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Abstract Data are getting larger, and most of them are

necessary for our businesses. Rapid explosion of data brings

us a number of challenges relating to its complexity and how

the most important knowledge can be captured in reasonable

time. Fuzzy C-means (FCM)—one of the most efficient

clustering algorithms which have been widely used in pattern

recognition, data compression, image segmentation, com-

puter vision and many other fields—also faces the problem of

processing large datasets. In this paper, we propose some

novel hybrid clustering algorithms based on incremental

clustering and initial selection to tune up FCM for the Big

Data problem. The first algorithm determines meshes of

rectangle covering data points as the representatives, while

the second one considers data points that have high influence

to others as the representatives. The representatives are then

clustered by FCM, and the new centers are selected as initial

ones for clustering of the dataset. Theoretical analyses of the

new algorithms including comparison of quality of solutions

when clustering the representatives set versus the entire set

are examined. The experimental results on both simulated

and real datasets show that total computational time of the

new methods including time of finding representatives and

clustering is faster than those of other relevant algorithms.

The validation on clustering quality is also examined. The

findings of this paper have great impact and significance to

researches in the fields of soft computing and Big Data

processing. It is obvious that computing methodologies

nowadays are facing with huge amount of diverse and

complex data structures. Speed of processing is the main

priority when considering effectiveness of a specific method.

The findings demonstrated practical algorithms and inves-

tigated their characteristics that could be referenced by other

researchers in similar applications. The usefulness and sig-

nificance of this research are clearly demonstrated within the

extent of real-life applications.

Keywords Big data � Density-based clustering � Fuzzy

C-means � Grid-based clustering � Incremental clustering �
Initial selection

1 Introduction

Fuzzy C-means (FCM) [4] is considered as a strong aid of rule

extraction and data mining from a set of data in which fuzzy

factors are common [7, 13]. It has been used for pattern

recognition, data compression, image segmentation, computer

vision and many other fields [21, 23, 29–39, 41, 43, 44, 46, 51].

Given a dataset of N attributes:X = {x1, …, xN}, with xk 2 Rp

and V = (v1, …, vC) being the centers of all groups. The FCM

algorithm aims to minimize:

J ¼
XN

k¼1

XC

j¼1

umkj xk � vj
�� ��2! min; ð1Þ

where ukj is the membership value showing the degree to

which element xk belongs to cluster cj and m is the fuzzifier
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which determines the level of cluster fuzziness. The con-

straints for the optimization problem are:

ukj 2 0; 1½ �
PC

j¼1

ukj ¼ 1; 8k ¼ 1;N

8
<

: : ð2Þ

Problem (1–2) is solved by an iterative schema that

computes the cluster centers and the membership matrix

until the difference between two consecutive iteration is

smaller than a given threshold. This algorithm was proved

to converge to the saddle points by Bezdek et al. [4].

Nevertheless, data tend to be huge and diverse as they

can come from everywhere: sensors used to gather climate

information, posts to social media sites, digital pictures and

videos, purchase transaction records, and cell phone GPS

signals to name a few. Some of them are even in different

organizations and structures. Rapid explosion of data

brings a number of challenges regarding how the most

important knowledge can be captured in reasonable time.

Jain [17] stated that clustering is the key to the Big Data

problem since it provides efficient browsing, search, rec-

ommendation and organization of data without prior

knowledge of the number and nature of groups in data.

However, the FCM algorithm still faces the problem of

processing large datasets. A simple and straightforward

method to accelerate FCM for the Big Data problem is

hence required.

Scanning the literature, we recognize that there are num-

bers of solutions dealing with this matter [2, 3, 10, 25, 28]

including data reduction [6, 14, 15, 18, 22, 27, 49, 50], initial

selection [12, 16, 24, 26, 42], suppression [5, 11, 40] and

incremental clustering [1, 9, 47, 48]. Motivated by developing

a simple and straightforward method to accelerate FCM for

the Big Data problem, the idea of hybrid algorithms between

incremental clustering and initial selection is utilized. Incre-

mental clustering and initial selection do not require complex

preprocessing procedures like other groups. Incremental

clustering works based on the assumption that small repre-

sentatives of the dataset could represent for the whole dataset;

therefore, clustering in the representative sets obtains both fast

computational speed and reasonable quality in comparison

with the clustering in the entire dataset. Initial selection seeks

out appropriate initial centers and makes the clustering pro-

cess faster due to the closeness of the final centers with the

initial ones. However, an important question regarding these

approaches is how to determine such the representatives and

initial centers accordingly.

