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Abstract This paper proposes the fuzzy mean-entropy

portfolio models with transaction costs based on credibility

theory. In the paper, entropy is used as the measurement of

risk. Furthermore, sensitivity analysis is discussed for

objective function coefficients and constraint coefficients

on the right sides in our proposed models. In addition, two

numerical examples are given to illustrate the effectiveness

of our proposed models and the practicability of sensitivity

analysis. More importantly, the obtained results also show

that when certain coefficient changes in some value range,

we still can obtain the unchanged optimal solutions or

unchanged objective function values. Compared with

Huang (IEEE Trans Fuzzy Syst 16:1096–1101, 18; Fuzzy

Optim Decis Mak 10:71–89, 19), our paper not only pro-

poses the mean-entropy models, but also does research

work on sensitivity analysis about objective function

coefficients and constraint coefficients in depth in maxi-

mizing return model and minimizing risk model. Our

results can provide more choices for investors in the

practical financial market.

Keywords Sensitivity analysis � Mean-entropy portfolio

model � Credibility theory � Transaction costs � Triangular
fuzzy number

1 Introduction

The mean–variance methodology for the portfolio selection

problem, proposed originally by Markowitz [1–3], played a

critical role in the development of modern finance theory.

It combines probability with optimization technique to

model the behavior investment. The fundamental principle

of the mean–variance model is to use the expected return of

the portfolio as the investment return and to use the vari-

ance of the return of the portfolio as the investment risk. As

we know, the traditional Markowitz’s mean–variance

models are optimal models by minimizing risk or maxi-

mizing return with some constraints. Most of the existing

portfolio selection models are based on probability theory.

The mean–variance portfolio selection problem has been

studied by many researchers including Best et al. [4],

Merton [5], Pang [6], Perold [7] and Sharpe [8]. These

portfolio models are solved by traditional optimal algo-

rithm (see active set algorithm in [9]) and intelligent

algorithm (evolutionary algorithms in [10]).

In the practical financial market, many non-probabilistic

factors affect the financial market such that the risky asset’s

uncertainty is more embodied in the fuzzy uncertainty.

Fuzzy uncertainty is more important than the probabilistic

uncertainty. Liu [11] presented the credibility theory based

on the axiomatic system of fuzzy number. Based on the

credibility theory, many researchers investigated fuzzy

means and variances into portfolio model. The concept of

fuzzy entropy was defined by Liu [11] for measuring the

uncertainty of fuzzy variables. Liu [12] presented a deep

theoretical study and discussion on credibility theory by

some basic concepts and fundamental theorems. Liu [13]

also proposed a chance constrained programming model

and designed a genetic algorithm to solve the model. Much

research work has been obtained when the return rate is
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regarded as fuzzy number by Amiri [14], Bhattacharyya

[15], Dastkhan [16], etc.

At the same time, we also note that risk is also can be

measured by entropy. Philippatos [17] pointed out that

entropy is more general than variance as an efficient

measure of risk because entropy is free from reliance on

symmetric probability distributions and can be computed

from non-metric data. Huang [18, 19] studied the mean-

entropy models for fuzzy portfolio selection and mean-risk

models for uncertain portfolio models. Mukesh [20] pre-

sented credibilistic mean-entropy models for multi-period

portfolio selection with multi-choice aspiration levels. And

a real-world empirical application with dataset from an

Indian stock market is presented to demonstrate effective-

ness of the proposed models. Zhou [21] presented a mean–

variance hybrid-entropy model for portfolio selection with

fuzzy returns. Finally, the corresponding results show that

the proposed models generally perform better than the

traditional portfolio selection models.

In the past, many researchers studied fuzzy portfolio

selection models with all kinds of complex constraints.

Zhang [22] and Sadjadi [23] considered more complex

portfolio models with borrowing and lending and transac-

tion costs. Li [24] did some research work on entropy of

credibility distributions for fuzzy variables, which was the

basis of fuzzy entropy. Liu [25] studied portfolio selection

problem with interval-valued returns in which the risk was

measured by absolute deviation. Liu [26] also studied a

fuzzy portfolio optimization model. Qin [27] considered

fuzzy cross-entropy in portfolio selection. Zhou [28]

studied a portfolio optimization model based on informa-

tion entropy with fuzzy time series, both entropy-based

models outperform the traditional ones and the fuzzy time

series forecasting model also help to further improve the

actual performance. Yue [29] studied a new fuzzy multi-

objective and higher-order moment portfolio selection

model for diversified portfolios, and a new effective multi-

objective evolutionary algorithm was designed. Chen [30]

did some research work on the hybrid FA-SA algorithm for

fuzzy portfolios selection with transaction costs.

