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Abstract This paper presents an interval programming

approach for solving a typical multi-period and multi-

product aggregate production planning (MPMP-APP)

problem. Firstly, a MPMP-APP model based on interval

programming is developed, in which the decision maker’s

risk preference is taken into consideration. Next, to solve

the MPMP-APP model based on interval numbers, the

original uncertain objective function is replaced by two

crisp objective functions which are equivalent to mini-

mizing the interval value and the deviation of the uncertain

objective function, respectively, and uncertain constraints

are transformed into their corresponding crisp equivalents

by using the possibility degree based on six possible rela-

tions between two intervals. And then, the linear weighted

sum method is adopted to transform the above two-objec-

tive model into a single one which can be solved by

LINGO software. Finally, an industrial example is used to

illustrate the validity and flexibility of the proposed

method. It is expected that this study can provide a useful

reference for decision makers to make a rational production

plan in uncertain environment.

Keywords Production planning � Uncertainty modeling �
Interval programming � Risk preference

1 Introduction

MPMP-APP is a medium range capacity planning that

typically encompasses multi-period from 3 to 18 months

and involves multiple products. MPMP-APP is about

determining optimal production, workforce and inventory

levels, backorder level, volume of hiring, volume of firing,

overtime work for each period to meet the demand for all

products over a finite planning horizon with limitations of

capacities or resources, so that the total cost of production

can be kept to the minimum [10, 14, 19, 28]. As a typical

optimization problem in the fields of production planning

management, MPMP-APP has attracted increasing atten-

tions from both researchers and practitioners. There is a

great deal of approaches proposed to solve the MPMP-APP

[2, 6, 7, 12, 22, 32, 35, 37]. But, the earlier studies about

MPMP-APP are mainly carried out in deterministic envi-

ronment, in which parameters are generally regarded as

deterministic values. However, in the real world, some

input data, such as market demand, the production cost, the

subcontracting cost and the inventory holding cost and so

on, are usually imprecise or fuzzy because some informa-

tion is incomplete, or collecting precise data is very hard.

Compared to those deterministic models, the consideration

of uncertainty in MPMP-APP model would generate a

more practical production planning results [30]. Therefore,

much more attention has been paid to the research about

uncertain MPMP-APP problem in recent years [23, 24, 39].

According to the differences of uncertainty definition,

the methods about resolving uncertain MPMP-APP prob-

lem can be classified into the following categories. (1)

Stochastic optimization approach, in which some uncertain

parameters are described as random numbers with the

associated probability distribution. Bitran and Yanasse [4]

had considered a single-item lot-sizing production planning
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problem with random demands, in which shortage proba-

bility was incorporated, and also presented an approach to

transform stochastic programming model to its corre-

sponding deterministic one. Mirzapour Al-e-hashem et al.

[28] proposed a stochastic programming method to solve

an uncertain MPMP-APP problem for a medium-term

plans, in which the market demands were supposed to be

uncertainty and obeyed a certain distribution. Ramezanian

and Saidi-Mehrabad [34] developed a stochastic mathe-

matical model for solving lot-sizing and scheduling prob-

lem in a MPMP production system. To transform the

stochastic problem into the deterministic one, the proba-

bility distributions and CCP theory were applied to deal

with the uncertainty. Kumar and Goswami [21] analyzed

some factors such as shortages of materials, machine fail-

ure, workforce level and so on that affect the production

process, and presented an economic production quantity

model based on stochastic programming, in which the

demand rate was regarded as a fuzzy random variable. (2)

Soft constrained optimization approach, in which the

imprecise input data or parameters were generally defined

as fuzzy set. Wang and Liang [43] presented a linear

programming (LP) approach based on possibility for

dealing with MPMP-APP problem in which imprecise

parameters were formulated as triangular possibility dis-

tribution. Torabia et al. [40] incorporated the fuzzy set idea

into the hierarchical production planning system in which

two decision making levels had been considered. At the

first level, the fuzzy linear programming was applied to

solve APP problem at the product family level, and at the

second level, a disaggregated production plan was obtained

by another fuzzy linear programming. Wang and Liang

[42] firstly constructed a multi-objective linear program-

ming (MOLP) model for solving MPMP-APP problem and

then integrated fuzzy set theory into MOLP methods. Jia

et al. [15] proposed a fuzzy linear programming approach

for a multi-objectives APP problem with fuzzy price, fuzzy

cost, fuzzy production capacity and fuzzy market demands

by describing these uncertain data as trapezoidal fuzzy

numbers. Tang et al. [38] employed a kind of fuzzy

approach in modeling for MPMP-APP problem within the

constraints of fuzzy requirements and fuzzy capacities.

