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Abstract This paper presents an optimization strategy for

interval type-2 fuzzy systems by using the conjunction

operation called the (p)-monotone sum of t-norms. A

direct-current servomotor control system is implemented to

test the performance of the type-1, interval type-2 and

interval type-2 fuzzy systems with parametric operations,

under several noisy conditions. To rate them, a multi-ob-

jective fitness function, based on the main transient

parameters, is proposed to ensure the genetic algorithm to

find the best squared feedback signal, when a white noise

signal with different amplitudes is added to the reference.

In addition, the optimization strategy includes the para-

metric conjunction suppression to analyze how a rule-as-

sociated parametric conjunction directly influences on

system performance. Such rule suppression can be used to

reduce the number of parametric conjunction operations

required to obtain an additional performance improvement.

Experimental results of the servomotor control system

show that parametric conjunctions used in the interval

type-2 fuzzy logic system provide additional advantages

over its nonparametric counterpart.

Keywords Parametric interval type-2 fuzzy logic system

optimization � Multi-objective transient fitness function �
Genetic algorithms � Monotone sum � DC servomotor

1 Introduction

The optimization of fuzzy systems with Mamdani-type

rules is usually based on the tuning of membership func-

tions of fuzzy sets. Several computing techniques have

been used for that purpose, such as genetic algorithms

(GA) [21, 40, 46], adaptive neural network-based fuzzy

inference systems (ANFIS) [14, 25, 39], bee colony opti-

mization (BCO) [3], ant colony optimization [35] and

particle swarm optimization (PSO) [2].

In GA optimization of fuzzy systems, the fitness func-

tion definition is very important for success in search space.

In the literature, several performance parameters are used

to compute the fitness function. For instance, Park and Lee-

Kwang [32] and Celikyilmaz and Turksen [13] use root-

mean-square error to define the fitness function. Mean-

while, Hosseini et al. [21, 22] use the region of controlla-

bility and root-mean-square error.

Furthermore, a fitness function which considers the main

transient parameters has not been widely evaluated in fuzzy

systems optimization. However, in the proportional

derivative and integrative control (PID control), this topic
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has been considered as a multi-objective fitness function

(MOFF). For instance, in [6, 29] the authors use the inte-

gral of timed absolute error (ITAE) to rate the controller. In

[16, 19, 47], the authors propose formulas that include

overshoot, steady-state error, rise and settling times and

other parameters.

The most important contribution that our proposal

derives from is based on the advances of [37]. The multi-

objective transient fitness function (MOTFF) provided is

f ð k
!Þ ¼

XJ

i¼1

wci

fið k
!Þ

li �
PJ

n¼1ð1=lnÞ

 !
; 8
XJ

i¼1

wci ¼ 1 ð1Þ

where wci are the weights used to control the importance of

all objective terms,
1

li �
PJ

n¼1ð1=lnÞ
is a compensated

weighting factor and fið k
!Þ is the ith objective function

based on the PID constants vector k
!

for tuning the con-

troller. Here, the authors use the four main transient

parameters to rate the controller performance. This means

that there are four objectives J ¼ 4 given in Eq. 1, where

the maximum possible fitness value is 1 and the compen-

sation factor
1

li �
PJ

n¼1ð1=lnÞ
depends on the variability of

each transient parameter. In Sect. 5.1, our multi-objective

transient fitness function is provided, based on Eq. 1.

Some optimization strategies can be found in the liter-

ature. For instance, Pelusi in [33] presents a genetic opti-

mization strategy for a DC servomotor neuro-fuzzy system,

claiming to reduce the rise and settling times by computing

the error with the provided fitness function. A neural net-

work is optimized, where every weight computes a rule and

set distributions are also optimized with GA. Also, some

other works provide in their strategy another single

objective based on error measures, i.e., ITAE [29] for a

type-1 fuzzy logic system (T1FLS) and for an interval

type-2 fuzzy logic system (IT2FLS) [44].

The mutation probability, in any GA optimization

strategy, may become the key for search success. Some-

times GA searches get stuck, and so the mutation proba-

bility is a solution for searching for other alternatives.

Some authors [34, 42], provide some adaptive mutation

rate function (AMRF) to change the mutation probability

dynamically, i.e., during optimization process. Depending

on the optimization constraints, the AMRF fulfills its main

task: approximate to the global solution.

On the other hand, T1FLS optimization by using para-

metric conjunction operators (see Table 1) has been eval-

uated in some research [4, 5, 9]. Basically, in [9] a

relatively simple parametric conjunction for controlling a

vehicle with a neuro-fuzzy system, optimized by the gra-

dient method, is proposed. Another study [1] tested three

parametric conjunctions (Dubois, Dombi and Frank) in

three different fuzzy systems.

The optimization of general type-2 fuzzy logic system

(T2FLS) and IT2FLS represents a promise for constructing

more robust controllers to operate in the presence of noise

[7, 18, 28]. Although the fuzzy system optimization with

parametric operations has been investigated, an influence

analysis of the use of parametric conjunction operations in

each rule has not been extensively explored [27]. There-

fore, working in this direction, the main contributions of

this paper are enlisted as follows:

– A genetic strategy is proposed for the IT2FLS

optimization, containing parametric conjunction oper-

ations. This strategy let an expert design feasible fuzzy

system, by reducing the search space to interval �1; 1½ �,
reducing the number of search parameters and reducing

the parametric operations required to find the best

performance.

– A multi-objective transient fitness function is proposed

to rate the controller performance. This is based on the

main transient performance parameters (Eq. 1).

– The use of a parametric conjunction called (p)-mono-

tone sum of t-norms in the control of the DC

servomotor system is presented as a complementary

way to get additional performance improvement.

– Parametric conjunction suppression is proposed for

reducing the number of parametric conjunctions

required. An influence analysis for each rule is

provided.

Table 1 Some classical parametric conjunction operations

Name Parametric intersection

Dombi [15]

1þ 1

a
� 1

� �r

þ 1

b
� 1

� �r� ��1
( )�1

Hamacher [20] ab

r þ ð1� rÞða þ b � abÞ
Schweizer and Sklar [38]

maxð0; ar þ br � 1½ �
1

r

Batyrshin et al. [9] arbr

Yager [45]

1�min 1; ð1� aÞr þ ð1� bÞr½ �
1

r

8
<

:

9
=

;

Dubois and Prade [17] ab

maxða; b; rÞ
Weber [43]

max 0;
a þ b þ rab � 1

1þ r

� �
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2 Parametric Interval Type-2 Fuzzy Logic
Systems

An IT2FLS, with parametric operators in its inference

machine, differs from its nonparametric form, in the sense

of having the ability of changing the way the decisions are

taken [41]. To make difference between an IT2FLS with

parametric conjunctions and a traditional IT2FLS, we will

call it the parametric interval type-2 fuzzy logic system

(PIT2FLS). A PIT2FLS structure is very similar to the

general and IT2FLS (see Fig. 1).

