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Abstract We propose a new fuzzy modeling algorithm

from data for regression problems. It acts in a top–down

manner by allowing the user to specify an upper number of

allowed rules in the rule base which is sparsed out with the

usage of an iterative constrained numerical optimization

procedure. It is based on the combination of the least

squares error and the sum of rule weights over all rules to

achieve minimal error with lowest possible number of

significantly active rules. Two major novel concepts are

integrated into the optimization process: the first respects a

minimal coverage degree of the sample space in order to

approach �-completeness of the rule base (an important

interpretability criterion) and the second optimizes the

positioning and ranges of influence of the rules, which is

done synchronously to the optimization of the rule weights

within an intervened, homogeneous procedure. Based on

empirical results achieved for several high-dimensional

(partially noisy) data sets, it can be shown that our

advanced, intervened optimization yields fuzzy systems

with a better coverage and a higher degree of �-com-

pleteness compared to the fuzzy models achieved by rela-

ted data-driven fuzzy modeling methods. This is even

achieved with a significantly lower or at least equal number

of rules and with a similar model error on separate vali-

dation data.

Keywords Top–down fuzzy system modeling � Rule base

out-sparseing � Constrained numerical optimization

problem � Penalty term � Coverage � �-completeness �
Intervened � Homogeneous optimization

1 Introduction

1.1 Motivation and State-of-the-Art

Nowadays, the data-driven design of fuzzy systems enjoy a

wide attraction in various industrial domains, such as visual

inspection systems [27, 29], quality control systems equipped

with condition monitoring and predictive maintenance [40],

human activity recognition [17], web news mining [18],

medical and health care systems [44, 45], dynamic modeling

of unmanned aerial vehicles (UAV) [37] or even software and

systems engineering [35]. They are often used for automati-

cally quantifying and predicting system states in order to

achieve enriched supervision and monitoring of processes in

industrial systems [5]. Opposed to classical knowledge-based

fuzzy expert systems design (the old-school approach) [41],

subjective experiences and impressions are part of the input

[1]. In data-driven design, the input is data representing

objective observations of the underlying mechanisms in the

systems. They characterize various system states, behaviors

and operating conditions. Another major advantage of data-

driven fuzzy models is the generic applicability of their

training algorithm: In fact, data-driven models can be trained

solely from data without knowing any underlying physical,

chemical, etc., laws. This is achieved within fully automatic

runs of learning and evaluation algorithms.
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The advantage of data-driven fuzzy systems over other

types of soft computing-based model architectures is their

joint characteristic of (1) universal approximation property

[3], that is, to be able to model any implicitly contained

nonlinear relationship with an arbitrary degree of accuracy,

(2) linguistic interpretability [12, 23], which offers some

insights into system dependencies and causal relations of

variables, (3) piecewise local approximation which pro-

vides a kind of granulation (and thus partial local inter-

pretation) of the input space and (4) the possibility to

model and represent information and data uncertainty in

natural, possibilistic way [4].

The most widely used architecture for (high-dimen-

sional) regression/approximation problems are the so-

called Takagi–Sugeno fuzzy systems [42], which meet the

aforementioned properties. Several techniques for a fully

automatic data-driven extraction of these systems have

been proposed in the past. One of the most prominent

techniques is the genfis2 technique [6], which applies

subtractive clustering [34] for eliciting the samples with

highest density. These are then associated with cluster

prototypes. It automatically finds the adequate number of

clusters to sufficiently explain the data distribution over the

input space. The clusters are projected onto the single axes

to form the fuzzy sets and the fuzzy rules. Another well-

known and widely used technique is the FMCLUST method

by Babuska [2], which performs Gustafson–Kessel clus-

tering [14] and applies a specific projection scheme to form

the fuzzy sets. However, it requires the exact number of

rules in advance. For a collection of further clustering

techniques for fuzzy rule extraction, see [33]. Another

prominent research field for data-driven fuzzy systems

design is the so-called genetic fuzzy systems [8, 19], which

try to optimize the structures and parameters of fuzzy rule

bases based on evolutionary algorithms. These iteratively

update and improve a whole population of fuzzy systems

until convergence in terms of the (average or best) fitness is

achieved. They produce solutions which are close to the

global optimum by helping individuals (solutions) out of

local optimality (based on mutation operations). On the

other hand, they are non-deterministic due to implicit

random effects, which means that they produce different

solutions for different runs.

All the aforementioned methods either require the exact

pre-defined number of rules in advance—which is typically

hard to guess in advance and time intensive to tune within a

validation phase [36]—or they extract as much rules as

needed for an appropriate modeling of the distributed

regression behavior. There is no control in terms of an

upper limit on the number of rules to be extracted. This

may become disadvantageous or even inapplicable when

seeking for a compact fuzzy rule base due to inter-

pretability reasons. Moreover, it increases the likelihood of

over-fitting on new unseen data [39]. Furthermore, in the

aforementioned approaches the rules are usually fit hard to

the data (clouds) based on some error criteria, without

respecting a minimal sample coverage (by rules) in order to

avoid undefined or nearly undefined input states. Coverage,

in mathematical context associated with �-completeness

criterion [32], is also an important and widely discussed

property in the context of interpretability of fuzzy models

[12, 23, 46] .