Baykasoglu and Gocken [3] studied a fuzzy multi-objective

MPMP-APP problem, in which the uncertain parameters

were described with triangular fuzzy numbers. For

obtaining the solution, the authors used different ranking

methods of fuzzy numbers and TS algorithm. Figueroa-

Garcı́a et al. [9] defined a mixed production problem with

fuzzy demands by both type-1 fuzzy sets and interval type-

2 fuzzy sets. And the fuzzy optimization algorithm was

applied to solve the problem. Gholamian et al. [12] built a

fuzzy multi-objective optimization model for a supply

chain to address a multi-site, multi-period and multi-

product APP problem, in which four conflicting objectives

are considered. Kothyari et al. [20] considered carbon

emission problem in the purchasing process. Thus, a fuzzy

mixed integer linear programming model was developed to

minimize carbon cost and other costs such as purchasing,

ordering and so on. (3) Robust optimization approach, in

which uncertainty data were represented through setting up

various scenarios. Leung et al. [24] developed a robust

optimization model to address a multi-site MPMP-APP

problem motivated by a multi-national company. The

model was to minimize the total costs, such as production

cost, workforce cost, inventory cost and so on, under

consideration of different economic growth scenarios.

Mirzapour Al-e-hashem et al. [27] proposed a novel non-

linear robust MIP model to address a multi-objective

MPMP-APP problem by considering multi-suppliers,

multi-manufacturers and multi-customers in a supply

chain. Rahmani et al. [33] developed a robust optimization

model to solve a two-stage capacitated production problem,

in which uncertain parameters such as production costs,

demand and so on, were considered by introducing possible

scenarios. Modarres and Izadpanahi [29] developed a linear

aggregate planning model with three objective functions, in

which energy saving and carbon emission were considered.

To deal with uncertain parameters, the robust optimization

approach was applied in this paper.

But in the above studies, the imprecise parameters are

generally described as random variables or fuzzy set in an

uncertain MPMP-APP model, and the related probability

distributions or membership function are obtained through

mathematical statistics method based on a large amount of

statistics data. However, it is difficult to collect sufficient

available statistic data in actual production planning.

Therefore, there are unreasonable points in the use of the

above conventional uncertain optimization methods [18].

As a result, the interval analysis method has drawn more

and more attention due to its practicality and flexibility

[8, 13, 17, 18, 26, 36, 44]. In interval mathematics, an

interval is a closed bounded set of real numbers with the

property that any number that lies between two numbers in

the set is also included in the set. The left and right bounds

of the imprecise parameters are only needed by applying

interval method, unnecessarily acquiring their precise

probability distributions [16]. Qiu et al. [31] studied

ranking method of interval numbers by using probability

reliability distribution. And the order relation of intervals

was defined to establish the ranking rule. Xiao et al. [46]

studied two kinds of definitions of possibility for two

interval numbers and concluded that the ranking method

proposed in reference [48] was more suitable for an

accurate comparison of interval numbers. Wolfe [45]

introduced some applications of interval mathematics to

the solution of systems of linear and nonlinear algebraic
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equations and to the solution of unconstrained and con-

strained nonlinear optimization problems. Boloukat and

Foroud [5] presented some superiority by applying the

interval linear programming for modeling inherent

stochastic nature of the renewable energy resources. Afzali

et al. [1] proposed a fuzzy multi-objective linear pro-

gramming model for supplier selection, in which linguistic

variables were defined as intervals. Lin et al. [25] con-

structed a multi-objective optimization model with inter-

val-valued objective functions to optimize the integrated

production planning for the steelmaking continuous cast-

ing-hot rolling process in the steel industry. And they

proposed a modified interval multi-objective optimization

evolutionary algorithm to solve the model.

The main contributions of this paper are to (1) develop a

MPMP-APP model based on interval programming

method, in which the decision maker’s risk preference is

taken into consideration, (2) describe uncertain parameters

in the objective function and constraints as interval num-

bers. By this way, only the lower and upper bounds of

imprecise parameters are required, while the probability

distributions or membership functions of the uncertain

parameters are not required, (3) enable decision makers

easy to conduct an efficient production planning in an

uncertain environment without collecting a large amount of

statistics data.