Let x be a set of p input variables and y be a set of

q output variables in the fuzzy system. Also, for each

xi 2 x, i ¼ 1; 2; . . .; p, there are di premise sets denoted as

~A
1

i ;
~A
2

i ; . . .;
~A
di

i

n o
and for each yj 2 y, j ¼ 1; 2; . . .; q, there

are kj consequent sets denoted as f~B1

j ;
~B
2

j ; . . .; ~B
kj

j g.
The system has L rules, where l ¼ 1; 2; . . .; L addresses

each rule in the rule set. Now suppose that a fuzzy system

is a MISO system (multiple input single output), where

ðq ¼ 1Þ and in general there are consequent sets as much as

the number of rules k ¼ L, which can be denoted as

f~B1
; ~B

2
; . . .; ~B

Lg. Therefore, each consequent set, due to

each rule, resides in the same discourse universe (see

Fig. 2).

Let l~IðyÞ be the membership function that defines the

resulting set called the inferred set (~I). This inferred MF

can also be split into two membership functions: the upper

membership function (UMF), l~IðyÞ and the lower mem-

bership function (LMF), l~I
ðyÞ.

Fig. 1 Parametric ITFLS structure

Fig. 2 Inference processes with parametric and nonparametric conjunction operations
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Equations 2 and 3 are the parametric versions of the

IT2FLS inferred set. Notice that there are three arguments

in the parametric conjunction operation represented with

symbol T. First two arguments represent the membership

values of the rule implied premise sets. Symbol ~A
k1
i rep-

resents the first operand in the parametric fuzzy conjunc-

tion, and symbol ~A
k2
h is the second operand, where

i; h 2 ½1; p� 2 N; also k1 2 ½1; di� 2 N and k2 2 ½1; dh� 2 N.

This means that a rule can pick up the first operand in the

k1th premise set from the ith input variable and pick up the

second operand in the k2th premise set from the hth input

variable to perform the fuzzy operation. The third argu-

ment is the parameter rl which is associated with the lth

rule in the rule set and therefore to the lth consequent set.

To this end, the inferred set FOU, i.e., FOUð~IÞ, can be

built from UMF and LMF functions defined in Eqs. 2 and 3.

l~IðyÞ ¼
_L

l¼1

l ~B
lðyÞ ^ T l ~A

k1
i

ðxiÞ; l ~A
k2
h

ðxhÞ; rl

� �
ð2Þ

l~I
ðyÞ ¼

_L

l¼1

l ~B
lðyÞ ^ T l ~A

k1
i

ðxiÞ; l ~A
k2
h

ðxhÞ; rl

� �
ð3Þ

where T in Eqs. 2 and 3 is the parametric firing strength of

UMF and LMF, respectively. Assume that ^ is the mini-

mum T-norm operation which is used to trim every con-

sequent set in y and _ is the maximum S-norm operation

which is used as the rule aggregation to complete the

inference process.

This means that the resulting inferred set shape can be

modified according to rule conjunction parameter values rl,

and consequently, the inferred crisp value can be modified

according to expert needs.

This can be translated as a weighted action in the

inference process, i.e., an expert system can modify the

way premises are related to obtain a specific consequence

(see Fig. 2, that the inferred set shape in PIT2FLS is dif-

ferent to the one in IT2FLS).

The following section explains the classical parametric

conjunctions used in fuzzy systems and the advantages of

the (p)-monotone sum conjunction proposed to tune the

inference machine.

3 Parametric Conjunction Operations

A parametric inference machine is made of parametric

operators. Each parametric operator receives in its input

two operands and delivers a single output corresponding to

the membership value obtained from the conjunction

operation. Figure 2 shows that parameter r tunes the con-

junction operator behavior.

The conjunction operation that can be used is the t-

norm, and the disjunction can be the t-conorm (also called

s-norm). Both are functions defined as

T ; S : ½0; 1� � ½0; 1� ! ½0; 1�, which satisfy the axioms of

commutativity, associativity, monotonicity and boundary

conditions [26].

An interval type-2 inference machine is very similar to

its corresponding type-1. The difference between T1 and

T2 is that the T2 inference machine is comprised of two

type-1 inference machines performing the same rule set,

one for UMF and another for LMF. For instance, let ~A
1

1 and

~A
3

2 be the premise sets and ~B
3

1 their corresponding conse-

quent set, as shown in Fig. 2. This means that,

l ~B
3

1

ðy1Þ ¼ T l ~A
1

1

; l ~A
3

2

; r
� �

8r 2 ½0; 1� ð4Þ

where T is a parametric conjunction with parameter r. As

shown in Fig. 2, the parametric conjunction of Eq. 4

depends on r to control the way the relation is performed.

The computational complexity of classical parametric

conjunctions have inspired several researchers to propose

the use of simpler parametric conjunctions [8, 10, 36]. The

following subsection provides information on the non-

parametric conjunctions, classical parametric conjunctions

and reduced in complexity parametric conjunctions used in

this work, which involves the use of basic t-norms.

3.1 Nonparametric and Parametric Conjunctions

The following nonparametric t-norms [26] are the base of

the parametric conjunction:

Tmða; bÞ ¼ minða; bÞ ð5Þ

Tpða; bÞ ¼ ab ð6Þ

Tbða; bÞ ¼ maxð0; a þ b � 1Þ ð7Þ

Tdða; bÞ ¼
a; b ¼ 1

b; a ¼ 1

0; else

8
><

>:
ð8Þ

where

Tmða; bÞ[ Tpða; bÞ[ Tbða; bÞ[ Tdða; bÞ8a; b 2 ½0; 1�. As

is observed in Eqs. 5–8, the fuzzy membership degrees

obtained from all these fuzzy intersection operators (min-

imum, product, bounded and drastic, respectively) depend

only on the values of operands.

Until today, the most used t-norms in fuzzy control are

Tm and Tp, because they are simple and provide enough

information to control a system adequately. However, this

practice is not necessarily the best choice.

Other more complex operators have been studied and

explored for their use in practical problems [23, 26]. In this
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case, a parameter has been added to intentionally change

the system response. Unlike the nonparametric conjunc-

tions, a parametric conjunction operation not only depends

on the membership values of its operands, but also depends

on one or more parameters that let an expert change the

way the fuzzy intersection is going to be performed. All of

them can be used in fuzzy control although its feasibility

relies on its complexity. In fact, IT2FLS is complex for

computation; so the integration of complex operators, like

those in Table 1, would suppose an additional complexity

increment.

These complex operators are obtained by specific

functions called generators, which create different classes

of operators, providing the possibility for designing rules

based on parameterization.

Some of these are listed in Table 1, where a and b are

the membership degrees of both operands, and r is the

parameter that modifies the conjunction.

As shown in Tables 1 and 2, several parametric con-

junctions involve the exponentiation operation of real

numbers, having a complexity of up to Oðlogðlog nÞÞ,
which is computationally expensive when computing sev-

eral rules. Although the rest of the parametric conjunction

operators in Table 2 have a complexity of O(1) and a low

number of arithmetic operations are required, these have

involved the use of divisions and multiplications. As a

consequence of this, a big rule set for a specific application

may become impractical because its complexity can

increase dramatically.