As we know, the portfolio model is an optimization

model actually. Sensitivity analysis plays an important role

in the optimization method. In optimization method, the

stability of the optimal solution is studied by using sensi-

tivity analysis to do research on original data inaccuracy

and change. Many researchers paid a little attention to the

sensitivity analysis about portfolio model. In this paper, the

expected return of the portfolio is used as the investment

return and the fuzzy entropy of the return of the portfolio is

used as the investment risk. We also note that the trans-

action cost is an important factor in portfolio investment.

Thus, the fuzzy mean-entropy model with transaction costs

is proposed when the return rates are triangular fuzzy

numbers. At the same time, the sensitivity analysis is dis-

cussed for the objective function and constraint on coeffi-

cients in detail.

The other part of this paper is organized as follows. In

Sect. 2, we introduce credibility theory and some basic

definitions. In Sect. 3, we propose a mean-entropy model

with transaction costs when the returns are triangular fuzzy

numbers. In Sect. 4, we use two numerical portfolio

examples to demonstrate the effectiveness of our proposed

models and the practicability of sensitivity analysis. Fur-

thermore, we investigate sensitivity analysis with right-

hand sides of constraints or objective coefficients. In

Sect. 5, a brief summary of this paper is given. Finally,

scope for future study is presented in Sect. 6.

2 Credibility, Expected Value and Entropy

The concept of fuzzy set was initiated by Zadeh [31] with

membership function in 1965. In order to measure a fuzzy

set, Zadeh [32] proposed the concept of possibility mea-

sure in 1978. Although possibility measure has been

widely used, it does not obey the law of truth conservation

and is inconsistent with the law of excluded middle and the

law of contradiction. The main reason is that possibility

measure has no self-duality property. However, a self-dual

measure is absolutely needed both in theory and in practice

[11].

Liu [11] defined credibility measure with self-dual with

strict mathematical basis. The crucial point of credibility

theory is self-dual. When the credibility value of a fuzzy

event achieves 1, the fuzzy event will surely happen.

Therefore, we adopt credibility as the measure of occur-

rence chance of a fuzzy event in this paper.

Definition 2.1 [11] Let n be a fuzzy variable with

membership function l and real number x. Then for any set

A of R, the credibility of a fuzzy event n 2 A is defined as

Cr n 2 Af g ¼ 1

2
sup
x2A

lðxÞ þ 1� sup
x2AC

lðxÞ
� �

: ð1Þ

This above formula is also known as the credibility

inversion theorem. Conversely, if n is a fuzzy variable,

then its membership function is derived from the credibility

measure by

lðxÞ ¼ 2Cr n ¼ xf gð Þ ^ 1; x 2 R: ð2Þ

Definition 2.2 [11] Let n be a fuzzy variable; then, its

expected value is defined by

E½n� ¼
Z þ1

0

Cr n� xf gdx�
Z 0

�1
Cr n� xf gdx: ð3Þ
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Provided that at least one of the above two integrals is

finite.

Definition 2.3 [11] Let n be a continuous fuzzy variable;

then, its entropy is defined by

H½n� ¼
Z þ1

�1
S Cr n ¼ xf gð Þdx; ð4Þ

where SðtÞ ¼ �t ln t � ð1� tÞ lnð1� tÞ.

Fuzzy entropy is used to measure the uncertainty asso-

ciated with each fuzzy variable. If n has continuous

membership function l, then we have Cr n ¼ xf g ¼ lðxÞ
2

for

any x 2 R. In this case, it is easy to prove that its entropy is

H½n� ¼ �
Z þ1

�1

lðxÞ
2

ln
lðxÞ
2

þð1� lðxÞ
2

Þ lnð1� lðxÞ
2

Þ
� �

dx:

ð5Þ

Example 2.1 A triangular fuzzy variable n is fully

determined by the triplet ða; b; cÞ of crisp numbers with

a\b\c, and its membership function is given by

lðxÞ ¼

x� a

b� a
; if a� x� b

x� c

b� c
; if b� x� c

0; otherwise:

8>><
>>:

ð6Þ

By the formula Cr n� xf g þ Cr n� xf g ¼ 1;, we have

Cr n� xf g ¼

0; if x� a
x� a

2ðb� aÞ ; if a� x� b

xþ c� 2b

2ðc� bÞ ; if b� x� c

1; if x� c;

8>>>>><
>>>>>:

ð7Þ

and

Cr n� xf g ¼

1; if x� a
2b� a� x

2ðb� aÞ ; if a� x� b

c� x

2ðc� bÞ ; if b� x� c

0; if x� c:

8>>>>><
>>>>>:

ð8Þ

Example 2.2 The triangular fuzzy variable n ¼ ða; b; cÞ
has an expected value

E½n� ¼ aþ 2bþ c

4
ð9Þ

Example 2.3 Let n be a triangular fuzzy variable ða; b; cÞ.
Then its entropy is

H½n� ¼ c� a

2
: ð10Þ

Theorem 2.1 [11] Let n and g be independent fuzzy

variables with finite expected values. Then for any numbers

a and b, we have

E½anþ bg� ¼ aE½n� þ bE½g�: ð11Þ

Theorem 2.2 [11] Let n be an uncertain fuzzy variable,

let c be a real number. Then

H½nþ c� ¼ H½n�: ð12Þ

Theorem 2.3 [11] Let n and g be independent uncertain

fuzzy variables. Then for any real numbers a and b, we

have

H½anþ bg� ¼ aj jH½n� þ bj jH½g�: ð13Þ

In the portfolio selection problem, since uncertainty

causes loss, we use entropy to assess the risk degree of a

portfolio. In portfolio model, the smaller the entropy

value is, the less uncertainty the portfolio return contains,

and thus, the safer the portfolio is. So in this paper, the

entropy of portfolio is regarded as the measurement of

risk.

3 Fuzzy Mean-Entropy Model with Transaction
Costs

Markowitz [1, 2] proposed the classical mean–variance

portfolio model by maximizing investment return for a

preset level of risk, or by minimizing investment risk for a

preset level of investment return. In this paper, we will

retain Markowitz’s selection principle: using expected

value as the measure of return, but use entropy as the

measure of risk. The mean-entropy fuzzy portfolio model

with transaction costs will be proposed.

For convenience, we introduce the following notations.

Let xi be the investment proportion of the ith asset

ði ¼ 1; 2; . . .; nÞ, and let ni be the ith fuzzy variable rep-

resenting the return rate of the ith asset. Suppose that an

investor invests his/her wealth among n risky assets with

the investment proportion vector x ¼ ðx1; x2; . . .; xnÞT.
Assume that the transaction cost is a V-shaped function of

differences between a new portfolio x ¼ ðx1; x2; . . .; xnÞT

and the original portfolio x0 ¼ ðx01; x02; . . .; x0nÞ
T
. In other

words, the transaction cost ci of risky asset can be

expressed by ciðxiÞ ¼ ki xi � x0i
�� ��, where ki is the constant

rate of transaction cost for the risky asset. Therefore, the

total transaction cost on portfolio x ¼ ðx1; x2; . . .; xnÞT is

given by cðxÞ ¼
Pn

i¼1 ciðxiÞ ¼
Pn

i¼1 ki xi � x0i
�� ��. Depend-

ing on Markowitz’s idea, the corresponding return of the

portfolio after paying transaction costs is given by

r ¼
Pn

i¼1 xini �
Pn

i¼1 ki xi � x0i
�� ��. Thus, we can propose the

maximizing return model with transaction costs for a preset

level of risk as follows:
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maxE½r� ¼ E
Pn
i¼1

xini �
Pn
i¼1

ki xi � x0i
�� ��� �

s:t:H½r� ¼ H
Pn
i¼1

xini �
Pn
i¼1

ki xi � x0i
�� ��� �

� a

x1 þ x2 þ � � � þ xn ¼ 1

xi � 0; i ¼ 1; 2; . . .; n:

8>>>>>><
>>>>>>:

ð14Þ

where a is the maximum entropy level the investors can

tolerate, which means that the risk is not more than a and a
is given by the investor according to his preference for risk.

The minimizing investment risk model with transaction

costs for a preset level of return is:

minH½r� ¼
Pn
i¼1

xini �
Pn
i¼1

ki xi � x0i
�� ��� �

s:t:E½r� ¼ E
Pn
i¼1

xini �
Pn
i¼1

ki xi � x0i
�� ��� �

� b

x1 þ x2 þ � � � þ xn ¼ 1

xi � 0; i ¼ 1; 2; . . .; n:

8>>>>>><
>>>>>>:

ð15Þ

where b is the lowest return level which is satisfactory to

the investor, which means that the return is not less than b
and b is given by the investor according to his preference

for return.

Now, we consider a portfolio with n kinds of asset,

suppose fuzzy asset returns are triangular fuzzy variables

ni ¼ ðai; bi; ciÞ with proportions xi which are independent

for i ¼ 1; 2; . . .; n. Then, by formulae (11) and (13), we

have

E½r� ¼ E
Xn
i¼1

xini �
Xn
i¼1

ki xi � x0i
�� ��

" #

¼
Xn
i¼1

xi
ai þ 2bi þ ci

4

� �
�
Xn
i¼1

ki xi � x0i
�� ��: ð16Þ

H½r� ¼ H
Xn
i¼1

xini �
Xn
i¼1

ki xi � x0i
�� ��

" #
¼

Xn
i¼1

xij jH½ni�

¼
Xn
i¼1

xi
ci � ai

2

� �
ðxi � 0Þ: ð17Þ

In formula (17), xi � 0 means that the portfolio is

without short selling. So, when fuzzy variables are trian-

gular, models (14) and (15) can be written as:

maxE½r� ¼
Pn
i¼1

xi
ai þ 2bi þ ci

4

� �
�

Pn
i¼1

ki xi � x0i
�� ��

s:t:H½r� ¼
Pn
i¼1

xi
ci � ai

2

� �
� a

x1 þ x2 þ � � � þ xn ¼ 1

xi � 0; i ¼ 1; 2; . . .; n:

8>>>>>><
>>>>>>:

ð18Þ

and

minH½r� ¼
Pn
i¼1

xi
ci � ai

2

� �

s:t:E½r� ¼
Pn
i¼1

xi
ai þ 2bi þ ci

4

� �
�

Pn
i¼1

ki xi � x0i
�� ��� b

x1 þ x2 þ � � � þ xn ¼ 1

xi � 0; i ¼ 1; 2; . . .; n:

8>>>>>><
>>>>>>:

ð19Þ

4 Numerical Examples and Sensitivity Analysis

In order to demonstrate the effectiveness of our proposed

expected value and entropy, we consider a real portfolio

example. In this example, ten stocks are selected from

Shanghai Stock Exchange. Their returns ni ¼ ðai; bi; ciÞ are
regarded as triangular fuzzy numbers, and the transaction

rate of risky asset ki � 0:005 ði ¼ 1; 2; . . .; 10Þ. Based on

the historical data, the future information, the experts’

opinions and the corporations’ financial reports, we obtain

the following data:

4.1 Sensitivity Analysis of Maximizing Return

Portfolio Model

According to the data of Table 1, we can obtain the fol-

lowing maximizing return of linear portfolio model with

x ¼ ðx1; x2; . . .; x10ÞT, ki ¼ 0:005 and a ¼ 1:875:

max r ¼ 2:095x1 þ 1:570x2 þ 2:445x3 þ 1:595x4 þ 1:770x5þ
2:12x6 þ 1:995x7 þ 2:745x8 þ 1:045x9 þ 1:945x10;

s:t:H ¼ 1:9x1 þ 1:35x2 þ 2:1x3 þ 1:7x4 þ 1:95x5 þ 1:85x6þ
1:9x7 þ 2:3x8 þ 1:7x9 þ 2:0x10 � 1:875;

x1 þ x2 þ � � � þ x10 ¼ 1;

xi � 0; i ¼ 1; 2; � � � ; 10:

8>>>>>>>><
>>>>>>>>:

ð20Þ

As to model (20), when certain objective function

coefficient or constraint on right-hand side changes, then

Table 1 Fuzzy returns of 10 securities and corresponding expected

values and entropies (units per stock)

Security i ai bi ci E½ni� ¼ aiþ2biþci
4

H½ni� ¼ 0:5ðci � aiÞ

1 �0:4 2.7 3.4 2.100 1.90

2 �0:1 1.9 2.6 1.575 1.35

3 �0:2 3.0 4.0 2.450 2.10

4 �0:5 2.0 2.9 1.600 1.70

5 �0:6 2.2 3.3 1.775 1.95

6 �0:1 2.5 3.6 2.125 1.85

7 �0:3 2.4 3.5 2.000 1.90

8 �0:1 3.3 4.5 2.750 2.30

9 �0:7 1.1 2.7 1.050 1.70

10 �0:2 2.1 3.8 1.950 2.00
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we focus more on basis and optimal solution and the

objective value how to change. Next, we will discuss the

above questions. Namely, we will do deep sensitivity

analysis of model (20).

4.1.1 Sensitivity Analysis of Objective Function Coefficient

in Maximizing Return Model

Firstly, solving model (20), we can obtain the following

optimal solution:

x� ¼ ð0; 0:4474; 0; 0; 0; 0; 0; 0:5526; 0; 0ÞT; r�
¼ 2:2193; H� ¼ 1:875: ð21Þ

Obviously, the basic variables of model (20) are x2 and x8,

and others are non-basic variables. Furthermore, we do

sensitivity analysis to the objective function coefficients by

LINGO software. The corresponding sensitivity analysis

results show that as to coefficient c1 ¼ 2:095, when the

basis is unchangeable, allowable increase amount is

0.1553, allowable decrease amount is infinity, so the

coefficient range c1 2 ½0; 2:2503�. At this time, the basis is

unchangeable, the constraint conditions are unchangeable

so optimal solution is also unchangeable. In fact, the

objective function coefficient has some change, and it does

affect objective function value. In general, there are the

following two cases in the objective function coefficient

sensitivity analysis: basic variable coefficient and non-ba-

sic variable coefficient.

Case1 If the basic variable’s coefficient changes in the

corresponding range, the optimal basis and

optimal solution will be stable. But the value of

objective function will change since the values of

basic variable are nonzero such as x2 and x8
Case2 If the non-basic variable’s coefficient changes in

the corresponding range, the optimal basis and

optimal solution will remain unchanged.

