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Abstract Nowadays, the antilock braking system (ABS) is

the standard in all modern cars. The function of ABS is to

optimize the maximize wheel traction by preventing wheel

lockup during braking, so it can help the drivers to main-

tain steering maneuverability. In this study, a self-orga-

nizing interval type-2 fuzzy neural network (SOT2FNN)

control system is designed for antilock braking systems.

This control system comprises a main controller and a

robust compensation controller; the SOT2FNN as the main

controller is used to mimic an ideal controller, and the

robust compensation controller is developed to eliminate

the approximation error between the main controller and

the ideal controller. To guarantee system stability, adaptive

laws for adjusting the parameters of SOT2FNN based on

the gradient descent method are proposed. However, in

control design, the learning rates of adaptive law are very

important and they significantly affect control perfor-

mance. The particle swarm optimization method is there-

fore applied to find the optimal learning rates for the

weights in reduction layer and also for the means, the

variances of the Gaussian functions in the input member-

ship functions. Finally, the numerical simulations of ABS

response in different road conditions are provided to

illustrate the effectiveness of the proposed approach.

Keywords Type-2 fuzzy logic system � Antilock braking

system � Particle swarm optimization � Self-organizing
learning algorithm

1 Introduction

The antilock braking system is a safety–critical system in

modern cars, which was first invented for the aviation

industry in 1920 [1]. During the braking action, ABS helps

maintain the steerability of the car by limiting the longi-

tudinal slip. The challenging problem in designing an ABS

is that the vehicle braking dynamics are highly nonlinear

and the environmental parameters are unknown. Since

most commercial ABS control methods do not have an

adaptive function to deal with this problem, their perfor-

mance is often degraded under harsh road conditions [2, 3].

Recently, many intelligent control methods such as fuzzy

control, neural network control, sliding mode control,

hybrid control and cerebellar model articulation controller

(CMAC) have been applied in ABS to improve the per-

formance [3–11]. In 2010, Sharkawy presented a fuzzy

self-tuning PID controller for ABS [5]. In 2012, Corno

et al. [7] provided hybrid ABS control using force mea-

surement. Following that, in 2013, Lin and Li introduced a

self-organizing function-link fuzzy CMAC for ABS [8],

where CMAC is a type of neural network based on a model

of the mammalian cerebellum [12]. In 2016, Peric et al. [9]

presented an ABS control using a quasi-sliding mode

control with neural network estimator. However, some of

the above methods are complex, and their parameters

adjusting laws are not effective enough; furthermore, most

control performance can be further improved. In this paper,

a self-organizing interval type-2 fuzzy neural network

control system will be proposed to control ABS. The
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proposed controller incorporates the advantages of sliding

mode control to enhance stability and performance of the

control system [13].

In recent years, the type-2 fuzzy logic system (T2FLS)

has attracted many researchers in many application fields

such as control problem, system identification, prediction

and classification [14–22]. The fuzzy set was first intro-

duced by Zadeh in 1965 [23], and shortly thereafter, it was

applied in many fields due to its advantageous properties

such as flexibility, intuitive knowledge and easy compu-

tation. However, in many cases, this type-1 fuzzy logic

system has difficultly achieving optimal performance

because it cannot effectively deal with the uncertainty

coming from the internal and external disturbances of the

plant [14]. To solve this problem, in 1975 Zadeh devel-

oped the concept of type-2 fuzzy sets [24], which are

potentially more suitable for the plant with uncertainty.

Moreover, a T2FLS has the potential to outperform a

T1FLS, because it has more design degrees of freedom.

The T1FLS can be viewed as a special case of T2FLS. In

T2FLS, if the means and variances of upper and lower

membership functions are the same, then it can be reduced

to a T1FLS. So T2FLS is more general than T1FLS. The

T2FLS with more complex computation led to the

appearance of interval type-2 fuzzy logic systems

(IT2FLS), which is a special case of T2FLS simplifying

the computation operations in the fuzzification and

defuzzification of fuzzy logic systems [25]. By combining

the fuzzy logic system with a neural network, several

fuzzy neural systems have been presented [26–29].

However, in the design of fuzzy neural systems, it is often

difficult to determine a suitable network size, so some

papers have dealt with the self-organization of fuzzy

neural systems [8, 30].