The rest of this paper is organized as follows. In Sect. 2,

a typical MPMP-APP problem is formalized. In Sect. 3, the

general uncertain optimization model with interval number

is demonstrated, and the treatment of both the uncertain

objective function and constraints are presented in detail.

In Sect. 4, the crisp equivalent model based on the interval

programming method is provided, and the strategy for

dealing with the uncertain objective function and con-

straints is presented. An industrial case to verify the fea-

sibility of applying the proposed approach to MPMP-APP

decision problem is presented in Sect. 5. Finally, some

concluding remarks are given in Sect. 6.

2 Problem Formulation

MPMP-APP is a traditional production planning problem

that companies have to cope with. The problem is to make

decisions about appropriate regular time/overtime produc-

tion quantities, inventory, subcontracting/backordering

quantities, and workface level to satisfy market demands

over a given planning period. Some characteristics of the

problem are summarized as follows.

• Suppose that a company will manufacture N types of

products to satisfy fluctuating demand over a given

planning period T. The uncertain demand in each

planning period will be described as interval number in

the following sections.

• The feasible means that can be chosen by the decision

makers include adjusting production output, overtime,

inventory levels, subcontracting, backordering and

workforce changing and so on.

• Some parameters which are not known exactly both in

the objective function and in constraints will be

represented by interval numbers in the following

sections.

• Maximum machine and inventory capacities in each

planning period may be also imprecise and can be

estimated by interval numbers.

2.1 Notations

2.1.1 Decision Variables

Qit The number of product i manufactured in the regular

production time during period t (units)

Oit The number of product i manufactured in the

overtime production time during period t (units)

Sit The number of product i subcontracting in period

t (units)

Iit The inventory of product i in period t (units)

Bit The backorder number for product i in period t (units)

Ht The number of workers hired in period t (labors/

period t)

Lt The number of workers laid off in period t (labors/

period t)

Wt The number of workers required in period t (labors/

period t)

2.1.2 Parameters

N The number of product category

T Planning period
~Dit The forecast demand for product i in period

t (units)

~qit The production cost in regular working time to

produce one unit of ith product in period t ($/unit)

~oit The production cost in working overtime to

produce one unit of ith product in period t ($/unit)

~sit The subcontracting cost for per unit of ith product

in period t ($/unit)
~hit The inventory holding cost for per unit of ith

product in period t ($/unit)
~bit The backorder cost for ith product in period t ($/

unit)
~hrt The cost to hire one worker in period t ($/man-

day)
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~lot The cost to layoff one worker in period t ($/man-

day)

~wt The labor cost in period t ($/man-day)
~MtMax The maximum available machine capacity in

period t (machine-hours)

Vtmax The maximum inventory capacity available in

period t (units)

~ei The man hours required to produce ith product

(man-hours/unit)

q The working hours of a labor in each period

t (hours/period t)

at The fraction of regular production time available

for overtime in period t

~ri The machining time for producing one unit ith

product (machine-hours/unit)

~vi The inventory holding space occupied by ith

product

2.2 Objective Function

The objective function of the uncertain MPMP-APP

problem can be represented as follows:

Min ~f ¼
XN

i¼1

XT

t¼1

~qitQit þ ~oitOit þ ~sitSitð Þ

þ
XT

t¼1

XN

i¼1

~hitIitþ
XT

t¼1

XN

i¼1

~bitBit

þ
XT

t¼1

~hrtHt þ ~lotLt þ ~wtWt

� �

ð1Þ

where the first term
PN

i¼1

PT
t¼1 ~qitQit þ ~oitOit þ ~sitSitð Þ in

Eq. (1) is the total production cost including the regular

time production, overtime production and subcontracting

cost,
PT

t¼1

PN
i¼1

~hitIit is the total inventory costs,
PT

t¼1

PN
i¼1

~bitBit is the total backorder costs, and the last

term
PT

t¼1
~hrtHt þ l~otLt þ ~wtWt

� �
is the labor-related costs

over all planning period. ~qit; ~oit; ~sit; ~hit; ~bit; ~hrt;~lot; ~wt in

Eq. (1) are parameters, some of which may be imprecise.

2.3 Constraints

(1) Constraint on quantity balance

Qit þ Oit þ Sit þ Iiðt�1Þ þ Bit � Iit � Biðt�1Þ ¼ ~Dit

ð2Þ

Equation (2) is relevant to satisfy market demands,

where ~Dit represents the imprecise market demand of

ith product in period t.