1.2 Our Approach

Our approach suggests a method which performs a top–

down rule learning scheme :The operator/user/expert is

able to define an acceptable upper number of rules, and the

learning algorithm tries to sparse out as many rules as

possible based on a constrained-based error criterion

through the usage of rule weights in [0, 1]; please note that

this concept is different to many other forms of regularized

learning (such as ridge regression, Lasso, elastic net and

spin-offs [15, 47]), which sparse out as many inputs as

possible. It is based on the SparseFIS approach [25], but

extends it with new concepts in order to meet the coverage

and �-completeness. It is thus termed SparseFIS-Cover. In

particular, it integrates a specific penalty term in the opti-

mization functional in order to punish rule bases with lower

coverage. This is done within a (normalized) convex

combination with the constrained least squares functional

(by the usage of Lagrange multipliers). Thereby, it is

possible to put more or less emphasis on the error or on the

coverage, respectively.

The second major extension concerns the update of the

nonlinear parameters in the rules antecedents, i.e., of the

centers and spreads of all fuzzy sets occurring in the

antecedents. They are synchronously optimized to the rule

weights in an intervened numerical optimization procedure

(rather than adjusted by clustering-based heuristics as is

done in case of original SparseFIS). This leads to a better

homogenization of the solutions among the complete

parameter space and finally even to rule bases with lower

complexities (empirically verified in Sect. 5). For rule

consequents learning, it applies a regularized version of

weighted least squares to achieve a localized learning

scheme for each rule separately with improved properties

[22].

The new learning approach is compared to original

SparseFIS in terms of (1) percentual model errors on

separate validation data, (2) average maximal rule mem-

bership degree over all samples in the training as well as in

the separate validation data set (as a measure for coverage),

(3) the number of samples meeting the �-completeness

criterion and (4) the complexity of the final rule base in

terms of the number of rules. This is done for various noisy
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and high-dimensional real-world regression problems. The

comparison also includes several other, widely used state-

of-the-art (SoA) methods in fuzzy modeling for regression

problems and highlights superior performance of the new

approach SparseFIS-Cover in terms of coverage, �-com-

pleteness and complexity of the rule bases while it pro-

duces just slightly higher model errors than state-of-the-art

(SoA) methods, but lower ones than original SparseFIS.

The paper is organized in the following way: Sect. 2

provides a compact summary of the SparseFIS algorithm

as being published before in [25], and upon which the new

method builds. Section 3 denotes the methodological

novelty in this paper and addresses the description of the

extensions to SparseFIS newly proposed in this paper,

which includes a pseudo-code of the whole algorithm at the

end. Section 4 summarizes the applications and data sets

used for empirical comparisons, and Sect. 5 presents the

results.

2 SparseFIS: Basic Aspects

SparseFIS was proposed in [25] by Lughofer and Kinder-

mann as a data-driven learning engine for Takagi–Sugeno

(TS) fuzzy inference systems [42]. It acts in a top–down

manner and thus is able to constrain the number of rules

extracted from the data. The basic idea is to start with an

upper number of (allowed) rules (e.g., pre-defined by

experts or parameterized by a classical parameter grid

search procedure) and to sparse out as many rules as pos-

sible with the help of a numerical optimization procedure.

Therefore, the classical definition of a TS fuzzy system

is extended by integrating rule weights qi 2 ½0; 1� which

indicate importance levels of rules (0 means that the rule is

unimportant and not respected when calculation the infer-

ence for new query points, 1 means that the rule should be

fully active in the calculation of the inference). This leads

to the extended functional definition:

f̂ ðxÞ ¼ ŷ ¼
XC

i¼1

WiðxÞ � liðxÞ WiðxÞ ¼
qiliðxÞPC
j¼1 qjljðxÞ

ð1Þ

with li the linear consequent functions (partial local linear

hyperplane models). liðxÞ denotes the activation degree of

the i-th rule, so Wi denotes the weighted normalized

membership degree of the ith rule. liðxÞ is defined by the

conjunctive combination of the rule antecedent parts

(through the usage of a t-norm [20]): liðxÞ ¼ T p
j¼1lijðxjÞ,

where lijðxjÞ denotes the membership degree of the jth

input coordinate in sample x to fuzzy set lij, which appears

in the jth antecedent part in Rule i; p denotes the input

dimensionality. Per default, Gaussian fuzzy sets are applied

for lij, which have two parameters, the center cij and the

spread rij.

By starting with a rule base in which all rules are fully

activated, the goal of the optimization procedure is to drive

as many rule weights as possible toward 0 while still

achieving a low error in the least squares sense. This is

achieved by minimizing the weights or by constraining the

number of active rules (rules with weights significantly

greater than 0) synchronously to the minimization of the

classical least squares error. This leads to a constraint-

based nonlinear optimization problem, because the rule

weights appear as nonlinear parameters, which, by using

the integration of classical Lagrange multipliers, can be re-

formulated as a free optimization problem in the following

way:

Jðq; c; r;wÞ þ a
1

C

XC

i¼1

jqij � K

 !
¼ min

q
! ð2Þ

with J the conventional least squares problem (normalized

by the number of samples N) and C the number of initially

given rules. a plays the role of the Lagrange multiplier and

K the role of the constraint on the sum of the rule weights.

The parameter a is in one-to-one correspondence with the

constraint K, so instead of choosing K someone can as well

choose a as a parameter and consider K as implicitly

defined by a. This is in accordance with the so-called

compressed sensing idea [7].

