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Abstract By using the adaptive backstepping technique, a

novel adaptive fuzzy backstepping control scheme is pro-

posed for the nonlinear pure-feedback systems with

external disturbance and unknown dead zone output in this

paper. The proposed control scheme not only guarantees

that all the signals in the closed-loop system are semi-

globally bounded, but also makes the tracking error con-

verge to a small neighborhood of the origin by suit-

able choice of design parameters. Fuzzy logic systems are

utilized to approximate the unknown nonlinear functions.

The primary characteristic of this thesis is that the

unknown dead zone output nonlinearity and external dis-

turbance of pure-feedback systems is introduced. Finally,

an instance is used to prove the superiority of scheme.

Keywords Dead zone output � Pure-feedback � Young’s

inequality � Adaptive fuzzy backstepping control

1 Introduction

By applying the universal approximation property [1–4],

amounts of adaptive fuzzy control schemes have been

investigated and significant advances have been obtained in

nonlinear systems [5–12]. In the past few decades, the

combination of backstepping technique and fuzzy logic

system for adaptive control of strict-feedback nonlinear

systems got rapid development and research [8–13]. There

is no doubt the controllers ensure all the signals which are

bounded in [1–14]. However, all the aforementioned works

do neglect the existence of nonsmooth nonlinearities, for

instance, dead zone and backlash [14] which generally

exist in a lot of practical systems.

As is well known, dead zone in many components of

control systems is the crucial non-smooth nonlinearities in

lots of industrial projects which have gravely deteriorated

the system performance, on account of the characteristics

of dead zone nonlinearity in actuators are poorly known. A

typical dead zone example is dry friction in electrome-

chanical systems [15]. Some scholars directly adopt the

most straightforward approach to deal with dead zone

nonlinearities by utilizing their inverses based on [16, 17].

Although the above method reduces difficult coefficient of

the tracking deviation significantly, the model of dead zone

is a simplification for physical properties.

To cope with discrete-time plants with unknown dead

zone output, some scholars introduce a novel structure of

controller. By [18] the new adaptive control schemes keep

the closed-loop signal bounded even if the slopes of the

dead zone are unequal. Recently, an adaptive fuzzy back-

stepping controller which does not construct the dead zone

inverse is applied to solve the problem of the nonlinear

systems with dead zone and dynamics, see [18, 19]. A

novel smooth inverse model was proposed which
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compensates the impact of dead zone in controller design

instead of applying traditional nonsmooth input models to

describe output dead zone in [20, 21]. The large-scale

nonlinear system and unified stochastic nonlinear inter-

connected systems have been discussed in depth by some

researchers in [22, 23]. Nonlinear systems with dead zone

input have been attracting a lot of attention in the adaptive

fuzzy control community since few decades ago, numerous

professors have dedicated endeavor to enhance the prop-

erty of nonlinear systems with dead zone at the input in

[24–28]. However, there are few research on the output

nonlinearity. The recursive least squares (RLS) algorithm

can be used to avoid constructing dead zone model in

sensors, see [29].

By applying a Nussbaum function and an input-driven

filter, the nonlinearity in the output mechanism is resolved

in [30]. However, the schemes are not suitable for more

universal systems. In addition, a novel smooth model is

introduced to deal with dead zone in [31]. A number of

gratifying results have been obtained to the above systems

by applying the backstepping technique and the fuzzy logic

systems (FLS); however, a few schemes are usable for

working out pure-feedback control of nonlinear systems

which represents a class of more ordinary systems [32]. It

is shown that the mentioned pure-feedback control of

nonlinear systems has no affine appearance of variables

[33]. Other related research literatures on adaptive fuzzy

output-feedback control, see [34–37].

In this paper, the tracking control issue of pure-feedback

nonlinear systems with external disturbance and unknown

dead zone output is researched. We will think about the

adaptive control for nonlinear pure-feedback systems with

uncertain nonlinearity and unknown dead zone output,

which is a challenging and significant work. In this

research, we have the following assumption. The virtual

control signal and the actual control must be independent

of the variables xi in order to guarantee the controllers

gainable. The primary contributions of this paper are that:

(1) The tracking control problem of pure-feedback

nonlinear systems with external disturbance and unknown

dead zone output is investigated, firstly. On account of the

mean value theorem, the non-affine problem is solved.

(2) It is worth noticing that the pure-feedback systems

synchronously take the external disturbance and unknown

dead zone output into account, comparing with the now

available results on pure-feedback issue. In addition, the

adaptive fuzzy controller ensures all the signals are boun-

ded in the closed-loop system and the system output con-

verges to a small neighborhood of the initial signal.

The preparatory work is introduced, firstly. A new

adaptive fuzzy control design is proposed in Sect. 3. In

Sect. 4, the simulation examples are provided to prove the

superiority of the scheme.

