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Abstract This paper focuses on Fully Fuzzy Multi-Ob-

jective Linear Programming (FFMOLP) problem in which

all the coefficients and decision variables are LR flat fuzzy

numbers, the more generalized version of fuzzy numbers

and all the constraints are fuzzy inequalities. A new

algorithm is proposed for solving FFMOLP problem

which first converts it into the Multi-Objective Interval

Linear Programming (MOILP) problem. Further, taking

the help of fuzzy slack variable, fuzzy surplus variables,

nearest interval approximation of fuzzy numbers and

scalarization technique, MOILP is then converted into the

Crisp Linear Programming (CLP) problem. It is shown

that the optimal solution of CLP problem is the fuzzy

Pareto optimal solution of FFMOLP problem. The main

advantage of the proposed algorithm is that it transforms

FFMOLP problem into Crisp Linear Programming prob-

lem. Moreover, to apply algorithm, only the knowledge of

arithmetic operations of LR flat fuzzy numbers, centre and

width of the closed intervals are required. At the end, to

illustrate the proposed method and its effectiveness over

the existing method, numerical examples are solved and

compared.

Keywords Centre and width of the closed interval � LR flat

fuzzy numbers � Nearest interval approximation of fuzzy

numbers
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1 Introduction

Linear Programming (LP) has several applications in the

area of engineering and management. But in the real world,

most of the times we do not know the precise value of the

decision parameters of the LP problem. This motivates

several authors to develop interest in fuzzy linear pro-

gramming problems. Zimmerman [33] was the first one

who incorporated the concept of fuzziness in the multi-

objective LP problem. In the literature, various types of

fuzzy linear programming problems have been studied by

several researchers [4–7, 9, 14, 17, 22, 26, 27] in which

either parameters or variables are fuzzy in nature.

A fuzzy linear programming in which all the decision

parameters and variables are fuzzy is called the Fully

Fuzzy Linear Programming (FFLP) problem. Lotfi et al.

[23] solved the FFLP problem using lexicographical

method and found the fuzzy approximation solution.

Kumar et al. [19] proposed a new method for solving FFLP

problem. Khan et al. [20] gave a simplified novel technique

for solving FFLP problems. Kaur and Kumar [21] intro-

duced a new method called Mehar’s method for solving

FFLP problem in which fuzzy numbers were LR flat fuzzy

numbers. Cheng et al. [8] solved the FFLP problem

through compromise programming problems. Nasseri et al.

[25] used the membership function to solve the FFLP

problem. Ezzati et al. [12] transformed the FFLP problem
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into multi-objective linear programming problem and

found the exact optimal solution.

Mohanaselvi and Ganesan [24] solved the FFMOLP

problem in which triangular fuzzy numbers were consid-

ered. They found the ideal and nonideal solution of each

objective function. The fuzzy Pareto optimal solution of

FFMOLP problem was obtained using the linear mem-

bership function and max–min approach. Aggarwal and

Sharma [3] solved fully fuzzy multi-objective multi-choice

linear programming problem in which variables and deci-

sion parameters were triangular fuzzy number and right-

hand side of each constraint have two choices. Using the

ranking function and deviation degree of two triangular

fuzzy numbers, they obtained the d-fuzzy Pareto optimal

solution of fully fuzzy multi-objective multi-choice linear

programming problem. Hadi-Vencheh et al. [15] solved the

FFMOLP problem in which constraints having crisp

equality and fuzzy numbers were triangular fuzzy numbers.

Scalarization technique was used to transform the

FFMOLP problem into the single objective fuzzy linear

programming problem. Further, the fuzzy objective func-

tion was converted into the crisp one, and component wise

fuzzy constraints were compared. It was shown that the

optimal solution of the CLP problem is the fuzzy Pareto

optimal solution of FFMOLP problem. Jayalakshmi and

Pandian [18] found the proper efficient solution of

FFMOLP problem using ‘‘Total objective-segregation’’

method. In 2015, Das [11] solved the FFMOLP problem

using triangular fuzzy numbers and fuzzy inequality con-

straints. He [11] converted the k fuzzy objective function

into the 3k crisp objective functions, m fuzzy constraints

into the 3m crisp constraints and n fuzzy variables into

n constraints to obtain the fuzzy optimal solution of

FFMOLP problem. Aggarwal and Sharma [1] solved fully

fuzzy multi-objective multi-choice linear programming

problem in which all the coefficients and decision variables

were trapezoidal fuzzy numbers and all the constraints

were fuzzy equality or inequality. A new similarity mea-

sure was introduced for trapezoidal fuzzy numbers. They

used the magnitude of trapezoidal fuzzy number to obtain

the fuzzy Pareto optimal solution of fully fuzzy multi-ob-

jective multi-choice linear programming problem. Aggar-

wal and Sharma [2] solved the FFMOLP problem in which

fuzzy numbers were triangular fuzzy numbers and con-

verted the FFMOLP problem into the nonlinear program-

ming problem using the deviation degree of two closed

intervals. Aggarwal and Sharma [1, 2] solved ð2k þ 1Þ
nonlinear programming problems in order to find the fuzzy

Pareto optimal solution of k objective FFMOLP problem.

Aggarwal and Sharma [3] developed a method by

replacing fuzzy numbers into real numbers using ranking

function, due to which most of the information is lost.

Decision Maker (DM) have to solve ð2k þ 1Þ linear or

nonlinear programming problems by the method given by

Mohanaselvi et al. [24] and Aggarwal et al. [2], respec-

tively, to solve k objective FFMOLP problem. Methods

proposed by Aggarwal and Sharma [1] and Das [11] can

solve only those FFMOLP problems in which fuzzy num-

bers are triangular and trapezoidal fuzzy numbers,

respectively. All the methods which are mentioned above

cannot solve the FFMOLP problem in which fuzzy num-

bers are LR flat fuzzy numbers. This motivates us to solve

the FFMOLP problem having decision variables and

parameters as LR flat fuzzy numbers. The aim of this paper

is to introduce an algorithm for solving FFMOLP problem

in which it is first converted into the MOILP problem using

nearest interval approximation of fuzzy numbers. Then,

using scalarization technique, MOILP problem is trans-

formed into linear programming problem. The proposed

algorithm has following advantages:

1. FFMOLP problem transforms into linear programming

problem,

2. DM has to solve only one linear programming

problem,

3. it avoids the pitfall of fuzziness,

4. it is easy to apply as DM needs to know only

arithmetic operations of LR flat fuzzy numbers and

fuzzy nearest interval approximation.