In many adaptive controllers, the learning rates are

highly influential to the system performance. Most papers

in the literature often need to use a trial-and-error

method to determine the learning rates of parameter

adaptive laws, but it is difficult to obtain the most suit-

able value and it always takes a long time. The PSO

algorithm is an optimization technique first introduced in

1995 by Kennedy and Eberhart [31]. It optimizes a

problem by modifying each candidate solution based on

the best performance of the swarm. In the beginning, the

particles (set as learning rates) will be initialized with a

group of random solutions. At each iteration, the best

solution can be shared among other particles and every

particle will move to follow the best solution. The PSO

algorithm is especially effective in solving nonlinear

problems in control systems; so in the last decade, it has

been widely used to optimize the parameters for many

controllers such as PID, LQR, fuzzy and neural network

[32–36]. In 2011, Bingül and Karahan [35] proposed

PSO fuzzy logic controller for a 2 DOF robot. In their

study, the PSO algorithm was used to tune the antecedent

and consequent parameter of fuzzy law, which used fixed

structure of type-1 fuzzy system. The advance of this

method is its simplicity in calculation, so it is easier to be

implemented than other traditional methods. However,

because of with fixed structure, it led to difficulty to

determine the suitable size of fuzzy membership func-

tions and fuzzy rules. In [37], a self-evolving algorithm

for an interval type-2 fuzzy neural network (IT2FNN)

has been established, which can auto-generate the net-

work structure. The advance of this approach is the ini-

tial rule-based and membership function can be empty

initially and then can be constructed by itself, but one

cannot use the knowledge about the system to design the

initial membership function and the initial rule to obtain

better result; furthermore, one also cannot apply off-line

PSO algorithm to train the network. In [38], a self-or-

ganizing IT2FNN was introduced, which can self-con-

struct the network size. Nevertheless, in this paper, the

learning rate in adaptive law is fixed and chosen by the

trial-and-error method.

The motivation of this study is to construct a self-or-

ganizing type-2 fuzzy neural network by applying a self-

organizing algorithm for the type-2 fuzzy neural systems,

and the PSO algorithm will be applied to find the optimal

learning rates of SOT2FNN; and this network is referred to

as a PSO-SOT2FNN. Then, it is applied to control the

antilock braking systems. The main contributions of this

paper are (1) successful apply off-line and online PSO

algorithm to find the optimal learning rates of the adaptive

laws of SOT2FNN, (2) the self-organizing algorithm is

used to achieve the suitable structure of IT2FNN, (3) all the

adaptive laws are designed based on the gradient descent

method, and the stability of the control system is proved by

the Lyapunov function and (4) the simulation results

illustrate that the proposed control system can effectively

achieve braking responses for the ABS under different road

conditions.

The remainder of this paper is as follows. The problem

formulation of ABS is formulated in Sect. 2. The design of

the PSO-SOT2FNN control system is presented in Sect. 3.

The simulation results are provided in Sect. 4 to demon-

strate the effectiveness of the proposed approach, and a

conclusion is given in Sect. 5.

2 Formulation of ABS

In antilock braking systems, the control objective is to

regulate the wheel slip to maximize the coefficient of

friction between the wheel and the road for any given road

surface. In general, the coefficient of friction l during a
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braking operation can be described as a function of the slip

k, which is defined as

k tð Þ ¼ xv tð Þ � xx tð Þ
xv tð Þ ð1Þ

where xv tð Þ and xx tð Þ are the angular velocity of vehicle

and the wheel, respectively.

The relationship between the braking coefficient of fric-

tion l and the wheel slip k depends on the tire–road condi-

tions and has beenmeasured in [39], as shown in Fig. 1 [3, 6].

From (1), it is obvious when xv tð Þ ¼ xx tð Þ, the slip k is 0%
representing the free rolling wheel condition, while when

xx tð Þ ¼ 0, the slip k is 100% corresponding to the wheel

being completely locked. The angular velocity is defined as

xv tð Þ ¼ Vv tð Þ
Rx

ð2Þ

where Rx is the radius of the wheel, Vv tð Þ is the velocity of

the vehicle. Applying Newton’s law, the dynamic equa-

tions for the wheel and the vehicle during a nominal

braking are derived [3, 6]. The acceleration of the vehicle

is determined by summing the total forces applied.

_Vv tð Þ ¼ �1

Mv

4Ft tð Þ þ BvVv tð Þ þ Fh hð Þ½ � ð3Þ

where Mv is the mass of the vehicle, Bv is the vehicular

viscous friction, Ft tð Þ is the tractive force and Fh hð Þ is the
force applied to the car which results from a vertical gra-

dient in the road so

Fh hð Þ ¼ Mvgsin hð Þ ð4Þ

where h is the angle of inclination of the road, and g is the

gravitational acceleration constant. The tractive force Ft tð Þ
is given by

Ft tð Þ ¼ l kð ÞNv hð Þ ð5Þ

where Nv hð Þ is the nominal reaction force applied to the

wheel. For this model, assume the vehicle has four wheels

and the weight of the vehicle is evenly distributed between

these wheels. Then, the nominal reaction force on each

wheel Nv hð Þ can be expressed by

Nv hð Þ ¼ Mvg

4
cos hð Þ ð6Þ

The wheel dynamic is determined by summing the

rotational torque to yield

_xx tð Þ ¼ 1

Jx
�Tb tð Þ � Bxxx tð Þ þ Tt tð Þ½ � ð7Þ

where Jx is the rotational inertia of the wheel, Bx is the

viscous friction of the wheel, Tb tð Þ is the braking torque

and Tt tð Þ is the torque generated due to the slip between the

wheel and the road surface. In general, Tt tð Þ is the torque

generated by the tractive force Ft tð Þ as
Tt tð Þ ¼ RxFt tð Þ ð8Þ

Taking the derivative from (1)