3.2 (p)-Monotone Sum

Before continuing, let us redefine p as the parameter of the

(p)-monotone sum described in this subsection (as known

in the literature). This parameter is referred to as the rule

conjunction parameter r in the rest of this paper.

The (p)-monotone sum is defined in [11] as follows.

Suppose we have four fuzzy conjunctions defined in [0, 1],

such that T11ða; bÞ� T12ða; bÞ� T22ða; bÞ, and

T11ða; bÞ� T21ða; bÞ� T22ða; bÞ for all a; b 2 ½0; 1�. Divide
the domain ½0; 1� � ½0; 1� of the parametric conjunction

T on four sections, as shown in Fig. 3, where p is a

parameter, such that 0� p� 1. Assign to each Dij, i ¼ 1; 2,

the fuzzy conjunction Tij.

Then, the (p)-monotone sum T is defined as follows:

Tða; b; pÞ ¼

T11ða; bÞ; ða� pÞ ^ ðb� pÞ
T21ða; bÞ; ða[ pÞ ^ ðb� pÞ
T12ða; bÞ; ða� pÞ ^ ðb[ pÞ
T22ða; bÞ; ða[ pÞ ^ ðb[ pÞ

8
>>><

>>>:
ð9Þ

All four sections are defined by parameter p, so a

monotone sum of conjunctions is able to behave in dif-

ferent ways, depending on this parameter (see Fig. 3). For

instance, if p ¼ 0, then its output will be D22, or if p ¼ 1

then its output will be D11.

This means that each Tij in Eq. 9 may behave as a basic

t-norm (Eqs. 5–8). This particularity makes the (p)-mono-

tone sum a very practical parametric conjunction operator,

for a big rule set or for hardware implementation. This is

because the slowest operation involved, that could be

computed, is a multiplication.

The following section describes the design of the fuzzy

controller for a physical plant, which is going to be used to

test the optimization strategy of this paper.

4 DC Servomotor Fuzzy Systems

The servomotor plant has been frequently used to test

several control solutions [12, 24, 33]. Nguyen et al.

describe in [30], an example of a physical plant of a direct-

current servomotor (DC servo) and the corresponding

fuzzy logic system that controls it.

Table 2 Complexity and operations of classical parametric con-

junction operations

Name Complexity # Ops.

Dombi [15] Oðlog nÞa –

Hamacher [20] O(1) 6

Schweizer and Sklar [38] Oðlogðlog nÞÞa –

Batyrshin et al. [9] Oðlog nÞa –

Yager [45] Oðlogðlog nÞÞa –

Dubois and Prade [17] O(1) 4

Weber [43] O(1) 8

a Based on identity xy ¼ 2y�log2ðxÞ, where n is the logarithm precision

digits

Fig. 3 Partition of the domain of (p)-monotone sum on four sections
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According to Eq. 10, V(s) is the representation for the

input voltage applied to servomotor terminals. The voltage

magnitude is computed by a fuzzy logic system. Also, HðsÞ
is the resulting rotor position in radians (rads) after

applying a specific voltage to its input. This value is used

as feedback, as can be seen in the closed loop in Fig. 4.

The servomotor laplace transfer function representation,

that is going to be used in experiments by simulation in

Sect. 6, is as follows:

GðsÞ ¼ VðsÞ
HðsÞ ¼

0:5

s3 þ 13:6667s2 þ 23:3487s
ð10Þ

In Fig. 4, the feedback of rotor position H is used to

compute the multi-objective transient fitness function

(MOTFF), as stated in Eq. 12, for each individual in the

GA population.

PIT2FLS has two inputs: the error, e and the derivative

of error or error change, c; also, it has a single output, i.e.,

the voltage, v applied to servomotor terminals.

Each variable has its own discourse universe range, as

stated in Table 3, where there are only three sets.

Also, fuzzy system configuration is established in 9

rules, as shown in Table 3 and stated in [30]. Note the

superscript number in each cell in Table 4 represents the

rule number of each consequence.

Symbols NE, ZE, PE represent the linguistic terms

‘‘negative error,’’ ‘‘zero error’’ and ‘‘positive error,’’

respectively; NC, ZC, PC represent the ‘‘negative change,’’

‘‘zero change’’ and ‘‘positive change,’’ respectively; also,

the ‘‘negative voltage,’’ ‘‘zero voltage’’ and ‘‘positive

voltage’’ is NV, ZV, PV, respectively.

The formula for the (p)-monotone sum of t-norms in

Eq. 9 is initially used in all 9 rules, where every section is

assigned the following t-norms: D11 ¼ Td is the drastic t-

norm, and D12 ¼ D21 ¼ D22 ¼ Tp is the product t-norm, as

follows:

Toða; b; rÞ ¼
Tdða; bÞ; ða� rÞ ^ ðb� rÞ
Tpða; bÞ; otherwise

�
ð11Þ

Assuming that maximal values of operands are normalized

to 1, if parameter r ¼ 0, then the conjunction in Eq. 11 will

behave as a product t-norm, but when parameter r ¼ 1, the

drastic t-norm behavior will predominate.

The global behavior of this monotone sum helps to

diminish the fuzzy implication between the two member-

ship degrees of both premise.

This information is used to build the last part of the

chromosome model (see Sect. 5.2), where every monotone

sum parameter is produced by the GA and tested directly in

the DC servomotor fuzzy controller.

Also, a detailed description about how our proposal

plays an important role in GA is provided as follows.

5 Methodology

The optimization strategy presented in this paper provides

a methodology for optimizing fuzzy systems, by using

several resources that help an expert to reduce search

space, to reduce the number of parameters to optimize, to

rate the system response with a special multi-objective

fitness function and to analyze how each rule parameter

influences the system performance. This means that our

methodology can be used with almost any genetic

Fig. 4 A DC servomotor control system. A white noise generator is

added to the signal reference to verify the performances of the T1, IT2

and IT2 fuzzy systems, under disturbances

Table 3 The DC servomotor input and output variable ranges for the

fuzzy systems evaluated in this work

Variable Discourse ranges

Position error e �p
2

;
p
2

h i

Error change c �p
6

;
p
6

h i

Voltage v �8:1819; 8:1819½ �

Table 4 The DC servomotor PIT2FLS rule set

Voltage Error change

NC ZC PC

Position error

NE NVð1Þ NVð2Þ NVð3Þ

ZE NVð4Þ ZVð5Þ PVð6Þ

PE PVð7Þ PVð8Þ PVð9Þ
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algorithm and fuzzy system that en expert prefers. More-

over, every optimization can be performed by using the

entire chromosome information or by dividing the chro-

mosome information in parts, i.e., by genotype.

First, we will present the methodology, with the fol-

lowing subsections providing more detailed information

about it. In this sense, our optimization strategy is to:

1. Use the input scaling function (Eq. 14), to re-size the

input variable discourse ranges, i.e.,

½Rxi
;Rxi

� ! ½�1; 1�.
2. Create a normalized fuzzy system, where every input

and output variable discourse range fits in interval

½�1; 1� (see Fig. 6).