At the end, numerical examples are solved and compared

with the existing method [18]. This paper is organized as

follows: in Sect. 2, we have given some basic definitions

related to closed interval and fuzzy set theory; Sect. 3

provides a new method for solving FFMOLP problem and

obtaining fuzzy Pareto optimal solution; in Sect. 4,

numerical examples are solved and compared with the

existing method [18]; finally, the conclusion is drawn in

Sect. 5.

2 Preliminaries

In this section, some basic definitions of closed intervals,

LR flat fuzzy numbers and arithmetic operations of LR flat

fuzzy numbers related to fuzzy set theory are reviewed.

Definition 1 [28] Let A ¼ ½al; au� be a closed interval.

The centre and width of A are defined as mðAÞ ¼ alþau

2
and

wðAÞ ¼ au�al

2
respectively.

Remark 1 Let A ¼ ½al; au� be a closed interval. The closed
interval can also be represented by its centre and width as

A ¼ hmðAÞ;wðAÞi.

Definition 2 [16] Let A ¼ ½al; au� and B ¼ ½bl; bu� be the

closed interval. The order relations between two closed

intervals A and B are defined as follows:
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1. A� mwB iff mðAÞ�mðBÞ and wðAÞ�wðBÞ,
2. A\mwB iff mðAÞ\mðBÞ and wðAÞ[wðBÞ,
3. A ¼mw B iff mðAÞ ¼ mðBÞ and wðAÞ ¼ wðBÞ.

Definition 3 [19] The characteristic function lA of a crisp

set A � X assigns a value either 0 or 1 to each member in

X. This function can be generalized to a function l
eA
such

that the value assigned to the element of the universal set

X fall within a specified range, i.e. l
eA
: X ! ½0; 1�. The

assigned value indicates the membership grade of the ele-

ment in the set A. The function l
eA
is called the member-

ship function, and the set

eA ¼ fðx; l
eA
ðxÞÞ : x 2 Xg

defined by l
eA
ðxÞ for each x 2 X is called a fuzzy set.

Definition 4 [13] A fuzzy subset eA of the real line R with

membership function l
eA
: X ! ½0; 1� is called a fuzzy

number if

1. eA is normal, i.e. there exist an element x such that

l
eA
ðxÞ ¼ 1;

2. eA is fuzzy convex, i.e. l
eA
ðkxþ ð1� kÞyÞ� l

eA
ðxÞ ^

l
eA
ðyÞ 8 x; y 2 R, 8 k 2 ½0; 1�;

3. l
eA
is upper semi-continuous;

4. suppeA is bounded, where suppðeAÞ ¼
fx 2 R : l

eA
ðxÞ[ 0g, i.e. closure of the set fx 2 R :

l
eA
ðxÞ[ 0g.

Definition 5 [10] A function L : ½0;1Þ ! ½0; 1� ðor R :
½0;1Þ ! ½0; 1�Þ is said to be reference function of fuzzy

number if and only if

1. Lð0Þ ¼ 1 ðor Rð0Þ ¼ 1Þ:
2. Lðor RÞis nonincreasing function on ½0;1Þ:

Definition 6 [10] A fuzzy number eA, defined on universal

set of real numbersR , denoted by ðm; n; a1; a2ÞLR is said to

be an LR flat fuzzy number if its membership function is

given by

l
eA
ðxÞ ¼

L
m� x

a1

� �

; x�m; a1 [ 0;

R
x� n

a2

� �

; x� n; a2 [ 0;

1; otherwise.

8

>

>

>

>

>

<

>

>

>

>

>

:

Remark 2 Three nonlinear reference functions which are

commonly used in the literature using the real number q are

as follows:

1. LðxÞ ¼ RðxÞ ¼ maxð0; 1� xqÞ; q� 0;

2. LðxÞ ¼ RðxÞ ¼ e�xq ;

3. LðxÞ ¼ RðxÞ ¼ 1
ð1þxqÞ ; q� 0:

Remark 3 If LðxÞ ¼ RðxÞ ¼ maxð0; 1� xÞ then LR flat

fuzzy numbers become trapezoidal fuzzy numbers and it is

also denoted by ða1; a2; a3; a4Þ where a1 � a2 � a3 � a4.

Remark 4 F(R) denotes the set of all LR flat fuzzy

numbers.

Definition 7 [10] An LR flat fuzzy number eA ¼ ðm; n;
a1; a2ÞLR is said to be nonnegative LR flat fuzzy number if

m� a1 � 0 and is said to be nonpositive LR flat fuzzy

number if nþ a2 � 0.

Definition 8 [10] Let eA ¼ ðm; n; a1; a2ÞLR be an LR flat

fuzzy number and a be real number in the interval [0, 1]

then a crisp set,

~Aa ¼ fx 2 X : l
eA
� ag

¼ fx 2 X : ½m� a1L
�1ðaÞ; nþ a2R

�1ðaÞ�g;

is said to be a-cut of eA.

Definition 9 [10] Let eA1 ¼ ðm1; n1; a11; a12ÞLR and eA2 ¼
ðm2; n2; a21; a22ÞLR be any LR flat fuzzy numbers then eA1 ¼
eA2 iff m1 ¼ m2; n1 ¼ n2; a11 ¼ a21; a12 ¼ a22:

Definition 10 [10] Let eA1 ¼ ðm1; n1; a11; a12ÞLR, eA2 ¼
ðm2; n2; a21; a22ÞLR be any LR flat fuzzy numbers and eA3 ¼
ðm3; n3; a31; a32ÞRL be any RL flat fuzzy number. The

arithmetic operations on be any LR flat fuzzy number are

given by as follows:

1. eA1 � eA2 ¼ ðm1 þ m2; n1 þ n2; a11 þ a21; a12 þ a22ÞLR
2. eA1 	 eA3 ¼ ðm1 � n3; n1 � m3; a11 þ a32; a12 þ a31ÞLR
3. If eA1 and eA2 both are nonnegative, then

eA1 
 eA3 ’ ðm1m2; n1n2;m1a21 þ a11m2 � a11a21; n1a22
þ a12n2 � a12a22ÞLR

4. If eA1 is nonpositive and eA2 is nonnegative, then

eA1 
 eA3 ’ ðm1n2; n1m2; n2a11 � a22m1;m2a21 � n1a21ÞLR

5. If eA1 is nonnegative and eA2 is nonpositive, then

eA1 
 eA3 ’ ðn1m2;m1n2; n1a21 � a12m2;m1a22 � n2a11ÞLR

6. If eA1 and eA2 both are nonpositive, then

eA1 
 eA3 ’ ðn1n2;m1m2;�n1a22 � a12n2;

� m1a21 � a11m2ÞLR

7. The scalar multiplication is defined as
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keA1 ¼
ðkm1; kn1; ka11; ka12ÞLR; k� 0;

ðkn1; km1;�ka12;�ka11ÞRL; k\0:

�

Definition 11 [13] Let eA and eB be two fuzzy numbers

with a-cut ½AlðaÞ;AuðaÞ� and ½BlðaÞ;BuðaÞ� respectively.