In this paper, we aim to develop some novel hybrid

algorithms based on incremental clustering and initial

selection to tune up FCM for the Big Data problem.

Specifically, the first algorithm, named as GB-FCM,

determines meshes of a rectangle covering data points as

the representatives whose active ones that cover at least a

data point are classified into groups by the FCM algorithm.

The new centers, which reflect more accurately the nature

of dataset, are selected as initial centers of FCM to classify

the entire dataset. The second algorithm, named as DB-

FCM, considers data points that have high influence to

others as the representatives. The term ‘influence’ is

equivalent to the number of neighbors in a sphere whose

center is a given data point. High-influence data points can

be the best reduction of entire dataset. Again, these rep-

resentatives are clustered by the FCM algorithm and the

new centers are selected as initial ones for clustering of the

dataset.

The main difference of these algorithms with the rele-

vant ones (e.g. the standalone incremental clustering and

initial selection) is how to determine the representatives

and initial centers. Unlike incremental clustering that

considers centers/medoids, the new algorithms choose

either rectangular meshes or data points as representatives

on the basis of distribution of data points. Unlike initial

selection that often finds out initial centers by meta-

heuristic optimization methods, the new algorithms utilize

the representatives to clarify centers. These modifications

do make the proposed algorithm faster and more precise

than existing clustering techniques. Lastly, theoretical

analyses of the new algorithms are also examined.

Rest of this paper is organized as follows. Sections 2 and

3 describe two novel methods. Section 4 experimentally

validates these algorithms in comparison with the relevant

ones on both simulated and real datasets. Finally, Section 5

draws the conclusions and delineates future works.

2 Grid-Based Approximation for Fuzzy
Clustering

2.1 The Algorithm

The objective function and constraints of the new algo-

rithm, named as Grid-Based Approximation for Fuzzy

Clustering algorithm (GB-FCM), are expressed as follows.

~J ¼
Xl

h¼1

XC

j¼1

umhj oh � vj
�� ��2! min; ð3Þ

uhj 2 0; 1½ �
PC

j¼1

uhj ¼ 1; 8h ¼ 1; l

8
<

: ; ð4Þ

where oh is the representative of the set {xk}, wh is the

number of data points that oh represents and l is the number

of cells.
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N ¼
Xl

h¼1

wh: ð5Þ

The GB-FCM algorithm is demonstrated in Table 1.

Note that in Step 2 of this algorithm, if an interval in a

given axis has no or a data point inside, recursively merge

it with its right interval until the number of data points is

larger than or equal to 2. By this modification, each interval

is assumed to contain at least 2 data points, which are dense

enough for clustering.

Example 1 Consider the following dataset with the bound

of data points being set up as in Step 1 of the algorithm.

Herein, eX = 0.5 and eY = 1 (Fig. 1).

According to the Step 3, we consider all meshes of the

newly created rectangle as potential representatives

(Fig. 2).

Rectify all meshes in Fig. 2 by Step 4, we get the active

representatives in red color (Fig. 3).

Use FCM to classify the active representatives in Fig. 3

into 2 groups and obtain the cluster centers represented by

the triangular symbol in Fig. 4.

Herein, we recognize that the achieved cluster centers

are ‘nearly’ approximate to the optimal cluster centers of

the original dataset. The final cluster centers are obtained

by the same process of FCM with the initial solutions being

extracted above (See Step 6, Fig. 5). In fact, when the

Table 1 Algorithm 1: GB-FCM
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number of data points is large, this method is quite efficient

to quickly determine the optimal centers and results.

2.2 Theoretical Analyses of GB-FCM

Firstly, we prove that the problem in (1, 2) is equivalent to

the problem in (3, 4).

Theorem 1 After replacing {xk} by its representative oh,

the problem (1, 2) is reduced to minimize the alternative

objective function (3) with the partition matrix U satisfying

the condition (4).

