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Abstract This paper bestows a distributed adaptive

scheme for diagnosing inaccurate data (anomaly) in wire-

less sensor networks. Faults occurring in sensor nodes are

routine owing to the sensor device itself and the harsh

environment in which the sensor nodes are deployed. It is

mandatory for the WSNs to discover the anomaly and take

actions to avoid further seediness of the network lifetime

for confirming data accuracy. In this standpoint, we pro-

pose two perspectives for diagnosing and alleviating

anomalies. The first view depicts input space partitioning

by subtractive clustering method with robust density

measure. Later, Takagi–Sugeno fuzzy inference model is

applied for selection of several parameters and its mem-

bership functions, and rule-based construction is practiced

to spot anomalies in distributed clustering wireless sensor

network. By exploring combined correlation analysis with

second perspective, the eliminated anomalous data are

replaced by imputed data. Experimental results infer

accuracy and reliability with a reduced amount of energy

consumption than the state-of-the-art techniques.

Keywords Accuracy � Anomaly detection �
Subtractive clustering � Fuzzy � Sensor networks �
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1 Introduction

Wireless sensor networks (WSNs) applications surge very

fast over the past by collecting information and monitoring

the solutions. They are enumerated as group of interlinked

sensors of various forms around the specified area [1, 2].

Battery power is an important limitation learned by various

designers in WSNs since it hammers the overall perfor-

mance of the whole system and be handled with care. The

data deviating from its peers are coined by the term

‘‘Outliers’’ or ‘‘Anomalies’’ which originates from the field

of statistics [3]. All sensors may fail in unreliable and harsh

environments. Faulty sensors result in noisy and random

readings due to interferences. The main reasons for

anomalies are

1. Failure of sensor nodes/node anomaly

a. Battery power drains to 0 %.

b. Bugs may short-circuit sensor nodes.

c. Environmental changes.

2. Miscomputation process/data aggregation anomaly

a. Inappropriate data aggregation

1. Inner cluster

2. Outer cluster

b. Inability to analyze huge data
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3. Miscommunication process/network anomaly

a. Original values of sensor nodes may be routed in

wrong directions due to loss of connectivity

Large numbers of highly correlated data are demanded

by redundant data, and energy is drained in huge amount

which in turn will be processed and collected by the base

station. Network lifetime is boosted by providing fused

information and purging redundant transmission through

data aggregation [4]. If anomalies are not spotted during

the data aggregation process, the data inaccuracy ensues

[6]. Data aggregation follows cluster structure, where

cluster head performs data aggregation process. The data

collected by cluster head from one or more sensing nodes

are smeared to aggregation functions. Sink often receives

the aggregated value [5] [7]. In this context, some faulty

nodes may be present, producing incorrect readings that

deviate from the exact output. Cluster head (aggregator)

may perform inaccurate calculation, resulting in anomaly.

The existence of any anomaly will end in inaccurate

query results and thwart the system’s efficiency. Thus, it is

acute in identifying and replacing incorrect information so

as to improve the query accuracy and reliability. In this

paper, we focus at the snag of determining inaccurate

readings with high reliability in sensor networks. Obvi-

ously, an ingenuous approach to this problem is to accu-

mulate all readings to a sink, where fuzzy-based analysis is

performed to finalize anomalous data. In this proposed

work, we spotlight the anomaly diagnosis process in cluster

head in view of the fact that data accuracy may be

increased gradually by concentrating on every individual

sensor’s reading. The anomaly disclosure of each sensor

must be broadcasted to a cluster center for shaping a core

decision. The cluster center performs data aggregation

beyond considering the readings from anomalous sensor

nodes [8]. In this lap, base station receives accurate data,

though the reliability is depraved. The cluster center fore-

casts reliability of each received detection result through-

out the making of exclusive final decision. When the final

decision is not significant, the cluster center will mandate

the sensor which has sent the acknowledged result with the

lowermost reliability to retransmit. To rise above this issue,

the imputed data are predicted based on correlation

between sensor’s readings. This prospective fuzzy-based

model will scrutinize the anomalies originated by sensor

nodes, and the readings are mitigated by the clean imputed

value. Accordingly, the global accuracy and reliability of

the distributed sensor network are elevated.

Pertaining to the above observation in the proposed

system, two strategies in finding anomaly diagnosis and

relief measures are dealt. The first standing concentrates on

forming optimal clusters with subtractive clustering

method proceeding from robust density measures that focus

on creating input space for the fuzzy inference model. The

second phase puts across the fuzzy logic technique with

Takagi–Sugeno (TS) fuzzy inference model [9]. It receives

inputs from first juncture for identifying parameters and its

relationships. Anomaly will be uncovered by crossing

second juncture with increase in accuracy and short in

curing anomalous data. Anomalous data are removed in

aggregation process which worsens the performance of

entire network. Missing of data in data stream lowers

reliability while receiving fused data at base station. To

overcome this issue, fuzzy rules are applied to replace

anomalous data by estimating imputed data exploiting

correlation technique.

The leftovers of the paper are organized as follows:

Section 2 is granted with some significant related literature

review for our proposed algorithm. Section 3 clarifies the

network model and problem statement. Section 4 mounts

the proposed approach and methodology of the three

junctures. Section 5 concludes the experimental evaluation

based on both unreal and real datasets with comparison

results. Finally, Sect. 6 concludes this paper.

