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Abstract Interval-valued Pythagorean fuzzy set (IVPFS),

as an extension of interval-valued intuitionistic fuzzy set

(IVIFS) and Pythagorean fuzzy set to deal with uncertainty,

has attracted much attention since its introduction, in both

theory and application aspects. The present work aims at

investigating new distance measures in the IVPFSs and

then employing them into multiple criteria decision-mak-

ing application. To begin with, generalized interval-valued

Pythagorean fuzzy weighted distance measure and gener-

alized interval-valued Pythagorean fuzzy ordered weighted

distance measure are firstly introduced in the IVPFSs.

Afterward, we propose generalized probabilistic interval-

valued Pythagorean fuzzy weighted averaging distance (P-

GIVPFWAD) operator, generalized probabilistic interval-

valued Pythagorean fuzzy order weighted averaging dis-

tance (P-GIVPFOWAD) operator and immediate general-

ized probabilistic interval-valued Pythagorean fuzzy

ordered weighted averaging distance (IP-GIVPFOWAD)

operator which are new distance measures and are able to

integrate the ordered weighted averaging operator, proba-

bilistic weight and individual distance of two interval-

valued Pythagorean fuzzy numbers (IVPFNs) in the same

formulation. These distance measures are very suitable to

deal with the situation where the input data are represented

in IVPFNs. Then we present a kind of multiple criteria

decision-making method with interval-valued Pythagorean

fuzzy information based on the developed distance mea-

sures. Finally, a numerical example is provided to explain

the feasibility of the proposed method and the validity of

the developed method is also analyzed according to the

validity criterion of multiple criteria decision making.

Keywords Interval-valued Pythagorean fuzzy set �
Probability � Distance measures � Multi-criteria decision

making

1 Introduction

Multiple criteria decision making (MCDM), as an effective

framework for comparison, has always been used to find the

most desirable one from a finite set of alternatives on the

predefined criteria or attributes. Due to the intrinsic com-

plexity of natural objects, there exists much uncertain

information in many real-world problems. So, it is difficult

for experts or decision makers (DMs) to give their assess-

ments on criteria or attributes with precise values and the

performance ranking. Fortunately, Zadeh [1] introduced

fuzzy set (FS)which is a generalization of classical set theory

and has been found to be particularly suitable to describe the

uncertain information when one assesses decision alterna-

tives for MCDM problems. Since the fuzzy set was
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introduced, it has also drawn the attention of many

researchers who have extended the fuzzy sets to interval-

valued fuzzy sets (IVFSs), intuitionistic fuzzy sets (IFSs),

interval-valued intuitionistic fuzzy sets (IVIFSs), hesitant

fuzzy sets (HFSs), and so on; various fuzzy decision-making

methods [2–15]based on them have been also constructed to

handle some fuzzy and uncertainty information.

As an important extension of fuzzy set, IFS [16] is char-

acterized by three parameters, namely, a membership degree,

a non-membership degree and an indeterminacy degree. That

is, an IFS A in a finite universe of discourse X has such a

structure A ¼ fhx; ðlAðxÞ; mAðxÞÞijx 2 Xg, where lA repre-

sents the membership degree and mA is the non-membership

degree with the condition that 0� lAðxÞ þ mAðxÞ� 1. Since

IFS’s appearance, it becomes a powerful tool to deal with

some information with imprecision, uncertainty and vague-

ness. However, Yager [12] and Yager and Abbasoc [17]

pointed out that there exists such a kind of useful extension of

IFS A ¼ fhx; ðlAðxÞ; mAðxÞÞijx 2 Xg which satisfies the

condition 0� l2AðxÞ þ m2AðxÞ� 1. Such a useful extension of

IFSs is called a Pythagorean fuzzy set (PFS). The main dif-

ference between the IFSs and PFSs focuses on the member-

ship degrees and the non-membership degrees of them.

Therefore, it follows from the above analysis of IFS and PFS

that PFS has more powerful ability than IFS to deal with

uncertain information in MCDM problems. After introduc-

tion of PFSs, related weighted averaging operators

[10, 18, 19], Pythagorean fuzzy aggregation operators [20],

related distance and similarity of PFNs [19, 21], correlation

coefficient of two PFNs [22], and fundamental properties of

Pythagorean fuzzy functions [23] have been developed to

deal with some decision-making problems and other aspects

[11, 24, 25]. After introduction of PFSs, Peng and Yang [26]

and Zhang [21] further proposed the interval-valued Pytha-

gorean fuzzy set (IVPFS) whose membership function and

non-membership function are represented by an interval

number, and some operations and relations of IVPFS are also

investigated. Since then, some researches on theories [27]

and applications [14, 19] of IVPFSs have been developed.

Information measures have played the vital roles in the

development of various fuzzy sets theories and their appli-

cations. However, distance measure, one of information

measures, is used to compare the alternatives of the problem

with some ideal results and obtain the optimal choice in

decision-making problems. Therefore, the variety of distance

measures have been proposed, such as the Hamming dis-

tance, Euclid distance, Hausdorff distance, and so on.

Recently, on the basis of the idea of the ordered weighted

averaging (OWA) operator, Xu and Chen [28] introduced

ordered weighted distance measure, and Merigo [29] intro-

duced an ordered weighted averaging distance (OWAD)

operator, which is also a new distance measure by combining

the OWA operator and a distance measure. Since its intro-

duction, the OWAD has been further developed and exten-

ded, such as, ordered weighted averaging (OWAWA)

operator [29], probabilistic OWA (POWA) operator [30],

uncertain probabilistic OWA (UPOWA) operator [31], fuzzy

probabilistic OWA (FPOWA) operator [31], and proba-

bilistic ordered weighted averaging distance (UPOWAD)

[32]; they were gradually introduced and applied to different

decision-making problems.

Based on the existing work as reviewed above about the

distance measures-related OWA operator, motivated by the

ideas of OWAD operator and UPOWAD operator, which

are two distance measures using the OWA operator to

calculate the Hamming distance, in the present work, we

propose some new interval-valued Pythagorean fuzzy dis-

tances, namely, generalized probabilistic interval-valued

Pythagorean fuzzy weighted averaging distance (P-

GIVPFWAD) operator, generalized probabilistic interval-

valued Pythagorean fuzzy order weighted averaging dis-

tance (P-GIVPFOWAD) operator and immediate general-

ized probabilistic interval-valued Pythagorean fuzzy

ordered weighted averaging distance (IP-GIVPFOWAD)

operator, by applying related OWA operators, probabilistic

weighted (PW) information and individual distance of

IVPFNs. They are also extensions of UPOWA operator

[32]. Compared with some existing weighted distance

measures, these new interval-valued Pythagorean fuzzy

distance measures can deal with more complex decision-

making problems which include uncertain information

evaluated with the IVPFNs, the probability information and

the OWA operator. The main contributions of the present

work are summarized as following: (1) introduce general-

ized interval-valued Pythagorean fuzzy order weighted

distance GIVPFOWD measure; (2) introduce generalized

probabilistic interval-valued Pythagorean fuzzy ordered

weighted averaging distance P-GIVPFOWAD operator and

immediate generalized probabilistic interval-valued

Pythagorean fuzzy ordered weighted averaging distance IP-

GIVPFOWAD operator, which are new distance measures

that unifies interval-valued Pythagorean fuzzy information

with OWA operator and individual distance measures of

two IVPFNs; (3) based on the P-GIVPFOWAD and IP-

GIVPFOWAD, we extend the traditional TOPSIS method

to construct a MCDM method under IVPF environment.

The rest of the paper is organized as follows. In Sect. 2,

we review some definitions on IVPFSs, score function and

accuracy function of IVPFNs, which are used in the anal-

ysis throughout this paper. Section 3 is devoted to the main

results concerning the distances of IVPFSs: GIVPFWD and

GIVPFOWD. Section 4 is focused on P-GIVPFOWAD

operator and IP-GIVPFOWAD operator. In Sect. 5, we

construct MCDM approach based on some proposed dis-
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tance operators in Sect. 4. Consequently, a practical

example is provided in Sect. 6 to illustrate this method and

analyze the validity of the proposed MCDM methods. This

paper is concluded in Sect. 7.