_k tð Þ ¼ 1� k tð Þð Þ _xv � _xx

xv

¼ � _xv

xv

k tð Þ þ _xv � _xx

xv

ð9Þ

Substituting (2), (3) and (7) into (9) gives

_k tð Þ ¼ f k; tð Þ þ g tð Þu tð Þ ð10Þ

where f ¼ 4FtþBvRxxvþFh
MvRxxv

k� 4FtþBvRxxvþFhð ÞJx� Bwxw�Ttð ÞMvRx

MvRxxvJx

and g ¼ 1
Jxxv

is the control gain, u ¼ Tb is the control effort.

This equation is nonlinear and involves uncertainties in the

parameters. When uncertainties and measurement noise are

under consideration, (10) can be reformulated as

_k tð Þ ¼ f0 k; tð Þ þ Df k; tð Þ½ � þ g0 tð Þ þ Dg tð Þ½ �u tð Þ þ n tð Þ
¼ f0 k; tð Þ þ g0 tð Þu tð Þ þ b k; tð Þ ð11Þ

where f0 k; tð Þ and g0 tð Þ are the nominal parts of f k; tð Þ and
g tð Þ, respectively, Df k; tð Þ and Dg tð Þ are the uncertainties

of system, n tð Þ denotes the measurement noise, b k; tð Þ is

referred to as the lumped uncertainty and is defined as

b k; tð Þ ¼ Df k; tð Þ þ Dg tð Þu tð Þ þ n tð Þ ð12Þ

In the case that the lumped uncertainty is known exactly,

then an ideal controller can be designed as follows:

u� tð Þ ¼ g�1
0 tð Þ _kd tð Þ � f0 k; tð Þ � b k; tð Þ þ kke tð Þ

h i
ð13Þ

where k is a gain, and ke tð Þ is defined as

ke tð Þ ¼ kd tð Þ � k tð Þ ð14Þ

where kd tð Þ is the desired slip trajectory.Fig. 1 Relation between road–wheel friction coefficients (l) and slip

(k) for various road surfaces [3, 39]
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The goal of the controller produces a control signal u tð Þ,
which can force the system output k tð Þ to track the refer-

ence trajectory kd tð Þ to maximize the road/wheel friction,

regardless of variations in vehicular speed. The desired slip

is usually set at 20% based on Fig. 1 to meet the maximum

friction coefficient. Substituting (13) into (11), the error

dynamics can be obtained as

_ke tð Þ þ kke tð Þ ¼ 0 ð15Þ

From (15), it is obvious if k is selected to correspond to

the coefficients of the Hurwitz polynomial, then the

tracking error can approach zero lim
t!1

ke tð Þ ¼ 0, and then,

the system can follow the desired slip trajectory kd tð Þ.
However, the lumped uncertainty x tð Þð Þ cannot be pre-

cisely known in practical applications. Therefore, the ideal

controller in (13) is unobtainable. Thus, a PSO-SOT2FNN

control system is proposed in the following section to

achieve the desired control performance.

3 PSO-SOT2FNN Control System

The structure of the PSO-SOT2FNN control system is

shown in Fig. 2, consisting of an SOT2FNN controller and

a robust compensation controller. The SOT2FNN is the

main controller, and its parameters can be adjusted based

on the derived adaptive law; and the learning rates in

adaptive laws can be updated using the PSO algorithm.

3.1 Interval Type-2 Fuzzy Neural Network

This section introduces the structure of an interval type-2

fuzzy neural network (IT2FNN), consisting of an input

layer, a membership layer, a rule layer, a type reduction

layer and an output layer, as shown in Fig. 3. The IF–

THEN rule for IT2FNN has the following form:

Rule i: IF x1 is ~X
i
1 and. . .andxn is ~X

i
n

THEN w is ~Wi i ¼ 1; . . .;M
ð16Þ

where ~Xi
j and

~Wi are the interval type-2 fuzzy membership

function input and output, respectively. M is the total

number of rulers and j ¼ 1; . . .; n where n is the number of

the inputs in the first layer.

The signal propagation and basic function in each layer

are described as follows.

1. Layer 1 (Input Layer): there are no weights in this

layer, and each node is an input variable which will be

transmitted directly to layer 2. In this study, the inputs

are the error and the derivative of the error.