2 Related Work

Wireless sensor networks face challenge as long as base

station requires accurate data. Anomalies are cultured by

cumulating data accuracy in WSNs. The norms for

anomaly detection are to establish a normal profile of the

monitored object, and anomaly is the significant deviation

from this normal profile [3]. Anomaly detection techniques

are generally ordered into: statistical detection methods,

data-mining-based methods, and rule-based (fuzzy logic)

methods [10]. Statistical anomaly detection methods build

both normal profile during a training phase and current

profile during the detection phase. Data-mining-based

methods can systematize the process of finding meaningful

activities and fascinating features like classification-based

intrusion detection. Mostly, they are computational inten-

sive and yield very high false alarm rates. In particular,

statistical-based techniques provide good detection rate

with less false alarm rate by involving a mathematical

model that requires more computational time. In WSNs, all

sensor nodes monitor the surroundings, store data in the

main memory, and interconnect the data between neighbor

nodes by evaluating the computation process where energy

is required for all the operations mentioned above. Mean-

while, capacities of the sensor nodes restrict its use for

essential threads. In [11], Pottie postulates that the energy

anticipated for communication is more than the energy

required for computation. Data aggregation consumes

cluster structure in hierarchical fashion by transporting data

from source to sink in saving computational memory
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though summarizing data from sensor nodes. Throughout

this process, annoying anomalous data are detected in

making meaningful data aggregation process.

Chitradevi et al. [12] projected anomaly detection cen-

tered on distributed agglomerative clustering method by

removing anomalies at both local and global levels. Using

cluster distance and density measures, optimal clusters are

grouped keeping anomalies lower with cheap computa-

tional and communication complexity. Zhang et al. [13]

have anticipated an ellipsoidal-based support vector

machine in classifying sensor node data as anomaly using

ellipsoidal SVM-based online anomaly detection and

adaptive anomaly detection for multivariate data. They

used the time window concept for classifying deviations

from normal behavior of the system. This system hurts

computational complexity by periodically updating a nor-

mal profile. Zhang et al. [14] recommended statistical-

based outlier detection based on time series and geostatic

analysis using spatial and temporal correlation theories.

Variogram model develops a way of exhibiting temporal

correlation by decent auto-regressive moving average

(ARMA) and spatial correlation model.

Kapitanova’s et al. [15] offered overall fuzzy logic

system by means of spatial and temporal semantics for

event detection by decreasing the number of rules in

merging simple rules and pruning undesirable rules in the

rule-based system. They utilized fuzzy logic as an alter-

native in taking fixed thresholds and crisp values, where the

accuracy of fire event detection is increased. Liang et al.

[16] suggested dual sliding window detection for increas-

ing the revealing rate of event discovery. Conversely, they

elaborate the outcome of fuzzy logic and the power of

spatial and temporal possessions of the data in classifying

detection rate.

In [17], the authors deliberated inputs similar to packet

delivery ratio, energy, distance, packet loss and receiving

signal strength to determine the jamming attacks in WSN

using fuzzy-based optimization techniques. Finding

anomalies after these attacks are difficult. In [18], imperi-

alist clustering algorithm (ICA) is altered using fuzzy logic

controller, which is implemented to vary the incorporation

operator in the competition phases of ICA achieving less

detection rate on an average of 87 %. Kumaragea et al. [19]

recommended a fuzzy data modeling for distributed

anomaly detection in dissimilar real datasets. Scalability

and sensitivity are less while employing large number of

nodes. In our previous work [20], we used relative corre-

lation clustering technique for distinguishing anomaly.

This model employs clustering and re-clustering process

with relative combinational correlation technique [20].

A fuzzy prototype suitable for estimating schemes and

functions is the Takagi and Sugeno’s fuzzy model which is

connected with fuzzy rules and possesses a job special

format with a functional-type consequent. This model

concentrates on nonlinear dynamic systems with best pro-

ven results. In [21], TS fuzzy modeling algorithm using

input–output data online in the presence of noise, extended

Kalman filter (EKF) is used which deals with the mini-

mum-variance state estimator in case of linear dynamic

systems having white noise with zero-mean value. Like-

wise, switched and hybrid nonlinear systems use observer-

based fault-tolerant control and robust fault-tolerant

tracking control, respectively [22] [23]. For a real linear

drive system in [24], Kalman filter also called as the

residual generator is effective in fault diagnosis and fault-

tolerant problems. In [25], authors present a well-organized

hybrid fuzzy clustering style for Takagi–Sugeno (TS) fuzzy

modeling based on a hybrid fuzzy clustering scheme. The

method travels through various phases for constructing an

optimal Takagi–Sugeno fuzzy model from sample data.

Gustafson–Kessel clustering algorithm is developed,

resulting in an optimal input–output space fuzzy partition

matrix.

In [26], MIMO TS model is used to select suit-

able cluster. MIMO TS models are constructed from

numerical data by using fuzzy cluster algorithm based on

weighted fuzzy expected value (WFEV). Results obtained

from this model achieve high performance against its peers

if TS model is applied for adaptive fuzzy model sensor

node (ATSFMSN) routing protocol. This model focuses

only on fuzzy clustering algorithm based on weighting

factor and fails in identifying inconsistent data. In [27],

subtractive clustering-based clustering routing algorithm

for wireless sensor networks is used to choose the cluster

heads and generate the cluster heads where the node den-

sity is high. Their results provide the reasonable arrange-

ment of cluster head, longer lifetime of the first node, and

even longer lifetime of the network to balance the energy

consumption of all the nodes in the network. Here data

density measure is calculated based on Euclidean distance

which will not yield optimal cluster head. In our proposed

system, we use the Mahalanobis distance for shaping the

cluster radius in factor space. Mahalanobis distance gen-

erates hyper ellipsoid clusters with similar volume. In [28],

the authors focus on the routing algorithm based on sub-

tractive clustering so as to reduce communication of WSNs

and terminated flooding. Cluster head selection adopts

subtractive clustering to produce cluster node with new

cost function. Though it provides effective survival time

and saves network energy, it fails in providing data accu-

racy whenever anomaly occurs. In our proposed system,

input space partitioning is performed by using subtractive

clustering with Mahalanobis distance by dealing with

spatial relationships among the various sensor nodes.