2 Problem Formulation and Preliminaries

The nonlinear pure-feedback system is given as:

_xi ¼ fið�xi; xiþ1Þ þ wiðtÞ; i ¼ 1; 2; . . .; n� 1

_xn ¼ fnð�xn; uÞ þ wnðtÞ;
y ¼ vðx1Þ

8
><

>:
ð2:1Þ

where �xi ¼ ½x1; x2; . . .; xi� 2 Ri is called the state variable,

and fið�Þ are unknown smooth functions, wiðtÞ is the

unknown external disturbance, u 2 R is called the input of

the system , y 2 R is called the output of the system which

is the directly measurable variable. It is assumed that x1ðtÞ
are immeasurable, but x2ðtÞ; . . .; xnðtÞ are measurable

variables.

The unknown dead zone output vðx1Þ is considered as

the following form:

y ¼ vðx1Þ ¼
prðx1Þ; x1 � hr

0; hr � x1 � hl

plðx1Þ; x1 � hl

8
><

>:
ð2:2Þ

where the unknown parameters hr \ 0 and hl [ 0 and

prðx1Þ and plðx1Þ are unknown nonlinear terms.

Remark 1 Literatures [29, 31–35] discussed the issue of

adaptive control of nonlinear non-affine pure-feedback

systems, which is more general than the previous systems.

Applying the mean value theorem (see [35]), the non-

affine functions in (2.1) is rewritten as

fið�xi;xiþ1Þ� fið�xi;x0
iþ1Þ¼ við�xi;1iÞðxiþ1�x0

iþ1Þ; i¼1;2; . . .;n

ð2:3Þ

where ðx0
1;x

0
2; . . .;x

0
n;u

0ÞT is an operating point of interest,

xnþ1 ¼u, x0
nþ1 ¼u0 and 1i is some point between x0

iþ1 and

xiþ1. Substituting (2.3) into (2.1), the system dynamics

have the following form:

_xi ¼ við�xi; 1iÞðxiþ1 � x0
iþ1Þ þ fið�xi; x0

iþ1Þ þ wiðtÞ; i ¼ 1; 2; . . .; n� 1

_xn ¼ vnð�xn; 1nÞðu� u0Þ þ fið�xn; u0Þ þ wnðtÞ;
y ¼ vðx1Þ

8
<

:

ð2:4Þ

A fuzzy logic system is applied to approximate a contin-

uous function f(x) on some compact set X (see[20]). Adopt

the singleton fuzzifier, the product inference, and the cen-

ter-average defuzzifier to conclude the following fuzzy

rules:

Ri: If x1 is Fi
1 and . . . and xn is Fi

n. Then y is Gi,

i ¼ 1; 2; . . .;N.

�xn ¼ ½x1; x2; . . .; xn� 2 Rn is the input of the fuzzy system

and y 2 R is the fuzzy system output, Fi
j and Gi are the

fuzzy sets in R. N is the amount of the rules. By the above
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discussion, it is not hard to obtain the output of the fuzzy

system:

yðxÞ ¼
PN

i¼ 1Ui

Qn
j¼ 1lF

i
jðxjÞ

PN
i¼ 1

Qn
j¼ 1lF

i
jðxjÞ

h i

where

Ui ¼ max
y2R

lGiðyÞ; U ¼ ðU1;U2; . . .;UNÞT :

Let

GiðxÞ ¼
Qn

j¼ 1lF
i
jðxjÞ

PN
i¼ 1

Qn
j¼ 1lF

i
jðxjÞ

h i ;

GðxÞ ¼ ðG1ðxÞ;G2ðxÞ; . . .;GNðxÞÞT ;

then

yðxÞ ¼ UTGðxÞ:

For the sake of proofing the main results, some lemmas and

assumptions will be introduced.

Lemma 1 (see[5]): By applying FLS theory, we introduce

a continuous function f(x) on a compact set X.

sup
x2X

f ðxÞ � UTPðxÞ
�
�

�
�� e; 8e [ 0:

Lemma 2 (see[29]): We can find a smooth function

Cð�Þ[ 0 and an unknown term C0 2 R such that

f1ðx1; x
0
2Þ

�
�

�
��C jyjð Þ þ C0:

Remark 2 Due to x1 is not accessible for measurement,

how to build the relationship between the unknown func-

tion f1ðx1; x
0
2Þ and the output y is a crux to construct a

backstepping design method for (2.1). Because of

Lemma 2, the difficulty of x1 unavailable is overcome. As

a result, the following intermediate signal ai and the actual

controlu are independent of the variable x1.

Assumption 1 (see[8]): The reference signal y0 has nth-

order time derivatives which are continuous and bounded.

Assumption 2 (see[34]): The sign of við�xi; xiþ1Þ does not

change. cm and cM are unknown constants such that

0\cm\ við�xi; xiþ1Þj j\cM\1;

8ð�xi; xiþ1Þ 2 Ri � R; i ¼ 1; . . .; n;

according to the needs of this thesis, it is further assumed

that the signs við�xi; xiþ1Þ� cm. In addition, the constants cm
and cM are unknown.