Proof From (1), we have

Fig. 1 Small dataset

Fig. 2 Possible meshes for the dataset
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J ¼
Xl

h¼1

Xwh

k¼1

XC

j¼1

umkj oh � vj
�� ��2

: ð8Þ

Apply Jensen’s inequality, we get
Pwh

k¼1 u
m
kj

wh

�
Pwh

k¼1 ukj

wh

� �m

¼ umhj: ð9Þ

Therefore, from (8) and (9) we have

J� J
�
¼
Xl

h¼1

XC

j¼1

umhjwh oh � vj
�� ��2

: ð10Þ

Because of the property of ukj, it is obvious that,

Fig. 3 Active meshes for the dataset

Fig. 4 Use FCM for the representatives
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ukj 2 0; 1½ � ) uhj ¼
Pwh

k¼1 ukj

wh

2 0; 1½ � ð11Þ

XC

j¼1

ukj ¼ 1 )
XC

j¼1

uhj ¼
Pwh

k¼1

Pc
j¼1 ukj

wh

¼ 1 ð12Þ

h

Theorem 2 The optimal solutions of the system (3) and

(4) are

vj ¼
Pl

h¼1 u
m
hj:wh:oh

Pl
h¼1 u

m
hj:wh

; j ¼ 1;C ð13Þ

uhj ¼
1

PC
i¼1

oh�vjk k
oh�vik k

� � 2
m�1

ð14Þ

Proof Similar to the proof of Bezdek et al. [4], we use the

gradient method for the objective function ~J in (3),

~J ¼
Xl

h¼1

XC

j¼1

umkjwhðoh � vjÞtðoh � vjÞ; ð15Þ

) oJ
�

ovj
¼
Xl

h¼1

umhjwh �2oh þ 2vj
� �

ð16Þ

o~J

ovj
¼ 0 ) vj ¼

Pl
h¼1 u

m
hj � wh � oh

Pl
h¼1 u

m
hj � wh

; j ¼ 1;C: ð17Þ

Use the Lagrange multiplier, we get

Lðu; kÞ ¼
Xl

h¼1

XC

j¼1

umkjwh ðoh � vjÞ
�� ��2

�
Xl

h¼1

kh
XC

j¼1

uhj � 1

 !
; ð18Þ

oL u; kð Þ
ouhj

¼ 0 ) uhj ¼
kh

m:wh: oh � vj
�� ��2

 ! 1
m�1

;

h ¼ 1; l; j ¼ 1;C

ð19Þ

Because of constraint (4), we obtain

kh ¼ m � wh

XC

i¼1

oh � vj
�� ��2

h ¼ 1; l: ð20Þ

From Eqs. (19) and (20), we have

uhj ¼
PC

i¼1 oh � vik k2

oh � vj
�� ��2

 ! 1
m�1

¼ 1

PC
i¼1

oh�vjk k
oh�vik k

� � 2
m�1

h ¼ 1; l; j ¼ 1;C:

ð21Þ

From Eqs. (17, 21), we have the solutions of the system (3)

and (4).

Theorem 2 allows us to determine the centers and the

partition matrix described in Step 5 of the GB-FCM

algorithm.

Theorem 3 The minimal cost of clustering representa-

tives differs from the minimal cost of clustering the orig-

inal dataset a quantity of e 9 l.

Fig. 5 Final cluster centers
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Proof Denote by ðukj; vjÞ the optimal solutions of original

problem and ðuhj; vjÞ the optimal solutions of representative

clustering. From the minimal property of these solutions,

we have

J0min �
XN

k¼1

XC

j¼1

ukj
m oh � vj
�� ��2

; ð22Þ

�
XN

k¼1

XC

j¼1

ukj
m xk � vj
�� ��2þ oh � xkk k2
� �

; ð23Þ

� Jmin þ
Xl

h¼1

eh; ð24Þ

� Jmin þ l� e: ð25Þ

where eh in (24) is the farthest distance in each set {xk} to

its representative oh.

e ¼ maxeh; h ¼ 1; l: ð26Þ

From the inequality (25), we recognize that the centers of

the problem (1–2) are not too far from those of represen-

tative clustering in Eqs. (3–4). h

Next, we assess the quality of choosing representatives

in GB-FCM. Let us state some definitions below.

Definition 1 The quality of a representative method is

defined by a minimal number amethod satisfying condition,

smethod � amethod � smin; ð27Þ

where smin is the optimal number of spheres with radii e,
smethod is the number of spheres.