3. Use the output scaling function (Eq. 15), to re-size the

output variable discourse ranges from the normalized

fuzzy system, i.e., ½�1; 1� ! ½Ryj
;Ryj

�.
4. Define the number of sets of each variable and the

number of rules in the normalized fuzzy system.

5. Define in each variable, the Symmetrical discourse

universes and consequently, the symmetrical set dis-

tributions, if possible (see Sect. 5.2.3).

6. Bundle a chromosome with all set distributions, FOU

widths and rule conjunction parameters, based on the

chromosome model presented in Sect. 5.2.2.

7. Start genetic algorithm optimization.

(a) Generate randomly an initial population, com-

puting the fitness value of every individual with

Eq. 15 and sorting them in descending order

according to their fitness values.

(b) Select the mating pool based on the crossover

probability.

(c) Select two parents using the roulette method.

(d) Crossover two parents by the two-point method,

where every parent must interchange their

corresponding information about set distribu-

tion, FOU widths and rule conjunction param-

eters, according to the chromosome model in

Figs. 10, 7 and Sect. 5.2.2. From this, two

offsprings must be obtained with only one of

them being selected randomly. If the optimiza-

tion is performed by genotype, then the locus

positions can be selected randomly.

(e) Apply the mutation operation in the selected

offspring according to the mutation probability

obtained with the adaptive mutation rate func-

tion in Eq. 17 (see Sect. 5.3).

(f) Calculate the fitness of final offspring with

Eq. 12 unbundling its parameters. This way, the

new individual can be evaluated in fuzzy system

and the plant response be rated.

(g) If offspring fitness is better than the weakest

individual fitness in population, then the new

offspring will replace it. Otherwise, the algo-

rithm must continue.

(h) This process must continue until 70% of popu-

lation is very similar (in 90%) to the best

individual. If this occurs, then the population

must be regenerated; otherwise it must continue.

(i) Insert the last best offspring in a new randomly

generated population and repeat from a).

8. Once the best individual is found (the solution), every

parameter must be unbundled, i.e., every parameter

must be assigned to its corresponding set and rule, so

the resulting fuzzy system must be evaluated in the

plant with Eq. 10.

9. Perform the rule suppression and evaluate the system

again with Eq. 12. Determine those rules with no

influence in system performance and replace their

corresponding parametric conjunctions with non-

parametric conjunctions.

5.1 Multi-objective Transient Fitness Function

For comparison purposes, the optimization strategy of

Sect. 5 is verified in the direct-current servomotor system

by the plant function in Eq. 10. This fitness function must

rate every new individual, aiming to reduce the following

transient response parameters (see Fig. 5), in noisy and

noise-free square references:

Fig. 5 Performance parameters involved in the fitness function

calculation
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– Rise time (tr) This is a measure of how fast the rotor

position reaches the reference. The timer starts count-

ing when 10% of the reference is reached and stops

when 90% is reached [31].

– Settling time (ts) This is a very important performance

parameter, because it helps the GA to rate how long the

signal reaches the steady state. Normally, this time is

obtained when error amplitude is lower than 5%.

– Steady-state error (SSE) This is computed as error

average, after the steady state is reached, i.e., after the

settling time.

– Overshoot Usually expressed as a percentage of errors

compared with reference [31]. This performance

parameter provides the GA information about how

bad or good the reference is reached without peaks.

Normally, this can be found after the rise time and

before settling time.

Rise time is very important, when using the DC servo-

motor system of Sect. 4, to set the rotor in a desired

position. According to application restrictions, it is desir-

able to get the best timing when setting the rotor in a

specific position. The controller must do this as quickly and

efficiently as possible.

Settling time is also important, because this is consid-

ered to be a measure of stability. This occurs, when con-

trollers are able to sustain the desired position for a specific

amount of time without ripple.

On the other hand, SSE and overshoot are very impor-

tant because they measure how close the rotor is to the

desired position. Therefore, the fewer errors that exist, the

more precise the fuzzy system is.

Those four main objectives can be resumed in Eq. 12. If

the optimization algorithm considers those measures, then

it is able to know what to search for.

Taking into account the research in [37], from Eq. 1, our

purpose is derived. Now, consider only 4 objectives, i.e.,

J ¼ 4, then f ¼
PJ

i¼1 wifi; 8
PJ

i¼1 wi ¼ 1 f ¼ w1f1 þ
w2f2 þ w3f3 þ w4f4; 8

P4
i¼1 wi ¼ 1 This can be described

with the following equation, which represents our proposed

multi-objective transient fitness function (MOTFF), applied

to the ith individual in population:

fi ¼ w1

1

1þ jOSij

� �
þ w2

1

1þ jSSEij

� �

þ w3

t0r
qti

r

� �
þ w4

t0s
ti
s

� � ð12Þ

where f1 ¼
1

1þ jOSij
, f2 ¼

1

1þ jSSEij
, f3 ¼

t0r
qti

r

and f4 ¼
t0s
ti
s

,

such f1; f2; f3; f4 2 ½0; 1� � R. Also, t0r and t0s in f3 and f4 are

constants, which represent the best possible rise and set-

tling times when the maximum absolute voltage (5 volts) is

applied to servomotor terminals, respectively. Here, Greek

letter q is the rise time penalty factor when

½minðhÞ:maxðhÞ�� ½minðh0Þ;maxðh0Þ�, where h is a col-

lection of all the rotor position feedback and h0 is a col-

lection of all the noise-free reference position signals, both

during simulation time. This factor prevents rating with a

good score all the very short and incorrect rise times, when

the steady state is reached under the reference value. This

can be represented as in Eq. 13.

q ¼ q0
qi

¼ maxðh0Þ �minðhiÞ
maxðhÞ �minðhÞ ð13Þ

Unlike the work in [33], our proposal not only considers

error measures, such as SSE and overshoot, but also

includes in the search the best settling and rise times in the

evaluation of individuals, with our proposed fitness

function.

Therefore, Eqs. 12 and 13 represent our proposed for-

mulation to rate controller response, using these important

performance parameters.

As stated in Eq. 1, each fitness function is weighted by

wi. To give those parameters the same importance,

w1 ¼ w2 ¼ w3 ¼ w4. Also, in Eq. 12, any fitness values

must be equal to one in the best cases, e.g., if settling time

is equal to 13 s, then f4 ¼
t0s
ti
s

¼ 1, when t0s ¼ 13 s.

As stated in Eq. 12, the sum of all the factors is equal to

one, so wi ¼ 0:25 (which means that the four performance

parameters, i.e., J ¼ 4, are evaluated and have the same

importance). So, having a total fitness value equal to one

means that the individual fits the entire search requirements

at 100%.

On the other hand, this performance rating is only

considered to get the best transient response when a posi-

tive step is supplied as reference. Now, if a square signal is

supplied as reference, then the performance analysis must

be considered in both the positive and negative steps of the

square signal. Therefore, all factors can be considered as

wi ¼ 0:125, due to the fact that they are evaluated for each

positive and negative part, i.e., J ¼ 8. In this case, the final

fitness function must also be equal to one, in the best case.