The problem in (2) corresponds to a free optimization

problem, where the main challenge is how to handle the

second term appropriately, as the l1-norm
PC

i¼1 jqij is not

differentiable. This abandons the application of any clas-

sical fast optimization methods [10, 11]. However,

according to the derivations by Daubechies et al. [9], an

iterative projected version of the so-called steepest descent

method can solve the functional in (2), where a threshold

operator Ta is applied on the rule weight update in each

gradient descent iteration step. This leads to an iterative

update formula for rule weight optimization from Step m to

mþ 1 in the following form (here for the ith rule):

qmþ1
i ¼ Ta qmi � s

XC

n¼1

XN

k¼1

eklnðxkÞ
oWnðxkÞ

oqi

 !
ð3Þ

with s a small constant defining the step size per iteration

(usual setting s ¼ 0:5), ek ¼ yk � ŷk the error between

measured and predicted output in sample xk and Ta the soft-

thresholding operator. It is defined by:

Ta ¼ max qmþ1
i ; a

� �
� a ð4Þ

with a set to a small constant; according to [25], its default

setting is a ¼ 0:1, but based on our past experience in

various applications (see e.g., [40]), it turned out that it

may be beneficial to tune it during the training phase
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through the cross-validation procedure. Higher values of a
lead to a faster down-weighing of rule weights and thus

may induce the risk of sparseing out the rule base too

much.
oWnðxkÞ

oqi
denotes the partial derivative of the normal-

ized rule degree of Rule n subject to the rule weight of Rule

i and is given by:

oWn

oqi
ðxÞ ¼ lnPC

j¼1 qjljðxÞ
dn;i �

qnliPC
j¼1 qjljðxÞ

 !
dn;i

¼
1 if n ¼ i

0 if n 6¼ i

� ð5Þ

In the original SparseFIS method, there are two short-

comings, which we will try to overcome with the proposed

extension described in the subsequent section:

– The rule centers (c1; . . .; cC) and spreads (r1; . . .; rC)

are initially (roughly) estimated by vector quantization

[13], but then kept fixed during the whole lifetime of

the rule weight optimization process. This may lead to

non-optimal positioning of the rules (centers) and

especially to non-optimal ranges of influences when-

ever the corresponding rule weights are changing—

some rules may be sparsed out, which, however, would

require the extension of the ranges of influence of

adjacent rules in order to assure sufficient coverage of

the nearby lying samples.

– The algorithm tries to sparse out as much rules as

possible during the optimization process while

approaching a reasonable (low) model error. It thus

takes care about a good tradeoff between compactness

of the rule base and model error. However, it does not

take into account how well the input space is still

covered significantly active rules.

Both bottlenecks are obviously expected to affect the

coverage property of the fuzzy rule base, which is (i) one

essential property for (enhanced) interpretability aspects of

fuzzy systems, see [12, 23, 46] and, often even more

importantly, (ii) a necessary prerequisite for a well-posed

and good predictive performance on new unseen data

[22, 38]—a purely covered input space increases the like-

lihood of undefined or badly defined input states in the

fuzzy partitions.

3 SparseFIS-Cover: The Novel Proposed
Extension to SparseFIS

In order to overcome this unpleasant situation, we intro-

duce a penalty term in the extended least squares functional

as defined in (2). This penalty term should reflect the

degree of coverage in terms of the famous �-completeness

concept [32]. The latter is used in fuzzy systems design for

assuring a minimal coverage of the input space. In a data-

driven learning context, the maximal membership degree

of each of the available training samples to all rules is a

reliable indicator of the coverage and �-completeness [23].

So, each sample belongs to at least one rule with a minimal

membership degree of �.

In order to mathematically represent this demand, the

idea is to relax the strict fitting criterion given by the least

squares functional with an additional term which punishes

those rule partitions which result in a lower degree of

sample coverage. Therefore, we introduce the following

term:

Pen ¼
XN

k¼1

QC
i¼1 maxð0; �� qiliðxkÞÞ

�C
ð6Þ

If liðxkÞ is greater than � for a specific sample xk and the

corresponding (the ith) rule is significantly active (i.e., its

weight qi [ [ �), a sufficient coverage in all antecedent

parts is achieved, and thus the penalty term becomes 0 for

xk, as maxð0; �� qiliðxkÞÞ ¼ 0 which is multiplied with

the same term obtained from all other rules. This is not the

case when qi approaches 0, as then the rule is not really

active, and thus it does not contribute to the model pre-

diction inference in (1). This means that the sample is not

really covered by Rule i. If liðxkÞ is close to 0 for all rules,

the sample is not sufficiently covered and therefore (6)

approaches 1 due to the normalization term �C, yielding a

high impact of (6) in the joint optimization problem (7). In

case of using Gaussian fuzzy sets, � ¼ 0:135 is the most

convenient choice, see [23, 38], and therefore also used in

all our empirical tests.

We integrate the term in (6) in the Lagrange least

squares functional as defined in (2) in a way to achieve a

convex combination between least squares error fit and

coverage degree penalty. This gives us some degrees of

freedom for putting more or less emphasis on one or the

other criterion; thus, the optimization problem becomes:

Jext ¼ k
1

N � range2ðyÞ
XN

k¼1

ðyk�
XC

i¼1

liðxkÞWiðUnonlinÞðxkÞÞ2

 !

þka
1

C

XC

i¼1

jqij�K

 !

þð1�kÞ 1

N

XN

k¼1

QC
i¼1 maxð0; ��qiliðxkÞÞ

�C

 !
¼ min

Unonlin

!