2 Interval-Valued Pythagorean Fuzzy Sets

In this section, firstly some basic concepts related to IFS

and PFS have been given and then IVPFS is recapped,

which are the basis of this work.

2.1 Pythagorean Fuzzy Set

Let X ¼ fx1; x2; . . .; xng be a finite universe of discourse, an
intuitionistic fuzzy set (IFS) [16] A in X characterized by a

membership function lA : X ! ½0; 1� and a non-member-

ship function mA : X ! ½0; 1�, which satisfy the condition

0� lAðxÞ þ mAðxÞ� 1. An IFS A can be expressed as

A ¼ fhx; ðlAðxÞ; mAðxÞÞijx 2 Xg:

pAðxÞ ¼ 1� lAðxÞ � mAðxÞ is called the degree of indeter-

minacy. For the convenience, called ðlAðxÞ; mAðxÞÞ is an

intuitionistic fuzzy number (IFN) and denoted by ðlA; mAÞ.
However, there are some decision-making problems in

which the DMs or the experts’ attitudes are possibly not

suitable to be described by applying an IFS. Under such

situations, Pythagorean fuzzy set (PFS), introduced by

Yager and Abbasov [17], is a novel concept to deal with

this situation and also an extension of IFS:

In a finite universe of discourse X ¼ fx1; x2; . . .; xng, a
PFS P with the structure

P ¼ fhx; ðlPðxÞ; mPðxÞÞijx 2 Xg:

where lP : X ! ½0; 1� denotes the membership degree and

mP : X ! ½0; 1� denotes the non-membership degree of the

element x 2 X to the set P, respectively, with the condition

that 0�ðlPðxÞÞ2 þ ðmPðxÞÞ2 � 1. pPðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ðlPðxÞÞ2 � ðmPðxÞÞ2
q

is called the degree of indeter-

minacy. For the convenience, Zhang and Xu [15] called

p ¼ ðlpðxÞ; mpðxÞÞ a Pythagorean fuzzy number (PFN)

denoted by p ¼ ðlp; mpÞ.
From the definitions of IFS and PFS, we can easily see that

the main difference between PFN and IFN is their corre-

sponding constraint conditions. Obviously, an IFN must be a

PFN, but the converse is not true in generally. For instance,

p ¼ ð0:5; 0:8Þ is a PFNbut not an IFNbecause 0:5þ 0:8[ 1.

In order to compare two PFNs, Zhang and Xu [15] introduced

the concept of score function. For a PFN p ¼ ðlp; mpÞ, the
score function s(p) of p be defined as follows:

sðpÞ ¼ ðlpÞ2 � ðmpÞ2; ð1Þ

where sðpÞ 2 ½�1; 1�.
For any two PFNs p1; p2,

(1) if sðp1Þ\sðp2Þ, then p1 � p2;

(2) if sðp1Þ[ sðp2Þ, then p1 � p2;

(3) if sðp1Þ ¼ sðp2Þ, then p1 � p2.

Peng and Yang [20] pointed out that the score function

defined in above is not reasonable. For instance, for two

PFNs p1 ¼ ð0:4; 0:4Þ and p2 ¼ ð0:7; 0:7Þ, we have p1 � p2
according to definition of score function of a PFN. However,

it is obviously unreasonable. In order to overcome the

drawback of score function, Peng and Yang [20] introduced

the concept of accuracy function of a PFN and modified the

comparison rules, which are showed as follows:

For any PFN p ¼ ðlp; mpÞ, the accuracy function a(p) of

p is defined as follows:

aðpÞ ¼ ðlpÞ2 þ ðmpÞ2; ð2Þ

where aðpÞ 2 ½0; 1�.
For any two PFNs p1; p2,

(1) if sðp1Þ\sðp2Þ, then p1 � p2;

(2) if sðp1Þ ¼ sðp2Þ, then,

(a) if aðp1Þ\aðp2Þ, then p1 � p2;

(b) if aðp1Þ ¼ aðp2Þ, then p1 � p2.

2.2 Interval-Valued Pythagorean Fuzzy Set

In many real decision-making problems, there exist some

situations where expert’s or DM’s opinions may be repre-

sented by a subinterval of [0,1] not a crisp number. In order to

describe such decision-making problems, Peng and Yang

[26] andZhang [14] introduced the concept of interval-valued

Pythagorean fuzzy sets (IVPFSs), which can describe such a

problem whose membership degree and non-membership

degree are all expressed in a subinterval of [0,1], respectively.

Let Int([0, 1]) denote the set of all closed subintervals of

[0, 1], and X be a universe of discourse. An IVPFS [14, 26]

in X has such a structure

~P ¼ fhx; ðl ~PðxÞ; m ~PðxÞÞijx 2 Xg:

where l ~P : X ! Intð½0; 1�Þ denotes the membership degree

and m ~P : X ! Intð½0; 1�Þ denotes the non-membership

degree of the element x 2 X to the set ~P, respectively, with

the condition that 0� supðl ~PðxÞÞ
2 þ supðm ~PðxÞÞ

2 � 1.

For each x 2 X, l ~PðxÞ and m ~PðxÞ denote l ~PðxÞ ¼ ½l�~P ðxÞ;
lþ~P ðxÞ�, m ~PðxÞ ¼ ½m�~P ðxÞ; m

þ
~P
ðxÞ�, respectively. Therefore, ~P

can also be expressed in another style as follows:

~P ¼ x; ð l�~P ðxÞ; l
þ
~P
ðxÞ

h i

; m�~P ðxÞ; m
þ
~P
ðxÞ

h i

Þ
D E

jx 2 X
n o

:

ð3Þ

560 International Journal of Fuzzy Systems, Vol. 20, No. 2, February 2018

123



where Eq. (3) satisfies the condition ðlþ~P ðxÞÞ
2 þ ðmþ~P ðxÞÞ

2

� 1.

p ~PðxÞ ¼ p�~P ðxÞ; p
þ
~P
ðxÞ

h i

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� lþ~P ðxÞ
� �2

� mþ~P ðxÞ
� �2

r

;

"

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� l�~P ðxÞ
� �2

� m�~P ðxÞ
� �2

r

#

is called the indeterminacy degree. For the convenience,

~p ¼ ð½l�~p ; lþ~p �; ½m�~p ; mþ~p �Þ is called an interval-valued Pytha-

gorean fuzzy number (IVPFN).

Hereafter, IVPFN denotes the set of all IVPFNs of a

IVPFS on X.

For two IVPFNs ~p1 ¼ ð½l�~p1 ; l
þ
~p1
�; ½m�~p1 ; m

þ
~p1
�Þ and

~p2 ¼ ð½l�~p2 ; l
þ
~p2
�; ½m�~p2 ; m

þ
~p2
�Þ, a relation � on the IVPFNs is

defined as follows:

l�~p1 � l�~p2 ; l
þ
~p1
� lþ~p2 and m�~p1 	 m�~p2 ; m

þ
~p1
	 mþ~p2 : ð4Þ

In order to compare two IVPFNs, Peng and Yang [26]

introduced the concepts of score function and accuracy

function of an IVPFN, which are defined as follows:

For any IVPFN ~p ¼ ð½l�~p ; lþ~p �; ½m�~p ; mþ~p �Þ, the score

function ~sðpÞ of ~p is defined as follows:

~sð~pÞ ¼ 1

2
ðl�~p Þ

2 þ ðlþ~p Þ
2 � ðm�~p Þ

2 � ðmþ~p Þ
2

� �

; ð5Þ

where ~sð~pÞ 2 ½�1; 1�.
For any IVPFN ~p ¼ ð½l�~p ; lþ~p �; ½m�~p ; mþ~p �Þ, the accuracy

function ~aðpÞ of ~p is defined as follows:

~að~pÞ ¼ 1

2
ðl�~p Þ

2 þ ðlþ~p Þ
2 þ ðm�~p Þ

2 þ ðmþ~p Þ
2

� �

; ð6Þ

where ~sð~pÞ 2 ½0; 1�.
Based on the score function and accuracy function of an

IVPFN, the comparison rules [26] between two IVPFNs are

given as follows:

For any two IVPFNs ~p1; ~p2,

(1) if ~sð~p1Þ\~sð~p2Þ, then ~p1 � ~p2.
(2) if ~sð~p1Þ ¼ ~sð~p2Þ, then,

(a) if ~að~p1Þ\~að~p2Þ, then ~p1 � ~p2;

(b) if ~að~p1Þ ¼ ~að~p2Þ, then ~p1 � ~p2.