2. Layer 2 (membership function layer): each node in this

layer defines an interval type-2 membership function

(IT2MF) to perform the fuzzification operation. The

IT2MF ~Xi
j is defined by an interval type-2 Gaussian

membership function, which has a standard deviation r
and an uncertain mean m 2 m1;m2½ � (Fig. 4); and it can
be described as:

l ~Xi
j
¼ exp � 1

2

xj � mi
j

rij

 !2
8<
:

9=
; � O mi

j; r
i
j; xj

� �
ð17Þ

The footprint of uncertainty (FOU) of IT2MF can be

represented as a bounded interval denoted by �lij; l
i
j
the

upper and lower membership function (UMF and

LMF), respectively. The output of each node in this

Fig. 2 Block diagram of PSO-SOT2FNN control system

Fig. 3 Structure of an IT2FNN
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layer can be represented as an interval li
j
; �lij

h i
and is

given by

�lij xj
� �

¼
O mi

j1; r
i
j; xj

� �
; xj\mi

j1

1; mi
j1 � xj �mi

j2

O mi
j2; r

i
j; xj

� �
; xj [mi

j2

8>><
>>:

ð18Þ

li
j
xj
� �

¼
O mi

j2; r
i
j; xj

� �
; xj �

mi
j1 þ mi

j2

2

O mi
j1; r

i
j; xj

� �
; xj [

mi
j1 þ mi

j2

2

8>><
>>:

ð19Þ

3. Layer 3 (rule layer): each node in this layer is a rule

node and performs the fuzzy firing operation using an

algebraic product t-norm operation. The output of a

rule node is a firing strength Fi, which is an interval

type-1 fuzzy set. The firing strength is computed as

follows [25]:

Fi ¼ f i; �f i
h i

ð20Þ

where

�f i ¼
Yn
j¼1

�lij; f
i ¼

Yn
j¼1

li
j

ð21Þ

4. Layer 4 (type reduction layer): In this layer, the center

of set type reduction and the Karnik–Mendel (KM)

algorithms are used to compute the interval output

yl; yr½ � [40], which can be derived from the consequent

centroid set wi; �wi½ � and firing strengths f i; �f i
h i

. The

left and right outputs yl and yr can be computed by

yl ¼
PM

i¼1 f
i
l w

i

PM
i¼1 f

i
l

ð22Þ

yr ¼
PM

i¼1 f
i
r �w

i

PM
i¼1 f

i
r

ð23Þ

where f il and f ir are chosen as

f il ¼
�f i; i� L

f i; i[ L

�
ð24Þ

f ir ¼
f i; i�R
�f i; i[R

�
ð25Þ

where L and R are the left and right switch points,

respectively.

5. Layer 5 (output layer): this layer performs the

defuzzification operation from the interval set in the

output of layer 4, and the output can be computed by

the average of yl and yr. Finally, the output of IT2FNN

can be expressed as

y ¼ yl þ yr

2
ð26Þ

3.2 Self-Organizing for Type-2 Fuzzy Neural

Network

In the design structure of IT2FNN, it is difficult to deter-

mine the number of rules for the system to obtain favorable

performance, and many previous published papers used a

trial-and-error method to determine the rule’s number.

However, using this method takes a long time and the

performance cannot be guaranteed. The idea of a self-or-

ganizing IT2FNN is to use the firing strength of each rule

to determine whether a new rule needs to be generated or

an inappropriate existing rule needs to be deleted.

Consider the process of generating the new rules. The

mathematical description of a rule can be expressed as a

cluster, and the degree of input data that belongs to a

cluster can be considered according to its firing strength.

The center of interval firing strength can be computed by

f ic ¼
1

2
f i þ �f i
� �

ð27Þ

If f Ic � fth
� �

means a new input data fall outside the

boundary of all existing clusters, then the SOT2FNN will

generate a new rule to cover it, where fth is the prespecified

threshold and f Ic is the maximum value of the center

interval firing strength and I is the index of the maximum

value given by

I ¼ argmax
i

f 1c ; f
2
c ; . . .f

M
c

� �
ð28Þ

In the new rule, the initial values for the uncertain mean

and the variance of the type-2 fuzzy system are defined as

m
M tð Þþ1
j1 ;m

M tð Þþ1
j2

h i
¼ xj tð Þ � Dx; xj tð Þ þ Dx
� �

j ¼ 1; . . .; n

ð29Þ

rM tð Þþ1
j ¼ b: xj tð Þ �

mI
j1 þ mI

j2

2

 !					

					 ð30Þ

Fig. 4 Interval type-2 fuzzy Gaussian membership function
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wi; �wi
� �

¼ 0; 0½ � ð31Þ
where M(t) is the total number of rules at time t, Dx is a

half of the uncertainty mean value. If the chosen Dx is

extremely small, it will be similar to a type-1 fuzzy set. For

an extremely large value of Dx, the uncertainty will cover

most of the input domain and cover other existing IT2MFs.

The positive parameter b decides the initial cluster width.

A large b value leads to a large overlapping degree

between these fuzzy sets and generates a smaller number of

rules [15]. Conversely, if b is an extremely small value, it

will lead to a small overlapping degree between these fuzzy

sets and will generate a huge number of rules.

Choosing the values of Dx and b is the design of the

initial values for the uncertainty mean and variance. This

paper sets Dx ¼ 0:1 and b ¼ 0:5 based on the adaptive law

designed in the following, and the uncertainty mean and

the variance can be updated to a suitable value.