ð7Þ

with k a user-friendly parameter as it balances the impor-

tance level of precision versus completeness. It is thus able

to tradeoff accuracy and interpretability in a continuous

manner (default value is 0.5 inducing equal importance).

range2ðyÞ denotes the squared range of the target variable.
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This range normalization is indispensable in order to

normalize the first term to [0, 1] and to achieve compa-

rability with the other two terms (which also range in

[0, 1])—a non-normalization would weight the first term

differently for different learning problems and data sets

with different target ranges, which is undesirable. Unonlin

denotes the set of nonlinear parameters, which in our case

is now composed of fq; c; rg, as we also aim to optimize

the centers and spreads over all rules, synchronously to

the rule weights. This should assure an adaptation of rule

spreads (and centers) toward optimality also in case when

the rule weights are significantly changed during

optimization.

The optimization function in (7) denotes a convex

combination of least squares functional and the penalty

term, which makes enhanced numerical optimization

techniques such as Levenberg–Marquardt algorithm inap-

plicable (other terms vanish in the Jacobian matrix) [30].

Furthermore, the second derivatives for building up Hes-

sian matrices are pretty complicated to establish and very

time intensive to compute. Therefore, and due to the good

experience we had in conventional SparseFIS with the

projected gradient descent iteration in terms of converging

rule weight sequences, we also apply the gradient descent

algorithm for the enhanced functional proposed in this

paper. Therefore, we add the gradient of the penalty term

with respect to the rule weight qi in the update equation (3),

which (for the ith rule) leads to the following iteration step

(from Step m to mþ 1).

qmþ1
i ¼ Ta qmi � s k

XC

n¼1

XN

k¼1

eklnðxkÞ
oWnðxkÞ

oqi

  

þ 1 � kÞ oPun
oqi

� �� ð8Þ

where the partial derivative oPun
oqi

is given by (proof left to

the reader):

oPun

oqi

¼
PN

k¼1

1

�C
liðxkÞ

YC

j¼1;j6¼i

maxð0; ��qjljðxkÞÞ ��qiliðxkÞ[0

0 otherwise

8
><

>:

ð9Þ

Furthermore, as mentioned above, we optimize the centers

and spreads of all rules synchronously to the weights, in

order to adjust them correctly toward optimality with

respect to the current fuzzy model description (including

the current weights). This is also done by applying a gra-

dient descent step right after the rule weight update, but

without using the projection operator Ta, as down-weight-

ing centers and spreads toward 0 would not have any useful

meaning. The partial derivatives of Wn;n¼ 1; . . .;C with

respect to the center and spread coordinates of the ith rule,

ci;l;ri;l with l¼ 1; . . .;p, are given by: If n¼ i then we have

oWnðxÞ
oci;l

¼ 1 �Wnð Þð�2qnlnÞPC
j¼1 qjljðxÞ

1

2r2
i;l

ðci;l � xlÞ
 !

ð10Þ

If n 6¼ i then we get

oWnðxÞ
oci;l

¼ �Wnð Þð�2qiliÞPC
j¼1 qjljðxÞ

1

2r2
i;l

ðci;l � xlÞ
 !

ð11Þ

For r we get similar equations, i.e., if n ¼ i, then we have

oWnðxÞ
ori;l

¼ 1 �Wnð ÞðqnlnÞPC
j¼1 qjljðxÞ

1

r3
i;l

ðci;l � xlÞ2

 !
ð12Þ

If n 6¼ i then we get

oWnðxÞ
ori;l

¼ �Wnð ÞðqiliÞPC
j¼1 qjljðxÞ

1

r3
i;l

ðci;l � xlÞ2

 !
: ð13Þ

The partial derivatives for the centers and spreads (ci;l the

lth center coordinate of the ith rule) with respect to the

penalty term are given by:

oPun

oci;l

¼
PN

k¼1

1

�C
liðxkÞ

�ðci;l� xlÞ
r2
i;l

YC

j¼1;j6¼i

maxð0; ��qjljðxkÞÞ ��qiliðxkÞ[0

0 otherwise

8
><

>:

ð14Þ

oPun

ori;l
¼

PN
k¼1

1

�C
liðxkÞ

ðci;l�xlÞ2

r3
i;l

YC

j¼1;j 6¼i

maxð0; ��qjljðxkÞÞ ��qiliðxkÞ[0

0 otherwise

8
><

>:

ð15Þ

Hence, the gradient descent step for the centers and spread

is:

cmþ1
i;l ¼ cmi;l� s k

XN

k¼1

ek
XC

n¼1

lnðxkÞ
oWnðxkÞ
oci;l

þð1�kÞoPun
oci;l

 !

ð16Þ

and

rmþ1
i;l ¼ rmi;l� s k

XN

k¼1

ek
XC

n¼1

lnðxkÞ
oWnðxkÞ
ori;l

þð1�kÞoPun
ori;l

 !

ð17Þ

where s (learning step) is a fixed number which is rather

small in order to avoid fluctuations during the optimization

process (based on our past experience with original Spar-

seFIS method, we used 0.5 as default in all our

experiments).
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The whole algorithm of the new method SparseFIS-

Cover is demonstrated in the pseudo-code provided in

Algorithm 1.

Algorithm 1 Sparse Fuzzy Inference Systems Training

for Improved Coverage (SparseFIS-Cover)

1. Input: the upper number of allowed rules C,

regularization parameter a, s (default 0.5), convex

combination parameter k (default 0.5), m ¼ 0

2. Estimate the initial position of the rule centers

c0
1; . . .; c

0
C through clustering (e.g., vector quantiza-

tion as used in original SparseFIS) or through

random assignment in the p dimensional input space.

3. Estimate the initial spreads of the rules r01; . . .; r
0
C

through the standard deviation of data samples

assigned to each rule (based on closest distance

between samples and rule centers).