(2) Constraints on labor levels

Wt ¼ Wt�1 þ Ht � Lt t ¼ 1; 2; . . .; T ; ð3Þ

Equation (3) is relevant to current workforce level in

period t.

XN

i¼1

~eiQit � qWt t ¼ 1; 2; . . .; T ; ð4Þ

XN

i¼1

~eiOit � atqWt t ¼ 1; 2; . . .; T ; ð5Þ

Inequality (4) and (5) denote workforce capacity

constraints, which limit regular time and overtime

production to available workers in each planning

period t, respectively.

(3) Constraints on machine capacity:

XN

i¼1

~riðQit þ OitÞ� ~Mtmax t ¼ 1; 2; . . .; T ð6Þ

Inequality (6) denotes the limits of available

machine capacity in each period t.

(4) Constraint on warehouse space:

XN

i¼1

~viIit �Vtmax t ¼ 1; 2; . . .; T ð7Þ

Inequality (7) is associated with the limit of available

inventory capacity in each period t.

(5) Constraint on subcontracting volume

Sit � Smax
it t ¼ 1; 2; . . .; T ð8Þ

Inequality (8) denotes that the subcontracting level

in each period t should be less than or equal to the

available subcontracting capacity.

(6) Non-negativity constraints on decision variables:

Qit;Oit; Sit; Iit;Bit;Ht; Lt;Wt � 0 8i; 8t : ð9Þ

3 Interval Programming Method

3.1 The General Optimization Model with Interval

Number

The general interval linear programming (ILP) model can

be represented as follows:

min
x

f ðx; ~cÞ¼
Xn

i

~cixi

s:t: gjðx; ~aÞ ¼
Xn

i¼1

~aijxi �ð¼; �Þ~bj; j ¼ 1; 2; . . .; l

~ci 2 cL
i ; c

R
i

� �
; ~aij 2 aL

ij ; a
R
ij

h i
; ~bj 2 bL

j ; b
R
j

h i

xi � 0

ð10Þ
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where f ðx; ~cÞ denotes the objective function and gjðx; ~aÞ
represents the jth constraint, x is an n-dimensional optimal

vector and xi represents its ith decisional variable. ~c is a n-

dimensional uncertain vector, ~ci is its ith component. ~a is a

n 9 l dimensional uncertain coefficient matrix, and ~aij is its

component. l denotes the number of the constraints in ILP

model. ~bj represents the allowable interval of the jth con-

straint. The superscripts L and R represent the lower and

upper bounds of an interval number, respectively. For

example, ½bL
j ; b

R
j � is a bounded set of the interval number ~bj,

and bL
j is its lower bound, bR

j is its upper bound. According

to the above definitions, the value of both the objective

function and constraints will also be an interval number

rather than a real number due to the existence of uncertain

parameters. Therefore, the above ILP model cannot be

solved directly by conventional optimization methods and

needs to transform the uncertain objective function and

constraints into the corresponding equivalent deterministic

ones, respectively. In the following sections, some treat-

ment methods will be given to deal with the above

problems.

3.2 Deterministic Transformation of the Uncertain

Objective Function

Since the imprecise parameters in the objective function

are represented by interval numbers, the value of the

objective function will also be an interval number rather

than a precise real number. The method of deterministic

transformation of the uncertain objective function is based

on the interval order relation which implies that an interval

number is larger or less than another. How to determine the

order relation between two interval numbers depends on

the decision makers’ preferences. Ma [26] summarizes the

common five kinds of order relations between two interval

numbers ~A and ~B and presented the following definition for

the maximization problem:

½1� ~A� LR
~B; if AL �BL and AR �BR ð11Þ

where the symbol BLR represents the preference of the

decision maker to both a higher lower bound and a higher

upper bound for an interval.

½2� ~A� CW
~B; if AC �BC and AW �BW ð12Þ

AC¼AL þ AR

2
; BC¼BL þ BR

2
; AW¼AR � AL

2
;

BW¼BR � BL

2

where the symbol BCW represents the preference of the

decision maker to both a higher expectation value and a

lower uncertainty for an interval.

½3� ~A� LC
~B; if AL �BL and AC �BC ð13Þ

where the symbol BLC represents the preference of the

decision maker to both a higher lower bound and a higher

expectation value for an interval.