3 Generalized Interval-Valued Pythagorean Fuzzy
Ordered Weighted Distance Measures

Ordered weighted averaging (OWA) operator [33] provides

a powerful tool to aggregate multiple inputs that lie

between the max and min operators, it has been used in

many ranges of applications. In this section, we will

introduce a kind of new distance measure, namely, gener-

alized interval-valued Pythagorean fuzzy ordered weighted

distance measure (GIVPFOWD). Before the introduction

of GIVPFOWD, we first review the concepts related to the

OWA operator.

Definition 1 ([33]) An OWA operator of dimension n is a

mapping OWA: Rn ! R that has an associated weighting

x ¼ ðx1; . . .;xnÞ with xj 2 ½0; 1� and
Pn

j¼1 xj ¼ 1, such

that

OWAða1; a2; . . .; anÞ ¼
X

n

j¼1

xjbj ð7Þ

where ða1; a2; . . .; anÞ 2 Rn and bj is the jth largest of ai.

Definition 2 ([30]) Let A ¼ ða1; . . .; anÞ;B ¼ ðb1; . . .; bnÞ
be two sets of arguments. An ordered weighted averaging

distance (OWAD) operator of dimension n is a mapping

OWAD: Rn 
 Rn ! R that has an associated weighting

x ¼ ðx1; . . .;xnÞ with xj 2 ½0; 1� and
Pn

j¼1 xj ¼ 1, such

that

OWADðA;BÞ ¼
X

n

j¼1

xjdj ð8Þ

where dj is the jth largest of jai � bij.

Remark 1 In Definition 2, if we do not consider the order

of individual distance, then the OWAD is called the

weighted Haming distance measure [32]. That is, a

weighted distance measure is a mapping WHD: Rn 
 Rn !
R that has an associated weighting x ¼ ðx1; . . .;xnÞ with
xj 2 ½0; 1� and

Pn
j¼1 xj ¼ 1, such that

WHDðA;BÞ ¼
X

n

j¼1

xjjaj � bjj:

It follows from Definitions 1 and 2 that OWAD operator

is an extension of the Hamming distances by applying the

OWA operator and is also a distance measure. The main

difference between the OWAD operator and the normalized

Hamming distance is that the orders of arguments of the

individual distances are arranged according to their values.

Motivated by the OWAD operator, we propose the con-

cept of generalized interval-valued Pythagorean fuzzy

ordered weighted distance GIVPFOWDmeasure below. Let

~A ¼ f~ai ¼ ðl~ai ; m~aiÞji ¼ 1; 2; . . .; ng and ~B ¼ f~bi ¼
ðl~bi

; m~biÞji ¼ 1; 2; . . .; ng be two collections of IVPFNs,

where ðl~ai ; m~aiÞ ¼ ð½l�~ai ; l
þ
~ai
�; ½m�~ai ; m

þ
~ai
�Þ, ðl~bi

; m~biÞ ¼
ð½l�~bi ; l

þ
~bi
�; ½m�~bi ; m

þ
~bi
�Þ. Before the GIVPFOWAD is given, we
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first define the p-distance between two IVPFNs ~p1 ¼
ð½l�~p1 ; l

þ
~p1
�; ½m�~p1 ; m

þ
~p1
�Þ and ~p2 ¼ ð½l�~p2 ; l

þ
~p2
�; ½m�~p2 ; m

þ
~p2
�Þ.

Definition 3 For two IVPFNs ~p1 and ~p2, the p-distance

dpð~p1; ~p2Þ between ~p1 and ~p2 is defined as follows, where

p[ 0:

dpð~p1; ~p2Þ ¼
1

4
ðjðl�~p1Þ

2 � ðl�~p2Þ
2jp þ jðlþ~p1Þ

2 � ðlþ~p2Þ
2jp

þ jðm�~p1Þ
2 � ðm�~p2Þ

2jp þ jðmþ~p1Þ
2 � ðmþ~p2Þ

2jp

þ jðp�~p1Þ
2 � ðp�~p2Þ

2jp þ jðpþ~p1Þ
2 � ðpþ~p2Þ

2jpÞ:
ð9Þ

Hereafter, dpð~p1; ~p2Þ always denotes the interval-valued

Pythagorean fuzzy p-distance (IVPF p-distance) between

two IVPFNs ~p1; ~p2 if not specified. In this paper, the

symbol dpð~p1; ~p2Þ is just a distance defined in Eq. (9), not p

powers of dð~p1; ~p2Þ.

Theorem 1 Let dpð~p1; ~p2Þ be the IVPF p-distance

between ~p1 ¼ ð½l�~p1 ; l
þ
~p1
�; ½m�~p1 ; m

þ
~p1
�Þ and

~p2 ¼ ð½l�~p2 ; l
þ
~p2
�; ½m�~p2 ; m

þ
~p2
�Þ. Then the following properties

hold.

(1) dpð~p1; ~p2Þ	 0;

(2) dpð~p1; ~p2Þ ¼ dpð~p2; ~p1Þ;
(3) dpð~p1; ~p2Þ ¼ 0 if and only if ~p1 ¼ ~p2;

(4) If ~p1 � ~p2 � ~p3, then dpð~p1; ~p2Þ� dpð~p1; ~p3Þ and

dpð~p2; ~p3Þ� dpð~p1; ~p3Þ.

Proof It is obviously that (1), (2), (3) hold. Therefore, we

only need to prove (4).

(4). Let ~pi ¼ ð½l�~pi ;l
þ
~pi
�; ½m�~p1 ; m

þ
~p1
�Þði ¼ 1; 2; 3Þ and

~p1 � ~p2 � ~p3, we have l�~p1 � l�~p2 � l�~p3 , lþ~p1 � lþ~p2 � lþ~p3 ,

m�~p1 	 m�~p2 	 m�~p3 and mþ~p1 	 mþ~p2 	 mþ~p3 . Therefore

jðl�~p1Þ
2 � ðl�~p2Þ

2j � jðl�~p1Þ
2 � ðl�~p3Þ

2j;
jðlþ~p1Þ

2 � ðlþ~p2Þ
2j � jðlþ~p1Þ

2 � ðlþ~p3Þ
2j;

jðm�~p1Þ
2 � ðm�~p2Þ

2j � jðm�~p1Þ
2 � ðm�~p3Þ

2j;
jðmþ~p1Þ

2 � ðmþ~p2Þ
2j � jðmþ~p1Þ

2 � ðmþ~p3Þ
2j:

Furthermore, we have

jðl�~p1Þ
2 � ðl�~p2Þ

2jp � jðl�~p1Þ
2 � ðl�~p3Þ

2jp;
jðlþ~p1Þ

2 � ðlþ~p2Þ
2jp � jðlþ~p1Þ

2 � ðlþ~p3Þ
2jp;

jðm�~p1Þ
2 � ðm�~p2Þ

2jp � jðm�~p1Þ
2 � ðm�~p3Þ

2jp;
jðmþ~p1Þ

2 � ðmþ~p2Þ
2jp � jðmþ~p1Þ

2 � ðmþ~p3Þ
2jp:

and

jðp�~p1Þ
2 � ðp�~p2Þ

2j ¼jðlþ~p2Þ
2 � ðlþ~p1Þ

2 þ ðmþ~p2Þ
2 � ðmþ~p1Þ

2j
� j1� ðlþ~p3Þ

2 � ðlþ~p1Þ
2 � ð1� ðmþ~p3Þ

2 � ðmþ~p1Þ
2Þj

¼jðp�~p1Þ
2 � ðp�~p3Þ

2j:

Thus, jðp�~p1Þ
2 � ðp�~p2Þ

2jp � jðp�~p1Þ
2 � ðp�~p3Þ

2jp. Similarly, we

have jðpþ~p1Þ
2 � ðpþ~p2Þ

2jp � jðpþ~p1Þ
2 � ðpþ~p3Þ

2jp.
Therefore,

dpð~p1; ~p2Þ ¼
1

4
ðjðl�~p1Þ

2 � ðl�~p2Þ
2jp þ jðlþ~p1Þ

2 � ðlþ~p2Þ
2jp

þ jðm�~p1Þ
2 � ðm�~p2Þ

2jp þ jðmþ~p1Þ
2 � ðmþ~p2Þ

2jp

þ jðp�~p1Þ
2 � ðp�~p2Þ

2jp þ jðpþ~p1Þ
2 � ðpþ~p2Þ

2jpÞ

� 1

4
ðjðl�~p1Þ

2 � ðl�~p3Þ
2jp þ jðlþ~p1Þ

2 � ðlþ~p3Þ
2jp

þ jðm�~p1Þ
2 � ðm�~p3Þ

2jp þ jðmþ~p1Þ
2 � ðmþ~p3Þ

2jp

þ jðp�~p1Þ
2 � ðp�~p3Þ

2jp þ jðpþ~p1Þ
2 � ðpþ~p3Þ

2jpÞ
¼ dpð~p1; ~p3Þ:

Analogously, we can also prove dpð~p2; ~p3Þ� dpð~p1; ~p3Þ,
which completes the proof of (4).

Now we introduce the generalized interval-valued

Pythagorean fuzzy weighted distance GIVPFWD measure

based on the IVPF p-distance.

Hereafter, ~A and ~B will represent two sets

ð~a1; ~a2; . . .; ~anÞ, ð~b1; ~b2; . . .; ~bnÞ of IVPFNs, respectively,

if not further specified. h

Definition 4 Let ~A and ~B be two collections of IVPFNs.

A generalized interval-valued Pythagorean fuzzy weighted

distance GIVPFWD measure is a function

GIVPFWD : IVPFN n 
 IVPFN n ! R;

which has associated weighting vector x ¼
ðx1;x2; . . .;xnÞT with xi [ 0;

Pn
i¼1 xi ¼ 1 such that

GIVPFWDð~A; ~BÞ ¼
X

n

i¼1

xiðdpð~ai; ~biÞÞ
 !1

p

; ð10Þ

where dpð~ai; ~biÞ is the IVPF p-distance between IVPFNs ~ai
and ~bi.

If p ¼ 1 in Eq. (10), GIVPFWD will be degenerated the

interval-valued Pythagorean fuzzy weighted averaging

distance IVPFWD measure

IVPFWDð~A; ~BÞ ¼
X

n

i¼1

xidð~ai; ~biÞ: ð11Þ

If p ¼ 2, GIVPFWD will be degenerated the interval-val-

ued Pythagorean fuzzy weighted Euclid distance

IVPFWED measure
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IVPFWEDð~A; ~BÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

n

i¼1

xid2ð~ai; ~biÞ
s

: ð12Þ

Example 1 Let

~A ¼f~a1 ¼ ð½0:7; 0:9�; ½0:2; 0:3�Þ; ~a2 ¼ ð½0:7; 0:8�; ½0:1; 0:2�Þ;
~a3 ¼ ð½0:2; 0:3�; ½0:8; 0:9�Þ; ~a4 ¼ ð½0:5; 0:6�; ½0:35; 0:45�Þg;

~B ¼f~b1 ¼ ð½0:4; 0:7�; ½0:2; 0:6�Þ; ~b2 ¼ ð½0:5; 0:6�; ½0:4; 0:5�Þ;
~b3 ¼ ð½0:2; 0:4�; ½0:8; 0:9�Þ; ~b4 ¼ ð½0:4; 0:7�; ½0:5; 0:6�Þg

be two sets of IVPFNs on the reference set X ¼
fx1; x2; . . .; x4g and the weight vector is x ¼ ð0:2; 0:3; 0:1;
0:4Þ. Firstly, we can calculate the dpð~ai; ~biÞ by employing

Eq. (9):

(1) When p ¼ 1,

dð~a1; ~b1Þ ¼ 0:585; dð~a2; ~b2Þ ¼ 0:540; dð~a3; ~b3Þ
¼ 0:660; dð~a4; ~b4Þ ¼ 0:2075:

According to Eq. (12),

IVPFWDð~A; ~BÞ ¼ 0:2
 0:325þ 0:3
 0:26þ 0:1


 0:035þ 0:4
 0:2075

¼ 0:2295:

(2) When p ¼ 2,

d2ð~a1; ~b1Þ ¼ 0:0989; d2ð~a2; ~b2Þ ¼ 0:0539;

d2ð~a3; ~b3Þ ¼ 0:0025; d2ð~a4; ~b4Þ ¼ 0:0375:

According to Eq. (12),

IVPFWEDð~A; ~BÞ ¼ ð0:2
 0:0989þ 0:3
 0:0539

þ 0:1
 0:0025þ 0:4
 0:0375Þ
1
2

¼ 0:2263:

Definition 5 Let ~A and ~B be two collections of IVPFNs.

A generalized interval-valued Pythagorean fuzzy order

weighted distance GIVPFOWD measure is a function

GIVPFOWD : IVPFN n 
 IVPFN n ! R;

which has an associated weighting vector x ¼
ðx1;x2; . . .;xnÞT with xi [ 0;

Pn
i¼1 xi ¼ 1ði ¼ 1; 2; . . .;

nÞ, such that

GIVPFOWDð~A; ~BÞ ¼
X

n

i¼1

xid
pð~ai; ~biÞ

 !1
p

; ð13Þ

where dpð~ai; ~biÞ is the ith largest of dpð~aj; ~bjÞ and dpð~aj; ~bjÞ
is IVPF p-distance between two IVPFNs ~ai and ~bi.

In Definition 5, if p ¼ 1, GIVPFOWD will be degen-

erated to interval-valued Pythagorean fuzzy order weighted

averaging distance IVPFOWD

IVPFOWDð~A; ~BÞ ¼
X

n

i¼1

xidð~ai; ~biÞ: ð14Þ

If p ¼ 2, GIVPFOWD will be degenerated to interval-

valued Pythagorean fuzzy order weighted averaging Euclid

distance IVPFOWED

IVPFOWEDð~A; ~BÞ ¼
X

n

i¼1

xid
2ð~ai; ~biÞ

 !1
2

: ð15Þ

The GIVPFOWD is a generalization of the interval-valued

Pythagorean fuzzy distance measures [19] by applying the

OWA operators. The main difference between GIVP-

FOWD and GIVPFWD is that is that the orders of the

individual distances of IVPFNs are arranged according to

the values of individual distances.

4 Generalized Probabilistic Interval-Valued
Pythagorean Fuzzy OWA Distance Operators

In this section, we introduce the generalized probabilistic

interval-valued Pythagorean fuzzy order weighted averaging

distance P-GIVPFOWAD operator and immediate general-

ized probabilistic interval-valued Pythagorean fuzzy order

weighted averaging distance IP-GIVPFOWAD operator,

which are two new distances that combining OWA operator,

probabilistic weights and individual distances. Therefore,

they can evaluate the more complex information which is

imprecise and cannot be expressedwith exact numbers, but all

this imprecision information may be evaluated by IVPFNs.

Definition 6 Let ~A and ~B be two collections of IVPFNs.