5.2 The Chromosome Model

5.2.1 Normalized PIT2FLS

Let G be a normalized PIT2FLS, which has its input and

output variable ranges and all its sets spread along interval

½�1; 1�. A normalized PIT2FLS (see Fig. 6) is an input/

output normalized system, which can be used to represent

proportionally an unnormalized PIT2FLS. Note in Fig. 6
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that Fðxi; rÞ is an unnormalized PIT2FLS, having r as a

parameter set defined also in ½�1; 1�, Rxi
and Rxi

are the

lower and upper ranges for the input variable i, respec-

tively, and Ryj
and Ryj

for the output variable ranges for the

output variable j, respectively. A normalized version of

F can be found inside the unnormalized PIT2FLS, i.e.,

Gðx0i; rÞ.
For this purpose, scaling functions are required. With

Eq. 14, i.e., the input scaling function, an unnormalized

input variable value can pass from interval ½Rxi
;Rxi

� to

interval ½�1; 1�. Also, with Eq. 15, i.e., the output scaling

function, this process can be reversed. The normalized

inferred value, obtained from the normalized PIT2FLS G,

can pass from interval ½�1; 1� to interval ½Ryj
;Ryj

�.

x0i ¼
2

Rxi
� Rxi

xi �
Rxi

þ Rxi

Rxi
� Rxi

8xi 2½Rxi
;Rxi

�; x0i 2 ½�1; 1�; r 2 ½0; 1�
ð14Þ

yj ¼
Ryj

� Ryj

2
y0j þ

Ryj
þ Ryj

2

8y0j 2½�1; 1�; yj 2 ½Rxi
;Rxi

�; r 2 ½0; 1�
ð15Þ

A normalized PIT2FLS can be used for several purposes,

because its output can fit the requirements of any appli-

cation and GA search spaces can be bounded to interval

½�1; 1�.

5.2.2 The Chromosome Bundle

One of the benefits of using a normalized PIT2FLS is that

each chromosome parameter (each gene) can be of fixed

size. Therefore, each gene has the same data

representation.

Each data is represented with a signed 10-bit fixed-point

number. Also, the integer length is 1, one bit for signing

and the remaining bits for the fractional part, as can be seen

at the bottom of Fig. 7. This fixed-point data representation

lets each gene in chromosome be concatenated one after

another, letting the designer know the exact chromosome

length used in each search.

Starting from a normalized PIT2FLS and the fixed-point

data representation, every variable range must be defined in

interval ½�1; 1�. This way, every parameter set d 2 Q, as

stated in Eq. 16, may also be defined in this interval and

can be considered as part of the chromosome. Assume that

all ds in Q are previously ordered to fit the membership

function parameters for correct set distribution, as shown in

Fig. 8.

Q¼

d ~A
1

1

;d ~A
2

1

;...;d ~A
d1
1

;d ~A
1

2

;d ~A
2

2

;...;d ~A
d2
2

;...;d ~A
1

p

;d ~A
2

p

;...;d ~A
dp
p

;d ~B
1

1

;d ~B
2

1

;...;d ~B
k1
1

;d ~B
1

2

;d ~B
2

2

;...;d ~B
k2
2

;...;

d ~B
1

q

;d ~B
2

q

;...;d ~B
kq
q

;r ~A
1

1

;r ~A
2

1

;...;r ~A
d1
1

;r ~A
1

2

;r ~A
2

2

;...;r ~A
d2
2

;...;r ~A
1

p

;r ~A
2

p

;...;r ~A
dp
p

;r ~B
1

1

;r ~B
2

1

;...;r ~B
k1
1

;...;

r ~B
1

2

;r ~B
2

2

;...;r ~B
k2
2

;...;r ~B
1

q

;r ~B
2

q

;...;r ~B
kq
q

;r1;r2;...;rL:

8
>><

>>:

9
>>=

>>;

ð16Þ

Therefore, consider Q in Eq. 16, the chromosome model

used to build the GA population.

As an empirical design suggestion, consider delimiting

the search space and redefining the FOU width ranges to

r 2 ½0; 1
5
� � ½�1; 1�; r 2 ½0; 1� � ½�1; 1�. This search

restriction is due to the rule conjunction parameter values

defined in interval ½0; 1� � ½�1; 1�, i.e., they cannot be

negative. Also, the use of large FOU widths produces

undesired effects in PIT2FLS output.

Fig. 6 Normalized fuzzy system and the use of scaling functions for

the DC servomotor application

Fig. 7 The PIT2FLS parameter set used to build the GA population.

Signed fixed-point 10-bit value representation is used, for each

parameter to fit in interval ½�1; 1�, in the PIT2FLS. This binary

representation is used to encode the GA population, according to the

chromosome model of Eq. 16
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On the other hand, each parameter set d, r and r for the

input variables in Eq. 16 is comprised of several parame-

ters, i.e., d ¼ d1; d2; . . .; daf g; r ¼ r1; r2; . . .; raf g. Also

for output variables d ¼ d1; d2; . . .; db
	 


and

r ¼ r1; r2; . . .; rb
	 


. Symbols a and b represent the

number of parameters that describe a specific type-2

membership function (in Fig. 8, Z-function has an a ¼ 2,

while for triangular function a ¼ 3 for input x1).

Therefore, the chromosome model has the purpose of

bounding the information that will be interchanged in the

GA crossover operation. As shown in Eq. 16 and Fig. 7,

three different genotypes are identified: the d distribution

set parameters, the r FOU width parameters and the rule

conjunction parameter r (Fig. 9). Each one can be inter-

changed between parents when performing crossover

operations, according to its fixed selected locus (see

Fig. 10). For the DC servo problem of Sect. 4, 27 genes are

required; so, for two-point crossovers, two locus positions

will separate genes as follows: 1 to 9; 10 to 18; and 19 to

27. Then, every individual interchanges its set distribution

with the set distribution of another individual during the

crossover operation. Each interchange may produce a new

offspring whose genotype may produce a different effect in

PIT2FLS output.

5.2.3 Symmetrical Discourses

A symmetrical variable is a variable whose range is defined

in interval ½�z; z� such that �z þ z ¼ 0 and z 2 R. An

example of a symmetrical variable is the error or error

derivative specified in the PIT2FLS for DC servomotor

application of Sect. 4.

The importance of a symmetrical variable is that an

expert can distribute several sets to the positive part of the

discourse universe and then reflect them all in the negative

part. It is true that not all the applications can be addressed

with symmetrical variables. For example, a real DC ser-

vomotor does not have an ideal response and may not have

the same torque in one direction compared to the other;

evidently, this may lead to an asymmetrical distribution of

sets in a discourse universe. In spite of this, the reduction of

the number of parameters in the GA search represents the

real importance of the use of symmetrical variables.