Definition 2 Method 1 is said to be better than method 2

if

amethod1\amethod2: ð28Þ

If we consider all meshes in a grid as potential represen-

tatives, then a possible determination of a data point to any

mesh is specified as follows. If for any xk in the dataset,

there exists a coordinate,

x
j
ki ¼ t � eþ e

2
; t 2 Z; ð29Þ

then we assign xk to representatives having coordinates

oh
j \ xk

j .

Theorem 4 The quality of the grid-based method is:

agridmethod = 3d, for which d is the number of dimensions of

feature space. In the other words,

sgridmethod � 3d � smin: ð30Þ

Proof

• If d = 1: Assume that oh, oh?1, oh?2, oh?3 are the

consecutive meshes (Fig. 6). For any data point having

the coordinate in this dimension is y, there are three

possible cases.

• Case 1: If y\ (ok?1 ? ok?2)/2, all data points that

y represents would be represented by oh, oh?1, oh?2.

• Case 2: If y[ (ok?1 ? ok?2)/2, all data points that

y represents would be represented by

oh?1, oh?2, oh?3.

• Case 3: Ify = (ok?1 ? ok?2)/2, all data points that

|y - xk|\ e would be represented by oh, oh?1, oh?2.

The left endpoint certainly belongs to oh. The right

endpoint is assigned to oh?2 because it is less than

(oh?2 ? oh?3)/2.

In this dimension, we need three representatives for

an optimal representative y.

• If d[ 1: It is due to the fact that in every dimension,

we need the maximum three rows of representatives.

Fig. 6 Determine a suitable mesh for representing data points having

coordinate y

Fig. 7 Determine number of representatives when the dimension is

greater than 1

Fig. 8 Example of mesh determination and representatives for {x1,

x2}
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Thus, in d dimensions, we totally need 3d representa-

tives (Fig. 7) h

Example 2 In Fig. 8, the point x1 is assigned to oh?3, x2 is

assigned to oh.

3 Density-Based Approximation for Fuzzy
Clustering

3.1 The Algorithm

In this section, we introduce another algorithm, named as

Density-Based Approximation for Fuzzy Clustering Method

(DB-FCM). The descriptions of this algorithm are shown in

Table 2. Note that in Step 5, new representative of merged

sphere is calculated by the average value of old represen-

tatives. In cases that there is only one sphere for the whole

dataset after merging, return to Step 1 with a different

initial data point. If the results of two consecutive initial-

izations are identical, stop the algorithm.

Example 3 Consider the dataset in Example 1 (Fig. 1).

Herein, eX = 0.5 and eY = 1 so e = 1.118. Steps 1–4 create

some representatives of the sphere with radius e (Fig. 9).

The red points are the centers of the spheres.

Use FCM to classify the centers into 2 groups, and finally

perform FCM again to classify the original dataset with the

initial centers of the previous steps, we get the results in Fig. 10.

Notice that these steps are analogous to those in GB-FCM.

Table 2 Algorithm 2: DB-FCM
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3.2 Theoretical Analyses of DB-FCM

Firstly, from Definition 1, we would like to know whether

or not the quality of DB-FCM is better than that of GB-

FCM. The following theorem helps us answer this

question.

Theorem 5 DB-FCM is better than GB-FCM. In other

words,

adensitybased\agridbased: ð33Þ

Proof We recognize that adensitybased is the maximal

number of spheres whose centers lie in a given radius sphere

and their distances are greater than e. It comes from the fact

that data points belong to one sphere representative only,

and the next representative must not belong to any previous

sphere representative (Fig. 11). By the condition centers in

the given sphere, the problem can be changed to finding the

maximal number of spheres with radii e/2 that can be put

into a sphere with radius 3e/2 (Fig. 12). Besides, all spheres

with radii e/2 are not allowed to touch together. Obviously,

this property is equivalent to the fact that distances of cen-

ters are greater than e. When all centers are in the boundary

of the given sphere of the original problem, the spheres with

radii e/2 touch the boundary of the sphere with radius 3e/2.

adensitybased is the maximal number of spheres with radii

e/2 that can be put into a sphere with radius 3e/2. It is less

than or equal to the maximal number of spheres if we

dismiss the condition that spheres do not touch together.