A generalized probabilistic interval-valued Pythagorean

fuzzy weighted distance P-GIVPFWAD operator is a

function

P-GIVPFWAD : IVPFN n 
 IVPFN n ! R

that has an associated weighting vector x ¼
ðx1;x2; . . .;xnÞT with xi [ 0;

Pn
i¼1 xi ¼ 1ði ¼ 1; 2;

. . .; nÞ, such that

P-GIVPFWADðð~A; ~BÞ ¼
X

n

i¼1

q̂iðdpð~ai; ~biÞÞ
 !1

p

; ð16Þ

where dpð~ai; ~biÞ is the IVPF p-distance between IVPFNs

~ai; ~bi. q̂i ¼ nxi þ ð1� nÞpi with n 2 ½0; 1�, pi is the asso-

ciated probability of dpð~ai; ~biÞ.
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In Definition 6, if n ¼ 0, then P-GIVPFWAD will be

reduced to generalized probabilistic interval-valued Pytha-

gorean fuzzy distance P-GIVPFD measure. If n ¼ 1, it will

be generalized interval-valued Pythagorean fuzzy weighted

distance GIVPFWD measure. If p ¼ 1, P-GIVPFWAD will

reduced to probabilistic interval-valued Pythagorean fuzzy

weighted averaging distance (P-IVPFWAD) operator

P-IVPFWADð~A; ~BÞ ¼
X

n

i¼1

q̂idð~ai; ~biÞ:

As the parameter n as concerned, it represents the impor-

tant degree of weight, while 1� n represents the important

degree of probabilistic information. In Eax.1, assume the

probabilistic weight vector (0.3, 0.2, 0.4, 0.1). Note that

weight important degree of 30% while probabilistic infor-

mation important degree of 70%, then we have

~q1 ¼ 0:3
 0:2þ 0:7
 0:3 ¼ 0:27;

~q2 ¼ 0:3
 0:3þ 0:7
 0:2 ¼ 0:23;

~q3 ¼ 0:3
 0:1þ 0:7
 0:4 ¼ 0:31;

~q4 ¼ 0:3
 0:4þ 0:7
 0:1 ¼ 0:19:

Therefore, when p ¼ 1, it follows from Eq. (16) that

P-IVPFWADð~A; ~BÞ ¼ 0:27
 0:325þ 0:23
 0:26þ 0:31


 0:035þ 0:19
 0:2075

¼ 0:1978:

When p ¼ 2,

d2ð~a1; ~b1Þ ¼ 0:0989; d2ð~a2; ~b2Þ ¼ 0:0539;

d2ð~a3; ~b3Þ ¼ 0:0025; d2ð~a4; ~b4Þ ¼ 0:0375:

It follows from Eq. (16) that

P-GIVPFWADð~A; ~BÞ ¼ ð0:27
 0:0989þ 0:23
 0:0539

þ 0:31
 0:0025þ 0:19
 0:0375Þ
1
2

¼ 0:2168:

Definition 7 Let ~A and ~B be two collections of IVPFNs.

A generalized probabilistic interval-valued Pythagorean

fuzzy ordered weighted averaging distance P-GIVPFO-

WAD operator is a function

P-GIVPFOWAD : IVPFN n 
 IVPFN n ! R

that has an associated weighting vector x ¼
ðx1;x2; . . .;xnÞT with xi [ 0;

Pn
i¼1 xi ¼ 1ði ¼ 1; 2; . . .;

nÞ, such that

P-GIVPFOWADð~A; ~BÞÞ ¼
X

n

i¼1

q̂iðdpð~ai; ~biÞÞ
 !1

p

; ð17Þ

where dpð~ai; ~biÞ is the ith largest of dpð~aj; ~bjÞ and dpð~aj; ~bjÞ
is IVPF p-distance between two IVPFNs ~aj; ~bj.

q̂i ¼ nxi þ ð1� nÞpi ð18Þ

with n 2 ½0; 1� and pi is the probabilistic pj according to

dpðai; biÞ, that is, according to the ith largest of the

dpð~aj; ~bjÞ.

In Definition 7, if p ¼ 1, P-GIVPFOWAD will reduced

to probabilistic interval-valued Pythagorean fuzzy ordered

weighted averaging distance P-IVPFOWAD operator

P-IVPFOWADð~A; ~BÞ ¼
X

n

i¼1

q̂idð~ai; ~biÞ: ð19Þ

If n ¼ 0, then P-GIVPFOWAD will be generalized prob-

abilistic interval-valued Pythagorean fuzzy weighted dis-

tance P-GIVPFWAD operator; if n ¼ 1, it will be

generalized interval-valued Pythagorean fuzzy ordered

weighted distance GIVPFOWD operator.

In the following example, we will present a numerical

example to show how to use the above distance operator.

Example 2 In Example 1, we calculated the dpð~ai; ~biÞ by
employing Eq. (9) as follows, when p ¼ 1,

dð~a1; ~b1Þ ¼ 0:325; dð~a2; ~b2Þ ¼ 0:26; dð~a3; ~b3Þ
¼ 0:035; dð~a4; ~b4Þ ¼ 0:2075:

According to the above interval-valued Pythagorean fuzzy

distance, we obtain the new probabilistic weight

(0.3, 0.2, 0.1, 0.4) by reordering the probabilistic weight

(0.3, 0.2, 0.4, 0.1), the new weight vector as follows:

~q1 ¼ 0:3
 0:2þ 0:7
 0:3 ¼ 0:27;

~q2 ¼ 0:3
 0:3þ 0:7
 0:2 ¼ 0:23;

~q3 ¼ 0:3
 0:1þ 0:7
 0:1 ¼ 0:10;

~q4 ¼ 0:3
 0:4þ 0:7
 0:4 ¼ 0:40:

Therefore, when p ¼ 1, it follows from Eq. (19) that

P-IVPFOWADð~A; ~BÞ ¼ 0:27
 0:325þ 0:23
 0:26þ 0:10


 0:2075þ 0:40
 0:035 ¼ 0:1823:

When p ¼ 3, it follows from Eq. (17) that

d3ða1; b1Þ ¼ 0:0311; d3ða2; b2Þ ¼ 0:0124;

d3ða3; b3Þ ¼ 0:0002; d3ða4; b4Þ ¼ 0:0082:

P-GIVPFOWADð~A; ~BÞ ¼ ð0:27
 0:0311þ 0:23
 0:0124

þ 0:1
 0:0002þ 0:40
 0:0082Þ
1
3

¼ 0:2441:

Now, we can also develop the generalized immediate

probabilistic interval-valued Pythagorean fuzzy order

weighted averaging distance IP-GIVPFOWAD operator by
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applying interval-valued Pythagorean fuzzy information,

individual distance, and immediate probability [34].

Definition 8 Let ~A and ~B be two collections of IVPFNs.

A generalized immediate probabilistic interval-valued

Pythagorean fuzzy order weighted averaging distance IP-

GIVPFOWAD operator is a function IP-GIVPFOWAD:

IVPFN n 
 IVPFN n ! R which has an associated

weighting vector x ¼ ðx1;x2; . . .;xnÞT is the with

xi [ 0;
Pn

i¼1 xi ¼ 1ði ¼ 1; 2; . . .; nÞ, such that

IP-GIVPFOWADð~A; ~BÞ ¼
X

n

i¼1

q̂iðdpð~ai; ~biÞÞ
 !1

p

; ð20Þ

where dpð~ai; ~biÞ is the ith largest of dpð~aj; ~bjÞ and dpð~aj; ~bjÞ
is the IVPF p-distance between IVPFNs ~aj; ~bj and a prob-

abilistic weight pi [ 0,
Pn

i¼1 pi ¼ 1.

q̂i ¼
xipi

Pn
i¼1 xipi

ð21Þ

and pi is the probabilistic pj according to dpð~ai; ~biÞ, that is,
according to the ith largest of the dpð~aj; ~bjÞ.

In Definition 8, when p ¼ 1, IP-GIVPFOWAD will be

degenerated to immediate probabilistic interval-valued

Pythagorean fuzzy ordered weighted averaging distance IP-

IVPFOWAD operator, i.e.,

IP-IVPFOWADð~A; ~BÞ ¼
X

n

i¼1

q̂idð~ai; ~biÞ: ð22Þ

In Eq. (21), if xi ¼ 1
n
, IP-GIVPFOWAD will be degener-

ated to generalized interval-valued Pythagorean fuzzy

ordered weighted distance GIVPFOWD measure; if pi ¼ 1
n
,

IP-GIVPFOWAD will degenerated to generalized interval-

valued Pythagorean fuzzy ordered weighted distance

measure GIVPFOWD. In the following example, we will

present a numerical example to show how to use the above

distance operator.