Assumption 3 (see[5]): It is assumed that there are

known parameters �piði ¼ 1; 2; . . .; nÞ, satisfying

wiðtÞj j � �pi:

Assumption 4 (see[32]): It is assumed that there are

unknown positive constants bM such that

jv0 ðx1Þj ¼ j dvðzÞ
dz

jz¼x1
j � bM; 8x1 2 R:

For simplicity of our discussion, we give the following

definitions.

Definition 1 (see[30]): HðuÞ is a Nussbaum-type func-

tion such that:

lim
a!þ1

sup
1

a

Z a

0

HðuÞdu ¼ þ1;

lim
a!�1

inf
1

a

Z a

0

HðuÞdu ¼ �1:

We can list the functions which meet the definition, such

as u2 cosðuÞ, u2 sinðuÞ, expðu2Þ cosðuÞ.

Lemma 3 (see[31]): Vð�Þ and uð�Þ are the smooth func-

tions, Hð�Þ is a smooth Nussbaum-type function. Then we

have:

0�VðtÞ�b0þ
Z t

0

ðqðxðsÞÞHðuÞþ1Þ _ue�b1ðt�sÞds;8t2½0;tf Þ;

ð2:5Þ

where b0 and b1 � 0 are suitable constant, qðxðsÞÞ is a
time-varying parameter that takes values in I ¼ ½l�; lþ�
with 0 62 I, V(t), uðtÞ,

R t
0
ðqðxðsÞÞHðuÞ þ 1Þ _uds are boun-

ded on ½0; tf Þ.

3 The Design of Adaptive Fuzzy Control and Its
Stability Analysis

In order to develop the n step backstepping approach, we

make the following state transformation:

x1 ¼ y� y0;

xi ¼ xi � ai�1; i ¼ 2; . . .; n;
ð3:1Þ

where ai is an intermediate control that is determined up to

the ith step.

We define a constant before developing a backstepping-

based design procedure,

g ¼ maxfkhik2; i ¼ 0; 1; 2; . . .; ng;

khik is unknown, so g is an unknown positive constant. ĝ is

the estimate of g, and ~g ¼ g� ĝ. According to the work in

[8], it is straightforward to obtain that if ĝð0Þ � 0, then

ĝðtÞ � 0, 8t � 0.

Step 1: Think about the Lyapunov function candidate

V1 ¼ x2
1

2
þ ~g2

2r
; ð3:2Þ
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where r is a design parameter.

The time derivative of V1 is

_V1 ¼ x1 _x1 �
~g
r
_̂g; ð3:3Þ

x1 _x1 ¼ x1 v0ðx1Þðv1ð�x1; 11Þðx2 � x0
2Þ

�

þ f1ð�x1; x
0
2Þ þ w1ðtÞÞ � _yo�

¼ x1 q1x2v1ðx1; 11Þ þ q1a1v1ðx1; 11Þ½
�q1x

0
2v1ðx1; 11Þ þ q1f1ðx1; x

0
2Þ þ q1w1ðtÞ � _yo�;

ð3:4Þ

where q1 ¼ v0ðx1Þ; jq1j � bM:

To deal with the issue that q1 is varying, the first virtual

control law is constructed by introducing an even Nuss-

baum-type function HðuÞ.
a1 ¼ �HðuÞ�a1; ð3:5Þ

where �a1 is the auxiliary virtual controller and HðuÞ is a

Nussbaum-type function such that

HðuÞ ¼ u2 cosðuÞ; _u ¼ �c�a1x1g1;

where c[ 0 is a parameter.

Through the forementioned discussion, we have

x1q1a1v1ðx1; 11Þ ¼ �x1q1HðuÞ�a1v1ðx1; 11Þ
� x1�a1v1ðx1; 11Þ þ x1�a1v1ðx1; 11Þ

¼ �x1v1ðx1; 11Þðq1HðuÞ þ 1Þ�a1

þ x1v1ðx1; 11Þ�a1: ð3:6Þ

By using Young’s inequality, Assumptions 3, 4 and

Lemma 2, we can obtain the following inequalities:

x1q1w1ðtÞ�
b2
M �p2

1x
2
1

2a2
1

þ a2
1

2
;

x1q1f1ðx1; x
0
2Þ� jx1jðCðjyjÞ þ C0Þ

ð3:7Þ

� b2
MC

2ðjyjÞx2
1

2b2
1

þ b2
MC

2
0x

2
1

2b2
1

þ b2
1; ð3:8Þ

where a1 and b1 are arbitrary positive constants.

Based on (3.6, 3.7, 3.8 and 3.4), one has

x1 _x1 �x1ðq1x2v1ðx1; 11Þ þ v1ðx1; 11Þð�a1 � x0
2Þ þ �l1Þ

þ 1

c
ðq1HðuÞ þ 1Þ _uþ a2

1

2
þ b2

1; ð3:9Þ

where �l1 ¼ b2
M �p2

1x
2
1

2a2
1

þ b2
MC

2ðjyjÞx2
1

2b2
1

þ b2
MC

2
0x

2
1

2b2
1

� _yo.