Another process of self-organizing is to delete the

existing rules. The rules will be deleted if they contribute

less than the predefined deleting threshold value Kdel. The

ratio used to evaluate the contribution of the ith rule in

IT2FNN is defined as

Ki
l ¼

f il w
i

yl
and Ki

r ¼
f ir �w

i

yr
ð32Þ

If Ki
l\Kdel and Ki

r\Kdel, then the ith rule in the left or

in the right is deleted. With this automatic way of gener-

ating and pruning, the proposed self-organizing IT2FNN

can obtain the most suitable number of rules.

3.3 Adaptive Type-2 Fuzzy Neural Network

Controller Design

Since the lumped uncertainty in (11) is unknown, assume

there is an optimal SOT2FNN controller u�SOT2FNN to

approximate the ideal controller u� tð Þ in (13)

u� tð Þ ¼ u�SOFT2NN w�; �w�;m�
j1;m

�
j2; r

�
j ; t

� �
þ eðtÞ ð33Þ

where eðtÞ denotes the approximation error, and

w�; �w�;m�
j1;m

�
j2andr

�
j are the optimal parameters of

w; �w;mj1andrj, respectively. However, the optimal con-

troller u�SOT2FNN cannot be obtained. Thus, an estimation

controller ûSOT2FNN can be designed to online estimate

u�SOT2FNN, and the overall controller can be designed as

û tð Þ ¼ ûSOT2FNN ŵ; �̂w; m̂J1; m̂J2; r̂j; t
� �

þ ûR tð Þ ð34Þ

where ûR is a robust compensation controller used to cope

with the approximation error between the estimation con-

troller ûSOT2FNN and the optimal controller u�SOT2FNN; and

ŵ; �̂w; m̂J1; m̂J2; r̂j; t are the estimation of w�; �w�;m�
j1;

m�
j2; r

�
j , respectively.

A sliding surface s(t) is defined as

s tð Þ,ke tð Þ þ k

Z t

0

ke sð Þds ð35Þ

Taking the derivative of (35) and using (11), (14) and

(34), yields

_s tð Þ ¼ _ke tð Þ þ kke tð Þ
¼ �f0 k; tð Þ � g0 xð Þ ûSOT2FNN tð Þ þ ûR tð Þð Þ þ _kd tð Þ
� k; tð Þ þ kkeðtÞ ð36Þ

Choosing a Lyapunov cost function as V1 s tð Þð Þ ¼1
2
s2 tð Þ,

take the derivative of the cost function _V1 s tð Þð Þ ¼ s tð Þ _s tð Þ.
The aim is to tune the parameter values ŵ; �̂w; m̂J1; m̂J2; r̂j
so _V1 s tð Þð Þ is minimized to achieve rapid convergence of

s tð Þ. Using the gradient descent method, the parameters of

type-2 fuzzy system can be updated by the following

equations:

ŵi t þ 1ð Þ ¼ ŵi tð Þ � ĝw
os tð Þ _s tð Þ

oŵi
ð37Þ

�̂wi t þ 1ð Þ ¼ �̂wi tð Þ � ĝw
os tð Þ _s tð Þ

o �̂wi
ð38Þ

m̂i
j1 t þ 1ð Þ ¼ m̂i

j1 tð Þ � ĝm
os tð Þ _s tð Þ
om̂i

j1

ð39Þ

m̂i
j2 t þ 1ð Þ ¼ m̂i

j2 tð Þ � ĝm
os tð Þ _s tð Þ
om̂i

j2

ð40Þ

r̂ij t þ 1ð Þ ¼ r̂ij tð Þ � ĝr
os tð Þ _s tð Þ

or̂ij
ð41Þ

where ĝw; ĝm; ĝr are the learning rates with positive num-

ber and they can be obtained by PSO algorithm, and the

detail of PSO will be presented in the following Sect. 3.4.

Using the chain rule, the derivation in (37)–(41) can be

expressed as follows:

os tð Þ _s tð Þ
oŵi

¼ os tð Þ _s tð Þ
oûSOT2FNN

oûSOT2FNN

oyl

oyl

oŵi

¼ � 1

2
g0 xð Þs tð Þ f ilPM

i¼1 f
i
l

ð42Þ

os tð Þ _s tð Þ
oŵi

¼ os tð Þ _s tð Þ
oûSOT2FNN

oûSOT2FNN

oyr

oyr

o �̂wi

¼ � 1

2
g0 xð Þs tð Þ f irPM

i¼1 f
i
r

ð43Þ

os tð Þ _s tð Þ
om̂i

j1

¼ 1

2

os tð Þ _s tð Þ
oûSOT2FNN

oyl

of il

of il
om̂i

j1

þ oyr

of ir

of ir
om̂i

j1

 !