The distance or metric d between eA and eB is defined as

dðeA; eBÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R 1

0
ð~AlðaÞ � ~BlðaÞÞ2da

þ
R 1

0
ð~AlðaÞ � ~BuðaÞÞ2da

 !

v

u

u

t

The metric d is a particular member of the family of dis-

tance dp;q defined as follows:

dp;qðeA; eBÞ ¼
R 1

0
ð1� qÞj~AlðaÞ � ~BlðaÞjpda
þ
R 1

0
qj~AlðaÞ � ~BuðaÞjpda

 !
1
p

;

where 1� p\1 and 0� q� 1.

Definition 12 [13] The Nearest Interval Approximation

(NIA) of fuzzy numbers eA with respect to metric d is

defined as

CdðeAÞ ¼
Z 1

0

eAlðaÞda;
Z 1

0

eAuðaÞda
� �

¼ ðCdðeAÞÞl; ðCdðeAÞÞu
h i

:

We can easily observe the following fuzzy order relation

on F(R) using Definition 2 and Definition 12:

Let eA; eB 2 FðRÞ then

1. eA �mw
eB iff mðCdðeAÞÞ�mðCdðeBÞÞ and

wðCdðeAÞÞ�wðCdðeBÞÞ,
2. eA �mw

eB iff mðCdðeAÞÞ\mðCdðeBÞÞ and

wðCdðeAÞÞ[wðCdðeBÞÞ.
3. eA mw

eB iff mðCðeAÞÞ�mðCdðeBÞÞ and

wðCdðeAÞÞ�wðCdðeBÞÞ,
4. eA �mw

eB iff mðCdðeAÞÞ[mðCdðeBÞÞ and

wðCdðeAÞÞ\wðCdðeBÞÞ.
Both of the above order relations �mw and mware reflex-

ive, antisymmetric and transitive, hence define partial

ordering between fuzzy numbers.

Remark 5 Linearity property of NIA of fuzzy numbers:

Let ~A ¼ ðm1; n1; a11; a12ÞL1R1
; and ~B ¼ ðm2; n2; a21;

a22ÞL2R2
be two LR flat fuzzy numbers and k1; k2 be two

nonnegative real numbers. Then using Definition 8, the k

cut of ~A, ~B and k1 ~A� k2 ~B are as follows:

1. Aa ¼ ½m1 � a11L�1
1 ðaÞ; n1 þ a12R�1

1 ðaÞ�
2. Ba ¼ ½m2 � a21L�1

2 ðaÞ; n2 þ a22R�1
2 ðaÞ�

3. ðk1Aþ k2BÞa ¼ ½k1m1 þ k2m2 � k1a11L�1
1 ðaÞ

� k2a21L�1
2 ðaÞ; k1n1 þ k2n2

þ k1a12R�1
1 ðaÞ þ k2a22R�1

2 ðaÞ�.
Then

Cdðk1 ~A� k2 ~BÞ

¼
Z 1

0

k1m1 þ k2m2 � k1a11L
�1
1 ðaÞ � k2a21L

�1
2 ðaÞ

� 	

da;

�

Z 1

0

k1n1 þ k2n2 þ k1a12R
�1
1 ðaÞ þ k2a22R

�1
2 ðaÞ

� 	

da

�

¼
Z 1

0

k1m1 � k1a11L
�1
1 ðaÞ

� 	

da;
Z 1

0

k1n1 þ k1a21R
�1
1 ðaÞ

� 	

dk

� �

þ
Z 1

0

k2m2 � k2a21L
�1
2 ðaÞ

� 	

da;
Z 1

0

k2n2 þ k2a22R
�1
2 ðaÞ

� 	

da

� �

¼ k1

Z 1

0

m1 � a11L
�1
1 ðaÞ

� 	

da;
Z 1

0

n1 þ a12R
�1
1 ðaÞ

� 	

da

� �

þ k2

Z 1

0

m2 � a21L
�1
2 ðaÞ

� 	

da;
Z 1

0

n2 þ a22R
�1
2 ðaÞ

� 	

da

� �

Hence Cdðk1 ~A� k2 ~BÞ ¼ k1Cdð~AÞ þ k2Cdð~BÞ

Definition 13 [18] Let ~A ¼ ða1; a2; a3Þ and ~B ¼ ðb1; b2;
b3Þ are triangular fuzzy number then:

1. ~A � ~B if and only if ai ¼ bi 8 i ¼ 1; 2; 3:

2. ~A � ~B if and only if ai � bi 8 i ¼ 1; 2; 3:

3. ~A  ~B if and only if ai � bi 8 i ¼ 1; 2; 3:

3 Fully Fuzzy Multi-Objective Linear
Programming Problem

In this section,weproposea newmethod to solve theFFMOLP

problem having parameters and variables as LR flat fuzzy

numbers. FFMOLP problem with k objectives, m inequality

constraints and n variables can be formulated as follows:

Max eZ 1ðeXÞ ¼
Pn

j¼1 ec1j 
 exj
Max eZ 2ðeXÞ ¼

Pn
j¼1 ec2j 
 exj

..

.

Max eZkðeXÞ ¼
Pn

j¼1 eckj 
 exj
subject to
Pn

j¼1 eaij 
 exj � ebi; i ¼ 1; 2; . . .;m1;
Pn

j¼1 eaij 
 exj  ebi; i ¼ m1 þ 1;m1 þ 2; . . .;m;

eX � e0;

9

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

;

ð1Þ

where eCq ¼ ½ecqj�n�1,
eX ¼ ½exj�n�1, exj, eaij;

ebj;ecqj 2 FðRÞ ,

q ¼ 1; 2; . . .; k, j ¼ 1; 2; . . .; n and i ¼ 1; 2; . . .;m. � and 
are fuzzy less than equal to and fuzzy greater than equal to

inequalities, respectively.
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In multi-objective linear programming problem, the DM

wants to achieve the optimal value of the all the objective

functions simultaneously but it is very unlikely that all the

objective functions will attain their optimal values con-

currently due to the conflicting behaviour of the objective

functions. Therefore, in the literature Pareto optimal solu-

tion is defined for multi-objective linear programming

problem. In the fuzzy environment decision making, sev-

eral authors [1, 3, 7, 24] have defined the fuzzy Pareto

optimal solution for fuzzy multi-objective linear pro-

gramming problem on the basis of various ranking func-

tions, membership function etc. In this paper, we will

define a fuzzy Pareto optimal solution based on the concept

of fuzzy order relations for FFMOLP problem as follows:

Definition 14 A vector eX
� ¼ ½ex�j �n�1 where ex�j 2F(R),

j ¼ 1; 2; . . .; n, is said to be fuzzy Pareto optimal solution of

FFMOLP problem if it satisfies the following conditions

1. eX
�
satisfies the constraints of (1),

2. There does not exist any eX ¼ ½exj�n�1, where exj 2F(R),
j ¼ 1; 2; . . .; n, satisfying constraints of (1) such that

eZqðeX
�Þ �mw

eZqðeXÞ forall q ¼ 1; 2; . . .; k

and

eZrðeX
�Þ �mw

eZrðeXÞ foratleastone r ¼ 1; 2; . . .; k:

3.1 Procedure to Solve Fully Fuzzy Multi-Objective

Linear Programming Problem

In this subsection, an algorithm to solve the fully fuzzy

multi-objective linear programming problem is described.

The steps of the proposed algorithm are given as follows:

Step 1: Add the fuzzy slack and fuzzy surplus variable

to convert the fuzzy inequality constraints into the fuzzy

equality constraints.

Max eZ 1ðeXÞ ¼
Pn

j¼1 ec1j 
 exj
Max eZ 2ðeXÞ ¼

Pn
j¼1 ec2j 
 exj

..

.

Max eZkðeXÞ ¼
Pn

j¼1 eckj 
 exj
subject to
Pn

j¼1 eaij 
 exj � ~si ffi ebi;
i ¼ 1; 2; . . .;m1;

Pn
j¼1 eaij 
 exj 	 ~si ffi ebi;

i ¼ m1 þ 1;m1 þ 2; . . .;m;

eX � e0;
eS� e0;

9

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

;

ð2Þ

where ~S ¼ ½~si�m�1; ~si 2 FðRÞ8i ¼ 1; 2; . . .;m:

Step 2: Assuming
P

n

j¼1

ecqj 
 exj ¼ ðu0
q; v

0
q; c

0
q; d

0

qÞLR;

P

n

j¼1

~aij 
 ~xj � si ¼ ðm0

i; n
0

i; a
0

i; b
0

iÞLR and
P

n

j¼1

~aij 
 ~xj 	 si ¼

ðm00

i ; n
00

i ; a
00

i ; b
00

i ÞLR, using Definition 10, (2) obtained in step

1 can be written as :

Max eZ 1ðeXÞ ¼ u
0
1; v

0
1; c

0
1; d

0

1


 �

LR

Max eZ 2ðeXÞ ¼ u
0
2; v

0
2; c

0
2; d

0

2


 �

LR

..

.

Max eZkðeXÞ ¼ u
0
k; v

0
k; c

0
k; d

0

k


 �

LR

subject to

m
0
i; n

0
i; a

0
i; b

0

i


 �

LR
ffi b

0

i1; b
0

i2; f
0

i; g
0
i


 �

LR
;

i ¼ 1; 2; . . .;m1;

m
00
i ; n

00
i ; a

00
i ; b

00

i


 �

LR
ffi b

00

i1; b
00

i2; f
00

i ; g
00
i


 �

LR
;

i ¼ m1 þ 1;m1 þ 2; . . .;m;

eX � e0;
eS� e0:

9

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

;

ð3Þ

Step 3: Converting (3) obtained in Step 2, into MOLP

problem with the help of Definition 12, obtain the fol-

lowing problem:

Max eZ 1ð ~XÞ ¼ Zl
1; Z

u
1

� 

Max eZ 2ð ~XÞ ¼ Zl
2; Z

u
2

� 

..

.

Max eZkð ~XÞ ¼ Zl
k; Z

u
k

� 

subject to

Al
i;A

u
i

� 

¼ bli; b
u
i

� 

; i ¼ 1; 2; . . .;m1;

Al
i;A

u
i

� 

¼ bli; b
u
i

� 

; i ¼ m1 þ 1;m1 þ 2; . . .;m;

xj1 � aj; xj2 � xj1 � 0; j ¼ 1; 2; . . .; n;

aj; bj [ 0; j ¼ 1; 2; . . .; n;

si1; si2 � si1 � 0; i ¼ 1; 2; . . .;m;

ci; di [ 0; i ¼ 1; 2; . . .;m;

9

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

;

ð4Þ

where

Zl
q; Z

u
q

h i

¼ Cd u0q; v
0
q; c

0
q; d

0
q


 �

LR


 �

8 q ¼ 1; 2; . . .; k;

Al
i;A

u
i

� 

¼ Cd m0
i; n

0
i; a

0
i; b

0
i

� 	

LR

� 	

8 i ¼ 1; 2; . . .;m;

bli; b
u
i

� 

¼ Cd b0i1; b
0
i2; f

0
i; g

0
i

� 	

LR

� 	

8 i ¼ 1; 2; . . .;m:

Step 4: Regarding to Definition 1, (4) can be written as

follows:
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Max ~Z1ð ~XÞ ¼ ½mð~Z1ð ~XÞÞ;wð~Z1ð ~XÞÞ�
Max ~Z2ð ~XÞ ¼ ½mð~Z2ð ~XÞÞ;wð~Z2ð ~XÞÞ�

..

.

Max ~Zkð ~XÞ ¼ ½mð~Zkð ~XÞÞ;wð~Zkð ~XÞÞ�
subject to

Al
i þ Au

i

2
;
Au
i � Al

i

2

� �

¼mw

bli þ bui
2

;
bUi � bLi

2

� �

;

i ¼ 1; 2; . . .;m1;

Al
i þ Au

i

2
;
Au
i � Al

i

2

� �

¼mw

bli þ bui
2

;
bui � bli

2

� �

i ¼ m1 þ 1;m1 þ 2; . . .;m;

xj1 � aj; xj2 � xj1 � 0; j ¼ 1; 2; . . .; n;

aj;bj [ 0; j ¼ 1; 2; . . .; n;

si1; si2 � si1 � 0; i ¼ 1; 2; . . .;m;

ci; di [ 0; i ¼ 1; 2; . . .;m:

9

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

;

ð5Þ

Step 5: Regarding to Definition 2 and using scalarization

technique, (5) can be written as:

Max
P

k

q¼1

kqmð~Zqð ~XÞÞ �
P

k

q¼1

lqwð~Zqð ~XÞÞ

subject to

Al
i þ Au

i

2

� �

¼ bli þ bui
2

� �

; i ¼ 1; 2; . . .;m1;

Au
i � Al

i

2

� �

¼ bui � bli
2

� �

; i ¼ 1; 2; . . .;m1;

Al
i þ Au

i

2

� �

¼ bli þ bui
2

� �

; i ¼ m1 þ 1;m1 þ 2; . . .;m;

Au
i � Al

i

2

� �

¼ bui � bli
2

� �

; i ¼ m1 þ 1;m1 þ 2; . . .;m;

P

k

q¼1

kq ¼ 1;

P

k

q¼1

lq ¼ 1;

kq; lq � 0; q ¼ 1; 2; . . .; k

xj1 � aj; xj2 � xj1 � 0; j ¼ 1; 2; . . .; n;

aj; bj [ 0; j ¼ 1; 2; . . .; n;

si1; si2 � si1 � 0; i ¼ 1; 2; . . .;m;

ci; di [ 0; i ¼ 1; 2; . . .;m:

9

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

;

ð6Þ

Step 6: Solve (6) using LINGO 14.0 and obtain the optimal

solution.

Now, we will show that the optimal solution of (6) is the

fuzzy Pareto optimal solution of (1).

Theorem 1 Let ðx�jp; a�j ; b�j ; s�ip; c�i ; d
�
i Þ ðp ¼ 1; 2; j ¼

1; 2; . . .; n; i ¼ 1; 2; . . .mÞ be the optimal solution of (6)

then ~X� ¼ ½~x�j �n�1, where ~x�j ¼ ðx�j1; x�j2; a�j ; b�j Þ ðj ¼
1; 2. . .nÞ will be the fuzzy Pareto optimal solution of (1).

Proof Let if possible, ~X� not be a fuzzy Pareto optimal

solution of (1), then there exist a feasible solution ~X�,

where ~X� ¼ ½~x�j �n�1, ~x�j ¼ ðx�j1; x�j2; a�j ; b�j Þðj ¼ 1; 2; . . .; nÞ
of (1) such that

mð~Zqð ~X�Þ�mð~Zqð ~X�Þ
wð~Zqð ~X�Þ�wð~Zqð ~X�Þ

8q ¼ 1; 2; . . .; k;

and

mð~Zrð ~X�Þ\mð~Zrð ~X�Þ
wð~Zrð ~X�Þ[wð~Zrð ~X�Þ

for at least one r ¼ 1; 2; . . .; k:

9

>

>

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

>

>

;

ð7Þ

Corresponding to the feasible solution ~X� of (1), there exist
~S
� ¼ ½~s�i �m�1, where ~s�i ¼ ðs�i1; s�i2; c�i ; d

�
i Þ i ¼ 1; 2; . . .; n

such that ð ~X�; ~S
�Þ is the feasible solution of (2).

Since (3) is obtained from (2) using Definition 10,

ð ~X�; ~S
�Þ is also the feasible solution of (3).

Let S and S
0
be the set of all feasible solutions of (3) and

(4), respectively.

We claim if ð ~X�; ~S
�Þ 2S then

ðx�jp; a�j ; b
�
j ; s

�
ip; c

�
i ; d

�
i Þ 2 S

0 ðp ¼ 1; 2; j ¼ 1; 2; . . .; n;

i ¼ 1; 2; . . .mÞ:
Let ð ~X�; ~S

�Þ 2 S

) ð ~X�; ~S
�Þ satisfy

ðm0

u; n
0

u; a
0

u; b
0

uÞLR ffi ðb0

u1; b
0

u2; f
0

u; g
0

uÞLR; and ðm00

v; n
00

v; a
00

v;

b
00

vÞLR ffi ðb00

v1; b
00

v2; f
00

v; g
00

vÞLR; for all u ¼ 1; 2; . . .;m1; and v ¼
m1 þ 1;m1 þ 2; . . .;m: ) ðx�jp; a�j ; b

�
j ; s

�
ip; c

�
i ; d

�
i Þ 2 S

0
, sat-

isfy Cdððm
0
u; n

0
u; a

0
u; b

0

uÞLRÞ ¼ Cdððb
0

u1; b
0

u2; f
0

u; g
0
uÞLRÞ; and

Cdððm
00
v; n

00
v; a

00
v;b

00

vÞLRÞ ¼ Cdððb
00

v1; b
00

v2; f
00

v; g
00
vÞLRÞ; for all u ¼

1; 2; . . .;m1; and v ¼ m1 þ 1;m1 þ 2; . . .;m:

) ðx�jp; a�j ; b�j ; s�ip; c�i ; d
�
i Þ 2 S

0
,

Hence, ðx�jp; a�j ; b
�
j ; s

�
ip; c

�
i ; d

�
i Þ 2 S

0
is the feasible solu-

tion of (4).

As (4) and (5) are equivalent, ðx�jp; a�j ; b�j ; s�ip; c�i ;
d�i Þ ðp ¼ 1; 2; j ¼ 1; 2; . . .; n; i ¼ 1; 2; . . .mÞ should be

the feasible solution of (5).

Now, both (5) and (6) have the same constraint sets,

therefore, ðx�jp; a�j ; b
�
j ; s

�
ip; c

�
i ; d

�
i Þ ðp ¼ 1; 2; j ¼ 1; 2; . . .; n;

i ¼ 1; 2; . . .mÞ should be the feasible solution of (6).

Sinceðx�jp; a�j ; b
�
j ; s

�
ip; c

�
i ; d

�
i Þ and ðx�jp; a�j ; b

�
j ; s

�
ip; c

�
i ; d

�
i Þ

ðp ¼ 1; 2; j ¼ 1; 2; . . .; n; i ¼ 1; 2; . . .mÞ are feasible solu-

tion of (6), hence using (7), we get,
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X

k

q¼1

kqmð~Zqð ~X�Þ �
X

k

q¼1

lqwð~Zqð ~X�Þ\
X

k

q¼1

kqmð~Zqð ~X�Þ �
X

k

q¼1

lqwð~Zqð ~X�Þ

This is a contradiction as ðx�jp; a�j ; b�j ; s�ip; c�i ; d
�
i Þ ðp ¼ 1; 2;

j ¼ 1; 2; . . .; n; i ¼ 1; 2; . . .mÞ is the optimal solution of (6).