Example 3 In Example 2, since the following weight

vector x ¼ ð0:2; 0:3; 0:1; 0:4Þ and the probabilistic weight

vector (0.3, 0.2, 0.4, 0.1). We calculate the d3ð~ai; ~biÞ when
p ¼ 3 by employing Eq. (9) as follows,

d3ð~a1; ~b1Þ ¼ 0:0311; d3ð~a2; ~b2Þ ¼ 0:0124; d3ð~a3; ~b3Þ
¼ 0:0002; d3ð~a4; ~b4Þ ¼ 0:0082:

According to the above distances of IVPFNs, we obtain the

new probabilistic weight (0.3, 0.2, 0.1, 0.4) by reordering

the probabilistic weight (0.3, 0.2, 0.4, 0.1),

X

5

i¼1

xipi ¼ ð0:2; 0:3; 0:1; 0:4Þð0:3; 0:2; 0:1; 0:4ÞT ¼ 0:29:

Therefore, q̂1 ¼ x1p1
P5

i¼1
xipi

¼ 0:2
0:3
0:29 ¼ 0:2069: Similarly, we

have q̂2 ¼ 0:2069, q̂3 ¼ 0:0345, q̂4 ¼ 0:5517: Therefore,

when p ¼ 3, we have

IP-GIVPFOWADð~A; ~BÞ ¼ ð0:2069
 0:0311þ 0:2069
 0:0124

þ 0:0345
 0:0002 þ 0:5517
 0:082Þ
1
3

¼ 0:3786:

Remark 2 P-GIVPFOWAD and IP-GIVPFOWAD operator,

which are distance aggregation operators and also new distance

measures by using OWA operator and probability information.

P-GIVPFOWAD operator is a distance measure which unifies

the probability and the OWA operator in the same formulation

considering the degree of importance of each concept in the

aggregation, it also uses information represented in the form of

IVPFNs.However, IP-GIVPFOWADoperator also unifies both

concepts, but it is more strict because it does not allow different

degrees of importance between the OWA operators and prob-

ability. Compared with some existing weighted distance mea-

sures, these new interval-valued Pythagorean fuzzy distance

measures can deal with more complex decision-making prob-

lems which include uncertain information evaluated with the

IVPFNs, the probability information and OWA operator.

In the process of decision making, the aggregation

results would be more reliable if the selected operator is

monotonic, the lack of monotonicity may debase the reli-

ability and dependability of the final decision-making

results. However, we can prove P-GIVPFOWAD and IP-

GIVPFOWAD are bounded, monotonic and reflexivity.

The proof of this result is similar to Theorems 1–3 in [13].

Theorem 2 Let D be a P-GIVPFOWAD operator or an IP-

GIVPFOWADoperator, thenDsatisfies the followingproperties:

(1) (Boundary)

minifdpð~ai; ~biÞg�Dð~A; ~BÞ�maxifdpð~ai; ~biÞg
ði ¼ 1; 2; . . .; nÞ.

(2) (Monotonicity) Let ~C ¼ f~c1; . . .; ~cng be a set of

PFNs, if dpð~ai; ~biÞ	 dpð~ai; ~ciÞ, then
Dð~A; ~BÞ	Dð~A; ~CÞ:

(3) (Reflexivity) Dð~A; ~AÞ ¼ 0:

5 An Approach to MCDM with Interval-Valued
Pythagorean Fuzzy Information

Multiple criteria decision-making (MCDM) is considered

as a complex decision-making tool involving both quanti-

tative and qualitative factors. The practical purpose of the

proposed method in this section aims to handle the MCDM

problem under interval-valued Pythagorean fuzzy
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environment, especially on MCDM problems with the

subjective information and the attitudinal character of the

decision maker(s). A multi-criteria decision-making prob-

lems with interval-valued Pythagorean fuzzy information

can be described as follows:

Let X ¼ fx1; x2; . . .; xmg be a set of m alternatives, C ¼
fC1;C2; . . .;Cng the set of criteria andx ¼ ðx1;x2; . . .;xnÞT
be theweight vector of all criteria,which satisfy0�xi � 1with
Pn

i xi ¼ 1. Assume that the performance of alternative xiði ¼
1; 2; . . .;mÞ with respect to the criteria Cjðj ¼ 1; 2; . . .; nÞ are
measured by IVPFNs CjðxiÞ ¼ ð½l�ij ; lþij �; ½m�ij ; mþij �Þðj ¼
1; 2; . . .; n; i ¼; 2; . . .;mÞ and Rm
n ¼ ðCjðxiÞÞm
n is an IVPF

decision matrix. On the basis of the P-GIVPFOWAD or IP-

GIVPFOWAD, we develop a newMCDM approach, in which

both the subjective information and the attitudinal character of

the decision maker(s) are considered. The method can be

described by the following steps:

Step 1 According to the decision matrix

Rm
n ¼ ðCjðxiÞÞm
n ,

compute the scores and accuracies of IVPFNs

by applying Eqs. (5) and (6).

Step 2 Determine the IVPF PIS and the IVPF NIS

according to the scores and accuracies of IVPFNs

which given in Step 1. We denote the IVPF PIS

by xþ and IVPF NIS by x�, which can be

determined by the following formula:

xþ ¼ fhxi;maxisðCjðxiÞÞijj ¼ 1; 2; . . .; n; i

¼ 1; 2; . . .;mg;
ð23Þ

xþ ¼ fhxi;minisðCjðxiÞÞijj ¼ 1; 2; . . .; n; i

¼ 1; 2; . . .;mg:
ð24Þ

Step 3 Calculate the distance between two IVPFNs,

which are in X and IVPFNs in xþðx�Þ according
to Eq. (9), respectively.

Step 4 According to the results of Step 3, rearrange the

order of probability weight and compute the new

weights according to Eqs. (19) or (21).

Step 5 According to Step 4, compute the P-

GIVPFOWAD or IP-GIVPFOWAD of the

positive ideal IVPFS xþ and alternative xi and the

negative ideal IVPFS x� and alternative xi.

Step 6 Similar to classical TOPSIS method, we need to

calculate the relative closeness of the alternative

xi as below:

hðxiÞ ¼
Dðxi; x�Þ

Dðxi; x�Þ þ Dðxi; xþÞ
ð25Þ

where Dð : Þ is an IP-GIVPFOWAD or

P-GIVPFOWAD.

Step 7 According to the relative closeness index hðxiÞ,
the ranking orders of all alternatives and the

optimal alternatives can be determined. And the

priority of the alternative xiði ¼ 1; 2; . . .;mÞ are
gotten by ranking hðxiÞði ¼ 1; 2; . . .;mÞ.

6 Numerical Example

In this section, we show the application of developed IP-

IVPFOWAD and P-IVPFOWAD through a practical

example about the optimal production strategy, the back-

ground is from [35]. Assume a company wants to create a

new product and they are analyzing the optimal target in

order to obtain the highest benefits. What kind of customers

should the new product exactly oriented to?

After analyzing the market, there are five possible strate-

gies to be followed: (1) x1: the new product oriented to the

high-income customers; (2) x2: the new product oriented to

the mid-income customers; (3) x3: the new product oriented

to the low-income customers; (4) x4: the new product adapted

to all customers; (5) x5: Not creating any products. After

careful review of the information, the decision maker estab-

lishes the following general information about the production

strategy. He (she) has summarized the information of the

strategies in five general characteristics: (1) S1 Benefits in the

short term; (2) S2 Benefits in the mid-term; (3) S3 Benefits in

the long term; (4) S4 Risk of the production strategy; (5) S5
Other factors. The five possible strategies xiði ¼ 1; 2; . . .; 5Þ
are to be evaluated applying the IVPFNs by the decision

makers under the above five general characteristics, and

construct the decision matrix as shown in Table 1.

With respect to this problem, the experts in the

company find probabilistic information given as follows:

p ¼ ð0:3; 0:3; 0:2; 0:1; 0:1Þ. They assume that the WA,

that represents the degree of importance of each char-

acteristics, is x ¼ ð0:2; 0:25; 0:15; 0:3; 0:1Þ. Now we

make decision by applying the proposed method in the

Sect. 5.