Meanwhile, the objective function value is also

unchanged since the value of non-basic variables

are zeros such as x1; x3; x4; x5; x6; x7; x9; x10 and

zero multiplied by any number is still zero

According to the two cases, we can obtain the following

data in Table 2:

In order to illustrate the significance of the sensitivity

analysis, next we discuss concretely the different values of

c1 2 ½0; 2:2503� and c2 2 ½1:4256; 2:7450� in models (22)

and (23).

max r ¼ c1x1 þ 1:57x2 þ 2:445x3 þ 1:595x4 þ 1:77x5þ
2:12x6 þ 1:995x7 þ 2:745x8 þ 1:045x9 þ 1:945x10;

s:t:H ¼ 1:9x1 þ 1:35x2 þ 2:1x3 þ 1:7x4 þ 1:95x5þ
1:85x6 þ 1:9x7 þ 2:3x8 þ 1:7x9 þ 2:0x10 � 1:875;

x1 þ x2 þ � � � þ xn ¼ 1;

xi � 0; i ¼ 1; 2; . . .; 10;

8>>>>>>>><
>>>>>>>>:

ð22Þ

and

max r ¼ 2:095x1 þ c2x2 þ 2:445x3 þ 1:595x4 þ 1:77x5þ
2:12x6 þ 1:995x7 þ 2:745x8 þ 1:045x9 þ 1:945x10;

s:t:H ¼ 1:9x1 þ 1:35x2 þ 2:1x3 þ 1:7x4 þ 1:95x5þ
1:85x6 þ 1:9x7 þ 2:3x8 þ 1:7x9 þ 2:0x10 � 1:875;

x1 þ x2 þ � � � þ x10 ¼ 1;

xi � 0; i ¼ 1; 2; . . .; 10:

8>>>>>>>><
>>>>>>>>:

ð23Þ

As to models (22) and (23), we can obtain the following

data when c1 2 ½0; 2:2503� and c2 2 ½1:4256; 2:7450� in

Tables 3 and 4.

Table 3 shows that when c1 changes in the closed

interval of ½0; 2:2503�, optimal basis and optimal solution

and objective function value are unchangeable.

Table 4 shows that when c2 changes in the closed

interval of ½1:4256; 2:7450�, optimal basis and optimal

solution are unchangeable, but the objective function value

is changeable. Furthermore, we can draw Fig. 1 about the

value of c2 and the value of objective function:

In model (23), since x2 is a basic variable, when the

coefficient c2 changes in the sensitivity analysis range, the

basis and solution are unchangeable, but objective function

value will change. From Fig. 1, we can see that when the

coefficient c2 increases, the corresponding objective func-

tion value will increase too.

4.1.2 Sensitivity Analysis of Constraint on Right-Hand

Sides in Maximizing Return Model

Next, we will do sensitivity analysis of constraint on right-

hand sides by LINGO software in model (24):

max r ¼ 2:095x1 þ 1:57x2 þ 2:445x3 þ 1:595x4 þ 1:77x5þ
2:12x6 þ 1:995x7 þ 2:745x8 þ 1:045x9 þ 1:945x10

s:t:H ¼ 1:9x1 þ 1:35x2 þ 2:1x3 þ 1:7x4 þ 1:95x5þ
1:85x6 þ 1:9x7 þ 2:3x8 þ 1:7x9 þ 2:0x10 � a;

x1 þ x2 þ � � � þ x10 ¼ 1;

xi � 0; i ¼ 1; 2; . . .; 10:

8>>>>>>>><
>>>>>>>>:

ð24Þ
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The current right-hand side of model (24) is a ¼ 1:8750.

By LINGO sensitivity analysis, when the basis is unchange-

able, then the allowable increase amount is 0.4250, allowable

decrease amount is 0.5250, so the right-hand side range: a 2
½1:8750� 0:5250; 1:8750þ 0:4250� ¼ ½1:3500; 2:300�.
Although the optimal basis is unchangeable, at this time the

corresponding constraint conditions change, so the corre-

sponding optimal solution and objective function value will

change as well. In the similar way, we do sensitivity analysis

of the current right-hand side in the constraint of x1 þ x2 þ

� � � þ xn ¼ 1 by LINGO. When the basis is unchanged, the

allowable increase amount is 0.3889, allowable decrease

amount is 0.1848, so the right-hand side

range:½1� 0:1848; 1þ 0:3889� ¼ ½0:8152; 1:3889�. As to

model (24), we can obtain the following data for a 2
½1:3500; 2:300� in Table 5.