Hence, ~X� ¼ ½~x�j �n�1 is the fuzzy Pareto optimal solution

of (1). h

Next, we show the steps of the proposed algorithm with

help of flow chart as follows:

4 Examples

This section illustrates the proposed algorithm through

examples. The effectiveness of the method is shown by

comparing one example with the existing method [18].

Example 1 In a firm two variety of products, product 1

(X) and product 2 (Y) are manufactured with the help of two

type of machines, machine 1 (A) and machine 2 (B),

respectively. The time taken for manufacturing product X

and Y on machine A and B is taken to be fuzzy data as it

alters due to electricity supply, efficiency of labour and

machine. The firm exports product Y and imports a raw

material for product X. Due to this export and import, the

firm generates a fuzzy revenue as it depends upon trans-

portation charges. The profit is also taken to be fuzzy data as

it varies from season to season. The firm desires to maxi-

mize the profit and the export–import balance, i.e. maxi-

mizing export and minimizing the import. All the data of

profit, revenue, total time and time taken by machine A and

B for making products X and Y are listed in Tables 1 and 2.

Let ~x1 and ~x2 be the units of products X and Y,

respectively, manufactured with the help of machines A

and B. The problem is formulated as follows:

Max~Z1ð ~XÞ ¼ ð20; 21; 22; 23Þ~x1 � ð21; 23; 24; 25Þ~x2
Max~Z2ð ~XÞ ¼ 	ð8; 9; 10; 11Þ~x1 � ð12; 13; 14; 15Þ~x2
subject to

ð0:1; 0:2; 0:3; 0:4Þ~x1 � ð0:2; 0:3; 0:4; 0:5Þ~x2 � ð8; 9; 10; 11Þ
ð0:2; 0:3; 0:4; 0:5Þ~x1 � ð0:1; 0:2; 0:3; 0:4Þ~x2 � ð7; 8; 9; 10Þ
~xi  ~0; i ¼ 1; 2:

9

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

;

ð8Þ

where eX ¼ ½exi�2�1, exi ¼ ðxi; yi; ui; viÞ is a LR flat fuzzy

number, 8i ¼ 1; 2 (See Remark 3).

The proposed algorithm is used to solve the above

FFMOLPP. Steps of the algorithm are described as follows:

Step 1: Adding the trapezoidal fuzzy slack variables esj, j

= 1, 2. in the constraints as follows:

Max~Z1ð ~XÞ ¼ ð20; 21; 22; 23Þ 
 ~x1 � ð21; 23; 24; 25Þ 
 ~x2

Max~Z2ð ~XÞ ¼ 	ð8; 9; 10; 11Þ 
 ~x1 � ð12; 13; 14; 15Þ 
 ~x2

subject to

ð0:1; 0:2; 0:3; 0:4Þ 
 ~x1 � ð0:2; 0:3; 0:4; 0:5Þ 
 ~x2 � ~s1

ffi ð8; 9; 10; 11Þ
ð0:2; 0:3; 0:4; 0:5Þ 
 ~x1 � ð0:1; 0:2; 0:3; 0:4Þ 
 ~x2 � ~s2

ffi ð7; 8; 9; 10Þ
~sj; ~xi  ~0; i; j ¼ 1; 2:

9

>

>

>

>

>

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

>

>

>

>

>

;

ð9Þ

Step 2: Converting (9) into MOLIP problem, with the help

of Definitions 10 and 12, the problem obtained in step 1 is

rewritten as:

Start

FFMOLP problem

Adding fuzzy slack and fuzzy surplus variables 
in the FFMOLP problem

Using NIA, convert it into MOILP problem 

Write the MOILP problem in the form of center 
and width of the closed interval

Using the scaliza�on technique, convert it into 
linear programming problem

Solve linear 
programming problem 

using LINGO 14.0.

By theorem 1, the optimal solution of linear programming 
problem is the fuzzy Pareto optimal solution of FFMOLP 

problem

End
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Max~Z1ð ~XÞ ¼
1

2
P1

Max~Z2ð ~XÞ ¼
1

2
Q1

subject to

A1 ¼ ½17; 21�
A2 ¼ ½15; 19�

sj1; sj2 � sj1 � 0; j ¼ 1; 2;

sj3 � sj2; sj4 � sj3 � 0; j ¼ 1; 2;

xi; yi � xi � 0; i ¼ 1; 2;

ui � yi; vi � ui � 0; i ¼ 1; 2;

9

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

;

ð10Þ

where

P1 ¼
1

2
½20x1 þ 21y1 þ 21x2 þ 23y2; 22u1 þ 23v1

þ 24u2 þ 25v2�

Q1 ¼
1

2
½�11v1 � 10u1 þ 12x2 þ 13y2;�9y1 � 8x1

þ 14u2 þ 15v2�
A1 ¼½0:1x1 þ 0:2y1 þ 0:2x2 þ 0:3y2 þ s11 þ s12; 0:3u1

þ 0:4v1 þ 0:4u2 þ 0:5v2 þ s13 þ s14�
A2 ¼½0:2x1 þ 0:3y1 þ 0:1x2 þ 0:2y2 þ s21 þ s22; 0:4u1

þ 0:5v1 þ 0:3u2 þ 0:4v2 þ s23 þ s24�

Step 3: Regarding to Definition 2, the problem (10) in step

2 is rewritten as follows:

Max~Z1ð ~XÞ ¼ ½mð~Z1ð ~XÞÞ;wð~Z1ð ~XÞÞ�
Max~Z2ð ~XÞ ¼ ½mð~Z2ð ~XÞÞ;wð~Z2ð ~XÞÞ�
subject to

mðA1Þ;wðA1Þ½ � ¼mw 17; 21½ �
mðA2Þ;wðA2Þ½ � ¼mw 15; 19½ �
sj1; sj2 � sj1 � 0; j ¼ 1; 2;

sj3 � sj2; sj4 � sj3 � 0; j ¼ 1; 2;

xi; yi � xi � 0; i ¼ 1; 2;

ui � yi; vi � ui � 0; i ¼ 1; 2;

9

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

;