¼ � 1

2
g0 xð Þs tð Þ wi � ylð ÞPM

i¼1 f
i
l

of il
om̂i

j1

þ �wi � yrð ÞPM
i¼1 f

i
r

of ir
om̂i

j1

 !

ð44Þ
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os tð Þ _s tð Þ
om̂i

j2

¼ 1

2

os tð Þ _s tð Þ
o�uSOT2FNN

oyl

of il

of il
om̂i

j2

þ oyr

of ir

of ir
om̂i

j2

 !

¼ � 1

2
g0 xð Þs tð Þ wi � ylð ÞPM

i¼1 f
i
l

of il
om̂i

j2

þ �wi � yrð ÞPM
i¼1 f

i
r

of ir
om̂i

j2

 !

ð45Þ

os tð Þ _s tð Þ
or̂ij

¼ 1

2

os tð Þ _s tð Þ
oûSOT2FNN

oyl

of il

of il
or̂ij

þ oyr

of ir

of ir
or̂ij

 !

¼ � 1

2
g0 xð Þs tð Þ wi � ylð ÞPM

i¼1 f
i
l

of il
or̂ij

þ �wi � yrð ÞPM
i¼1 f

i
r

of ir
or̂ij

 !

ð46Þ

The elements f il and f ir in (44, 45, 46) are f i or �f i

depending on (24) and (25). Considering both cases, obtain

of i

om̂i
j1

¼
of i

oli
j

oli
j

om̂i
j1

¼
f i �

xj � mi
j1

rij
� �2 ; xj [

mi
j1 þ mi

j2

2

0; otherwise

8><
>:

ð47Þ

o�f i

om̂i
j1

¼ o�f i

o�lij

o�lij
om̂i

j1

¼
�f i �

xj � mi
j1

rij
� �2 ; xj �mi

j1

0; otherwise

8><
>:

ð48Þ

o�f i

om̂i
j2

¼ o�f i

ol̂ij

ol̂ij
om̂i

j2

¼
�f i �

xj � mi
j2

rij
� �2 ; xj �

mi
j1 þ mi

j2

2

0; otherwise

8><
>:

ð49Þ

o�f i

om̂i
j2

¼ o�f i

o�lij

o�lij
om̂i

j2

¼
�f i �

xj � mi
j2

rij
� �2 ; xj [mi

j2

0; otherwise

8><
>:

ð50Þ

of i

or̂ij
¼

of i

ol̂ij

ol̂ij
or̂ij

¼

f i �
xj � mi

j2

� �2

rij
� �3 ; xj �

mi
j1 þ mi

j2

2

f i �
xj � mi

j1

� �2

rij
� �3 ; xj [

mi
j1 þ mi

j2

2

8>>>>>>>><
>>>>>>>>:

ð51Þ

o�f i

or̂ij
¼ o�f i

o�lij

o�lij
or̂ij

¼

�f i �
xj � mi

j1

� �2

rij
� �3 ; xj\mi

j1

�f i �
xj � mi

j2

� �2

rij
� �3 ; xj\mi

j2

0; otherwise

8>>>>>>>>>><
>>>>>>>>>>:

ð52Þ

3.4 The Particle Swarm Optimization (PSO) Algorithm

The PSO algorithm is shown in Fig. 5. At the beginning of

the off-line PSO algorithm, the swarm (np set value of

learning rates ĝw; ĝm; ĝr) are randomly initialized. Then,

apply each particle of swarm to SOT2FNN based on the

fitness function to obtain the best set values of the particle

(plBest q). After trying all set values, calculate the best

position of the swarm (glBest q) and update the new value for

each particle. Finally, the main loop will run again with the

new swarm until it reaches the fixed number of iterations.

The formula for the updating law is

plq nþ 1ð Þ ¼ plq nð Þ þ vlq nþ 1ð Þ ð53Þ

and

vlq nþ 1ð Þ ¼ vlq nð Þ þ c1 � rand �ð Þ � plBest q � plq nð Þ
h i

þ c2

� rand �ð Þ � glBest q � plq nð Þ
h i

ð54Þ

where vlq nð Þ and plq nð Þ are, respectively, the current

velocity and current position of the particle, rand(�) is a

random number in [0, 1]; c1 and c2 are the positive

acceleration factors related to the local and global infor-

mation, respectively, q ¼ 1; 2; . . .; np (np is the population

size) and l ¼ 1; 2; . . .; nd (nd is the dimension of each

particle). In this study, the fitness function is chosen based

on the root mean square error (RMSE) of the slip tracking

error.

The online PSO operation is the same as the off-line

PSO, with the only two small differences being the initial

value of the swarm and the running time in each epoch. In

the online PSO, the initial values of the swarm are setup

based on the best optimal value gotten from off-line PSO,

and the epoch time is short to response to the online real-

time application.

3.5 Robust Compensation Control

The robust compensation controller is designed to deal

with the effect of the approximation error in (33). Assume

this approximation error can be bounded by an uncertainty

bound E and 0� e tð Þ�E, where E is assumed to be a

constant during the observation. However, it is difficult to

know E precisely. Thus, an estimated value Ê tð Þ is used.