Table 5 shows that when a changes in the closed interval

of ½1:3500; 2:300�, optimal basis are unchangeable, but opti-

mal solution and objective function value are changeable. If

a\1:35, no feasible solution can be found; if a\2:30, the

Table 2 Change descriptions when objective coefficients change in some range compared with the optimal solution (21) in model (20)

Objective variable Objective coefficient Objective coefficient ranges Basis Optimal solution Objective value

x1 2:0950 ½0; 2:2503� Unchanged Unchanged Unchanged

x2 1:5700 ½1:4256; 2:7450� Unchanged Unchanged Changed

x3 2:4450 ½0; 2:4976� Unchanged Unchanged Unchanged

x4 1:5950 ½0; 2:0029� Unchanged Unchanged Unchanged

x5 1:7700 ½0; 2:3121� Unchanged Unchanged Unchanged

x6 2:1200 ½0; 2:1884� Unchanged Unchanged Unchanged

x7 1:9950 ½0; 2:2503� Unchanged Unchanged Unchanged

x8 2:7450 ½2:6783;þ1� Unchanged Unchanged Changed

x9 1:0450 ½0; 2:0029� Unchanged Unchanged Unchanged

x10 1:9450 ½0; 2:3739� Unchanged Unchanged Unchanged

Table 3 Same solutions and

the same objective values as to

different values in c1 2
½0; 2:2503� in model (22)

c1 x� ¼ ðx1; x2; x3; x4; x5; x6; x7; x8; x9; x10ÞT r� Basis, solution, objective value

0 x� ¼ ð0; 0:4474; 0; 0; 0; 0; 0; 0:5526; 0; 0ÞT 2.2193 Unchanged

0.10 x� ¼ ð0; 0:4474; 0; 0; 0; 0; 0; 0:5526; 0; 0ÞT 2.2193 Unchanged

0.30 x� ¼ ð0; 0:4474; 0; 0; 0; 0; 0; 0:5526; 0; 0ÞT 2.2193 Unchanged

0.60 x� ¼ ð0; 0:4474; 0; 0; 0; 0; 0; 0:5526; 0; 0ÞT 2.2193 Unchanged

1.00 x� ¼ ð0; 0:4474; 0; 0; 0; 0; 0; 0:5526; 0; 0ÞT 2.2193 Unchanged

1.30 x� ¼ ð0; 0:4474; 0; 0; 0; 0; 0; 0:5526; 0; 0ÞT 2.2193 Unchanged

1.70 x� ¼ ð0; 0:4474; 0; 0; 0; 0; 0; 0:5526; 0; 0ÞT 2.2193 Unchanged

2.10 x� ¼ ð0; 0:4474; 0; 0; 0; 0; 0; 0:5526; 0; 0ÞT 2.2193 Unchanged

2.2503 x� ¼ ð0; 0:4474; 0; 0; 0; 0; 0; 0:5526; 0; 0ÞT 2.2193 Unchanged

Table 4 Same solutions and

different objective values as to

different values in c2 2
½1:4256; 2:7450� in model (23)

c2 x� ¼ ðx1; x2; x3; x4; x5; x6; x7; x8; x9; x10ÞT r� Basis, solution Objective value

1.4256 x� ¼ ð0; 0:4474; 0; 0; 0; 0; 0; 0:5526; 0; 0ÞT 2.1547 Unchanged Changed

1.6550 x� ¼ ð0; 0:4474; 0; 0; 0; 0; 0; 0:5526; 0; 0ÞT 2.2574 Unchanged Changed

1.8550 x� ¼ ð0; 0:4474; 0; 0; 0; 0; 0; 0:5526; 0; 0ÞT 2.3468 Unchanged Changed

2.0550 x� ¼ ð0; 0:4474; 0; 0; 0; 0; 0; 0:5526; 0; 0ÞT 2.4363 Unchanged Changed

2.2350 x� ¼ ð0; 0:4474; 0; 0; 0; 0; 0; 0:5526; 0; 0ÞT 2.5168 Unchanged Changed

2.4550 x� ¼ ð0; 0:4474; 0; 0; 0; 0; 0; 0:5526; 0; 0ÞT 2.6153 Unchanged Changed

2.6550 x� ¼ ð0; 0:4474; 0; 0; 0; 0; 0; 0:5526; 0; 0ÞT 2.7047 Unchanged Changed

2.7400 x� ¼ ð0; 0:4474; 0; 0; 0; 0; 0; 0:5526; 0; 0ÞT 2.7428 Unchanged Changed
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optimal solution is always x� ¼ ð0; 0; 0; 0; 0; 0; 0; 1; 0; 0ÞT.
According to the data of Table 5, we can draw the effective

frontier of model (24):

The effective frontier of Fig. 2 is approximately a

straight line, which means that the higher risk (entropy) we

bear, the higher return we obtain.