Optimal clusters are formed using this spatial correlation

analysis with mean and standard deviation.
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Proactive correlated fuzzy system with spatial, temporal,

and attribute act is applied with fuzzy C-means clustering

for refining data accuracy [29]. Similarly, the proposed

system spots anomaly and determines imputed data in

WSNs. It is evident from the literature survey that an ideal

anomaly detection system should harvest high accuracy

with negligible energy consumption. The proposed system

integrates fuzzy logic techniques like subtractive clustering

and TS fuzzy inference model for the improvement of

reliability and accuracy in WSNs. The main contributions

of the proposed work are summarized:

1. Input space portioning is performed for creating

optimal clusters using well-conditioned subtractive

clustering.

2. Diagnosing anomalies with the help of robust TS fuzzy

model increase data accuracy.

3. Replacing anomaly with imputed data increases data

integrity.

3 Network Model and Problem Statement

We put on the wireless sensor network as a large connected

network with totally n sensor nodes denoted by 1, 2, 3… n.

The nodes are dispersed randomly in some physical

domain and are stationary after deployment. The trans-

mission range for each node is static, and link between the

nodes is bidirectional. The system can be modeled as

communication graph G = {S, E}, where S = {1, 2….n},

and E = {(Sx, Sy): Sx and Sy are any two nodes in same

cluster}. A cluster is a unit disk having radius equivalent to

center node’s transmission range. A suitable clustering

protocol for implementing distributed clustered wireless

sensor network is anticipated by grouping several clusters

into deployment area. The center node is the aggregator

though the node that is a one hop neighbor of the aggre-

gators of two different clusters is the outshine node. After

the self-ruling cluster formation, only aggregator and out-

shine nodes got elected in a fully distributed fashion which

participates in the inter-cluster communication despite the

fact that sensing nodes in each cluster communicate with

their aggregator node (and to other nodes when required).

Figure 1 portrays the distributed sensor clustered

architecture.

As discussed earlier, WSNs consist of many types of

anomaly (like node or link failure) and avoids erroneous

calculation in aggregation. Earlier, we worked on finding

the animalized or normal node in the sensor network. In

this critique, the total number of nodes was alienated into a

number of clusters. Each cluster has an aggregator, and

some acts as outshine nodes for dispatching the message

from cluster to base station. The anomaly is discovered by

the aggregator node in respective clusters, and the message

is being forwarded to all nodes of the clusters and other

aggregators. Entire clusters will be operating simultane-

ously. Each aggregator accomplishes data aggregation

process, and the fused information is spawned and

advanced to the base station. In this recommended model,

optimized clusters are formed initially followed by

replacing anomalous data with imputed data to be done by

the aggregator in each cluster.

4 Proposed Methodology

The fuzzy-based anomaly detection and alleviation system

starts by input space partitioning, where subtractive clus-

tering is employed and accompanied by detecting erro-

neous data perfectly and replacing completely using TS

fuzzy modeling. The proposed model is embodied in

Fig. 2. A fuzzy model structure can be epitomized by a set

of fuzzy IF–THEN rules. A rule-based fuzzy model obliges

rule antecedent, rule consequent, and assembly of mem-

bership functions. The stages in the system comprise.

Cluster

Level 0 

Level 2 Level 1 

Base Station 

Aggregator Node 

Sensing Node

Outshine Node 

Fig. 1 Clustered network framework

Fig. 2 Schematic representation of anomaly diagnosis and relief

measure model
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1. Fuzzification: Input and output variables are defined by

mapping the crisp input into linguistic values.

2. Inference: Fuzzy inference holds number of fuzzy IF–

THEN rules. Rule-based database delineates the

membership functions of the fuzzy sets used in the

fuzzy rules. Main processes executed by inference

engine are:

a. Aggregation: Compute the IF part (antecedent) of

the rules. The antecedent variables replicate

information about the process operating

environments.

b. Composition: Compute the THEN part (conse-

quence) of the rules. The consequent variables are

a linear regression model nearby the given func-

tioning condition.

3. Defuzzification: The output variable calculated in the

composition juncture is transformed to real output

stage.

In analyzing the conventional techniques, it is inferred

whether the data are incorrect or not and lack in replacing

the incorrect data. To solve this concern, we use a number

of correlation analysis for identifying imputed data and are

substituted at the place of spotted data as anomaly.

Data accuracy will be upgraded by recognizing the

anomaly with the support of aforesaid techniques, thereby

dropping the computational power in sensors which redu-

ces the sensor’s battery power utilization rate by increasing

the lifetime of all sensors. At the end of TS anomaly

diagnosis model, base station reaches maximum accuracy

and reliability is increased by using additional rules for

calculating accurate imputed data.

4.1 Subtractive Clustering Method

Clustering slices a dataset into few groups in such a way

that the similarities inside the groups are bigger among its

peers. Clustering is to separate the data space into a few

groups with kindred data, and grouping strategies are uti-

lized broadly to sort out and classify data, as well as

valuable for data compression and model development.