Define the estimation error of the uncertainty bound

Ê tð Þ ¼ E � Ê tð Þ ð55Þ

The robust compensation controller uR tð Þ is chosen as

uR tð Þ ¼ Ê tð Þsgn s tð Þð Þ ð56Þ
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Using some straightforward manipulation, the error

equation can be obtained

_s ¼ _ke tð Þ þ kke tð Þ ¼ e tð Þ � uR tð Þ ð57Þ

Define a Lyapunov function as

V2 s tð Þ; ~E tð Þ
� �

¼ 1

2
s2 tð Þ þ

~E2 tð Þ
2gD

ð58Þ

where gD is the learning rate of Ê.

Take the derivative of (58) and use (56), (57), then

_V2 s tð Þ; ~E tð Þ
� �

¼ s tð Þ _s tð Þ þ
~E tð Þ _~E tð Þ

gD

¼ s tð Þ e tð Þ � uR tð Þð Þ þ
~E tð Þ _~E tð Þ

gD

¼ s tð Þe tð Þ � Ê tð Þ s tð Þj j þ
~E tð Þ _~E tð Þ

gD

ð59Þ

If the adaptive law for E is chosen as (56) and since E is

a constant, so _~E tð Þ ¼ � _̂
E tð Þ. Then (59) can be rewritten as

_V2 s tð Þ; ~E tð Þ
� �

¼ s tð Þe tð Þ � Ê tð Þ s tð Þj j � E � Ê tð Þ
� �

s tð Þj j
¼ s tð Þe tð Þ � E s tð Þj j � s tð Þj j e tð Þj j � E s tð Þj j
¼ � s tð Þj j E � e tð Þj jð Þ� 0

ð60Þ

Since _V2 s tð Þ; ~E tð Þ
� �

is negative semidefinite, that is

V2 s tð Þ; ~E tð Þ
� �

�V s 0ð Þ; ~E 0ð Þ
� �

, it implies s(t) and ~E tð Þ are

bounded. Let the function X � E � e tð Þð Þs� E � e tð Þj jð Þ
sj j � � _V2 s tð Þ; ~E tð Þ

� �
and integrate X tð Þ with respect to

time, then it is easy to obtain

Z t

0

X sð Þds�V2 s 0ð Þ; ~E 0ð Þ
� �

� V2 s tð Þ; ~E tð Þ
� �

ð61Þ

Since V2 s 0ð Þ; ~E 0ð Þ
� �

is bounded, and V2 s tð Þ; ~E tð Þ
� �

is

non-increasing and bounded, so from (61) it is obtained

lim
t!1

Z t

0

X sð Þds\1: ð62Þ

Also, _X sð Þ is bounded, so by Barbalat’s lemma [41],

lim
t!1

X ¼ 0. That is, s tð Þ ! 0 as t ! 1. As a result, the

PSO-SOT2FNN control system can achieve robust tracking

performance.

4 Simulation Results

This section describes the simulation results of ABS con-

trol under different road conditions. The parameters of

ABS, the initial conditions and the slip command are

chosen to be the same as in [3, 6], which is shown in

Table 1. Figure 1 clearly shows for different road condi-

tions that the maximal value of the tractive forces is near

20%, so the value kc tð Þ is chosen as 0.2. After the transition

Fig. 6 Membership function for SOT2FNN

Table 1 Model parameters of

ABS
Parameter Value

Mv kgð Þ 4� 342

Bv Nsð Þ 6

Jw Nm s2ð Þ 1.13

Rw mð Þ 0.33

Bw Nsð Þ 4

g m/s2
� �

9.8

Fig. 5 Flowchart of PSO
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equation _kd tð Þ ¼ �10kd tð Þ þ 10kc tð Þ, the desired slip tra-

jectory kd tð Þ can be obtained. The maximum braking tor-

que is limited to 1200 N-m. The velocity of a vehicle and

(a)

(b)

(c)

Fig. 9 Using online PSO update learning rates for a dry asphalt road:

(a) Update learning rates for the weights, (b) Update learning rates for
the variances, (c) Update learning rates for the means

(a)

(b)

(c)

(d)

Fig. 10 Simulation result of SOT2FNN control ABS for an icy road:

(a) The angular velocity of the wheel and the vehicle, (b) Control
force, (c) Reference model response and ABS response, (d) Number

of the rule
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(a)

(b)

(c)

(d)

Fig. 8 Simulation result of PSO-SOT2FNN control ABS for a dry

asphalt road: (a) The angular velocity of the wheel and the vehicle,

(b) Control force, (c) Reference model response and ABS response,

(d) Number of the rule

(a)

(b)

(c)

(d)

Fig. 7 Simulation result of SOT2FNN control ABS for a dry asphalt

road: (a) The angular velocity of the wheel and the vehicle,

(b) Control force, (c) Reference model response and ABS response,

(d) Number of the rule
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its wheel reaches almost zero at low speed, which means

the magnitude of the slip tends to infinity as vehicle speed

approaches zero. Therefore, effective control is applied

until the vehicle slows to 5 m/s. To conduct the simula-

tions, consider the braking action occurring when the

vehicle is moving at a velocity of 25 and 12.5 m/s on an

asphalt road and icy road, respectively.