We know the volume,

V3e
2
¼ Ad:

3e
2

� �d

; ð34Þ

Ve
2
¼ Ad �

e
2

� �d
; ð35Þ

where Ad is a constant in d dimensional space. Because

spheres with radii e/2 lie in the sphere with radius 3e/2, the

maximal number of spheres is less than or equal to,

V3e
2

Ve
2

¼ 3d: ð36Þ

However, this number cannot be 3d because in that

situation, data points in the sphere with radius 3e/2 are

covered by spheres with radius e/2. In fact, the number of

intersections between spheres with radii e/2 and the sphere

with radius 3e/2 is limited. Indeed, a limited number of

points in the boundary of the sphere with radius 3e/2 are

covered by spheres with radii e/2. Therefore, the quality of

density-based method is better than the one of the grid-

based and satisfies the inequality,

ascanning\3d � 1: ð37Þ

Theorem 6 (A better representative method in the

dimension that is smaller than three—half-sphere repre-

sentative method).

In fact, the half-sphere representative method is also

iterative. Initially, we fix a dimension, then iterate.

Fig. 9 Forming spheres
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Fig. 11 Data points belong to the red sphere representative only

Fig. 12 Alternative problem: finding maximal number of spheres in a

red sphere

Fig. 13 Representative is the red point which has smallest value

among all

Fig. 14 Representative is the lowest point in the remaining part of

representative sphere

Fig. 15 Five spheres with radii e/2 can be arranged in a sphere with

radius 3e/2

Fig. 10 Final cluster centers of DB-FCM
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• Choose the point having the smallest value on that

dimension. Scan all points that lie in the half-sphere

with radius 2e.
• Replace the half-sphere by a set of spheres whose radii

cover all its points.

At the first iteration, the half-sphere representative is the

pole in a fixed dimension (Fig. 13). In next steps of itera-

tion, the representative is the lowest point in the remaining

part of some optimal representative sphere (Fig. 14).

In one-dimensional space, it is just the interval width of

e. The ahalfsphere in this case is equal to one. This means that

the number of representatives chosen by the half-sphere

method is minimal. In addition, it is easy to check that

adensitybased = 2. In two-dimensional space, adensitybased -

C 5, because we can arrange five spheres with radii e/2 in a

sphere with radius 3e/2 (Fig. 15). Thus, we just need four

spheres with radii e to cover a sphere with radius 2.e. The

set of four spheres are constructed by putting a sphere with

the center is the midpoint of the cut line of the half-sphere,

then drawing a half of hexagon and putting three left

spheres’ centers in the midpoints of edges of this half

hexagon. Thus, in two-dimensional space, ahalfsphere B 4. It

follows that the half-sphere representative method in this

case is better than the density-based method. In fact,

ahalfsphere is the minimal number of spheres with radii e to

cover a sphere with radius 2.e.

4 Results

4.1 Experimental Environment

• Experimental tools: We have implemented the pro-

posed algorithms (GB-FCM and DB-FCM) in addition

to FCM [4] and the stand-alone methods of initial

selection—psFCM [16], suppression—neural network

[5] and incremental clustering—FHCA [9] in C pro-

gramming language and executed them on a Linux

Cluster 1350 with eight computing nodes of

51.2GFlops. Each node contains two Intel Xeon dual

core 3.2 GHz, 2 GB Ram.

• Experimental datasets: We use six simulated (D1–D6)

and four real (T1–T4) datasets described in Table 3.

• Simulated datasets: Datasets from D1 to D3 are

generated from a Gaussian distribution by using the

Marsaglia [20] method. The standard deviation of

these data points in each cluster is one. The

dimension of these datasets is two. The datasets

from D4 to D6 are also generated from a Gaussian

distribution, but in the five-dimensional space;

• Real datasets: they are taken from UCI KDD

Archive Website [45]. T1 is Forest CoverType

including 581012 instances in 54 dimensions

showing the actual forest cover type for a given

observation (30 9 30 m cell) determined from US

Forest Service (USFS) Region 2 Resource Infor-

mation System (RIS). T2 is a text dataset namely

Enron Emails in Bag of Words Data Set including

39,861 numbers of documents, 28,102 numbers of

words in the vocabulary and 3,710,420 number of

words in total. T3 is a multivariate and text dataset,

namely KEGG Metabolic Relation Network (Direc-

ted) including 53,414 instances in 24 dimensions. T4

namely NYSK (New York v. Strauss-Kahn) is a

collection of English news articles about the case

relating to allegations of sexual assault against the

former IMF director Dominique Strauss-Kahn (May

2011) including 10,421 instances in 7 dimensions.