Moreover, the greater part of the information congregated

in numerous issues appear to have some immutable prop-

erties that lend themselves to standard groupings [30].

Discovering these groupings or attempting to arrange the

information is not a straightforward job for people unless

the information is of low dimension. Generally, clustering

process is well arranged into off-line and online process.

Online grouping is a technique in which every data vector

is employed to overhaul the cluster as indicated by its

vector position. In off-line mode, the structure is given a

preparing dataset, which is utilized to locate the bunch by

examining all the data vectors in the preparing set. When

the cluster focuses are found settled, they are utilized later

to order new input vectors.

In this proposed work, input space model is erected with

subtractive clustering methods which are chiefly utilized as

a part of off-line clustering procedure. Subtractive clus-

tering method (SCM) is similar to mountain clustering

[31, 32], except in determining the data density measure at

every reasonable position in the factor space. It employs

the positions of the data focusing to figure the density

measure, lessening the quantity of counts essentially. SCM

comprehends computational intricacy utilizing cluster

information rather than lattice problem as focused in

mountain clustering [33, 34].

The computation is currently relative to the issue size of the

inputwhich is the sensed values from the sensors.On the other

hand, the real cluster centers are not always situated at one of

the data points. SCMdecreases computational complexity and

gives a suitable conveyance among cluster centers.

Consider assortment of data collected from sensor nodes

{X1, X2…. ,Xn} which are the vectors in the dimensional

space. Without forfeiture of sweeping statement, we expect

that the element space is standardized so that all the data

are confined by a unit of hyper solid shape. We assume

every data point as a possibility for cluster centers which

describes data density measure (DDM) of the point to serve

as a cluster center. A data density measure for cluster

center is computed by Eq. (1). The possibility of cluster

center Xi is designated as DDMi After the density measure

of each data point, it will have a high DDMi value that is

selected as the dominant cluster center. Let Xcc1 be the

possibility point of cluster center and DDMc1 be its density

measure. DDMi for every data point is revised by Eq. (2).

DDMi ¼
Xn

i¼1

e
� 4

ffiffiffiffi
md

p

r2a

� �( )
ð1Þ

DDMi ¼ DDMi � DDMc1 e
� 4

ffiffiffiffi
md

p

r2
b

� �8
><

>:

9
>=

>;
ð2Þ

where, Mahalanobis distance is denoted as md and rarb are

positive constants. ra is outlining hyper solid shape cluster

radius in factor space [35]. Usually rb ¼ 1:5ra where rb is

used to isolate from maliciously spaced cluster center. md

is designed by the given following Eq. (3), where lm is the

mean and rm is the standard deviation of Xi or Xcc1

md ¼ Xi � lmð Þ0r�1
m Xi � lmð Þ ð3Þ

where,

lm ¼ 1

n

Xn

i¼1

Xi rm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n� 1

Xn

i¼1

Xi � lmð Þ2
s
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Succeeding the DDM, every data point is analyzed and

the highest possibility point is elected as a next cluster

center. The process produces sufficient numbers of cluster

centers by performing n number of iterations. At last, the

cluster center is fixed and the data density measure relates

to the remaining updated data points. Halting condition for

the likelihood of cluster center calculation can be estab-

lished in [31].

Input space structuring is prepared by subtractive clus-

tering with cluster centers. These cluster centers would be

sensibly employed as the centers for the fuzzy reasoning in

a Sugeno fuzzy model. We expect the center for the ith

cluster is Ci in factor space. Ci can be divided into segment

vectors IPi and OPi where IPi is the input part holding the

input elements of CiOPi is the output part containing yield

elements of Ci. At this point, given a data vector X, the

extent to which fuzzy rule i is satisfied by the membership

function #i Where ||…|| denotes the Euclidean distance.

#i ¼ e
�

4X�IP2
i

r2a

� �

ð4Þ

4.2 Takagi–Sugeno Fuzzy Modeling

Fuzzy-basedmodeling chiefly based on Takagi–Sugeno (TS)

fuzzy systems permit in gaining highly accurate models with

trivial number of rules [9]. TS models are universal approx-

imators and achieve high accuracy with a small number of

rules [36, 38]. Whenever number of rules in TS model is

increased, lower approximation error rises and the quality of

the modeling algorithm can be critical. It is relatively easy to

alter them into nonlinear state model by supporting formal

analysis to be used in control engineering. A fuzzy model

construction can be characterized by a set of fuzzy IF–THEN

rules.A rule-based fuzzymodel involves rule antecedent, rule

consequent, and structure of membership functions.

The modified inference approach is a universal

approximation of any smooth nonlinear system which was

proposed by Takagi and Sugeno [9, 37]. TS fuzzy model is

embodied by a small set of fuzzy IF–THEN rules that refer

local input–output functions of nonlinear systems. Rule of

continuous TS fuzzy model is of the following form:

If x1(t) is Mk1 and x2(t) is Mk2 …. and xn(t) is Mkn

Then
_x tð Þ ¼ Aix tð Þ þ Bip tð Þ

y tð Þ ¼ Cx tð Þ ; i ¼ 1; 2. . .r;

� �

where x1, x2, xn are input variables and y(t) is the output

variable, Mk1, Mk2…Mij are fuzzy sets. A, B, and C are

matrices of proper dimensions, and r is the number of fuzzy

IF–THEN rules. Suppose Wi is a firing strength of the

logical expression x1 isMk1 and x2 isMk2… and xn isMkn is

Rule i, then the overall output is obtained via weighted

mean value, by escaping the time-consuming process of

defuzzification which is essential in Mamdani model

[39, 40]. In this model, defuzzification is performed by

various methods, such as centroid of area, bisector of area,

mean of maximum, smallest of maximum, and largest of

maximum. These operations are consuming more time for

its calculation. To overcome this issue, we use TS model

which never requires defuzzification.