Fig. 8 Set generalization for variable x1: e, position error. Symmetry

in error variable is recommended to ensure an equivalent control

action in both directions. When using symmetrical discourses, only

the set parameters defined on the positive discourse are used to

represent sets in both positive and negative parts

Fig. 9 Only 27 parameters are needed to optimize the PIT2FLS for

controlling a servomotor. Each row represents a genotype
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Fig. 10 Fixed-locus two-point crossover operation. A graphical representation of the three identified genotypes: set distributions, FOU widths

and rule conjunction parameters. Here, locus positions of both crossover points are well defined
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The use of symmetrical variables is relevant to some

applications, because it is desirable that every consequent

action of the fuzzy system has the same magnitude in both

positive or negative directions.

Therefore, assume that all the MFs of every set are

symmetrical as shown in Fig. 8. So, the negative sets can

be built with the positive set parameters.

In every symmetrical variable, there should be an odd

number of sets, because the NULL or ZERO set is exactly

in the middle of the discourse universe. This approach

allows the number of parameters introduced in the GA

search to be halved.

Specifically, for the servomotor application described in

Sect. 4 and based on Eq. 16 and Fig. 7, the chromosome

model for GA and set distribution can be reduced, as shown

in Fig. 9. As can be seen, the number of parameters is

reduced from 48 to 27 genes, when symmetrical discourses

are considered.

The use of symmetrical variables and sets is not

mandatory, because it will depend on the needs of the

application. However, this must be considered as a good

resource to decrease the number of parameters in the GA

search.

5.3 Adaptive Mutation Rate Function

In GA, the mutation rate can be modified while the best

individual evolves. This way, the mutation probability can

be adjusted once the algorithm knows the best individual

score with Eq. 12. The following equation is used to

decrease the step size in search during optimization:

pM ¼ k

fo
exp ð�6foÞ ð17Þ

where fo is the fitness value of the best individual in pop-

ulation and k is a constant that expert propose to set the

maximum mutation probability that will be applied to

population.

This can be translated as a decreasing exponential

selection of the number of individual bits that will be

altered during the mutation operation. In other words, a low

fitness value will produce a bigger mutation rate, and

consequently, it will involve more bits (an aggressive step

size).

With Eq. 17, an expert can start mutating the new

population with an aggressive step and later, after fitness

evaluation, determine the new reduced step size required to

modify the next new individuals.

5.4 Rule Suppression

Rule suppression is an additional resource for identifying

the useful conjunction parameters in our genetic opti-

mization strategy. It consists of assigning a numerical value

to each parameter that eliminates the conjunction effect

during rule evaluation.

For instance, for our case study of DC servomotor in

Sect. 4, we specified 9 parametric conjunctions, one for

each rule. Also, we referred to Eq. 11 as a weighting action

operator; if r ¼ 1, the parametric conjunction would

behave as a drastic intersection t-norm, which is equivalent

to eliminating the rule influence over the inferred set.

In this sense, the rule can be enabled or disabled. This

way, we can inspect the output response and then deduce if

that rule conjunction is useful for GA search. If there is no

relation with the desired output, then it does not need to be

parametric. The rule is very simple; if the lth rule is sup-

pressed, then an expert system can discard the parametric

Table 5 Genotype: set distributions are defined in genes 1–9

Noise% Fuzzy system Genes (set distribution)

d1
e d2

e d3
e d1

c d2
c d3

c d1
v d2

v d3
v

1 2 3 4 5 6 7 8 9

0 PIT2FLS 0 0.0664 0.2754 0.8379 0.1797 0.3418 0.5898 0.9805 0.9961

T1FLS 0 0.0664 0.2754 0.8379 0.1797 0.3418 0.5898 0.9805 0.9961

5 PIT2FLS 0.9766 0.0020 0.5313 0.9707 0.2520 0.8203 0.9902 0.9199 0.9941

T1FLS 0.0723 0.0469 0.1934 0.8945 0.2109 0.3164 0.7813 0.9766 0.9941

10 PIT2FLS 0.7969 0.0488 0.6992 0.8457 0.2461 0.5801 0.7285 0.8086 0.9023

T1FLS 0 0.0605 0.5645 0.9707 0 0.4297 0.0703 0.7324 0.9707

30 PIT2FLS 0.9512 0.0957 0.8047 0.4746 0.0938 0.9629 0.8457 0.9258 0.9570

T1FLS 0.1719 0.1816 0.2188 0.9512 0.1348 0.6855 0 0.7383 0.8965

50 PIT2FLS 0.8379 0.4785 0.5254 0.5078 0.1563 0.4570 0.7891 0.7910 0.8730

T1FLS 0.2656 0.2949 0.6992 0.4531 0.0254 0.4590 0.0938 0.5098 0.9902
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conjunction and can replace it by a nonparametric con-

junction operator, e.g., a basic t-norm.

The rule suppression scope aims to decrease the amount

of parametric conjunction operators during inference stage

computation; in other words, it aims to reduce the inference

complexity.

6 Experimental Results

After experimentation, the following results can be

summarized.

In Tables 5, 6 and 7, the best servomotor control per-

formance results (optimal solutions) under several noise

conditions are presented. As shown in Fig. 9, the

chromosome is comprised of 27 genes for PIT2FLS, 18

genes for IT2FLS and 9 genes for T1FLS. Values from

Tables 5, 6 and 7 represent the genotype of each optimal

solution, and Table 8 provides its graphical representation;

this shows the set distribution and FOU widths in T1FLS

and PIT2FLS. Also, the final responses are shown in

Table 9, which represent the resulting performance of each

best genotype for each case of noise amplitude.

As shown in Tables 5 and 6, some of the corresponding

rows for T1FLS are empty. This is evident, because the

T1FLS has no information on FOU widths or rule para-

metric conjunction parameter values. Only set distribution

parameters are shown for T1FLS.

Also, Table 10 shows the overall performance parame-

ters for each system stimulated with its corresponding

noise signal. Parameters such as rise and settling times,

Table 6 Genotype: footprints of uncertainty widths are defined in genes 10–18

Noise % Fuzzy system Genes (FOU width)

r1e r2e r3e r1c r2c r3c r1v r2v r3v
10 11 12 13 14 15 16 17 18

0 PIT2FLS 0 0 0 0 0 0 0 0 0

T1FLS – – – – – – – – –

5 PIT2FLS 0.0313 0.0684 0.0313 0.1797 0.1113 0.1758 0.0996 0.0684 0.0430

T1FLS – – – – – – – – –

10 PIT2FLS 0.1211 0.0371 0.0371 0.0508 0.0039 0.1484 0.1465 0.0078 0.0566

T1FLS – – – – – – – – –

30 PIT2FLS 0.1328 0.0039 0.0664 0.0781 0.1426 0.0313 0.0703 0 0.0605

T1FLS – – – – – – – – –

50 PIT2FLS 0.1270 0.0508 0 0.0254 0.1270 0.1914 0.0039 0.0098 0.0117

T1FLS – – – – – – – – –

Table 7 Rule conjunction parameter values are defined in genes 19–27

Noise% Fuzzy system Genes (rule conjunction parameters)

r1 r2 r3 r4 r5 r6 r7 r8 r9
19 20 21 22 23 24 25 26 27

0 PIT2FLS 0 0 0 0 0 0 0 0 0

T1FLS – – – – – – – – –

5 PIT2FLS 0.1602 0.2715 0.7500 0.4707 0.9375 0.7051 0.2031 0.3750 0.0898

T1FLS – – – – – – – – –

10 PIT2FLS 0.0098 0.9570 0.6641 0.6426 0.9063 0.3809 0.5293 0.9688 0.3691

T1FLS – – – – – – – – –

30 PIT2FLS 0.0723 0.6523 0.6074 0.2422 0.9414 0.2480 0.8320 0.0723 0.8691

T1FLS – – – – – – – – –

50 PIT2FLS 0.1797 0.2148 0.8770 0.3047 0.8887 0.1973 0.4160 0.5996 0.4180

T1FLS – – – – – – – – –
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Table 8 Graphical representation of genotypes

The horizontal axis represents the discourse universe, and the vertical axis represents membership values
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overshoot and steady-state error are used to establish a

comparison between each system.