4. Initialization of w0 is done by using local learning

with (18) on the initial rules (see Step 5 below); q0 is

set to a vector of ones ð1; . . .; 1Þ 2 RC (all rules

contribute equally at the beginning).

5. wm; qm; cm; rm are given in iteration m.

6. Calculate oWn

oqi
based on (5).

7. Calculate oPun
oqi

based on (9).

8. Update the rule weights i ¼ 1; . . .;C component-

wise separately by applying (8) ! qmþ1
i ; i ¼

1; . . .;C.

9. For each dimension l ¼ 1; . . .; p, calculate oPun
oci;l

based

on (14) and calculate
oWnðxÞ
oci;l

based on (10) and (11).

10. For each dimension l ¼ 1; . . .; p, calculate oPun
ori;l

based

on (15) and calculate
oWnðxÞ
ori;l

based on (12) and (13).

11. Update all center coordinates ci;l component-wise

separately by applying (16) ! cmþ1
i;l .

12. Update all spreads ri;l component-wise separately by

applying (17) ! rðmþ1Þ
i;l .

13. Calculate Wðcmþ1; rmþ1; qmþ1Þ for the new qmþ1
i ; i ¼

1; . . .;C and generate the regression matrixffiffiffiffiffi
Qi

p
Ri; i ¼ 1; . . .;C for each rule separately with Ri

containing the original variables and a column of

ones for the intercept, and the weighting matrix Qi

defined by the diagonal matrix Qi ¼ diagðWi

ðxð1; . . .;NÞÞÞ.
14. Perform the weighted least squares approach for

estimating the linear consequent parameters for all

rules i ¼ 1; . . .;C separately. Its analytical solution

in closed form is [22] (here for the ith rule):

ŵi ¼ ðRT
i QiRiÞ�1

RT
i Qiy ð18Þ

Here, we also apply Tikhonov regularization [43] if

required, i.e., when the condition of the matrix

RT
i QiRi is very high. The regularization parameter a

is set by applying an heuristic approach [25]:

(a) Compute the condition of the matrix RT
i QiRi

by condðRT
i QiRiÞ ¼ kmax

kmin
with kmax the largest

and kmin the smallest eigenvalue.

(b) If condðRT
i QiRiÞ[ threshold, the matrix is

badly conditioned, so set a ¼ 2kmax

threshold
, with

threshold a large value, typically 1015.

(c) Else, set a ¼ 0

(d) Apply (18) with ðRT
i QiRi þ aIÞ instead of

RT
i QiRi.

15. If the difference of the rule weights between two

iterations, i.e., kqmþ1 � qmk, is low enough, or a pre-

defined maximal number of iterations is reached,

then goto next step, otherwise goto Step 2.

16. Discard all rules with weights smaller than d ¼ 0:01

from the rule base.

17. Perform Steps 9 to 15 again for the remaining rules

! fine tuning step of rule centers and spreads after

rule reduction.

18. Output: sparse fuzzy system with improved

coverage.

Please note that the fine tuning step for the rule centers

and spreads in Step 17 is beneficial, as the deletion of some

rules (due to low weights) in Step 16 changed the structure

of the rule base, whereas centers and spreads have been

optimized before for the full rule base.

Steps 13 and 14 are for the purpose to optimize the

linear consequent parameters synchronously to the non-

linear parameters; as neither the coverage problematic

nor the rule sparsity aspect concerns the consequent

parameters, they can be optimized based on the con-

ventional least squares functional J. This is done in a

local learning approach (per rule separately), which has

several advantages over global learning as deeply ana-

lyzed in [22] (Chapter 2) and also in [23], such as faster

computation time, higher stability and better inter-

pretability. This leads to the closed loop formula in (18)

(as the problem is parabolic for linear parameters).

Tikhonov regularization as conducted in Step 14 d.)

becomes indispensable when the matrix in (18) has low

rank.

There are two sensitive parameters to tune from outside:

the number of maximally allowed rules C and the regu-

larization parameter a in the soft-shrinkage operator T;

both can be varied within a grid search procedure.
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4 Experimental Setup

4.1 Data Sets Characteristics

We tested our new algorithm SparseFIS-Cover and per-

formed a comparison with original SparseFIS as well as

with other related fuzzy regression modeling methods, see

Sect. 4.2. The comparison is based on the following high-

dimensional real-world data sets:

– The Auto-MPG data set taken from the UCI reposi-

tory1: it concerns city-cycle fuel consumption in miles

per gallon, to be predicted in terms of three multi-

valued discrete and five continuous attributes.

– Stationary data from engine test bench: it includes

various measurement channels together with their time

delay (up to 10) resulting in a high-dimensional

problem; the task was to build a high-performance

quantification model for the emission channel NOx for

the purpose to save expenses for the sensor.

– Dynamic data from engine test bench: opposed to the

previous data set, it contains dynamic data permanently

recorded during different simulation cycles of the

engine including the engine speed and torque profiles

during an MVEG cycle, a sportive driving profile in a

mountain road and two different synthetic profiles.

Forty-two sensors at the engine test bench have been

installed which measure various important engine

characteristics such a pressure of the oil, various

temperatures and emission gases. The final aim was

to establish a k-step-ahead prediction model for NOx

emission in order to save expenses [26] and also to

perform early recognition of potential faults (pipe

leakage, sensor overheating, interface defects, etc.)

[40].