ð11Þ

where

mð~Z1ð ~XÞÞ ¼
1

4
ð20x1 þ 21y1 þ 21x2 þ 23y2 þ 22u1

þ 23v1 þ 24u2 þ 25v2Þ;

wð~Z1ð ~XÞÞ ¼
1

4
ð22u1 þ 23v1 þ 24u2 þ 25v2 � 20x1

� 21y1 � 21x2 � 23y2Þ;

mð~Z2ð ~XÞÞ ¼
1

4
ð�11v1 � 10u1 þ 12x2 þ 13y2 � 9y1

� 8x1 þ 14u2 þ 15v2Þ;

wð~Z2ð ~XÞÞ ¼
1

4
ð�9y1 � 8x1 þ 14u2 þ 15v2Þ þ 11v1

þ 10u1 � 12x2 � 13y2Þ;
mðA1Þ ¼ ð0:1x1 þ 0:2y1 þ 0:2x2 þ 0:3y2 þ s13 þ s14

þ 0:3u1 þ 0:4v1 þ 0:4u2 þ 0:5v2 þ s13 þ s14Þ;
wðA1Þ ¼ ð0:3u1 þ 0:4v1 þ 0:4u2 þ 0:5v2 þ s13 þ s14

� 0:1x1 � 0:2y1 � 0:2x2 � 0:3y2 � s11 � s12Þ;
mðA2Þ ¼ ð0:1x1 þ 0:2y1 þ 0:2x2 þ 0:3y2 þ s21

þ s220:3u1 þ 0:4v1 þ 0:4u2 þ 0:5v2 þ s23 þ s24Þ;
wðA2Þ ¼ ð0:3u1 þ 0:4v1 þ 0:4u2 þ 0:5v2 þ s23 þ s24

� 0:1x1 � 0:2y1 � 0:2x2 � 0:3y2 � s21 � s22Þ:

Step 4: Combining all the centre and width of objective

function of (11) obtained in step 3 with the help of

scalarization method, we get:

Min
1

2
A

subject to

mðA1Þ ¼ 17;

wðA1Þ ¼ 21;

mðA2Þ ¼ 15;

wðA2Þ ¼ 19;

sj1; sj2 � sj1 � 0; j ¼ 1; 2;

sj3 � sj2; sj4 � sj3 � 0; j ¼ 1; 2;

xi; yi � xi � 0; i ¼ 1; 2;

ui � yi; vi � ui � 0; i ¼ 1; 2;

9

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

;

ð12Þ

where

A ¼ ðmð~Z1ð ~XÞÞ þ mð~Z2ð ~XÞÞ � wð~Z1ð ~XÞÞ � wð~Z2ð ~XÞÞÞ:

Solving (12) using LINGO 14.0, the optimal value is

129.375. By using Theorem 1, we obtain the fuzzy Pareto

optimal solution of (8). The fuzzy Pareto optimal solution

Table 1 Time taken by machine A and B to manufacture X and Y

Product Machine A (in h) Machine B (in h)

X (0.1, 0.2, 0.3, 0.4) (0.2, 0.3, 0.4, 0.5)

Y (0.2, 0.3, 0.4, 0.5) (0.1, 0.2, 0.3, 0.4)

Total available time (8, 9, 10, 11) (7, 8, 9, 10)

Table 2 Data of the profit and export–import for product A and B

Product Profit per piece (Rs in 100) Import per piece (Rs in 100) Export per piece (Rs in 100)

X (20, 21, 22, 23) (8, 9, 10, 11) -

Y (21, 23, 24, 25) - (12, 13, 14, 15)
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and fuzzy objective functions value of problem (8) are

given in Tables 3 and 4.

Example 2 [18]

Max~Z1ð ~XÞ ¼ ð1; 2; 3Þ~x1 � ð2; 4; 5Þ~x2
Max~Z2ð ~XÞ ¼ ð2; 3; 4Þ~x1 � ð3; 4; 5Þ~x2
subject to

ð0; 1; 2Þ~x1 � ð1; 2; 3Þ~x2 � ð1; 10; 27Þ
ð1; 2; 3Þ~x1 � ð0; 1; 2Þ~x2 � ð2; 11; 28Þ
~x1; ~x2are non negative fuzzy number;

9

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

;

ð13Þ

Step 1: Adding the fuzzy slack variables in the constraints

of (13) as follows:

Max~Z1ð ~XÞ ¼ ð1; 2; 3Þ~x1 � ð2; 4; 5Þ~x2
Max~Z2ð ~XÞ ¼ ð2; 3; 4Þ~x1 � ð3; 4; 5Þ~x2
subject to

ð0; 1; 2Þ 
 ~x1 � ð1; 2; 3Þ 
 ~x2 � ~s11 ffi ð1; 10; 27Þ
ð1; 2; 3Þ 
 ~x1 � ð0; 1; 2Þ 
 ~x2 � ~s21 ffi ð2; 11; 28Þ
~x1; ~x2; ~s11; ~s21 are non negative fuzzy number

9

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

;

ð14Þ

Step 2: Using Definition 10, (15) can be written as:

Max~Z1ð ~XÞ ¼ ðx1 þ 2x2; 2y1 þ 4y2; 3z1 þ 5z2Þ
Max~Z2ð ~XÞ ¼ ð2x1 þ 3x2; 2y1 þ 4y2; 3z1 þ 5z2Þ
subject to

ðx2 þ s11; y1 þ 2y2 þ s12; 2z1 þ 3z2 þ s13Þ ffi ð1; 10; 27Þ
ðx1 þ s21; 2y1 þ y2 þ s22; 3z1 þ 2z2 þ s23Þ ffi ð2; 11; 28Þ
xj; ðyj � xjÞ; ðzj � yjÞ� 0; 8j ¼ 1; 2

si1; ðsi2 � si1Þ; ðsi3 � si2Þ� 0; 8i ¼ 1; 2:

9

>

>

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

>

>

;

ð15Þ

Step 3: Converting (15) into MOLIP problem, using Defi-

nition 12, the problem in step 2 can be rewritten as:

Max~Z1ð ~XÞ ¼
1

2
P2

Max~Z2ð ~XÞ ¼
1

2
Q2

subject to

A3 ¼ ½38; 26�
A4 ¼ ½41; 26�
xj; ðyj � xjÞ; ðzj � yjÞ� 0; 8j ¼ 1; 2;

si1; ðsi2 � si1Þ; ðsi3 � si2Þ� 0; 8i ¼ 1; 2;

9

>

>

>

>

>

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

>

>

>

>

>

;

ð16Þ

where

P2 ¼
1

2
½x1 þ 2x2 þ 4y1 þ 8y2 þ 3z1 þ 5z2;

3z1 þ 5z2 � x1 � 2x2�

Q2 ¼
1

2
½2x1 þ 3x2 þ 4y1 þ 8y2 þ 3z1 þ 5z2;

3z1 þ 5z2 � 2x1 � 3x2�
A3 ¼½x1 þ s11 þ 2y1 þ 4y2 þ s12 þ 2z1 þ 3z2 þ s13;