Because of Lemma 1, there is a fuzzy logic system

hT1G1ðX1Þ such that

�l1 ¼ hT1G1ðX1Þ þ d1ðX1Þ; jd1ðX1Þj � e1; 8e1 [ 0;

where X1 ¼ ðy; yo; _yoÞ.
It can be shown that:

x1
�l1 �

g

2c2
1

x2
1G

T
1 ðX1ÞG1ðX1Þ þ

c2
1

2
þ x2

1

2
þ e2

1

2
; ð3:10Þ

where c1 is a parameter.

Through the above discussion, we select the auxiliary

virtual controller as follows:

�a1 ¼ �c�1
M h1 þ

1

2

� �

x1 �
ĝ

2c2
1

x1G
T
1 ðX1ÞG1ðX1Þ

� �

þ x0
2;

ð3:11Þ

where h1 [ 0 is a design constant.

Substituting (3.10 and 3.11) into (3.9), we will obtain

x1 _x1 � � h1x
2
1 þ

ĝ

2c2
1

x2
1P

T
1 ðX1ÞP1ðX1Þ þ x1q1x2cM

þ 1

c
ðq1HðuÞ þ 1Þ _uþ a2

1

2
þ b2

1 þ
c2

1

2
þ e2

1

2
: ð3:12Þ

Combing (3.3) with (3.12), the time derivative of V1 has

the following form:

_V1 � q1x1x2cM � h1x
2
1 þ

1

c
q1HðuÞ þ 1ð Þ _uþ p1

� ~g
r

_̂g� r

2c2
1

x2
1G

T
1 ðX1ÞG1ðX1Þ

� �

; ð3:13Þ

where p1 ¼ a2
1

2
þ b2

1 þ
c2

1

2
þ e2

1

2
.

Step 2: Select the Lyapunov function candidate as

V2 ¼ V1 þ
1

2
x2

2; ð3:14Þ

Similarly to step 1, it is also easy to see that the time

derivative of V2,

_V2 ¼ _V1 þ x2ðv2ð�x2; 12Þx3 þ v2ð�x2; 12Þða2 � x0
3Þ

þ f2ð�x2; x
0
3Þ þ w2ðtÞ � _a1Þ; ð3:15Þ

where

_a1 ¼ oa1

oy
q1ðv1ð�x1; 11Þðx2 � x0

2Þ þ f1ð�x1; x
0
2Þ þ w1ðtÞÞ

þ oa1

o _yo
€yo �

oa1

ou
cx1�a1v1ðx1; 11Þ þ

oa1

oĝ
_̂g: ð3:16Þ

By applying Assumptions 2, 3 and 4, Lemma 2 and Young’s

inequality, the following inequalities are viewed as :

�x2

oa1

oy
q1w1ðtÞ�

b2
M �p2

1x
2
2

2a2
2

oa1

oy

� �2

þ a2
2

2
; ð3:17Þ

� x2

oa1

oy
q1f1ðx1; x

0
2Þ�

b2
MC

2ðjyjÞx2
2

2b2
1

oa1

oy

� �2

þ b2
MC

2
0x

2
2

2b2
2

oa1

oy

� �2

þb2
2;

ð3:18Þ
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q1x1x2v1ðx1; 11Þ�
c2
Mb

2
Mx

2
1x

2
2

2k2
0

þ k2
0

2
; ð3:19Þ

�x2

oa1

oy
q1x2v1ðx1; 11Þ�

b2
Mc

2
Mx

2
2x

2
2

2e2
2

oa1

oy

� �2

þ e2
2

2
;

ð3:20Þ

x2

oa1

oy
q1x

0
2v1ðx1; 11Þ�

b2
Mc

2
Mx

2
2x

0
2

2

2m2
2

oa1

oy

� �2

þm2
2

2
;

ð3:21Þ

where a2, b2, k0, e2 and m2 are arbitrary positive constants.

Substituting (3.17, 3.18, 3.19, 3.20, 3.21) into (3.15)

yields

_V2 � � h1x
2
1 þ

1

c
q1HðuÞ þ 1ð Þ _uþ p1

� ~g
r

_̂g� r

2c2
1

x2
1G

T
1 ðX1ÞG1ðX1Þ

� �

þ a2
2

2
þ b2

2 þ
k2

0

2
þ e2

2

2

þ m2
2

2
þ x2 x3v2ð�x2; 12Þ þ a2v2ð�x2; 12Þ þ �l2 þ u2ðX2Þ �

oa1

oĝ
_̂g

� �

;

ð3:22Þ

where

�l2 ¼� u2ðX2Þ þ
b2
M �p2

1x2

2a2
2

oa1

oy

� �

þ b2
MC

2ðjyjÞx2

2b2
1

oa1

oy

� �2

þ b2
MC

2
0x2

2b2
2

oa1

oy

� �2

þ c2
Mb

2
Mx

2
1x2

2k2
0

� oa1

oyo
_yo

þ b2
Mc

2
Mx

2
2x

0
2

2

2m2
2

oa1

oy

� �2

þ b2
Mc

2
Mx2x

2
2

2e2
2

oa1

oy

� �2

� oa1

o _yo
€yo

þ oa1

ou
cx1�a1v1ðx1; 11Þ þ f2ð�x2; x

0
3Þ þ w2ðtÞ;

with

u2ðX2Þ ¼ �h0ĝ
oa1

oĝ
� x2

r

2c2

x2

oa1

oĝ

�
�
�
�

�
�
�
�

þ r

2c2

oa1

oĝ
x2

1G
T
1 ðX1ÞG1ðX1Þ;

ð3:23Þ

where a0; c2 are positive design parameters.