½4� ~A� L
~B; if AL �BL ð14Þ

where the symbol BL represents the preference of the

decision maker to a higher lower bound for an interval, and

which shows that the decision makers are more

conservative.

½5� ~A� R
~B; if AR �BR ð15Þ

where the symbol BR represents the preference of the

decision maker to a higher upper bound for an interval,

and which shows that the decision makers are more

optimistic.

Synthesizing the above definition for different order

relations, in this paper we hope that the imprecise objective

function can not only reflect the decision maker’s risk

preference, but also reduce the uncertainty caused by

imprecise parameters. Thus, the original uncertain objec-

tive function can be replaced by the following two crisp

objective functions:

min
x

Z1ðx; ~cÞ ¼ f Lðx; ~cÞ þ fðf Rðx; ~cÞ � f Lðx; ~cÞÞ ð16Þ

min
x

Z2ðx; ~cÞ ¼ f Rðx; ~c) � f Lðx; ~c) ð17Þ

f Lðx; ~cÞ ¼ min
c2C

f ðx; ~cÞ; f Rðx; ~cÞ ¼ max
c2C

f ðx; ~cÞ;

C ¼ f~cjcL � ~c� cRg; f 2 ½0; 1�
ð18Þ

where f in the first objective function (16) represents the

decision maker’s risk preference level to an interval, when

f = 0 represents the preference to the lower bound of an

interval, when f = 0.5 represents the preference to the

expected value (or mean value) of an interval, and when

f = 1.0 represents the preference to the upper bound of an

interval. And the second objective function (17) is analo-

gous to minimize the variance of the uncertain objective

function, i.e., the interval range of the objective function

will be decreased.

3.3 Deterministic Transformation of the Uncertain

Constraints

The possibility degree describes quantitatively the degree

to which an interval number is larger or smaller than

another. There are some scholars who have proposed the

possibility degree formula, such as references Wan and

Dong [41], Zhang et al. [48], Xu and Da [47] and so on.

Jiang [16] summarized six possible relations between

interval numbers ~A and ~B based on three relations proposed
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in the literature [48] and proposed a modified definition for

the possibility degree P ~A� ~B, see Eq. (19). For more details

about the calculation method of possibility degree, see

references Gao [11] and Xiao et al. [46].

P ~A� ~B¼

0; AL �BR

0:5
BR � AL

AR � AL
� B

R � AL

BR � BL
; BL �AL\BR �AR

BL � AL

AR � AL
þ 0:5 � B

R � BL

AR � AL
; AL\BL\BR �AR

BL � AL

AR � AL
þ AR � BL

AR � AL
� B

R � AR

BR � BL
þ 0:5 � A

R � BL

AR � AL
� A

R � BL

BR � BL
; AL\BL �AR\BR

BR � AR

BR � BL
þ 0:5 � A

R � AL

BR � BL
; BL �AL\AR\BR

1; AR\BL

8
>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>:

ð19Þ

where P ~A� ~B represents the possibility degree that ~A is less

than or equal to ~B.

When ~B is degenerated into a real number b, the

degenerated possibility degree P ~A� b can be rewritten as

follows:

P ~A� b ¼
0; b�AL

b� AL

AR � AL
; AL\b�AR

1; b[AR

8
><

>:
ð20Þ

Similarly, the possibility degree Pa� ~B can be also obtained

when ~A is degenerated into a real number a:

Pa� ~B ¼
1; a�BL

BR � a

BR � BL
; BL\a�BR

0; a[BR

8
><

>:
ð21Þ

Based on the above definition of the possibility degree,

the uncertain constraint gjðx; ~aÞ� ½bL
j ; b

R
j � in the constraint

(10) can be converted into the following form by intro-

ducing the possibility degree:

P ~Aj � ~Bj
� kj ð22Þ

where P ~Aj � ~Bj
represents the possibility degree to which ~Aj

is less than or equal to ~Bj. kj (0 B kj B 1) is a predeter-

mined confidence level for the possibility degree and can

be adjusted by decision makers according to their risk

preference. The higher the value of kj is, the smaller the

feasible range of the decision variable x will be.