y ¼
Pn

i¼1 Wifi x1; x2. . .xnð ÞPn
i¼1 Wi

ð5Þ

Consider the nonlinear system below:

_x1 ¼ x2
_x2 ¼ x21 þ x22 þ y

� �

here x1 and x2 are premises variables and input variable

limit are denoted as x1 e[a,m1,b] and x2 e[c,m2,d],where a,

b, c, d, m1, and m2 are literal constants. Common steps for

two inputs fuzzy inference system are described as follows:

Step 1 To determine the fuzzy variables and

membership functions or fuzzy sets

Step 1.1 For simplicity, assume two fuzzy variables x1
and x2

Step 1.2 To acquire membership functions, we must

calculate the minimum and maximum values of

x1(t) and x2(t) where x1 e[a, m1,b] and x2 e[c, m2,

d], and are clearly obtained as follows:

lower x1 tð Þ ¼ a; Middle x1 tð Þ ¼ m1 higher x1 tð Þ ¼ b

lower x2 tð Þ ¼ c; Middle x2 tð Þ ¼ m2 higher x2 tð Þ ¼ d

Therefore, x1 and x2 can be represented by membership

functions T1, T2, T3 and H1, H2, H3, respectively, and are

denoted by:

x1 tð Þ ¼ T1 x1 tð Þð Þaþ T2 x1 tð Þð Þbþ T3 x1 tð Þð Þm1

x2 tð Þ ¼ H1 x2 tð Þð Þcþ H2 x2 tð Þð Þd þ H3 x2 tð Þð Þm2:

Step 2 Model rule evaluation

Rule 1 If x1(t) is high and x2(t) is high, then

_x tð Þ ¼ A1x tð Þ
Rule 2 If x1(t) is high and x2(t) is low, then _x tð Þ ¼ A2x tð Þ
Rule 3 If x1(t) is high and x2(t) is middle, then

_x tð Þ ¼ A3x tð Þ
Rule 4 If x1(t) is low and x2(t) is high, then _x tð Þ ¼ A4x tð Þ
Rule 5 If x1(t) is low and x2(t) is low, then _x tð Þ ¼ A5x tð Þ
Rule 6 If x1(t) is low and x2(t) is middle, then

_x tð Þ ¼ A6x tð Þ
Rule 7 If x1(t) is middle and x2(t) is high, then

_x tð Þ ¼ A7x tð Þ
Rule 8 If x1(t) is middle and x2(t) is low, then

_x tð Þ ¼ A8x tð Þ
Rule 9 If x1(t) is middle and x2(t) is middle, then

_x tð Þ ¼ A9x tð Þ
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Step 3 Defuzzification process of the system

incorporates with Aix tð Þ

AixðtÞ ¼
0 m1 orm2 1

maxðhighÞ mid(middle) minðlowÞ

� �

ð6Þ

_x tð Þ ¼
Xr

i¼1

ui x tð Þð ÞAix tð Þ ð7Þ

Step 4 Final outputs of fuzzy model evaluation

_x tð Þ ¼
Xr

i¼1

ui x tð Þð ÞfAix tð Þ þ Bip tð Þg ð8Þ

y tð Þ ¼
Xr

i¼1

ui x tð Þð ÞCix tð Þ ð9Þ

where weighting function wi is standardized as

ui x tð Þð Þ ¼ wix tð ÞPr
i¼1 wix tð Þ ð10Þ

We think through some input variables from real dataset

for evaluating the overall performance of our proposed

methodology. Three linguistic variables are declared as low

(L), middle (M), and high (H). Input variable membership

functions are created by using above-said three linguistic

variables and are used to analyze the sensing range of

sensor’s attributes. Figure 3 displays the temperature

membership functions. Figure 4 depicts the humidity

membership functions. Similarly, we can consider any

input variable from the real datasets and its membership

function is designed based on fuzzy limits. Figures 5, 6, 7,

and 8 show voltage, ambient temperature, surface tem-

perature, and relative humidity, respectively. Fuzzy rules

are generated based on fuzzy limits that are specified in the

membership functions.

Input values for our fuzzy inference system are the node

distance from cluster head, time difference of each sensor

readings, and input variable correlation. The fuzzy input

Fig. 3 Temperature membership function

Fig. 4 Humidity membership function

Fig. 5 Voltage membership function

Fig. 6 Ambient temperature membership function

Fig. 7 Surface temperature membership function
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distance is represented using triangular functions as shown

in Fig. 9, where the linguistic terms close, medium, and far

represent the range of contribution for that input. The fuzzy

input time is denoted using triangular functions as shown in

Fig. 10, where the terms small, average, and long represent

the level of involvement for that input. The fuzzy input

variable correlation is fuzzified using triangular functions

as shown in Figs. 3, 4, 5, 6, 7, and 8 , where the gears low,

middle, and high represent the magnitude of participation

for that input.

Distance, time, and variable correlation are affirmed as

input variables for declaring result in anomaly detection

system in Table 1. The anomaly detection confidence

levels of the proposed system are classified as normal and

anomaly. Normal data are directed to the cluster head or

base station. Anomalous data are detached, and its corre-

sponding imputed data are replaced by combined correla-

tion analysis of particular sensor nodes [40, 41]. To finish,

accurate imputed data are inserted and anomaly free dataset

is analyzed by the cluster head for aggregation process.