Similarly to the discussion of (3.10), one has

�l2 ¼ hT2G2ðX2Þ þ d2ðX2Þ; d2ðX2Þj j � e2; ð3:24Þ

where X2 ¼ ðy; yo; _yo; €yo; x2; ĝ; qÞ.
It is means that the following inequalities

x2
�l2 �

g

2c2
2

x2
2G

T
2 ðX2ÞG2ðX2Þ þ

c2
2

2
þ x2

2

2
þ e2

2

2
; ð3:25Þ

can be obtained, where c2 is a parameter.

Similarly to (3.11), we have

a2ðX2Þ

¼ �c�1
M h2 þ

1

2

� �

x2 �
ĝ

2c2
2

x2G
T
2 ðX2ÞG2ðX2Þ

� �

þ x0
3;

ð3:26Þ

where h2 is a positive design constant.

Combing (3.15) and (3.23, 3.24, 3.25, 3.26) with (3.22),

the time derivative of V2 has the following form:

_V2 � �
X2

i¼ 1

hix
2
i þ x2x3cM þ 1

c
q1HðuÞ þ 1ð Þ _u

þ x2 u2ðX2Þ �
oa1

oĝ
_̂g

� �

� ~g
r

_̂g�
X2

i¼ 1

r

2c2
i

x2
i G

T
i ðXiÞGiðXiÞ

 !

þ p2;

ð3:27Þ

where p2 ¼ p1 þ
a2

2

2
þ b2

2 þ
c2

2

2
þ k2

0

2
þ m2

2

2
þ e2

2

2
þ e2

2

2
.

Step i : Select the Lyapunov function candidate as

Vi ¼ Vi�1 þ
1

2
x2

i ; ð3� i\nÞ ð3:28Þ

similar to the discussion in Step 2, the time derivative of Vi

is shown as the following form:

_Vi ¼ _Vi�1 þ xi við�xi; 1iÞxiþ1 þ við�xi; 1iÞ ai � x0
iþ1

� 	�

þ fi �xi; x
0
iþ1

� 	
þ wiðtÞ � _ai�1Þ

ð3:29Þ

where

_ai�1 ¼ � oai�1

ou
cx1�a1v1ðx; 11Þ þ

oai�1

oĝ
_̂g

þ oai�1

oy
q1 v1ðx1; 11Þðx2 � x0

2Þ þ f1ðx1; x
0
2Þ þ w1ðtÞ

� 	

þ
Xi�1

j¼ 2

oai�1

oxj
vjð�xj; 1jÞðxjþ1 � x0

jþ1Þ



þ fjð�xj; x0
jþ1Þ þ wjðtÞÞ þ

Xi

j¼ 1

oai�1

oy
j�1
o

y j
o: ð3:30Þ

Similar to the analysis of (3.17, 3.18, 3.20) and (3.21), we

can obtain the following inequalities:

�xi

oai�1

oy
q1w1ðtÞ�

b2
M �p2

1x
2
i

2a2
i

oai�1

oy

� �2

þ a2
i

2
; ð3:31Þ

�xi

oai�1

oy
q1f1ðx1; x

0
2Þ�

b2
MC

2ðjyjÞx2
i

2b2
i

oai�1

oy

� �2

þ b2
MC

2
0x

2
i

2b2
i

oai�1

oy

� �2

þb2
i ;

ð3:32Þ
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�xi

oai�1

oy
q1x2v1ðx1; 11Þ�

b2
Mc

2
Mx

2
i x

2
2

2e2
i

oai�1

oy

� �2

þ e2
i

2
;

ð3:33Þ

xi

oai�1

oy
q1x

0
2v1ðx1; 11Þ�

b2
Mc

2
Mx

2
i x

2
2

2m2
i

oai�1

oy

� �2

þm2
i

2
;

ð3:34Þ

where ai, bi, ei and mi are arbitrary positive constants.

We take the same way in Step 2, then

_Vi � �
Xi�1

j¼ 1

hjx
2
j þ

1

c
q1HðuÞ þ 1ð Þ _uþ pi�1

� ~g
r

_̂g�
Xi�1

j¼ 1

r

2c2
j

x2
j G

T
j ðXjÞGjðX1Þ

 !