To demonstrate the effectiveness of the PSO algorithm,

the simulation results of SOT2FNN and PSO-SOT2FNN

are conducted for three different road conditions. The

parameters for PSO are np = 20, nd = 3, c1 = c2 = 0.07.

(a)

(b)

(c)

(d)

Fig. 13 Simulation result of SOT2FNN control ABS for wet asphalt

road to icy road: (a) The angular velocity of the wheel and the

vehicle, (b) Control force, (c) Reference model response and ABS

response, (d) Number of the rule

Table 2 Comparison of the RMSE of the slip tracking error

Case 1 Case 2 Case 3

NN hybrid control [6] 0.0049 0.0173 0.0168

Intelligent hybrid control [8] 0.0005 0.0023 0.0010

PID-fuzzy [5] 0.0006 0.0028 0.0017

SOT2FNN 0.00034 0.00025 0.00096

PSO-SOT2FNN 0.00032 0.00021 0.00094

Case 1: dry asphalt road, case 2: icy road, case 3: wet asphalt road to

icy road
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Fig. 11 Simulation result of PSO-SOT2FNN control ABS for an icy road:

(a) The angular velocity of the wheel and the vehicle, (b) Control force,
(c) Reference model response and ABS response, (d) Number of the rule

(a)

(b)

(c)

Fig. 12 Using online PSO update learning rates for an icy road:

(a) Update learning rates for the weights, (b) Update learning rates for
the variances, (c) Update learning rates for the means
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The initial Gaussian membership functions are shown in

Fig. 6. The ABS simulations for the dry asphalt road and icy

road are shown in Figs. 7, 8, 10 and 11, respectively. The

simulation results for the transition from a wet asphalt road

to an icy road are shown in Figs. 13 and 14. In all figures,

part (a) shows the angular velocity of the wheel and the

vehicle, part (b) is the control force, part (c) shows the

reference model response and the ABS response and part

(d) is the change of the rule number. Figures 9, 12 and 15

show the change of the learning rates. From these figures, it

is obvious for all road conditions the PSO-SOT2FNN

control system can rapidly achieve satisfactory control

performance with small RMSE. Figures 7, 10 and 13 show

without suitable learning rates that it will lead to many

chattering in the control effort and the number of the rule

used will be frequently changed. With the online PSO

algorithm for updating learning rates, the simulation results

in Figs. 8, 11 and 14 show the ability of PSO-SOT2FNN for

achieving favorable control performance. Finally, in the

same conditions, Table 2 shows the comparison results of

RMSE of slip tracking error between the proposed control

method and the methods in [5, 6, 8]. This also demonstrates

the superiority of the proposed PSO-SOT2FNN over the

other control methods (Figs. 8, 11 and 14).

In our research, the off-line PSO is trained as 500 epochs

with 20 sets of learning rates. For case 1, the total elapsed

time is 0.395 s and the total time for training is 1.097 h. For

case 2, the total elapsed time is 0.682 s and the total time for

training is 1.896 h. For case 3, the total elapsed time is

0.948 s and the total time for training is 2.635 h. After off-

line training, for the real-time online control, the computing

time is 0.000906 and 0.001236 s, respectively, for

SOT2FNN and PSO-SOT2FNN at each control iteration.

The simulations were done on Windows 7 64-bit and the

processor is Core i5-4460 3.2 GHz, RAM 8 GB.

5 Conclusion

In this study, a PSO-SOT2FNN controller combined with a

robust compensation controller is proposed to control an

ABS, with the performance of the control system being

illustrated under various road conditions. The major fea-

tures of this study include the development of a PSO-

SOT2FNN controller with parameter adaptive laws, the

PSO algorithm for the relevant learning rates, the effective

self-organizing algorithm for suitable construction of

IT2FNN and the stability analysis of the control system.

The simulation results of ABS control have shown the

superiority of the proposed control method than the other

control methods. The proposed control method can also be

suitable for a large class of unknown nonlinear systems,

since this design algorithm does not need to know the exact

model of controlled systems. Applying the developed

control algorithm to real systems will be our future work.

(a)

(b)

(c)

Fig. 15 Using online PSO update learning rates for a wet asphalt road

to icy road: (a) Update learning rates for the weights, (b) Update

learning rates for the variances, (c) Update learning rates for the means
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Fig. 14 Simulation result of PSO-SOT2FNN control ABS for wet

asphalt road to icy road: (a) The angular velocity of the wheel and the

vehicle, (b) Control force, (c) Reference model response and ABS

response, (d) Number of the rule
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