– Data from a cold rolling process at rolling mills: the

task was to identify a prediction model for the

resistance value of steel plates. This parameter is the

most responsible one for a smooth and high-qualitative

run-through of the process and thus is permanently

supervised manually. An analytical model physically

motivated by material laws was indeed already avail-

able [16] where some parameters were estimated

through linear regression. However, its performance

did not meet the company requirements, thus should be

improved by nonlinear fuzzy models established from

measurement data recorded at a multi-sensor network

installed along the mill.

– Data set comprising the prices of residences in a Polish

city: it was drawn from an unrefined data set referring

to residential premises transactions accomplished in

one Polish big city with the population of 640,000

within the years between 1998 and 2003. Nine features

were pointed out as main drivers of premises prices:

usable area of premises, age of a building, number of

rooms in a flat, floor on which a flat is located, number

of storeys in a building, geodetic coordinates Xc and

Yc of a building, distance from the city center and

distance from the nearest shopping center—for more

details see also [28].

– Jester data set from the Berkeley data repository2: it

contains the ratings of jokes by users on a continuous

scale in the range ½�10; 10�. The goal is to recognize

and to predict the rating scores of new users. We used

the dense subset of jokes f5; 7; 8; 13; 15; 16;

17; 18; 19; 20g as partial problem: the rating of the last

joke (#20) should be predicted based on the ratings of

the other jokes.

Table 1 provides an overview about the properties of each

data set in terms of the number of training samples, the

number of separate test samples, the input dimensionality,

the source and the expected noise level contained in the data.

4.2 Evaluation and Parametrization

According to the successful previous application of Spar-

seFIS on several data sets in Table 1 (e.g., on Auto-MPG in

[25] or on the residential premise price problem in [28]),

one focus was sharpened to the comparison between

original SparseFIS and its extension SparseFIS-Cover

Table 1 Summary of the characteristics of the data sets used

# Training samples Test samples # Input variables Source Noise level

Auto-MPG 266 126 7 UCI Low

NOx static 667 159 181 Engine test bench Medium to high

NOx dynamic 16,936 5386 41 Engine test bench Medium to high

Resistance value 6513 6662 132 Rolling mills Medium to high

Premise prices 2068 653 5 Residence data base None to Low

Jester 16,654 8329 9 Berkeley, rating of jokes None

1 http://archive.ics.uci.edu/ml/. 2 http://eigentaste.berkeley.edu/dataset/.
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proposed in this paper, especially in terms of coverage and

model complexity. Moreover, we also examined the per-

formance of other well-known and widely applied fuzzy

modeling variants in order to use them as strong bench-

marks against SparseFIS-Cover, such as FLEXFIS, short

for Flexible Fuzzy Inference Systems [21], Gen-Smart-EFS,

short for Generalized Smart Evolving Fuzzy Systems [24],

LoLiMoT, short for Local Linear Model Trees [31], a

modified version of genfis2 [6] (as available in MATLAB’s

fuzzy logic toolbox), termed as genfis2 loc, FMCLUST,

short for Fuzzy Modeling with Clustering [2], as available

in a MATLAB toolbox.3 A short description of each method

is given below:

– FLEXFIS, short for Flexible Fuzzy Inference Systems

[21], employs classical TS fuzzy systems with axis-

parallel rules and performs a regularization in conse-

quent learning based on ridge regression (using an own

developed fast heuristics for setting the regularization

parameter). It evolves rules on demand in a streaming

context based on a pre-defined vigilance parameter (the

only real sensitive parameter).

– Gen-Smart-EFS, short for Generalized Smart Evolving

Fuzzy Systems [24] an extension of FLEXFIS with the

usage of arbitrarily rotated rules in the multi-dimen-

sional space (achieved through multivariate Gaussians);

it evolves rules on demand in a streaming context based

on a pre-defined Mahalanobis distance-based tolerance

range (deduced from the statistical concept of predic-

tion interval). It comes with several extended func-

tionalities regarding online rule merging and dynamic

dimension reduction.

– LoLiMoT, short for Local Linear Model Trees [31],

which is one of the most widely used fuzzy systems

training methods in today’s industrial processes. It

performs successive splits along each axis to produce a

top–down hierarchy of more and more fine-granulated

fuzzy models in a tree-structured manner. It stops the

splitting process whenever the error on separate

validation data converges.

– A modified version of genfis2 [6] (as available in

MATLAB’s fuzzy logic toolbox), termed as genfis2

loc, in order to substitute local learning of consequent

parameters with global learning (thus, improving its

stability, etc., as analyzed in [23]). For learning the rule

structure and antecedent parts of the rules, it applies

subtractive clustering, which searches for highest

density points which are then assigned to cluster

(=rule) centers. Depending on the parametrization of

the maximal range of influence of each rule, more or

less density points are assigned to rule centers.

– FMCLUST, short for Fuzzy Modeling with Clustering

[2], is available in a MATLAB toolbox4 and also one of

the most widely used fuzzy training methods in today’s

industrial and control processes. It employs a Gustaf-

son–Kessel clustering [14] to extract the rules, per-

forms an enhanced projection to the input axes to

obtain the shape of the fuzzy sets and finally estimates

the rule consequent functions with a regularized least

squares approach.

In order to achieve a fair comparison among all fuzzy

modeling methods, cross-validation (CV) has been per-

formed on the training data sets with the same fold parti-

tioning for all methods. CV is run multiple times over a

parameter grid defined for the most sensitive learning

parameter(s) for each method. In particular, the following

grids have been used for the various methods:

– FLEXFIS The vigilance parameter is varied from 0.1 to

0.9 in steps of 0.1.

– Gen-Smart-EFS The tolerance radius is varied from 0.5

to 4.0 in steps of 0.35.