þ xi

�

xiþ1við�xi; 1iÞ þ við�xi; 1iÞðai � x0
iþ1Þ

þ�li þ uiðXiÞ �
oai�1

oĝ
_̂g:

�

þ a2
i

2
þ b2

i þ
m2

i

2
þ e2

i

2
;

ð3:35Þ

where

�li ¼ � uiðXiÞ þ
b2
M �p2

1xi

2a2
i

oai�1

oy

� �

þ b2
MC

2ðjyjÞxi

2b2
i

oai�1

oy

� �2

þ b2
MC

2
0xi

2b2
i

oai�1

oy

� �2

þ b2
Mc

2
Mxix

2
i

2e2
i

oai�1

oy

� �2

þ b2
Mc

2
Mx

2
i x

2
2

2m2
i

oai�1

oy

� �2

�
Xi

j¼ 1

oai�1

oy
ðj�1Þ
o

yðjÞo

þ oai�1

ou
cx1�a1v1ðx1; 11Þ

þ
Xi�1

j¼ 2

oai�1

oxj
vjð�xj; 1jÞðxjþ1 � x0

jþ1Þ þ fjð�xj; x0
jþ1Þ þ wjðtÞ


 �

þ wiðtÞ þ fið�xi; x0
iþ1Þ þ xixiþ1við�xi; 1iÞ;

with

uiðXiÞ ¼ �h0ĝ
oai�1

oĝ
�
Xi

j¼ 2

xi

r

2ci
xj

oai�1

oĝ

�
�
�
�

�
�
�
�

þ
Xi�1

j¼ 1

r

2ci

oai�1

oĝ
x2

j G
T
j ðXjÞGjðXjÞ;

ð3:36Þ

where ci are positive design parameters.

From (3.24), there is a fuzzy logic system hTi GiðXiÞ; it

satisfies

�li ¼ hTi GiðXiÞ þ diðXiÞ; jdiðXiÞj � ei; ð3:37Þ

where Xi ¼ ðy; �yio; x2; . . .; xi; ĝ; qÞ.
We can prove

xi
�li �

g

2c2
i

x2
i G

T
i ðXiÞGiðXiÞ þ

c2
i

2
þ x2

i

2
þ e2

i

2
; ð3:38Þ

where ci is a parameter.

Similarly to (3.11), we have

aiðXiÞ ¼ �c�1
M fðhi þ

1

2
Þxi �

ĝ
2c2

i

xiG
T
i ðXiÞGiðXiÞg þ x0

iþ1;

ð3:39Þ

where hi [ 0 is a design constant.

Combing (3.36, 3.37, 3.38, 3.39) with (3.35):

_Vi��
Xi

j¼1

hjx
2
j þ

1

c
ðq1HðuÞþ1Þ _uþ

Xi

j¼2

xj ujðXjÞ�
oaj�1

oĝ
_̂g

� �

�~g
r

_̂g�
Xi

j¼1

r

2c2
j

x2
j G

T
j ðXjÞGjðXjÞ

 !

þpiþxixiþ1cM;

ð3:40Þ

where pi ¼ pi�1 þ
a2
i

2
þ b2

i þ
c2
i

2
þ e2

i

2
þ m2

i

2
þ e2

i

2
:

Step n: Select the Lyapunov function candidate as

Vn ¼ Vn�1 þ
1

2
x2

n: ð3:41Þ

Similarly,

_Vn ¼ _Vn�1þxn vnð�xn;1nÞðu�u0Þþ fið�xn;u0ÞþwnðtÞ� _an�1

� 	

ð3:42Þ

where

_an�1 ¼ � oan�1

ou
cx1�a1v1ðx; 11Þ þ

oan�1

oĝ
_̂g

þ oan�1

oy
q1 v1ðx1; 11Þðx2 � x0

2Þ þ f1ðx1; x
0
2Þ þw1ðtÞ

� 	

þ
Xn�1

i¼2

oan�1

oxi
við�xi; 1iÞðxiþ1 � x0

iþ1Þ
�

þ fið�xi;x0
iþ1Þ þwiðtÞÞ þ

Xn

i¼1

oan�1

oyi�1
o

yio: ð3:43Þ

Based on the above discussion, taking (3.31, 3.32, 3.33,

3.34) with i ¼ n into account that

�xn

oan�1

oy
q1w1ðtÞ�

b2
M �p2

1x
2
n

2a2
n

oan�1

oy

� �2

þ a2
n

2
; ð3:44Þ

�xn

oan�1

oy
q1f1ðx1; x

0
2Þ�

b2
MC

2ðjyjÞx2
n

2b2
n

oan�1

oy

� �2

þ b2
MC

2
0x

2
n

2b2
n

oan�1

oy

� �2

þ b2
n;

ð3:45Þ
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�xn

oan�1

oy
q1x2v1ðx1; 11Þ�

b2
Mc

2
Mx

2
nx

2
2

2e2
n

oan�1

oy

� �2

þ e2
n

2
;

ð3:46Þ

xn

oan�1

oy
q1x

0
2v1ðx1; 11Þ�

b2
Mc

2
Mx

2
i x

2
2

2m2
n

oan�1

oy

� �2

þm2
n

2
;

ð3:47Þ

where an, bn en and mn are arbitrary positive constants.