Observe that Table 13 provides a comparison between

our proposed MOTFF against another two fitness functions

that diminish the error measures, such as the RMSE

[13, 21, 22, 32, 33] and the ITAE [29, 44] for T1FLS,

IT2FLS and PIT2FLS, when simulating the most repre-

sentative case of our experiments, i.e., when the noise

percentage is 50%. This can be performed by replacing our

fitness function in (Sect. 5, step 7f and 9) by the RMSE or

ITAE fitness functions. Note that the results in Table 13

were performed by modifying the set distributions for

T1FLS [29], the set distributions and FOU widths for

IT2FLS [7, 18, 28, 44] and the set distributions, FOU

widths and rule parameters for PIT2FLS.

Table 11 is provided to show how rule conjunction

parameters affect the transient response of a noisy square

signal. In each transient parameter, there are two columns

with symbols þ and -, which mean that such parameters

affect the positive or the negative response of a square

signal. Arrows " and # are used to show how that transient

parameter is affected, when each rule is suppressed using

the drastic conjunction operation, i.e., when the rule con-

junction parameter value is set to one. Therefore, the rule

set computation can be reduced as shown in Table 12,

when replacing parametric conjunctions with nonparamet-

ric conjunctions.

6.1 Transient Performance Parameters

The use of the main transient parameters in our optimiza-

tion strategy is relevant to rate the fuzzy systems’ response,

Table 9 Final transient response

Table 10 Overall performance and fitness function values

Noise FLS Fit. OS SSE tr ts
% val. (%) (rads) (s) (s)

0 PIT2 0.9882 0.0018 0.000022 9.0 13.0

T1 0.9680 0.0013 0.0043 9.0 14.5

5 PIT2 0.9765 0.000223 0.0023 9.0 13.1

T1 0.9677 0.0027 0.0029 9.0 14.5

10 PIT2 0.9787 0.000448 0.0049 9.0 13.0

T1 0.9376 0.000133 0.0056 9.9 15.5

30 PIT2 0.9660 0.0013 0.0037 9.8 13.7

T1 0.9251 0.0085 0.0067 10.1 15.7

50 PIT2 0.9601 0.0011 0.0036 9.3 13.5

T1 0.8797 0.0077 0.0013 10.7 17.5
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by using our proposed multi-objective transient fitness

function (Eq. 12).

Analyzing the results of Table 10, the PIT2FLS is better

than the T1FLS in any parameter, achieving the best error

management and timing response, yet the error amplitude

increases.

The reader must note that the more noise that exists, the

more noise management disability will exist in both con-

trollers (as shown in Table 9). This means that both con-

trollers are affected by noise, but the advantage of IT2FLS

over T1FLS is that those bad effects are minimized. This is

evident when comparing the fitness values of Table 10,

where noise amplitude increases.

Notice that the performance parameters in Tables 10 and

13 are different for PIT2FLS and T1FLS. This is because

the data in Table 13 were obtained with a new set of

experiments, described as follows. The experiment is

comprised of: 3 fuzzy optimizations (with RMSE, ITAE

and our MOTFF, a crossover probability of 65% and a

mutation probability of 4.5%) 11 times each. In every run,

the best individual of the last run is reinserted in a new

population to continue searching from it.

The results are the following: as shown in Table 13 and

Fig. 11, both fitness functions RMSE and ITAE help to

reach the reference, in both positive (þ) and negative steps

(-), though sometimes they are susceptible to getting stuck

before the fuzzy systems settle on them, due to all the noise

peaks. In some cases, the fuzzy system cannot reach the

steady state. Observe that some cells in Table 13 have the

value U, which means that the rise and settling times could

not be found.

Observe that Figure 11 has two columns and three

rows. Column 1 depicts the simulation of feedback during

the entire simulation time. Column 2 depicts a scaled

version of column 1, where the response of evaluated

systems can be observed. Notice that some fuzzy systems

get better rise time measures, and this is because the

controller was not able to reach, in the first simulation

seconds, the negative part of reference. This particularity

(the fake rise time) would be penalized by our proposal

with Eq. 13. Additionally, all settling times are the worst

when using RMSE and ITAE, but they got the best error

measures. Observe in Fig 11b, c that ITAE obtains better

Table 11 Identifying the PIT2FLS rule conjunction parameter

influence for suppressing rules when the noise amplitude is 50%

Rule

number

Gene

number

Transient parameters

Overshoot SSE Rise

time

Settling

time

þ - þ - þ - þ -

1 19 * * * * * * * *

2 20 * * * * * * * *

3 21 * * * * * * * *

4 22 # "" # "" # # "" ""
5 23 "" "" "" "" "" "" "" ""
6 24 "" # "" # " # "" #
7 25 * * * * * * * *

8 26 * * * * * * * *

9 27 * * * * * * * *

�: Unchanged; "; #: small change; "": large change

Table 12 PIT2FLS parametric conjunction reduction for each rule,

after suppression

Voltage Error change

NC ZC PC

Position error

NE T ð1Þ
p T ð2Þ

p T ð3Þ
p

ZE T
ð4Þ
o T

ð5Þ
o T

ð6Þ
o

PE T ð7Þ
p T ð8Þ

p T ð9Þ
p

Table 13 PIT2FLS, IT2FLS and T1FLS optimization, by using sev-

eral fitness functions in our strategy after 11 runs, when noise per-

centage is 50%

Function FLS ± Overshoot SSE tr ts
(%) (rads) (s) (s)

MOTFF T1 þ 0.0474 0.0861 10.3 16

– 0 0.2386 10.9 16.1

IT2 þ 0.0723 0.0877 9.1 13.6

– 0.0232 0.1743 9.3 14.7

PIT2 þ 0.0092 0.1586 9.1 12.7

– 0 0.1756 9.1 13.5

ITAE T1 þ 0.0582 0.0323 7.8 U

– 0.0351 0.1757 9.2 U

IT2 þ 0.0577 2.0224 9.0 U

– 0.0537 0.0109 9.3 U

PIT2 þ 0.0436 0.0144 9.0 U

– 0.0308 0.0081 9.1 U

RMSE T1 þ 0 0.1365 7.9 U

– 0 1.7758 U U

IT2 þ 0 0.1634 17.0 24.3

– 0 0.3894 U U

PIT2 þ 0 0.3462 22.1 24.3

– 0 0.1949 31 U

þ: Positive step of feedback signal

-: Negative step of feedback signal

U: Undefined
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results than RMSE. In both cases, IT2FLS and PIT2FLS

have the worst performance, compared to T1FLS. This is

because T1FLS optimization could be performed in less

time, because 9 parameters were tuned. This means that

IT2FLS and PIT2FLS need more time to be completely

optimized.