~Aj ¼ gL
j ðx; eaÞ; gR

j ðx; eaÞ
h i

; ~Bj ¼ bL
j ; b

R
j

h i
, where gL

j ðx; eaÞ
and gR

j ðx; eaÞ are the lower and upper bound of the uncer-

tain constraint gjðx; eaÞ, respectively.

where

gL
j ðx; eaÞ¼min

a2C
gjðx; ~aÞ; gR

j ðx; ~aÞ¼max
a2C

gjðx; ~aÞ; ð23Þ

Similarly, for the inequality constraint gjðx; ~aÞ�
bL
j ; b

R
j

h i
in the constraint (10), it can be changed into

½bL
j ; b

R
j � � gjðx; ~aÞ; and it can also be treated with Eq. (19).

Finally, for the uncertain equality constraint gjðx; ~aÞ ¼

bL
j ; b

R
j

h i
; it could be replaced by the following two

inequality constraints:

gjðx; ~aÞ� bR
j

bL
j � gjðx; ~aÞ

�
ð24Þ

Inequality (24) denotes that the original interval number

½bL
j ; b

R
j � is degenerated into two real numbers, i.e., bL

j and

bR
j . Therefore, inequality (24) can be dealt with Eqs. (20)

and (21), respectively.

4 Crisp Equivalent Model Based on the Interval
Programming

4.1 Strategy of Deterministic Equivalent

Transformation

According to the method of treating uncertain objective

function, the original uncertain objective function (1)

can be changed into the two crisp objective functions

which are equivalent to minimizing the interval value

according to the decision maker’s preference and

the deviation of the uncertain objective function,

respectively.

Recalling the above uncertain MPMP-APP model,

constraints (2), (4), (5), (6) and (7) are soft constraints

due to imprecise parameters incorporated in them. And

others are deterministic constraints which need no more

transformation. Those soft constraints have the same

form like the constraint (10); therefore, they can be

transformed into the corresponding form by introducing

the possibility degree. For example, constraint (6) is a

soft constraint because the imprecise coefficients exist

in both sides of it, so its possibility degree can be

defined by Eq. (19), and then through introducing con-

fidence level k to finish corresponding deterministic

transformation.

4.2 Deterministic Equivalent Model

of the Uncertain MPMP-APP

Through the above treatment, the original uncertain

MPMP-APP problem can be replaced by the following

deterministic equivalent model, which is a two-objective

linear programming (TOLP) model.
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min
x

Z1ðx; ~cÞ ¼ f Lðx; ~cÞ þ fðf Rðx; ~cÞ � f Lðx; ~cÞÞ ð25Þ

min
x

Z2ðx; ~cÞ ¼ f Rðx; ~cÞ � f Lðx; ~cÞ ð26Þ

s:t:

Qit þ Oit þ Sit þ Iiðt�1Þ þ Bit � Iit � Biðt�1Þ �DL
it

ð27Þ

Qit þ Oit þ Sit þ Iiðt�1Þ þ Bit � Iit � Biðt�1Þ �DR
it ð28Þ

P1t

XN

i¼1

~eiQit � qWt

 !
� k1t ð29Þ

P2t

XN

i¼1

~eiOit � atqWt

 !
� k2t ð30Þ

P3t

XN

i¼1

~riðQit þ OitÞ� ~Mtmax

 !
� k3t ð31Þ

P4t

XN

i¼1

~viIit �Vtmax

 !
� k4t ð32Þ

Eqs: 3ð Þ; 8ð Þ and 9ð Þ; t ¼ 1; 2; . . .; T ð33Þ

In the above TOLP model, both of the constraints (27)

and (28) are rigid constraints, which are equivalent to the

constraint (2). But inequalities (29)–(32) are soft con-

straints due to imprecise parameters embedded in them,

and the symbols k1t, k2t, k3t and k4t are possibility confi-

dence level that the decision maker predetermine for soft

constraints (4), (5), (6) and (7), respectively, and

0 B k1t, k2t, k3t, k4t B 1. There are many effective

approaches to solve multi-objective linear programming

model, such as the main objective method, the linear

weighted sum method, the min–max method, the ideal

point method and so on. Since the objective function (26)

has the same dimension with the objective function (25),

the linear weighted sum method is an appropriate method

that can be used to transform the above two-objective

model into a single one. Accordingly, the objective func-

tion (25) and (26) can be formalized as the following

single-objective function by adopting the linear weighted

sum method.

min
x

Z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z1 � Z�

1

� �2þ Z2 � Z�
2

� �2
q

ð34Þ

where Z1* and Z2* represent the ideal point for the

objective function minZ1 x; ~cð Þ and minZ2 x; ~cð Þ, respec-

tively. In this manner, the final single-objective linear

programming model has been built, which can be solved by

some mature professional software efficiently, such as

LINGO, MATLAB and so on.