– LoLiMoT The upper number of allowed splits is varied

from 1 to 15 in steps of 1.

– Modified version of genfis2 Range of influence of a

cluster (percentage of feature range) from 0.1 to 0.9 in

steps of 0.1.

– FMCLUST The number of clusters = rules is varied

from 1 to 15 in steps of 1.

– SparseFIS and SparseFIS-Cover The initial number

(upper allowed number) of rules is varied from 30 to 90

in steps of 10; a set to 0.3 for all problems.

Additionally, a filter variable selection method was

employed in order to rank the variables according to their

importance for the current learning problem at hand in

advance. It is a modified nonlinear version of (classical)

forward selection ready-made for fuzzy modeling as

explained in more detail in [5]. The achieved rankings are

used for successively adding variables and performing a

full CV-based evaluation cycle for each subset. In this way,

an additional dimension for the number of used inputs is

added in the parameter grids defined above (a second one

in all cases). It ranges from 1 to 20 (maximal dimension-

ality) in steps of 1 (so a value of five means to use the first

five variables in the ranked list) and is applied in the same

way for all modeling methods.

The minimal cross-validation error achieved over all

parameter grid points in terms of the normalized mean

absolute error (CV NMAE) is used for selecting the

optimal learning parameter configuration for each method,

i.e., argminl;mðCV MAEl;mÞ with l the first dimension of

the grid (input dimensionality in all cases) and m the

3 http://www.dcsc.tudelft.nl/*rbabuska/fmid-v40.zip. 4 http://www.dcsc.tudelft.nl/*rbabuska/fmid-v40.zip.
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second one (method dependent, see itemization above).

This error is defined by

CV NMAE ¼ 1

K

XK

i¼1

1

N=K

Xi�ðN=KÞ

k¼ði�1Þ�ðN=KÞþ1

jyk � ŷkj; ð19Þ

with N the number of training samples in total and K the

number of folds. The optimal configuration is finally used

(1) to train a full model on the whole training data set and

(2) to elicit the performance measures on the separate test

data set: (a) the model error in terms of percentual mean

absolute error (MAE):

%ðMAEÞ ¼ 1

N

XN

k¼1

jyk � ŷkj
rangeðyÞ ; ð20Þ

with rangeðyÞ ¼ maxk¼1;...;NðykÞ � mink¼1;...;NðykÞ; (b) the

average coverage degree of the test samples measured by

cover ¼ 1

N

XN

k¼1

maxi¼1;...;CðliðxkÞÞ ð21Þ

and (c) the percentage of test samples fulfilling the �-

completeness criterion, i.e.,

% eps¼ 100� 1

N
jfxkjk¼ 1; . . .;N^maxi¼1;...;CliðxkÞ[�gj

� �
;

ð22Þ

with epsilon ¼ 0:135 the most convenient default value [23].

Furthermore, we will study the final model complexity in

terms of the number of rules for examining the compactness

and the likelihood of over-fitting of the rule base—a lower

number with similar model error is always preferable.

5 Results

Table 2 provides an overview about the results achieved by

SparseFIS (abbreviated with SPF), SparseFIS-Cover (ab-

breviated with SPF-C) and by the best of the state-of-the-

art fuzzy modeling methods for each data set in terms of

the percentual error (abbreviated with (Best) SoA)—for

transparency reasons, we neglect the results of the other

fuzzy modeling methods which produce worse results than

the best; by comparing SPC and SPF-C with the best SoA

method, we already see how much improvement over state-

of-the-art fuzzy methods can be ideally achieved, which

from our point of view leads to a sufficient comparison: if

there is an improvement over the best SoA method, then

automatically there is an improvement over all other SoA

methods; if there is no improvement over the best SoA

method, then someone could always do better when

choosing this method. At first glance, it can be clearly

recognized that SparseFIS-Cover produces lower or equal

percentual errors on separate test data than SparseFIS,

except for the resistance data set, while it is able to achieve

a better or equal coverage and �-completeness ratio in all

cases. Interestingly, this can be achieved with a much

lower number of rules (except for Jester and Premise pri-

ces) as can be seen from Table 3. The interpretation of this

aspect is that the optimization of the rule spreads/centers

synchronously to the rule weights (which is not done in

conventional SparseFIS) leads to a more homogeneous

partitioning in terms of wider rules which better cover the

feature range. A strong point is that this is achieved by not

Table 2 Summary of results for all data sets. The cell values of the

first three columns reflect the percentual MAEs, of the next three

columns they correspond to the coverage measure value cover and in

the last three columns they represent the percentage of samples

meeting

\ e p s i l on �completeness\%\unde r s co r e
e p s -

Data set SPF% SPF-C% Best SoA% SPF cover SPF-C cover SoA cover SPF % eps SPF-C % eps SoA % eps

Auto-MPG 9.99 9.66 9.28 0.04/0.51 0.09/0.51 0.14/0.65 7.14/93.6 25.4/93.6 29.4/96.6

NOx static 3.76 3.50 3.71 0.19/0.23 0.23/0.26 0.04/0.04 61.6/71.4 61.0/72.2 5.66/7.80

NOx dynamic 6.00 5.80 5.47 0.45/0.53 0.52/0.58 0.47/0.63 90.0/96.5 91.7/97.4 85.8/99.2

Resistance 3.03 3.77 2.94 0.30/0.38 0.51/0.60 0.45/0.58 68.2/84.4 89.0/94.1 84.1/93.8