6.1 Process of MCDM Based on the Proposed

Method

• (1) Process of MCDM based on IP-IVPFOWAD.

Determine the interval-valued Pythagorean fuzzy PIS xþ

and the interval-valued Pythagorean fuzzy NIS x� by the

score function and accuracy function. The result is shown

Table 2.

From Table 2, we can see that sjðS1Þðj ¼ 1; 2; . . .; 5Þ all
are different, so do sjðS2Þ; sjðS3Þ; sjðS4Þ; sjðS5Þðj ¼ 1; 2; . . .;

5Þ. Therefore, it is not necessary to calculate the accuracy
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of the IVPFNs. And so, we can obtain the interval-valued

Pythagorean fuzzy PIS xþ and the interval-valued Pytha-

gorean fuzzy NIS x� as follows:

xþ ¼fhS1; ð½0:7; 0:8�; ½0:2; 0:3�Þi; hS2; ð½0:7; 0:8�; ½0:2; 0:3�Þi;
hS3; ð½0:8; 0:9�; ½0:3; 0:4�Þi; hS4; ð½0:7; 0:8�; ½0:3; 0:5�Þi;
hS5; ð½0:7; 0:8�; ½0:4; 0:5�Þig;

x� ¼fhS1; ð½0:4; 0:5�; ½0:6; 0:7�Þi; hS2; ð½0:3; 0:4�; ½0:6; 0:7�Þi;
hS3; ð½0:5; 0:6�; ½0:4; 0:6�Þi; hS4; ð½0:3; 0:5�; ½0:5; 0:6�Þi;
hS5; ð½0:5; 0:6�; ½0:4; 0:5�Þig:

We can use Eqs. (9), (21) and (20) to calculate the IP-

GIVPFOWADðxþ; xiÞði ¼ 1; 2; 3; 4; 5Þ. For convenience,

we denote IP-GIVPFOWADðxi; xþÞ and IP-

GIVPFOWADðxi; x�Þ as Dðxi; xþÞ and Dðxi; x�Þ, respec-
tively. The results are found in Tables 3 and 4.

Calculate the relative closeness of xiði ¼ 1; 2; 3; 4; 5Þ
according to Eq. (25). The results are found in Table 5.

From Table 5, we can see that the ranking are the same by

applying the IP-IVPFOWAD when parameter p changes. All

of the results show that x1 is the best alternative.

• (2) Process of MCDM based on P-IVPFOWAD.

If we can consider the WA an importance of 40% and the

probabilistic information has an importance of 60%.

Applying the generalized probabilistic interval-valued

Pythagorean fuzzy ordered weighted averaging distance to

decision making. We can use Eqs. (9), (18) and (17) to

calculate the P-GIVPFOWADðxþ; xiÞði ¼ 1; 2; 3; 4; 5Þ. For
convenience, we denote P-GIVPFOWADðxi; xþÞ and P-

GIVPFOWADðxi; x�Þ as Dðxi; xþÞ and Dðxi; x�Þ, respec-
tively. The results are found in Tables 6 and 7.

Calculate the relative closeness of xiði ¼ 1; 2; 3; 4; 5Þ
according to Eq. (26). The results are found in Table 8.

From Table 8, we can see that the ranking are the same

by applying the generalized probabilistic interval-valued

Pythagorean fuzzy distance when parameter changes. All

of the results show that x1 is the best alternative.

6.2 Validity Test of the Proposed Method

Since practically it is not possible to determine which one

is the best suitable alternative for a given decision problem,

Wang and Triantaphyllou [36] established the following

testing criteria to evaluate the validity of MCDM methods.

Test

criterion 1

An effective MCDM method should not

change the indication of the best alternative on

replacing a non-optimal alternative by another

worse alternative without changing the relative

importance of each decision criteria.

Test

criterion 2

An effective MCDM method should follow

transitive property.

Test

criterion 3

When a MCDM problem is decomposed

into some smaller problems and the same

MCDM method is applied on these smaller

problems to rank the alternatives, combined

ranking of the alternatives should be

identical to the original ranking of un-

decomposed problem.

Now we choose the schedule obtained by the IP-IVP-

FOWAD distance operators and the satisfaction degree

under p ¼ 2 to be analyzed. In this situation, the ranking of

original MCDM is x1 � x3 � x5 � x4 � x2.

6.2.1 Validity Test of Proposed Method Applying Criterion 1

We have obtained the ranking of all alternatives in this section,

x1 is the desirable alternative and the ranking x1 � x3 � x5 �
x4 � x2. In order to test the validity of the proposed IP-IVP-

FOWAD method under criterion 1, the following interval-

valued Pythagorean fuzzy decision-making matrix (Table 9.) is

used. This decision making is obtained by interchanging the

intervals of membership and non-membership grades of

Table 1 Interval-valued Pythagorean fuzzy decision matrix

S1 S2 S3 S4 S5

x1 ([0.7,0.8], [0.2,0.3]) ([0.7,0.8], [0.2,0.3]) ([0.8,0.9], [0.3,0.4]) ([0.6,0.7], [0.3,0.4]) ([0.7,0.8], [0.4,0.5])

x2 ([0.4,0.5], [0.6,0.7]) ([0.3,0.4], [0.6,0.7]) ([0.6,0.7], [0.4,0.5]) ([0.7,0.8], [0.3,0.5]) ([0.6,0.7], [0.4,0.6])

x3 ([0.7,0.8], [0.2,0.4]) ([0.5,0.7], [0.4,0.5]) ([0.6,0.8], [0.3,0.4]) ([0.4,0.5], [0.5,0.6]) ([0.5,0.6], [0.4,0.5])

x4 ([0.5,0.7], [0.5,0.6]) ([0.5,0.6], [0.3,0.4]) ([0.5,0.6], [0.4,0.6]) ([0.5,0.6], [0.4,0.5]) ([0.5,0.7], [0.3,0.4])

x5 ([0.6,0.8], [0.2,0.4]) ([0.5,0.7], [0.2,0.3]) ([0.6,0.8], [0.2,0.3]) ([0.3,0.5], [0.5,0.6]) ([0.6,0.7], [0.2,0.4])

Table 2 The results by applying score function

S1 S2 S3 S4 S5

s1 0.5 0.5 0.6 0.3 0.36

s2 -0.22 -0.3 0.22 0.395 0.165

s3 0.465 0.165 0.375 -0.1 0.1

s4 0.065 0.18 0.045 0.1 0.245

s5 0.4 0.305 0.435 -0.135 0.325
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Table 5 Relative closeness