5 Numerical Example

5.1 Case Description

In this section, the data provided by a manufacturing

enterprise in Xi’an, China, are used to illustrate the appli-

cability and effectiveness of the proposed method. The

MPMP-APP problem for this company focuses on finding

out an efficient method to minimize the total cost within

the limited resources and capacities constraints. In this

case, the planning horizon is 6 months long (T = 6), from

May to October, and includes two types of products

(N = 2), namely products 1 and 2.

Table 1 Forecast demands for

each product (units)
Product (i) Period (t)

1 2 3 4 5 6

~D1t [900, 1080] [1300, 1500] [1400, 1680] [1850, 2100] [1500, 1650] [1200, 1300]

~D2t [900, 1080] [1500, 1650] [2750, 3200] [2300, 2650] [1850, 2100] [1850, 2100]

Table 2 Operation cost data Product (i) ~qit ($/unit) ~oit ($/unit) ~sit ($/unit) ~hit ($/unit) ~bit ($/unit)

1 [17, 22] [26, 33] [60, 70] [0.27, 0.32] [80, 98]

2 [8, 11] [12, 17] [30, 35] [0.13, 0.16] [50, 63]

Table 3 Maximum labor, machine and warehouse capacity data

Period (t) Wtmax (labors) ~Mtmax (machine-hours) Vtmax (ft2)

1 35 [4500, 5500] 10,000

2 35 [5500, 6500] 10,000

3 35 [5500, 6500] 10,000

4 35 [5500, 6500] 10,000

5 35 [5500, 6500] 10,000

6 35 [2500, 3500] 10,000
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5.2 Basic Data for Numerical Example

In order to analyze the impact of uncertainty on the

objective function easily, it is assumed that only the con-

straint (31) is considered as the soft constraint in this case,

i.e., parameters ~r and ~Mtmax are uncertain and described as

interval numbers, and other parameters in constraints (29),

(30) and (32) are assumed to be deterministic. The symbol

P3t in constraint (31) denote the possibility degree that the

actual machine capacity requirements in period t is less

than or equal to the maximum available machine capacity

in corresponding planning period, k3t (0 B k3t B 1) is a

predetermined confidence level. And the concrete data for

this case are presented in Tables 1, 2, 3, 4, 5, 6, 7 and 8.

Table 1 corresponds to the imprecise market demands

for two products in different period t. Table 2 shows rel-

evant operation cost data. Table 3 lists the maximum

available capacity for workforce, machines and inventory,

respectively, in which the maximum capacity of machine is

considered as the imprecise parameter and described as

interval number. Labor costs and hiring and layoff costs are

listed in Table 4. Labor and machine relevant times are

presented in Table 5, in which hours of machine usage per

unit for six planning periods are defined as interval

numbers.

Other relevant data are explained below:

1. Assume that the initial inventory in period 1 is 400

units for product 1 and 200 units for product 2. And the

end inventory in period 6 is 300 units for product 1 and

200 units for product 2.

2. Inventory spaces occupied by per unit of products 1

and 2 are 2 and 3 ft2, respectively.

Table 4 Labor cost and

workforce changing costs
Period (t) Labor cost ($/man-day) Hiring cost ($/man-day) Layoff cost ($/man-day)

1 115 70 58

2 115 70 58

3 115 70 58

4 115 70 58

5 115 70 58

6 115 70 58

Table 5 Labor and machine relevant time data

Product (i) Labor time ~ei (h/unit) Machine time ~ri (h/unit)

1 1.6 [1.2, 1.5]

2 1.8 [1.5, 1.7]

Table 7 Optimization results under different possibility degree when f = 0.5

Confidence

level k
Two products during six planning horizons

Sum of regular time

(units)

Sum of overtime

(units)

Sum of subcontracting

(units)

Sum of workforce

(labors)

Min Z1

($)

Min Z2

($)