Incomplete data are common in WSNs and may rise due

to hardware glitches, packet collisions, signal strength

diminishing, and environmental nosiness. These incom-

plete data are created manually by removing anomalous

data. The removal of anomalous data at cluster head leads

to missing data [42]. To solve this, fuzzy inference systems

discover imputed data by analyzing spatial, temporal, and

attribute correlation among the sensor nodes. Suppose

sensor node X generates anomalous data and sensor node Y

generates normal data and if the correlation between sensor

nodes X and Y is high, then Y can impute data from X and

vice versa. Apart considering from spatial distance between

sensor nodes, time difference and variable correlation of

two sensor nodes and its neighbor nodes are considered

too.

5 Experimental Results

The proposed anomaly diagnosis system is tested by using

both unreal and real datasets, and the results are obtained

by incessant experiments. This is performed in terms of

anomaly detection rate, specificity and false alarm rate for

both unpolluted and polluted datasets. The proposed

methodology is experimented with the help of datasets

acquired from Intel Berkeley Research Lab (IBRL) [43]

which uses 54 Mica2Dot sensors with 4 attributes (tem-

perature, humidity, voltage, and light). Fifty-four sensor

nodes were deployed in the laboratory between February

28, 2004, and April 5, 2004. The nodes collected approx-

imately 2.3 million readings. The data in the dataset are

selected at the time of exportation, namely March 2004

(30-day period) during the time interval 00:00 am to 03:59

am, and the dataset acquired from SensorScope project,

located at the Grand-St-Bernard (GSB) pass at 2400 m

between Switzerland and Italy [44] during the period of

2 months between September 2007 and October 2007. The

23 sensor nodes sense the environment with several attri-

butes such as ambient temperature, humidity, soil moisture,

wind direction, and wind speed accordingly.

5.1 Performance Evaluation

The performance of proposed methodology is usually cal-

culated by a confusion matrix. An illustration of the con-

fusion matrix is designed in Table 2 which depicts columns

(predictable class) and rows (actual class). In the table, true

Fig. 8 Relative humidity membership function

Fig. 9 Time membership function

Fig. 10 Distance membership function
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negative (TN) signifies the number of normal data correctly

classified, and true positive (TP) is the number of abnormal

data properly classified. False positive (FP) is the number

of normal data classified as abnormal, and false negative

(FN) is the number of abnormal data classified as normal.

Other common evaluation metrics are accuracy which is a

measure of the proposed system to predict the anomaly

correctly. Sensitivity or recall (detection rate) is a degree of

a system to detect positive abnormal cases and specificity is

the ability of the system to spot negative normal cases.

False alarm rate (FAR) is the capability of the system to

detect positive normal cases. The evaluation metrics are

described with the help of the confusion matrix. Positive

projection rate (PPR) or precision is defined as the

proportion of positive test results that are true positives.

The measures are described below:

Accuracy ¼ TPþ TN

TPþ TNþ FPþ FN
Sensitivity ¼ TP

TPþ FN

Specificity ¼ TN

TNþ FP
False Alarm Rate ¼ FP

FPþ TN

Positive ProjectionRate ¼ TP

TPþ FP

5.2 Estimation on Datasets

For assessing the proposed method, the datasets are nor-

malized by identifying and removing extreme values ini-

tially. Scatter plot and Chi-square tests are used to prompt

cleaned data as customary data. Initially, data are cleaned

manually by identifying extreme values and missing val-

ues. Most of the values are either missing or damaged. The

rest of the data is labeled as normal for evaluations.

Specifically, in IBRL dataset, 30-day period between

March 1, 2004, and March 30, 2004, is considered as

normal data. On completion, two sets of data are consid-

ered for evaluation such as normal data without corruption

Table 2 Confusion matrix

Predictable negative Predictable positive

Actual negative TN FP

Actual positive FN TP

Table 1 Anomaly detection

rule structure
Rule� Distance Time Variable correlation Confidence level

1 CLOSE SMALL LOW ANOMALY

2 CLOSE SMALL MIDDLE ANOMALY

3 CLOSE SMALL HIGH ANOMALY

4 CLOSE AVERAGE LOW ANOMALY

5 CLOSE LONG LOW ANOMALY

6 CLOSE AVERAGE MIDDLE NORMAL

7 CLOSE AVERAGE HIGH ANOMALY

8 CLOSE LONG MIDDLE NORMAL

9 CLOSE LONG HIGH ANOMALY

10 MEDIUM SMALL LOW ANOMALY

11 MEDIUM SMALL MIDDLE NORMAL

12 MEDIUM SMALL HIGH ANOMALY

13 MEDIUM AVERAGE LOW NORMAL

14 MEDIUM LONG LOW ANOMALY

15 MEDIUM AVERAGE MIDDLE NORMAL

16 MEDIUM AVERAGE HIGH NORMAL

17 MEDIUM LONG MIDDLE ANOMALY

18 MEDIUM LONG HIGH NORMAL

19 FAR SMALL LOW ANOMALY

20 FAR SMALL MIDDLE ANOMALY

21 FAR SMALL HIGH NORMAL

22 FAR AVERAGE LOW ANOMALY

23 FAR LONG LOW ANOMALY

24 FAR AVERAGE MIDDLE NORMAL

25 FAR AVERAGE HIGH NORMAL

26 FAR LONG MIDDLE NORMAL

27 FAR LONG HIGH NORMAL
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ratio and normal data with corruption ratio. For this pur-