obtained by IP-GIVPFOWAD
hðx1Þ hðx2Þ hðx3Þ hðx4Þ hðx5Þ Ranking

p ¼ 1 0.9558 0.1995 0.5398 0.3772 0.5556 x1 � x5 � x3 � x4 � x2

p ¼ 2 0.8613 0.3149 0.5919 0.4543 0.5879 x1 � x3 � x5 � x4 � x2

p ¼ 4 0.7786 0.3764 0.6058 0.4621 0.5907 x1 � x3 � x5 � x4 � x2

p ¼ 6 0.7399 0.4056 0.5910 0.4599 0.5869 x1 � x3 � x5 � x4 � x2

p ¼ 10 0.7048 0.4305 0.5953 0.4502 0.5770 x1 � x3 � x5 � x4 � x2

Table 6 Distances between xi and xþ obtained by P-GIVPFOWAD

Dðx1; xþÞ Dðx2; xþÞ Dðx3; xþÞ Dðx4; xþÞ Dðx5; xþÞ

p ¼ 1 0.0259 0.2862 0.2002 0.2933 0.2279

p ¼ 2 0.0653 0.30469 0.2130 0.2720 0.2288

p ¼ 4 0.1118 0.3387 0.2388 0.2865 0.2537

p ¼ 6 0.1397 0.3593 0.2670 0.3075 0.2763

p ¼ 10 0.1719 0.3852 0.2892 0.3433 0.3086

Table 7 The Distances between xi and x� obtained by P-GIVPFOWAD

Dðx1; x�Þ Dðx2; x�Þ Dðx3; x�Þ Dðx4; x�Þ Dðx5; x�Þ

p ¼ 1 0.3667 0.1049 0.2365 0.192 0.2802

p ¼ 2 0.3510 0.1544 0.2830 0.2046 0.3020

p ¼ 4 0.3625 0.2180 0.3429 0.2331 0.3457

p ¼ 6 0.3754 0.2586 0.3755 0.2523 0.3730

p ¼ 10 0.3955 0.3037 0.4087 0.2749 0.4043

Table 3 IP-GIVPFOWAD between xi and xþ

Dðx1; xþÞ Dðx2; xþÞ Dðx3; xþÞ Dðx4; xþÞ Dðx5; xþÞ

p ¼ 1 0.0176 0.3267 0.2012 0.2985 0.2262

p ¼ 2 0.0582 0.2925 0.2081 0.2715 0.2269

p ¼ 4 0.1055 0.3350 0.2302 0.2860 0.2484

p ¼ 6 0.1345 0.360 0.2652 0.30708 0.2688

p ¼ 10 0.1679 0.3895 0.2812 0.3432 0.3003

Table 4 IP-GIVPFOWAD between xi and x�

Dðx1; x�Þ Dðx2; x�Þ Dðx3; x�Þ Dðx4; x�Þ Dðx5; x�Þ

p ¼ 1 0.3804 0.0814 0.2360 0.1808 0.2828

p ¼ 2 0.3616 0.1344 0.3018 0.2261 0.3237

p ¼ 4 0.3709 0.2022 0.3538 0.2457 0.3585

p ¼ 6 0.3826 0.2457 0.3832 0.2615 0.3819

p ¼ 10 0.4009 0.2944 0.4136 0.2810 0.4096
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alternative x3 (non-optimal)and x4 (less desirable than x3) in

the original decision-making matrix (Table 1).

Since, the relative importance of the criteria remains

unchanged in the modified MCDM problems. It follows

from the score function and accuracy function that the

modified interval-valued Pythagorean fuzzy PIS xþ and the

interval-valued Pythagorean fuzzy NIS x� as follows:

xþ ¼fhS1; ð½0:7; 0:8�; ½0:2; 0:3�Þi; hS2; ð½0:7; 0:8�; ½0:2; 0:3�Þi;
hS3; ð½0:8; 0:9�; ½0:3; 0:4�Þi; hS4; ð½0:7; 0:8�; ½0:3; 0:5�Þi;
hS5; ð½0:7; 0:8�; ½0:4; 0:5�Þig;

x� ¼fhS1; ð½0:2; 0:4�; ½0:7; 0:8�Þi; hS2; ð½0:3; 0:4�;
½0:6; 0:7�Þi; hS3; ð½0:3; 0:4�; ½0:6; 0:8�Þi;
hS4; ð½0:3; 0:5�; ½0:5; 0:6�Þi; hS5; ð½0:3; 0:4�; ½0:5; 0:7�Þig:

Applying Eqs. (9), (20), and (21) of IP-IVPFOWAD

method, the following distance measures of the alternatives

xiði ¼ 1; 2; . . .; 5Þ are calculated:

Dðx1; xþÞ ¼ 0:0582;Dðx2; xþÞ ¼ 0:3313;Dðx3; xþÞ ¼ 0:4369;

Dðx4; xþÞ ¼ 0:3659;Dðx5; xþÞ ¼ 0:2269:

Dðx1; x�Þ ¼ 0:4562;Dðx2; x�Þ ¼ 0:2179;Dðx3; x�Þ ¼ 0:2701;

Dðx4; x�Þ ¼ 0:4318;Dðx5; x�Þ ¼ 0:7231:

According to Eq. (26), we have

hðx1Þ ¼ 0:8868; hðx2Þ ¼ 0:3967; hðx3Þ ¼ 0:3820; hðx4Þ
¼ 0:5413; hðx5Þ ¼ 0:7611:

Therefore, the alternatives are ranked as x1 � x5 � x4 �
x2 � x3, which also showed x1 is the most desirable alter-

native. That is, according to the test criterion 1, the indi-

cation of the best alternative not change when the

alternatives are ranked again by the same method. The

same should also be true for the relative rankings of the rest

of the unchanged alternatives.

6.2.2 Validity Test of Proposed Method Using Criterion 2

and Criterion 3

In order to test validity of proposed method using test

criterion 2 and test criterion 3, original MCDM problem is

decomposed into a set of smaller MCDM problems

fx1; x2; x3; x4g and fx1; x3; x4; x5g. Following the steps of

proposed method, rankings of these two sub-problems are

x1 � x3 � x4 � x2 and x3 � x5 � x4 � x2, respectively.

We combined the ranking of alternatives of sub-prob-

lems fx1; x2; x3; x4g and fx2; x3; x4; x5g, the final ranking

x1 � x3 � x5 � x4 � x2 is obtained which is identical to

the ranking of un-decomposed MCDM problem and also

exhibits transitive property. Hence the proposed method is

valid under test criterion 2 and test criterion 3.

7 Conclusions

The uncertainty probabilistic OWA distance operators [32]

are generally suitable for dealing with the information taking

the form of interval values, and yet they will fail in dealing

with interval-valued Pythagorean fuzzy information. In this

paper, with respect to probabilistic decision-making prob-

lems with interval-valued Pythagorean fuzzy information,

new multiple criteria decision-making method is developed.

Specifically, GIVPFWD and GIVPFOWD are developed

first. In addition, we introduced new P-GIVPFOWAD and

IP-GIVPFOWAD operators which unify the OWA opera-

tors, the probability information and also use information

represent in the form of interval-valued Pythagorean fuzzy

Table 8 Relative closeness

obtained by P-GIVPFOWAD
hðx1Þ hðx2Þ hðx3Þ hðx4Þ hðx5Þ Ranking

p ¼ 1 0.9340 0.2682 0.5416 0.3956 0.5515 x1 � x5 � x3 � x4 � x2

p ¼ 2 0.8431 0.3363 0.5705 0.4293 0.5690 x1 � x3 � x5 � x4 � x2

p ¼ 4 0.7643 0.3916 0.5894 0.4486 0.5767 x1 � x3 � x5 � x4 � x2

p ¼ 6 0.7288 0.4185 0.5844 0.4507 0.5745 x1 � x3 � x5 � x4 � x2

p ¼ 10 0.6971 0.4408 0.5856 0.4447 0.5671 x1 � x3 � x5 � x4 � x2

Table 9 Modified Interval-valued Pythagorean fuzzy decision matrix

S1 S2 S3 S4 S5

x1 ([0.7,0.8], [0.2,0.3]) ([0.7,0.8], [0.2,0.3]) ([0.8,0.9], [0.3,0.4]) ([0.6,0.7], [0.3,0.4]) ([0.7,0.8], [0.4,0.5])

x2 ([0.4,0.5], [0.6,0.7]) ([0.3,0.4], [0.6,0.7]) ([0.6,0.7], [0.4,0.5]) ([0.7,0.8], [0.3,0.5]) ([0.6,0.7], [0.4,0.6])

x3 ([0.2,0.4], [0.7,0.8]) ([0.4,0.5], [0.5,0.7]) ([0.3,0.4], [0.6,0.8]) ([0.5,0.6], [0.4,0.5]) ([0.4,0.5], [0.5,0.6])

x4 ([0.5,0.6], [0.5,0.7]) ([0.3,0.4], [0.5,0.6]) ([0.4,0.6], [0.5,0.6]) ( [0.4,0.5], [0.5,0.6]) ([0.3,0.4], [0.5,0.7])

x5 ([0.6,0.8], [0.2,0.4]) ([0.5,0.7], [0.2,0.3]) ([0.6,0.8], [0.2,0.3]) ([0.3,0.5], [0.5,0.6]) ([0.6,0.7], [0.2,0.4])
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numbers. Consequently, the method for MCDM problem

with interval-valued Pythagorean fuzzy information is con-

structed based on the some proposed distance operators.

Finally, some illustrative examples have been given to show

the developed method and analyzed the validity of the pro-

posed MCDM method. In future research, we expect to

further develop the theories of (interval-valued) Pythagorean

fuzzy sets and its relative applications in business decision-

making.
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