2z1 þ 3z2 þ s13 � x2 � s11�
A4 ¼½x1 þ s21 þ 4y1 þ 2y2 þ 2s22 þ 3z1 þ 2z2 þ s23;

3z1 þ 2z2 þ s23 � x1 � s21�:

Step 4: Regarding to Definition 2, the problem (16) in step

3 can be rewritten as follows:

Max~Z1ð ~XÞ ¼ ½mð~Z1ð ~XÞÞ;wð~Z1ð ~XÞÞ�
Max~Z2ð ~XÞ ¼ ½mð~Z2ð ~XÞÞ;wð~Z2ð ~XÞÞ�
subject to

mðA3Þ;wðA3Þ½ � ¼mw 38; 26½ �
mðA4Þ;wðA4Þ½ � ¼mw 41; 26½ �
xj; ðyj � xjÞ; ðzj � yjÞ� 0; 8j ¼ 1; 2;

si1; ðsi2 � si1Þ; ðsi3 � si2Þ� 0; 8i ¼ 1; 2;

9

>

>

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

>

>

;

ð17Þ

where,

mð~Z1ð ~XÞÞ ¼
1

4
ðx1 þ 2x2 þ 4y1 þ 8y2 þ 3z1 þ 5z2Þ;

wð~Z1ð ~XÞÞ ¼
1

4
ð3z1 þ 5z2 � x1 � 2x2Þ

mð~Z2ð ~XÞÞ ¼
1

4
ð2x1 þ 3x2 þ 6y1 þ 8y2 þ 4z1 þ 5z2Þ;

wð~Z2ð ~XÞÞ ¼
1

4
ð3z1 þ 5z2 � x1 � 3x2Þ

mðA3Þ ¼ x2 þ s11 þ 2y1 þ 4y2 þ 2s12 þ 2z1 þ 3z2 þ s13;

wðA3Þ ¼ 2z1 þ 3z2 þ s13 � x2 � s11

mðA4Þ ¼ x1 þ s21 þ 4y1 þ 2y2 þ 2s22 þ 3z1 þ 2z2 þ s23

wðA2Þ ¼ 3z1 þ 2z2 þ s23 � x1 � s21:

Step 5: Combine all the centre and width of objective function

of (17) obtained in step 4 using scalarization method, we get:

Table 3 Fuzzy Pareto optimal solution of problem (8)

Fuzzy variable of (8) Fuzzy Pareto optimal solution of (8)

~x1 (0, 0, 0, 0)

~x2 (7.5, 7.5, 7.5, 7.5)

Table 4 Fuzzy objective function values of problem of (8)

Fuzzy objective

function of (8)

Fuzzy objective functions

value of (8)

~Z1ð ~XÞ (157.5, 172.5, 180, 187.5)

~Z2ð ~XÞ (90, 97.5, 105, 112.5)
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Max
1

2
B

subject to

mðA3Þ ¼ 38;

wðA3Þ ¼ 26;

mðA4Þ ¼ 41;

wðA4Þ ¼ 26;

xj; ðyj � xjÞ; ðzj � yjÞ� 0; 8j ¼ 1; 2

si1; ðsi2 � si1Þ; ðsi3 � si2Þ� 0; 8i ¼ 1; 2

9

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

;

ð18Þ

where,

B ¼ ðmð~Z1ð ~XÞÞ þ mð~Z2ð ~XÞÞ � wð~Z1ð ~XÞÞ � wð~Z2ð ~XÞÞÞ:

Solving (18) with the help of LINGO 14.0, the optimal

value is 12.67. By Theorem 1, the fuzzy Pareto optimal

solution and the fuzzy objective function value of (13) are

given in Tables 5 and 6, respectively.

Now, using, Total objective-segregation method [18],

the fuzzy efficient solution and the fuzzy objective function

values of (13) are given in Tables 7 and 8, respectively.

Using Definition 13, to compare the respective Tables 6

and 8, we observe that the fuzzy optimal solution obtained

from the proposed method give better result than the Total

objective-segregation method [18].

5 Conclusion

In the recent years, several authors have applied ranking

function in the fuzzy linear programming. The main

drawback of the ranking function is that it converts the

fuzzy number into real number and most of the imprecise

information is lost. Therefore, in this paper, a new method

has been proposed to solve the FFMOLP problem which

first converts the fuzzy problem into MOILP problem using

nearest interval approximations of fuzzy numbers in order

to avoid pitfalls of the essential information. Then, with the

help of centre, width and scalarization technique, interval

programming problem is converted into LP problem. We

have shown that optimal solution of LP problem is the

fuzzy Pareto optimal solution of FFMOLP problem.

Numerical examples are solved and compared with the

existing method in order to show the applicability of the

proposed method in day to day life. The proposed method

has the following advantages:

1. Instead of solving ð2k þ 1Þ nonlinear problem in [1, 2],

the proposed method reduces the FFMOLP problem

into one linear programming problem in order to

obtain the fuzzy Pareto optimal solution of FFMOLP

problem.

2. It is not difficult to convert the FFMOLP problem into

the final crisp linear programming problem because the

arithmetic operations on LR flat fuzzy numbers are

well defined and simple to operate. Moreover, the

procedure for converting it to interval programming

problem and then to find crisp linear programming

problem is also simple as we have described in the

paper. Therefore, the computational complexity of the

proposed algorithm is very less.

3. It captures basic features of the original fuzzy quan-

tities and avoid pitfalls of fuzziness.

We are further investigating the new developments and

their applicability related to fuzzy systems, linguistic

variables and fuzzy random variables etc. see ½28� � ½31� as
part of our future work.
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Table 5 Fuzzy Pareto optimal solution of (13)

Fuzzy variable of (13) Fuzzy Pareto optimal solution of (13)

~x1 (1.78, 1.78, 1.78)

~x2 (1.17, 7.86, 7.86)

Table 6 Fuzzy objective function values of (13)

Fuzzy objective

function of (13)

Fuzzy objective functions

value of (13)

~Z1ð ~XÞ (4.42, 59.42, 81.27)

~Z2ð ~XÞ (7.67, 73.41, 95.26)

Table 7 Fuzzy efficient solution of (13) using Total objective-seg-

regation method [18]

Fuzzy variable of (13) Fuzzy Pareto optimal solution of (13)

~x1 (2, 4, 6)

~x2 (1, 3, 5)

Table 8 Fuzzy objective function values of problem of (13) using

Total objective-segregation method [18]

Fuzzy objective

function of (13)

Fuzzy objective functions

value of (13)

~Z1ð ~XÞ (4, 20, 43)

~Z2ð ~XÞ (7, 24, 49)
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