Substituting (3.44, 3.35, 3.36, 3.47) into (3.42), it yields

_Vn � �
Xn�1

i¼ 1

hix
2
i þ

1

c
ðq1HðuÞ þ 1Þ _uþ pn�1

� ~g
r

_̂g�
Xn�1

i¼ 1

r

2c2
i

x2
i G

T
i ðXiÞGiðX1Þ

 !

þ a2
n

2
þ b2

n þ
e2
n

2

þ m2
n

2
þ xn vnð�xn; 1nÞðu� u0Þ þ �ln þ unðXnÞ �

oai�1

oĝ
_̂g

� �

;

ð3:48Þ

where

�ln ¼� unðXnÞ þ
b2
M �p2

1xn

2a2
i

oan�1

oy

� �

þ b2
MC

2ðjyjÞxn

2b2
i

� oan�1

oy

� �2

þ b2
MC

2
0xn

2b2
i

oan�1

oy

� �2

þ b2
Mc

2
Mxnx

2
i

2e2
n

oan�1

oy

� �2

þ b2
Mc

2
Mx

2
i x

2
2

2m2
n

oan�1

oy

� �2

þ
Xn�1

i¼ 2

oan�1

oxi
xiþ1við�xiÞ þ fið�xiÞ þ wiðtÞð Þ

�
Xn

i¼ 1

oan�1

oy
ði�1Þ
o

yðiÞo þ oan�1

ou
cx1�a1v1ðx1; 11Þ

þ fnð�xn; u0Þ þ wnðtÞ;

with

unðXnÞ ¼ �h0ĝ
oan�1

oĝ
�
Xn

i¼ 2

xn

r

2cn
xi

oan�1

oĝ

�
�
�
�

�
�
�
�

þ
Xn�1

i¼ 1

r

2cn

oan�1

oĝ
x2

i G
T
i ðXiÞGiðXiÞ;

ð3:49Þ

where cn are positive design parameters.

Similarly, one has

�ln ¼ hTnGnðXnÞ þ dnðXnÞ; jdnðXnÞj � en; en [ 0;

ð3:50Þ

where Xn ¼ ðy; �yðnÞo ; x2; . . .; xn; ĝ; qÞ.
It is easy to show that

xn
�ln �

g
2c2

n

x2
nG

T
n ðXnÞGnðXnÞ þ

c2
n

2
þ x2

n

2
þ e2

n

2
; ð3:51Þ

where cn is a parameter.

The control law is selected as

u ¼ �c�1
M hn þ

1

2

� �

xn �
ĝ

2c2
n

xnG
T
n ðXnÞGnðXnÞ

� �

þ u0;

ð3:52Þ

where hn is a positive design constant.

Together with (3.49, 3.50, 3.51, 3.52) and (3.48), the

time derivative of Vn is shown as:

_Vn � �
Xn

i¼ 1

hix
2
i þ

1

c
q1HðuÞ þ 1Þ _uþ

Xn

i¼ 2

xiðuiðXiÞ �
oai�1

oĝ
_̂g

 !

� ~g
r

_̂g�
Xn

i¼ 1

r

2c2
i

x2
i G

T
i ðXiÞGiðXiÞ

 !

þ pn;

ð3:53Þ

where pn ¼ pn�1 þ
a2
n

2
þ b2

n þ
c2
n

2
þ e2

n

2
þ m2

n

2
þ e2

n

2
:

We employ the adaptive law as

_̂g ¼
Xn

i¼ 1

r

2c2
i

x2
i G

T
i ðXiÞGiðXiÞ � h0ĝ; ĝð0Þ� 0: ð3:54Þ

By applying the work in [29], it can be shown that

Xn

i¼ 2

xi uiðXiÞ �
oai�1

oĝ
_̂g

� �

� 0: ð3:55Þ

It is noted that

~gĝ ¼ ~gðg� ~gÞ� � ~g2

2
þ g2

2
: ð3:56Þ

Combing (3.53, 3.54, 3.55, 3.56), the time derivative of Vn

satisfies

_Vn � �
Xn

i¼ 1

hix
2
i þ

1

c
ðq1HðuÞ þ 1Þ _uþ pn �

h0

2r
~g2 þ h0

2r
g2:

ð3:57Þ

Define

D ¼ minf2hi; h0g[ 0; ð1� i� nÞ;

p ¼ pn þ
h0

2r
g2 ¼

Xn

i¼ 1

a2
i

2
þ
Xn

i¼ 1

b2
i þ

Xn

i¼ 1

c2
i

2
þ
Xn

i¼ 1

e2
i

2

þ
Xn

i¼ 2

m2
i

2
þ
Xn

i¼ 1

e2
i

2
þ h0

2r
g2; ð3:58Þ

then we get

_Vn � � DVn þ pþ 1

c
ðq1HðuÞ þ 1Þ _u: ð3:59Þ

With above discussions, then we present our contribution

in this thesis.