pose, random sets of corrupted data are injected at various

clusters. Anomalies were interleaved often in one or many

nodes in each cluster at the frequency of data corruption

between 5 and 70 %. We implement the proposed algo-

rithm using the MATLAB package for a simulated wireless

sensor node on the two datasets generated already. On

visualizing the IBRL dataset, the proposed system is

smeared with several numbers of clusters ranging from 5 to

10 from subtractive clustering algorithm for finding opti-

mal number of clusters in the dataset. Figure 11 portrays

the number of clusters used for evaluating anomaly

detection technique from IBRL. By eagle-eyeing the GSB

dataset, the subtractive clustering is applied for gathering

optimal number of clusters oscillating from 3 to 5. Fig-

ure 12 displays the finest cluster used for assessing

anomaly detection technique in GSB.

Each cluster reading is experimented by using TS fuzzy

inference system with fuzzy rules. The fuzzy results are

sectored into normal and abnormal cases. Abnormal data

are removed, and its corresponding imputed data are pre-

dicted based on fuzzy rules with correlation level of sensor

nodes. By applying subtractive clustering, we obtain sev-

eral numbers of optimal clusters ranging from low to high

in the IBRL dataset. At least 19 and to a maximum of 75

iterations are performed with optimal accept and reject

ratio yielding suitable cluster centers. Gradual increase in

number of clusters increases computational complexity and

communicational complexity. Inadequate number of clus-

ters could not analyze anomalous data optimally. By con-

sidering both datasets, optimal clusters range is selected

based on objective function of subtractive clustering. The

computational complexity of subtractive clustering is var-

ied based on number of clusters. Thus, computational

(a) (b) (c)

(d) (e) (f)

Fig. 11 Subtractive clustering in IBRL a 5 clusters, b 6 clusters, c 7 clusters, d 8 clusters, e 9 clusters, f 10 clusters

(a) (b) (c)

Fig. 12 Subtractive clustering in GSB a 3 clusters, b 4 clusters, c 5 clusters
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complexity is denoted by O (ns) where n is the number of

iterations and s is the number of nodes. The memory space

requirement for the proposed approach is O (1) for storing

the value of cluster center.

Generally, multivariate analysis technique is used to

detect outliers based on correlation, i.e., by identifying

relationship among the variables that are participated in the

outlier detection process. Multivariate outlier deviates from

the usual correlation structure in multi-dimensional space

defined by the variables. Figures 13 and 14 gives a brief

depiction of attribute correlation, temporal and spatial

correlation involved in the evaluation using the real dataset

without any corruption ratio. Three attributes (temperature,

humidity, and voltage) and other attributes (ambient tem-

perature, surface temperature, and relative humidity rang-

ing from 0 to 100 %) are multivariate and are normalized

from IBRL and GSB datasets, respectively. To show spatial

correlation, we have calculated the correlation coefficients

between the two sensors at each observation based on

distance measure, where Mahalanobis distance [27] is

applied for estimating nearest less spacious sensor nodes.

Temporal correlation is illustrated with different time

intervals at time t - 1 and t of a particular sensor node.
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Additionally, attribute correlation illustrates internal rela-

tionship among the physical phenomena attributes.

Figure 15 displays data distribution based on IBRL

dataset with three physical phenomena attributes. Anoma-

lous data are randomly generated at various clusters. To

provide baseline for our results, we perform fuzzy-value

experiments with TS fuzzy model. Initially, data corruption

level is increased from 6 to 85 %. Figure 15 shows the

result of predicted anomaly data at 15 % corruption level.

Anomalous data are detected and isolated from clusters

ranging from 5 to 10. Detection accuracy is not degraded

while increasing number of clusters. Henceforth, our

proposed fuzzy inference system detects anomaly with

high accuracy based on fuzzy rules.

Figure 16 shows data dissemination based on GSB

dataset. The three physical phenomena attributes dissemi-

nations with anomalous data are randomly generated at

various clusters. This illustration shows the result of pre-

dicted anomaly data at 19 % corruption level. Anomalous

data are detected and separated for various numbers of

cluster ranging from 3 to 5. Figures 15 and 16 conclude

most of the deviation in data is accurately identified by the

correlation analysis among the attributes; fuzzy inference

rules are framed along with this correlation exposing high
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clusters in 2nd right row, 10 clusters in 3rd right row

B. Nisha et al.: Fuzzy-Based Flat Anomaly Diagnosis and Relief Measures in Distributed Wireless Sensor Network 1539

123



detection rate. The fuzzy inference engine plays an

important role in the reduction of FAR by increasing the

detection rate. Fuzzy inference engine that incorporates

with sensors location and its correlation information gen-

erated by the correlation analysis accurately classifies the

anomalous and normal data and has high sensitivity with

Table 3 Performances of proposed system with\6 % corruption level

IBRL dataset GSB dataset

5 clusters 6 clusters 7 clusters 8 clusters 9 clusters 10 clusters 3 clusters 4 clusters 5 clusters

Accuracy 99.75 99.55 99.51 99.84 99.96 99.11 99.08 99.59 99.5

Sensitivity 98.14 98.78 98.85 98.35 98.00 98.29 98.58 98.11 98.02

Specificity 99 98.25 99.08 97.51 97.92 98.77 98.12 98.55 97.93

PPR 97.14 99.19 99.05 99.6 99.54 99.33 99.00 99.57 99.28

FAR 1.00 2.65 1.02 2.51 2.08 1.33 2.98 2.45 2.07

Table 4 Performances of proposed system with 6–25 % corruption level

IBRL dataset GSB dataset

5 clusters 6 clusters 7 clusters 8 clusters 9 clusters 10 clusters 3 clusters 4 clusters 5 clusters