• Cluster validity measurement: Davies-Bouldin (DB)

index [8] in Eqs. (38–40) to evaluate the clustering

qualities. In these equations, Ti is the size of cluster ith, Si
is a measure of scatter within the cluster andMij is a measure

of separation between cluster ith and jth. The minimum

value indicates the better performance for DB index.

Table 3 Descriptions of the

datasets
Dataset Size (MB) Dimensions No. of Points No. of Clusters (C)

D1 4.27 2 200,000 16

D2 10.6 2 500,000 12

D3 21.3 2 1,000,000 12

D4 2.33 5 50,000 12

D5 3.66 5 80,000 8

D6 4.58 5 100,000 8

T1 11.2 54 581,012 8

T2 47.4 2 3,710,420 10

T3 7.0 24 53,414 12

T4 18 7 10,421 16
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DB ¼ 1

C

XC

i¼1

max
j:j 6¼i

Si þ Sj

Mij

	 
� �
ð38Þ

Si ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Ti

XTi

j¼1

Xj � Vi

�� ��2
vuut ; ði ¼ 1;CÞ ð39Þ

Mij ¼ Vi � Vj

�� ��; ði ¼ 1;C; j ¼ 1;C; i 6¼ jÞ; ð40Þ

• Objective:

• To compare the total computational time of

algorithms;

• To compare the computational time of algorithms

for finding representatives;

• To measure the clustering qualities of algorithms.

4.2 The Comparison of the Total Computational

Time

In this section, we compare the total computational time of

all algorithms illustrated in Table 4. It is obvious that the

computational time of the proposed methods (GB-FCM

and DB-FCM) is smaller than those of other algorithms.

Thus, the first remark from the experiments is that the

proposed algorithms are faster than the relevant ones.

In what follows, we measure the computational time of

all algorithms per data point. The results in Table 5 show

that GB-FCM is the most effective algorithm because it

takes smallest computational time to process a data point.

The average results also demonstrate that FHCA is the

worst algorithm for this matter.

Analogously, the comparison of computational time of

all algorithms per the number of clusters in Table 6 also

shows that GB-FCM is the most effective algorithms. This

is the second remark from the experiments.

Next, we find out which algorithm is the most effective

in all types of data (simulated and real). The results from

Tables 4, 5 and 6 clearly show that GB-FCM is the fastest

algorithm among all. Just to give an example: the com-

putational time of GB-FCM on D4 is 4.31, 11.49, 7.1, 10.8

and 140 times faster than those of DB-FCM, FCM, psFCM,

neural network and FHCA, respectively. This is the third

remark from the experiments.

Table 4 Computational time of all algorithms (s)

GB-FCM DB-FCM FCM

D1 34.14 8.93 118.19

D2 36.13 22.29 420.18

D3 38.83 45.03 1037.1

D4 11.63 50.19 133.69

D5 30.06 76.33 141.21

D6 46.78 140.77 251.5

T1 586.52 626.15 11,016

T2 426.9 815.3 12,546

T3 134.1 245.6 487.2

T4 26.3 11.7 86.3

psFCM Neural network FHCA

D1 131.1 598.85 1388.25

D2 286.88 1180 2781.61

D3 319.14 2342.7 6129.8

D4 82.26 126.03 1633.7

D5 148.59 144.2 1706.17

D6 156.98 179.9 2589.16

T1 4552.5 27,579 80,725

T2 6587 33,242 93,684

T3 1876 12,387 29,147

T4 78.6 318.6 962.9

Table 5 Computational time of all algorithms per data point (sec)