Theorem 1 By applying the fuzzy logic systems and

Assumptions 1, 2, 3 and 4, the unknown functions �li are

approximated to some bounded term for the nonlinear system
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(2.4). By choosing the control law (3.52) and the intermediate

virtual control (3.5, 3.11, 3.26, 3.39) and the adaptive law

(3.50), it makes all the signals which are mentioned in this

system be bounded. In addition, the tracking deviation x1 ¼
y� y0 meets the following condition

lim
t!1

S2
1 �

2p
D

þ 2r
c
; 1� i� n; ð3:60Þ

where D and p are defined in (3.58), and r defined in

(3.62).

Proof Integrating (3.59) over [0,t], we can obtain the

following inequality:

VnðtÞ� e�DtðVnð0Þ �
p
D
Þ þ p

D
þ e�Dt

c

Z t

0

ðq1HðuÞ þ 1Þ _ueDtds:

ð3:61Þ

VnðtÞ, uðtÞ and
R t

0
ðq1HðuÞ þ 1Þ _uds are bounded in ½0; tf Þ

by Lemma 3. In addition,
R t

0
ðq1HðuÞ þ 1Þ _ue�Dðt�sÞ

ds�
R t

0
ðq1HðuÞ þ 1Þ _uds, it is shown that

R t
0
ðq1HðuÞ þ

1Þ _ue�Dðt�sÞds are bounded on ½0; tf Þ.

Define

r ¼ max
t2½0;tf Þ

Z t

0

ðq1HðuÞ þ 1Þ _ue�Dðt�sÞds

�
�
�
�

�
�
�
�: ð3:62Þ

By (3.60) and (3.61), we have
x2

1

2
�VnðtÞ� e�Dt

ðVnð0Þ �
p
D
Þ þ p

D
þ r

c
.

Because of D[ 0, it is not hard to elicit that all the

signals mentioned in this system are bounded. Therefore,

when t ! þ1, (3.60) holds.

Remark 3 It is evident that the tracking deviation depends

on ai, bi; ci; ei; hi, r, c and unknown term g by the above

analysis. It is guaranteed that the tracking deviation is in a

small neighborhood of the origin. According to (3.57),

increasing hi, r and c, meanwhile reducing ai, bi, ci and ei,

leads to a small tracking error.

4 Simulation Examples

The second-order nonlinear system is introduced to

examine the availability of the proposed scheme.

_x1 ¼ x2 lnð10 þ x2
1Þ þ x2

1 sin x1 þ 0:01e�t cos t;

_x2 ¼ uð1 þ e�x2
1
�x2

2Þ þ x1x2

1 þ x2
1 þ x2

2

þ 0:5cosð2tÞ;

y ¼ vðx1Þ:

8
>><

>>:

ð4:1Þ

The dead zone vðx1Þ is seen as:

y ¼ vðx1Þ ¼
1:5ðx1 � 0:25Þ1:34; x1 � 0:25

0; 0:2\x1\0:25

0:5ðx1 þ 0:2Þ1:5; x1 � 0:2:

8
><

>:

ð4:2Þ

The reference signal is hypothesized as yr ¼ 0:5 sin tþ
sinð0:5tÞ. Because (4.1) not only contains the nonlinear

term f1ð�x1Þ, f2ð�x1Þ, g1ð�x1Þ, g2ð�x2Þ and disturbance terms

w1ðtÞ, w2ðtÞ, but also has the dead zone output y ¼ vðx1Þ ,

the control schemes proposed earlier is very inappropriate

to this system.

For the fuzzy control, we select the following mem-

bership functions:

lF1
i
ðxÞ ¼ exp½�ðxþ 2:5Þ2�; lF2

i
ðxÞ ¼ exp½�ðxþ 1:5Þ2�;

lF3
i
ðxÞ ¼ exp½�ðxþ 0:5Þ2�; lF4

i
ðxÞ ¼ exp½�ðx� 0:5Þ2�;

lF5
i
ðxÞ ¼ exp½�ðx� 1:5Þ2�; lF6

i
ðxÞ ¼ exp½�ðx� 4Þ2�:

ð4:3Þ
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Fig. 1 Trajectories of y(solid line) and yr(dashed line) for Case 1
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Fig. 2 Trajectories of control u for Case 1
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Choose the intermediate virtual control functions (3.9), the

actual control (3.47) and the parameter adaptive law (3.49)

with c1 ¼ 3:4, c2 ¼ 4:2, h1 ¼ 30, h2 ¼ 20, k0 ¼ 5, r ¼
400 and c ¼ 40 for Case 1 and c1 ¼ 1:2, c2 ¼ 2:5,

h1 ¼ 40, h2 ¼ 35, k0 ¼ 5, r ¼ 400 and c ¼ 40 for Case

2. The initial conditions are chosen as ½x1ð0Þ, x2ð0Þ,
ĝð0Þ� ¼ ½0:1, 0.2, 0].

The simulation consequences are revealed in Figs. 1, 2,

3 and 4, where Fig. 1 reveals the output y and the reference

signal yr for the Case 1, Fig. 2 displays the trajectories of

the control u, Fig. 3 shows the trajectories of the parameter

ĝ, and Fig. 4 presents the trajectories of y and the reference

signal yr for the Case 2.
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