1.0 15,911 2095 1194 194 325,527.4 80,498.06

0.8 16,257 2943 0 198 302,755.7 79,856.60

0.6 16,385 2815 0 200 302,155.6 79,585.26

0.4 16,510 2690 0 201 301,516.6 79,320.47

0.2 16,642 2558 0 203 300,891.9 79,040.34

0.0 17,227 1973 0 210 297,911.2 77,776.23

Table 6 Optimization results

with different values of

preference coefficients f and k

k = 0.4 k = 0.6 k = 0.8

Min Z1 Min Z2 Min Z1 Min Z2 Min Z1 Min Z2

f = 0.0 261,854.7 79,320.23 262,362.4 79,585.17 262,827.1 79,856.55

f = 0.5 301,514.9 79,320.27 302,156.0 79,585.36 302,755.7 79,856.60

f = 1.0 341,174.6 79,320.18 341,947.6 79,585.17 342,683.5 79,856.53
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3. For convenience of comparison, we assume that the

confidence level k3t in constraint (31) in different

planning period t are equal, that is,

k31¼k32¼ � � � ¼k36¼k.

4. Other relevant data are at = 0.3, q = 140. Initial

workforce level is 30.

5.3 Results Analysis

Through the interval programming method proposed in this

paper, the above uncertain MPMP-APP problem is finally

transformed to a deterministic single-objective LP model.

Therefore, LINGO computer software can be applied to

solve this model and the computational results are shown in

Tables 6, 7 and 8.

Table 6 shows the different optimization results when

k = 0.4, 0.6 and 0.8, and f = 0.0, 0.5 and 1.0, respec-

tively. The result indicates that the smaller both the values

of k and f are, the lower the total cost is.

Table 7 lists the sum of some decision variables during

six planning periods under different confidence level k
based on statistic data in Table 8. It shows that the

objective function values are different with different k.

With the decrease in k from 1.0 to 0.0, the values of both of

the objective functions Z1 and Z2 become smaller and the

sum of both of the regular time and overtime production

quantities becomes larger. This is because that a larger k
may result in a more strict constraint, and it will lead to a

smaller production capacity and a higher cost. When

k = 1.0, it means that the original soft constraint becomes

a deterministic rigid constraint, and the sum of subcon-

tracting of two products during six planning periods is no

longer equal to zero due to insufficient machine capacity.

Therefore, it has to rely on subcontracting to satisfy some

of the demands. As the confidence level k falls, the avail-

able machine capacity is improved properly, the sum of

both of the regular and the overtime production quantities

becomes larger, and subcontracting is no longer needed.

This is because that both of the regular and the overtime

production can fully satisfy the market demands. And when

k falls to zero, namely k = 0, it means that the current

constraint has no longer effect on the objective function.

And furthermore, the results also imply that the larger the

confidence level k, the lower the expected value of the

objective function.

Table 8 shows the final optimization results of the

decision variables when f = 0.5 and k = 0.0, 0.2, 0.4, 0.6,

0.8 and 1.0, respectively.

6 Conclusions

In this paper, an interval programming method has been

proposed for resolving uncertain MPMP-APP problem.

The proposed approach attempts to minimize total cost

with reference to regular and overtime production, sub-

contracting and backordering levels, labor levels, and

machine and warehouse capacity. The interval program-

ming model developed in this paper extends the conven-

tional uncertain MPMP-APP problem which deals with the

uncertainty mainly based on probability distributions or

membership function. The interval analysis method is

applied in this paper to reformulate the MPMP-APP

problems with imprecise parameters. In comparison with

the conventional methods such as stochastic programming

and fuzzy optimization method and so on, the interval

programming method only requires the lower and upper

bounds of the uncertain parameters without necessarily

knowing the probability distributions or membership

functions. In order to solve this model, the original

uncertain interval model would be converted into a deter-

ministic two-objective LP model through introducing the

possibility degree and the order relation between two

interval numbers.

An industrial case demonstrates that the proposed

method is feasible for handling imprecise parameters in the

uncertain MPMP-APP decision problems. Moreover, some

limitations of the proposed model should be taken into

consideration. Firstly, both the objective function and

constraints in the interval programming model are required

to be linear, the further research can consider nonlinear

fuzzy APP model, in which either the objective function or

constraints might be nonlinear. Secondly, the proposed

model is based on the interval analysis method, in which

imprecise parameters are described as interval numbers,

and further research may explore mixed type description

for uncertain parameters. For example, market demands

during different planning period would be described as

random variables that obey some kinds of probability dis-

tribution, and other uncertain parameters are described as

intervals. Finally, the value of this research may be

increased if the multi-objective and multi-stage model for

MPMP-APP problems would be considered in the further

research.
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