:3

1 if g6 xð Þ� 0:3

8
>>><

>>>:

ð127Þ
where 0\eg6 xð Þ; ng6 xð Þ\:05

Now, using above-mentioned truth, indeterminacy and

falsity linear membership function NLP (Eqs. 79–87) can

be solved for Model-I and Model-II, by fuzzy, intuitionistic

fuzzy and NSO technique with different values of

eC Xð Þ; eg1 xð Þ; eg2 xð Þ; eg6 xð Þ and nC Xð Þ; ng1 xð Þ; ng2 xð Þ; ng6 xð Þ. The

optimum height, length, depth, width and cost of welding

of welded beam design (Eqs. 79–87) are given in Table 2,

and the solution are compared with other deterministic

optimization methods.

A detailed comparison has been made among several

deterministic optimization methods for optimizing welding

cost with imprecise optimization methods such as fuzzy, IF

and NSO methods in Table 2. It has been observed that

fuzzy nonlinear optimization provides better result in com-

parison with IF andNSOmethods. Although it has been seen

that in this method cost of welding is minimum than in other

the methods studied in this paper, as far as non-deterministic

optimization methods concern, fuzzy, IF and NSO are pro-

viding a valuable result in imprecise environment in this

paper and the literature. It has been seen that improved

harmony search algorithm [14], COPSO [17], EP [19],

HPSO [21] are providing minimum most cost of welding

where all the parameters have been considered as exact in

nature. However, it may also be noted that the efficiency of

the proposed method depends on the model chosen to a

greater extent because it is not always expected that NSO

will provide better results over fuzzy and IF optimization. So

overall NSO is an efficient method in finding best optimal

solution in imprecise environment. It has been studied that

same results have been obtained while indeterminate

membership tried to be maximize (Model-I) or minimize

(Model-II) in NSO for this particular problem.

Table 1 Input data for neutrosophic model [Eqs. (88–96)]

Applied

load P lbð Þ
Beam length

beyond weld L inð Þ
Young

modulus E

psið Þ

Value of

G psið Þ
Maximum allowable

shear stress smax psið Þ
Maximum allowable

normal stress rmax psið Þ
Maximum allowable

deflection dmax inð Þ

6000 14 3	 106 12	 106 13,600 with allowable

tolerance 50

30,000 with allowable

tolerance 50

0.25 with allowable

tolerance 0.05
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6 Conclusion

In this paper, a single-objective NSO algorithm has been

developed by defining truth, indeterminacy and falsity

membership functions which are independent to each other.

Using this method, firstly optimum height length depth,

width and cost of welding have been calculated and finally

the results are compared with different deterministic

methods. So given example of welded beam design illus-

trates the optimization procedure, effectiveness and advan-

tages of the proposed NSOmethod. The comparison of NSO

technique with other optimization techniques has enhanced

the acceptability of proposed method. The result obtained in

proposed neutrosophic optimization method is not absurd

related to other deterministic methods and the results have

been obtained in imprecise environment, so realistic.

Table 2 Comparison of optimal solution of welded beam design (Eqs. 79–87) based on fuzzy and IF and NSO technique (Model-I and Model-

II) with different methods

Methods Height

x1 (inch)

Length x2
(inch)

Depth x3
(inch)

Width x4
(inch)

Welding

cost

C Xð Þ $

DAVID [10] 0:2434 6:2552 8:2915 0:2444 2:3841

APPROX [10] 0:2444 6:2189 8:2915 0:2444 2:3815

SIMPLEX [10] 0:2792 5:6256 7:7512 0:2796 2:5307

RANDOM [10] 0:4575 4:7313 5:0853 0:66 4:1185

Harmony search algorithm [11] 0:2442 6:2231 8:2915 0:2443 2:3807

GA-based method [12] 0:2489 6:173 8:1789 0:2533 2:4328

GA-based method [13] 0:2088 3:4205 8:9975 0:21 1:7483

Improved harmony search algorithm [14] 0:20573 3:47049 9:03662 0:20573 1:72485

SiC-PSO [15] 0:205729 3:470488 9:036624 0:205729 1:724852

Mezura [16] 0:244438 6:237967 8:288576 0:244566 2:38119

COPSO [17] 0:205730 3:470489 9:036624 0:205730 1:724852

GA1 [13] 0:208800 3:420500 8:997500 0:210000 1:748309

GA2 [18] 0:205986 3:471328 9:020224 0:206480 1:728226

EP [19] 0:205700 3:470500 9:036600 0:205700 1:724852

CPSO [20] 0:202369 3:544214 9:048210 0:205723 1:728024

HPSO [21] 0:205730 3:470489 9:036624 0:205730 1:724852

NM-PSO [22] 0:205830 0:3:468338 9:036624 0:205730 1:724717

PSO [23] 0:206412 3:528353 8:988437 0:208052 1:742326

SA [23] 0:165306 5:294754 8:872164 0:217625 1:939196

GL [23] 0:204164 3:565391 9:05924 0:206216 1:7428

Cuckoo [23] 0:20573 3:519497 9:036624 0:20573 1:731527

FF [23] 0:214698 3:655292 8:507188 0:234477 1:864164

FP [23] 0:205729 3:519502 9:036628 0:20573 1:731528

ALO [23] 0:177859 4:393466 9:065462 0:20559 1:796793

GSA [23] 0:219556 4:728342 8:50097 0:271548 2:295076

MVO [23] 0:199033 3:652944 9:114448 0:205478 1:749834

Fuzzy single-objective nonlinear programming [27] :2444216 3:028584 8:283678 0:2444216 1:858613

Intuitionistic fuzzy single-objective nonlinear programming (FSONLP) [27]

eC Xð Þ ¼ :0015;eg1 xð Þ ¼ 25;eg2 xð Þ ¼ 25;eg6 xð Þ ¼ :025;
:2443950 3:034430 8:287578 0:2443950 1:860125

Proposed neutrosophic optimization (NSO)

eC Xð Þ ¼ :0015;eg1 xð Þ ¼ 25;eg2 xð Þ ¼ 25;

eg6 xð Þ ¼ :025;nC Xð Þ ¼ :0024;ng1 xð Þ ¼ 40;ng2 xð Þ ¼ 40;ng6 xð Þ ¼ :04;

Model-

I

:2443950 3:034430 8:287578 0:2443950 1:860125

Model-

II

.2443950 3.034430 8.287578 0.2443950 1.860125
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