4.2 Sensitivity Analysis of Minimizing Risk

Portfolio Model

According to the data of Table 1, on the other hand, by

using model (19), we can obtain the following minimizing

risk linear portfolio model (25) based on possibility theory

with x ¼ ðx1; x2; . . .; x10ÞT and assume b ¼ 1:9325:

minH ¼ 1:9x1 þ 1:35x2 þ 2:1x3 þ 1:7x4 þ 1:95x5þ
1:85x6 þ 1:9x7 þ 2:3x8 þ 1:7x9 þ 2:0x10;

s:t:r ¼ 2:095x1 þ 1:57x2 þ 2:445x3 þ 1:595x4 þ 1:77x5þ
2:12x6 þ 1:995x7 þ 2:745x8 þ 1:045x9 þ 1:945x10 � 1:9325;

x1 þ x2 þ � � � þ x10 ¼ 1;

xi � 0; i ¼ 1; 2; . . .; 10:

8>>>>>>>><
>>>>>>>>:

ð25Þ

As to the minimizing risk model (25), we can do a

similar discussion work on sensitivity analyses to objective

function coefficients. Thus, we still do similar research

work as the one in Sect. 4.1: solving the model and

working on two kinds of sensitivity analysis.

4.2.1 Sensitivity Analysis of Objective Function Coefficient

in Minimizing Risk Model

First, the optimal solution of (25) by taking b ¼ 1:9325 is:

x� ¼ ð0; 0:6915; 0; 0; 0; 0; 0; 0:3085; 0; 0ÞT; H�

¼ 1:6431; r� ¼ 1:9325: ð26Þ

Obviously, we find that the basic variables still are x2 and

x8, and others are non-basic variables. By LINGO software,

under the condition that these basis are unchanged, we do

sensitivity analysis of x1 coefficient of objective function:

The current coefficient is 1.9000, allowable increase

amount is infinity, allowable decrease amount is 0.1255, so

the coefficient range is: ½1:900� 0:1255; 1:900þ1�
¼ ½1:7745;þ1�. In the corresponding range, the basis is

unchanged, at the same time the constraint conditions are

Fig. 1 Relationship of the values of c2 and the objective function

values in model (23)

Fig. 2 Effective frontier with different values of a in model (24)

Table 5 Different solutions as to different values in a 2 ½1:3500; 2:300� in model (24)

a x� ¼ ðx1; x2; x3; x4; x5; x6; x7; x8; x9; x10ÞT r� H� Basis Solution, objective value

\1.35 No feasible solution found

1.350 x� ¼ ð0; 1; 0; 0; 0; 0; 0; 0; 0; 0ÞT 1.5700 1.350 Unchanged Changed

1.365 x� ¼ ð0; 0:9842; 0; 0; 0; 0; 0; 0; 0; 0:0158ÞT 1.5886 1.365 Unchanged Changed

1.575 x� ¼ ð0; 0:7632; 0; 0; 0; 0; 0; 0:2368; 0; 0ÞT 1.8483 1.575 Unchanged Changed

1.705 x� ¼ ð0; 0:6263; 0; 0; 0; 0; 0; 0:3737; 0; 0ÞT 2.0091 1.705 Unchanged Changed

1.875 x� ¼ ð0; 0:4474; 0; 0; 0; 0; 0; 0:5526; 0; 0ÞT 2.2193 1.875 Unchanged Changed

1.950 x� ¼ ð0; 0:3684; 0; 0; 0; 0; 0; 0:6316; 0; 0ÞT 2.3121 1.950 Unchanged Changed

2.115 x� ¼ ð0; 0:1947; 0; 0; 0; 0; 0; 0:8053; 0; 0ÞT 2.5162 2.115 Unchanged Changed

2.250 x� ¼ ð0; 0:0526; 0; 0; 0; 0; 0; 0:9474; 0; 0ÞT 2.6832 2.250 Unchanged Changed

2.300 x� ¼ ð0; 0; 0; 0; 0; 0; 0; 1; 0; 0ÞT 2.7450 2.300 Unchanged Changed

[2.30 x� ¼ ð0; 0; 0; 0; 0; 0; 0; 1; 0; 0ÞT 2.7450 2.300 Unchanged Changed
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unchanged (only some objective function coefficient has

some change), so unchanged optimal basis means

unchanged optimal solution (since some objective function

coefficient has changed, the corresponding objective value

will change). There are two following cases in the objec-

tive function coefficient sensitivity analysis.

Case

1

If the basic variable’s coefficient changes in the

corresponding range, the optimal basis and

optimal solution will be unchangeable. But the

value of objective function will change since the

values of basic variable are nonzero as to x2 and x8
Case

2

If the non-basic variable’s coefficient changes in

the corresponding range, then the optimal basis

and optimal solution will be stable. Furthermore,

the objective function value is also unchanged

since the values of non-basic variable are zeros

such as x1; x3; x4; x5; x6; x7; x9; x10 and zero

multiplied by any number is still zero

Depending on the ideas of cases 1 and 2, by LINGO, we

can obtain the following value ranges of model (25) in

which the basis is unchanged (see Table 6).