GB-FCM DB-FCM FCM

D1 0.000171 4.465E-05 0.000591

D2 7.23E-05 4.458E-05 0.0008404

D3 3.88E-05 4.503E-05 0.0010371

D4 0.000233 0.0010038 0.0026738

D5 0.000376 0.0009541 0.0017651

D6 0.000468 0.0014077 0.002515

T1 0.001009 0.0010777 0.01896

T2 0.000115 0.0002197 0.0033813

T3 0.002511 0.004598 0.0091212

T4 0.002524 0.0011227 0.0082814

Average 0.00075168 0.0010518 0.0049166

psFCM Neural network FHCA

D1 0.000656 0.0029943 0.0069413

D2 0.000574 0.00236 0.0055632

D3 0.000319 0.0023427 0.0061298

D4 0.001645 0.0025206 0.032674

D5 0.001857 0.0018025 0.0213271

D6 0.00157 0.001799 0.0258916

T1 0.007835 0.0474672 0.1389386

T2 0.001775 0.0089591 0.0252489

T3 0.035122 0.2319055 0.5456809

T4 0.007542 0.0305729 0.0924

Average 0.00588959 0.0332724 0.0900795
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4.3 The Comparison of the Computational Time

for Finding Representatives

In Table 7, we describe the number of representatives and

the related computational time of algorithms. The results

show that GB-FCM finds representatives faster than DB-

FCM and other algorithms. However, the number of rep-

resentatives produced by GB-FCM is larger than that by

DB-FCM.

Now, we illustrate the dataset D1 (Fig. 16), the repre-

sentatives and their centers produced by GB-FCM

(Fig. 17) and DB-FCM (Fig. 18).

Table 6 Computational time of all algorithms per cluster (sec)

GB-FCM DB-FCM FCM

D1 2.13375 0.558125 7.3868

D2 3.01083 1.8575 35.015

D3 3.23583 3.7525 86.425

D4 0.96916 4.1825 11.1408

D5 3.7575 9.54125 17.6512

D6 5.8475 17.5962 31.4375

T1 73.315 78.2687 1377

T2 42.69 81.53 1254.6

T3 11.175 20.4666 40.6

T4 1.64375 0.73125 5.39375

Average 14.77 21.84 286.66

psFCM Neural network FHCA

D1 8.19375 37.428 86.765

D2 23.9066 98.333 231.800

D3 26.595 195.225 510.816

D4 6.855 10.502 136.141

D5 18.57375 18.025 213.271

D6 19.6225 22.487 323.645

T1 569.0625 3447.375 10,090.625

T2 658.7 3324.2 9368.4

T3 156.33 1032.25 2428.916

T4 4.9125 19.912 60.181

Average 149.27 820.57 2345.0564

Fig. 16 Dataset D1

Fig. 17 Clustering results of GB-FCM with centers marked in red

Table 7 Number of

representatives (computational

time in seconds) of algorithms

Dataset GB-FCM DB-FCM psFCM FHCA

D1 3632 (1.75) 516 (2.1) 6480 (29.4) 6613 (437)

D2 4845 (5.08) 651 (4.36) 8300 (38.1) 9239 (971)

D3 4923 (9.1) 684 (9.5) 10,700 (42.7) 11,106 (2034)

D4 5582 (2.54) 1938 (10.2) 7500 (27.61) 7180 (512)

D5 6695 (4.02) 2043 (16.4) 7848 (32.9) 9100 (702)

D6 7482 (15.7) 2481 (48.27) 8165 (35.23) 9176 (858)

T1 86,945 (172.9) 32,586 (346.8) 124,636 (675.7) 157,389 (11,083)

T2 984,561 (175.3) 288,786 (278) 1,549,722 (1100) 1,999,230 (28,493)

T3 5121 (41.2) 2002 (89.6) 7611 (828) 7594 (11,175)

T4 1354 (7.3) 896 (4.5) 2736 (21.7) 2915 (358)
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4.4 The Comparison of Clustering Quality

Table 8 measures the DB values of algorithms. The results

reveal that the DB values of the proposed algorithms are

approximate to that of FCM and mostly smaller than those

of the relevant works. Moreover, the statement in Theo-

rem 5 affirming that the clustering quality of DB-FCM is

better than that of GB-FCM has been verified.