On the other hand, our MOTFF obtained the best tran-

sient parameters in both positive and negative steps. Fig-

ure 11a) and Table 13 show that PIT2FLS achieves better

control than IT2FLS and T1FLS when the noise amplitude

is 50%. Although IT2FLS has a bigger SSE, it rises faster

(rise time is very competitive) than T1FLS.

Also, a competitive performance improvement between

IT2FLS and PIT2FLS can be observed. This means that

PIT2FLS helps IT2FLS to achieve additional performance

improvements, by integrating parametric conjunction

operations, such as the (p)-monotone sum. Observe in

Table 13 that PIT2FLS has the best timing performance

and error management.

In general, the use of a single objective for a fitness

function decreases the probability of finding the optimal

individual in first generations. However, experts must

analyze how many objectives should be pursued, because

in the worst cases placing strict objectives can complicate

and prolong the search.

6.2 Membership Function Parameters

The use of symmetrical discourses in Sect. 5.2.3 helps to

decrease the amount of genes (the search space) required to

compute the GA and impact on the final time required to

get the optimal solution.

By observing Tables 5 and 8, set distributions present

the following changes when noise amplitude increases:

Fig. 11 Graphical representation of the transient parameters of Table 13 for T1FLS, IT2FLS and PIT2FLS, when using a our proposed MOTFF,

b ITAE and c RMSE and noise percentage is 50%
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– Error variable sets. From the system requirements

established in Sects. 4, 5, the set distribution obtained

from the experiments is symmetrical, where the left and

right end sets are identically reflected. What can be

observed here is, that sets NE and PE tend to be more

drastic and distant from ZE, but ZE has no relevant

change.

– Change variable sets. Although the experiment results

do not provide clear evidence of noise amplitude

increment effects over the set distributions in variable

change, we can observe that sets NC and PC have no

relevant changes, while set ZC becomes sharper.

– Voltage variable sets. In all case, NV, PV and ZV are

almost completely separated, i.e., there are negligible

overlapping FOU regions between sets.

However, by observing Tables 6 and 8, set FOU widths

present the following characteristics:

– Error variable sets. In this case, all set FOU widths are

preserved when noise amplitude increases.

– Change variable sets. In this variable, FOU widths of

NC and PC become larger when noise amplitude

increases, while the FOU width of ZC becomes smaller.

– Voltage variable sets. This last variable presents

smaller FOU widths in every set when noise amplitude

increases. This may lead to the idea of using singletons

as consequent sets (such as the zero-order Takagi–

Sugeno–Kang fuzzy system), which may also help to

reduce the number of parameters in the GA search.

6.3 Parametric Conjunction Suppression

According to the results from Tables 7, 9 and 10, rule

conjunction parameters present some changes, while noise

amplitude increases.

This is given in Table 11, which provides additional

information that may help to think about how a rule con-

junction parameter can affect the transient response

parameters. To get the best solution, the corresponding

parameters are selected when noise amplitude is 50%.

When analyzing the data, the reader can infer the

following:

– Rules 1–3 and 7–9 have no effect on PIT2FLS

performance.

– Rule 4. This rule strongly affects some parameters of

the negative feedback step. It decreases rise time but

increases settling time.

– Rule 5. This is the most important rule, because all the

transient parameters are strongly affected.

– Rule 6. This rule strongly affects some parameters of

the positive feedback step. It decreases rise time but

also increases settling time.

– The transient performance effects due to rule 4 and 6

are almost symmetrical.

Table 11 and the bullets points above show that some

rules have no effect when optimizing. Therefore, those

parametric conjunctions can be replaced by any nonpara-

metric conjunction, e.g., the product t-norm Tp, because

any change in fuzzy system output can be observed, when

varying such rule conjunction parameters. This is particu-

larly useful because it helps to reduce the PIT2FLS

computation.

The rest rules can still be parametric, i.e., T0 in Eq. 11.

This is intuitive, because the most relevant information in

the rule set is processed when the error is near to zero (i.e.,

in rules 4–6).

Consequently, the experiment results in Tables 11 and

12 provide relevant information about why parametric

operations play an important role in the search for the best

solution in adverse circumstances.

7 Conclusions

The methodology presented in this paper is a useful tool for

improving, with genetic algorithms, the fuzzy system per-

formance under the effects of large noise amplitudes in

control applications, specifically the interval type-2 fuzzy

systems with parametric operations. To this end, the

methodology recommends the use of resources such as a

chromosome model with fixed-point homogeneous genes

(genes with the same length), normalized fuzzy systems,

rule suppression, an adaptive mutation rate function and a

multi-objective transient fitness function, as they are useful

resources for designing feasible and optimal fuzzy systems

for any application. In other words, the strategy proposed

in this paper is feasible, as it helps an expert to use simple

operations and basic concepts to keep complexity as low as

possible.

To rate both T1FLS, IT2FLS and PIT2FLS perfor-

mances, a multi-objective transient fitness function is

proposed and used to select the best individual in the GA

search. Moreover, in order to prevent searches getting

stuck, an adaptive mutation rate function is provided.

Additionally, the use of simpler parametric conjunc-

tions, such as the (p)-monotone sum instead of other more

complex parametric conjunctions, helps the system to

reduce the amount of operations required for the type-2

inference process, which is suitable for practical control

applications. Experimental results found that not only

system performance can be improved by optimizing the

distributions and FOU widths, but also the rule conjunc-

tion parameters lead to improving performance even

more.
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Also, the use of parametric operations in IT2FLS can be

reduced, when rule suppression is taken into account. Rule

suppression lets an expert eliminate the parametric con-

junctions with no influence during optimization.

As a future work, the chromosome model represented

with genes of homogeneous data representation (signed

10-bit fixed point) should be extended to hardware control

applications by using the optimization strategy presented in

this paper. This means normalized fuzzy systems can help

to improve the hardware utilization by using data registers

and processing architectures of fixed length.

Another avenue of work will be considering the

PIT2FLS for other motor control applications that require

high-precision constraints. For instance, this work can be

extended to the micro-CNC linear actuator control, where

the benefits of using PIT2FLS would be greater. Here, a

high-precision positioning requirement under disturbance

represents a challenge. Likewise, the multi-objective tran-

sient fitness function proposed in this paper should be

extended to include additional parameters, such as ITAE in

steady state, to rate how noise is managed to obtain more

precise positioning.
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