4.2.2 Sensitivity Analysis of Constraint on Right-Hand

Sides in Minimizing Risk Model

Next, we will discuss the sensitivity analysis by LINGO to

the first right-hand side of the following model (27):

minH ¼ 1:9x1 þ 1:35x2 þ 2:1x3 þ 1:7x4 þ 1:95x5þ
1:85x6 þ 1:9x7 þ 2:3x8 þ 1:7x9 þ 2:0x10;

s:t:r ¼ 2:095x1 þ 1:57x2 þ 2:445x3 þ 1:595x4 þ 1:77x5þ
2:12x6 þ 1:995x7 þ 2:745x8 þ 1:045x9 þ 1:945x10 � b;

x1 þ x2 þ � � � þ x10 ¼ 1;

xi � 0; i ¼ 1; 2; . . .; 10:

8>>>>>>>><
>>>>>>>>:

ð27Þ

The current right-hand side is b ¼ 1:9325. We do sensi-

tivity analysis to b by LINGO software, under the condi-

tion that the basis is unchanged, the allowable increase

amount is 0.8125, allowable decrease amount is 0.3625,

then right-hand side range: ½1:9325� 0:3625; 1:9325þ
0:8125� ¼ ½1:5700; 2:7450�. Although the optimal basis

are unchanged, since at this time the corresponding con-

straint conditions change, then the corresponding optimal

solution and optimal objective function value will change

in model (27) (see Table 7).According to the data in

Table 7, we can draw the effective frontier of model (27)

as to different values of b.
From Fig. 3, we can find that the frontier of risk (en-

tropy) and return in the portfolio is almost a straight line,

namely, when risk increases, return increases too. In the

same way, we can analyze the constraint:

x1 þ x2 þ � � � þ xn ¼ 1. The current right-hand side is 1,

under the condition the basis is unchanged, the allowable

increase amount is 0.2309, allowable decrease amount is

0.2960, then right-hand side range: ½1� 0:2960; 1þ
0:2309� ¼ ½0:7040; 1:2309�.

Table 6 Ranges in which the basis is unchanged in model (25)

Objective variable Objective coefficient Objective coefficient ranges Basis, solution Objective value

x1 1:9000 ½1:7745;þ1� Unchanged Unchanged

x2 1:3500 ½0; 1:4540� Unchanged Changed

x3 2:1000 ½2:0574;þ1� Unchanged Unchanged

x4 1:7000 ½1:3702;þ1� Unchanged Unchanged

x5 1:9500 ½1:5117;þ1� Unchanged Unchanged

x6 1:8500 ½1:7947;þ1� Unchanged Unchanged

x7 1:9000 ½1:6936;þ1� Unchanged Unchanged

x8 2:3000 ½1:3500; 2:3571� Unchanged Changed

x9 1:7000 ½0:9255;þ1� Unchanged Unchanged

x10 2:0000 ½1:6532;þ1� Unchanged Unchanged

Fig. 3 Effective frontier with different values of b in model (27)
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5 Conclusions

The fuzzy mean-entropy models with transaction costs

based on credibility theory are considered in our paper.

Further, we investigate in depth the sensitivity analysis

about the objective coefficients and constraint right coef-

ficients. The data and table of the numerical examples

indicate that our proposed model is effective and our sen-

sitivity analysis is useful. It is worth mentioning that the

results of sensitivity analysis show that when the corre-

sponding objective coefficients and constraint coefficients

change in some value range, the corresponding basis and

optimal solution and the objective function values how to

change. In particular, the results of two numerical exam-

ples show that if return rate of some kind of risky asset

changes in some value range and other conditions do not

change, then the investor still can obtain the same optimal

objective function values, namely the same expected

return.

Huang [18] proposed mean-entropy models and pre-

sented a hybrid intelligent algorithm for models. Huang

[19] introduced a risk curve and developed a mean-risk

model. Our paper not only proposes the fuzzy mean-en-

tropy models with transaction costs based on credibility

theory, but also does deeper research work of sensitivity

analysis about both maximizing return model and mini-

mizing risk model. Compared with Huang [18, 19], our

results can provide more information about optimum invest

strategies, and our paper can give investors more invest

choices. The sensitivity analysis results provide theory

guidance with investors according to his/her preference for

return and risk in the practical financial market.

6 Scope for Future Study

In the near future, several parameters of objective functions

and constraint conditions change simultaneously. It attracts

more and more scholars to do research on how the inter-

action and mutual restriction between parameters affect the

optimal solution, the investment return and risk. These

results will provide more choices for the investment deci-

sion-makers and have guiding significance in the practical

portfolio research.
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