4.5 Summary of the Findings

It has been observed from the experimental results in

Sections 4.2–4.4 that clustering qualities of the proposed

works (GB-FCM and DB-FCM) are approximate to that of

FCM and mostly better than those of other algorithms. It is

understandable because FCM is the original clustering

algorithm while others are the approximate methods, which

were created to handle the problem of processing large

datasets. According to Fig. 19 where the average DB

Fig. 19 Average DB values of all algorithms

Fig. 18 Clustering results of DB-FCM with centers marked in red

Table 8 DB values of

algorithms
Data GB-FCM DB-FCM FCM psFCM Neural network FHCA

D1 9.56 8.42 5.65 8.42 10.8 14.1

D2 9.17 6.74 4.38 7.37 7.22 10.3

D3 9.83 7.28 4.63 5.26 9.45 8.18

D4 19.6 16.1 12.3 18.4 15.8 18.7

D5 9.03 8.77 7.22 12.5 13.2 11.4

D6 5.82 4.16 3.75 7.34 7.38 8.29

T1 6.28 6.21 3.26 6.88 6.28 5.72

T2 9.32 8.96 7.89 9.46 9.26 9.35

T3 15.7 11.1 9.22 14.3 13.1 12.9

T4 8.36 5.27 3.48 7.63 6.48 5.28

1598 International Journal of Fuzzy Systems, Vol. 19, No. 5, October 2017

123



values of all algorithms are illustrated, we realize that the

clustering quality of DB-FCM is better than psFCM, neural

network and FHCA. GB-FCM is approximate to these

algorithms in terms of clustering quality. The clustering

quality of DB-FCM is better than those of other algorithms

because it creates good representations through the process

of forming and merging ‘weak’ clusters into ‘strong’ ones.

Therefore, cluster centers are nearly identical to the opti-

mal results. In GB-FCM, the representatives are fixed into

meshes of the grid, which somehow do not reflect the

nature of dataset, thus making the limitation of GB-FCM

regarding clustering quality as compared with DB-FCM.

Thus, when selecting an approximation algorithm that has

good clustering quality, DB-FCM is the first choice.

In terms of computational time (which is the main issue

of approximation algorithms), GB-FCM shows the supe-

riority versus other algorithms: It is faster than the relevant

ones by various types of data. As illustrated in Fig. 20

where the average computational time of all algorithms per

(a) data points and (b) clusters is described, two proposed

algorithms are faster than others due to the idea of hybrid

mechanism between incremental clustering and initial

selection mentioned in the Introduction. That is to say, we

have appropriate methods to determine the representatives

and initial centers in GB-FCM and DB-FCM. Therefore,

clustering in the representative sets obtains both fast

computational speed and reasonable quality in comparison

with the clustering in the entire dataset. Moreover, since

the closeness of the final centers with the initial ones, those

algorithms would converge to the final results faster than

other methods. The results in Tables 5, 6 and Fig. 20 have

clearly demonstrated this fact. It should be noted that when

selecting an approximation algorithm that has good com-

puting speed, GB-FCM is the first choice.

Last but not least, the verification on the representatives

showed that GB-FCM finds representatives faster than

other algorithms and the number of representatives of DB-

FCM is smaller than those of other algorithms. This remark

should be noted when finding an algorithm that has both

fast computing speed and low memory space of data

storage. In some cases when the memory of storage is

limited, DB-FCM is a good choice to use.

We have analyzed the reason why the proposed algo-

rithms perform better than the others in terms of clustering

quality, computation time and the representatives. Also,

their advantages and disadvantages have been identified to

make them feasible in practical applications.

5 Conclusions

In this paper, we proposed two novel hybrid clustering

algorithms namely GB-FCM and DB-FCM based on

incremental clustering and initial selection to tune up FCM

for the Big Data problem. Details of the algorithms

including a series of theorems were described. The theo-

retical contributions of the new algorithms are: i) the

equivalence of clustering in the representative sets to that

in the entire set; ii) difference of solutions of the repre-

sentative sets vs. those of the entire set that demonstrates

clustering quality of the new algorithms; iii) the definition

of quality; iv) the estimation of clustering quality of the

new methods; v) the half-sphere representative. We also

proved that the quality of solutions when clustering the

representatives set is approximate to that of clustering the

original dataset. Such analyses would help explaining the

algorithms better. The proposed algorithms were verified

experimentally on both simulated and real datasets. The

Fig. 20 Average computational time of all algorithms per (a) data points; (b) clusters
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results showed that the new algorithms run faster than other

relevant methods. Analyses about the clustering qualities of

algorithms and representatives were performed accord-

ingly. Further researches on this theme will extend the half-

sphere representative method to the dimension greater than

two. Moreover, a more exact bound for the density-based

method will be considered.
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