Premise 4.81 4.81 4.76 0.37/0.38 0.37/0.38 0.34/0.35 86.7/88.3 86.7/88.3 88.5/88.8

Jester 3.34 3.34 3.32 0.39/0.41 0.51/0.52 0.13/0.13 90.8/91.7 99.9/99.9 80.2/84.4

SPF SparseFIS, SPF-C SparseFIS-Cover, Best SoA Best State-of-the-Art fuzzy modeling method (in terms of the error)

Table 3 Achieved fuzzy model complexities in terms of the number

of rules

Data set SPF SPF-C Best SoA

Auto-MPG 19 7 15

NOx static 30 14 17

NOx dynamic 30 5 45

Resistance 29 2 5

Premise 2 2 7

Jester 3 4 4

SPF SparseFIS, SPF-C SparseFIS-Cover, Best SoA Best State-of-the-

Art fuzzy modeling method
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loosing any model accuracy, and in most cases even

accuracy on separate test data is gained. This is in accor-

dance with the expected over-fitting effect, which is ten-

dentially more severe in case of a higher number of rules,

especially their coverage of the input sample space is low.

In this sense, SparseFIS-Cover clearly produces more

reliable and further useable fuzzy models than SparseFIS,

except in case of premise prices where both ended up in

exactly the same fuzzy models. For this data, there was

obviously no real need for a penalty function during opti-

mization to improve sample coverage.

Regarding the comparison with other state-of-the-art

(SoA) fuzzy modeling methods, the situation is somewhat

similar, especially when comparing the model complexities

from Table 3—clearly higher for the best SoA method

(elicited for each data set separately) except for Jester data

set. So, obviously the numerically funded sparseing out

procedure in combination with the optimization of the

centers/spreads does the job pretty well to form homoge-

nously optimized rule partitions with low generalization

errors. Indeed, in all cases, the error of the best SoA

method is slightly (but no significantly!) higher than the

Fig. 1 a ERC curves for the Auto-MPG data set as achieved by original SparseFIS (dashed line), the best related SoA method (dotted line) and

SparseFIS-Cover (solid line), the legend explains the number of rules and the coverage degree, b the same for static NOx modeling

Fig. 2 a ERC curves for the dynamic NOx data set as achieved by original SparseFIS (dashed line), the best related SoA method (dotted line)

and SparseFIS-Cover (solid line), the legend explains the number of rules and the coverage degree, b the same for the resistance value modeling
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error achieved by SparseFIS-Cover, but in all but one case

(i.e., for Auto-MPG) the coverage is significantly worse

(compare Columns #6 and #7, or #9 and #10 for �-

completeness).

The error characteristic curves (ERCs) in the fig-

ures (Figs. 1, 2 and 3) summarize these findings by rep-

resenting the three measures in one plot (per data set) in a

compact form. Moreover, the curves show the distribution

of the residuals (ratio of residuals) in an ascending sorted

manner—steeper curves point to more residuals in the

lower range, thus to models with better error distributions.

SparseFIS-cover tendentially shows slightly better ERC

curves than SparseFIS, but slightly worse ones than the

best SoA method, whereas its induced sample coverage is

significantly higher and the extracted number of rules

significantly lower in most cases (both mentioned in the

legends of the figures).

6 Conclusion

In this paper, we presented a new fuzzy modeling method

termed SparseFIS-Cover, which is able to perform a top–

down learning scheme from a pre-defined upper (allowed)

number of rules to find an appropriate number for the

current problem at hand. This is achieved within an inter-

vened numerical optimization procedure (Algorithm 1) (1)

while respecting a minimal coverage of the sample space

by the rules in terms of approaching �-completeness and (2)

by consecutively optimizing the rule centers and spreads

synchronously to the rule weights reflecting the importance

of rules. To our best knowledge, current SoA techniques

are not respecting the coverage and �-completeness aspects

(which are important criteria in terms interpretability

assurance of fuzzy systems, see [12, 23, 46]), neither

within the optimization of parameters nor within structural

learning phases. The second point above assures more

homogenization between rule weight learning and rule

spread adaptation, leading to less complex models than its

predecessor SparseFIS with even lower model errors and

better coverage. In this way, also several other fuzzy

modeling methods could be outperformed in terms of

coverage and model complexity. Among all examined data

sets, the average coverage degree is 0.29 for SparseFIS,

0.26 for the best related SoA method and 0.37 for Spar-

seFIS-Cover, while the average number of rules is 18.8 for

SparseFIS, 15.5 for the best related SoA method and only

5.7! for SparseFIS-Cover (so one-third of the others two).

This is remarkable as the average percentual error (MAE)

is 5.16 for SparseFIS, 5.01 for the best related SoA method

and 5.15 for SparseFIS-Cover, which does not imply a

clear, significant difference among the methods.

Future work will address the extension of SparseFIS-

Cover to the data stream mining case by developing

incremental optimization procedures for solving (7) in

incremental manner with high flexibility but still good

convergence properties of the parameters (ideally con-

verging to the batch solution). This will be connected in

homogeneous manner with an appropriate rule reactivation

or even with a rule evolution concept in order to account

for significant system dynamics and non-stationary envi-

ronments. Finally, we will then investigate and develop the

Fig. 3 a ERC curves for the premise price data set as achieved by

original SparseFIS (dashed line), the best related SoA method (dotted

line) and SparseFIS-Cover (solid line), the legend explains the

number of rules and the coverage degree, b the same for the jester

data; the three ERC curves are almost identical in both cases
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�-completeness and coverage assurance for evolving fuzzy

systems as defined and positioned in [23].
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