Accuracy 100 100 100 100 99.89 100 100 100 100

Sensitivity 98.14 98.78 98.85 98.35 98.00 98.29 98.58 98.11 98.02

Specificity 99.99 99.88 99.75 99.79 99.49 99.89 99.85 99.77 99.45

PPR 99.74 99.19 99.05 99.6 99.54 99.33 99.00 99.57 99.28

FAR 0.1 0.12 0.25 0.21 0.51 0.11 0.15 0.23 0.55
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Fig. 16 Anomaly detection variation of GSB dataset with corruption

level. Three cases are considered and evaluated by fuzzy inference

engine. Lines with times symbols indicates anomaly data, lines with

bullets indicates normal data. Three clusters in top left corner, 4

clusters in top right, 5 clusters in 2nd row
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less false alarm rate. The results for the IBRL and GSB

dataset with different range of corruption levels are given

in Tables 3, 4, 5, 6, and 7.

Efficient output is ensued from 6 clusters of the IBRL

dataset and 3 clusters of the GSB dataset having very high

accuracy with less false alarm rate over the range of

Table 5 Performances of proposed system with 26–45 % corruption level

IBRL dataset GSB dataset

5 clusters 6 clusters 7 clusters 8 clusters 9 clusters 10 clusters 3 clusters 4 clusters 5 clusters

Accuracy 100 100 99.9 99.9 100 100 100 100 100

Sensitivity 98.98 98.58 98.22 98.02 98.05 98.55 98.9 98.23 98.05

Specificity 99.5 99.2 99.2 99.6 99.1 99.6 99.55 99.32 99.26

PPR 99.89 99.70 99.51 99.87 99.32 99.31 99.55 99.54 99.92

FAR 0.5 0.8 0.2 0.4 0.9 0.4 0.45 0.68 0.74

Table 6 Performances of proposed system with 46–65 % corruption level

IBRL dataset GSB dataset

5 clusters 6 clusters 7 clusters 8 clusters 9 clusters 10 clusters 3 clusters 4 clusters 5 clusters

Accuracy 99.93 99.91 99.94 99.9 99.84 99.95 99.91 99.75 99.69

Sensitivity 98.56 98.64 98.65 98.66 98.9 99 99.5 99.12 98.65

Specificity 99.65 99.05 99.95 99.68 99.1 98.04 98.35 98.91 98.55

PPR 99.95 99.65 99.48 99.65 99.23 99.02 99.19 99.65 99.87

FAR 1.35 1.95 1.05 1.32 1.9 2.96 2.65 2.09 2.65

Table 7 Performances of proposed system with 66–85 % corruption level

IBRL dataset GSB dataset

5 clusters 6 clusters 7 clusters 8 clusters 9 clusters 10 clusters 3 clusters 4 clusters 5 clusters

Accuracy 99.65 99.25 99.41 99.70 99.06 99.05 99.15 99.07 99.23

Sensitivity 98.09 98.54 98.73 98.39 98.12 98.15 98.45 98.04 98.01

Specificity 99.94 99.95 99.75 99.11 99.92 99.46 99.16 98.99 99.94

PPR 99.45 99.45 99.12 99.11 99.21 99.13 98.89 99.47 99.65

FAR 1.06 1.05 1.25 1.89 1.08 1.54 1.84 2.01 1.06
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clusters from 5 to 10 and 3 to 5. Corruption level range is

formed into four groups, 6–25 %, 26–45 %, 46–65 %, and

66–85 %. Table 3 shows the performance of proposed

methodology with less than 6 % corruption level. It is

fascinated tough to predict anomaly below 6 % since the

deviation from original and anomalous data is less. Per-

centage of prediction is increased at the various ranges of

corruption levels above 6 % as shown in Tables 4, 5, 6 7.

Specifically, the proposed method considers fuzzy logic

offering of 1 % false alarm and 99.87 % detection rate till

65 % of the nodes in the network. Even for corruption level

between 66 and 85 %, the average false alarm created is

simply 1.52 % and 1.84 in IBRL and GSB dataset,

respectively.

Figures 17 and 18 illustrate the performance of the

proposed system for evaluating IBRL and GSB dataset. It

is observed that the approach in [19] has less sensitivity

and high false alarm rate compared to subtractive cluster-

ing (SC) with fuzzy inference system (FIS). The proposed

method offers 0 % false alarm rate and 100 % detection

rate till 45 % of the nodes in the network are found to be

anomalous. Even for corruption level between 46 and

85 %, the average false alarm created is 0.956 % in IBRL

and 2.56 % in GSB dataset, respectively. Therefore, it is

clear that the proposed system achieves significant

improvement in detecting accuracy compared to the con-

ventional fuzzy technique in [19].

The results are represented in Fig. 19 for comparison

with the variation in sensitivity and specificity obtained for
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our proposed method on the same datasets. The graphs

illustrate the proposed method preserves a very high degree

of accuracy in defining normal data with the false alarm

rate being between 0 % and 0.5 % in all occurrences.

However, while the sensitivity values for the proposed

scheme are more or less retained at an acceptable range

between 99 % and 99.5 % for GSB data and a high

98–98.5 % for IBRL, the results for varying number of

clusters gradually reach sustainable sensitivity rate.

Therefore, it is evident that the proposed method achieves

significant gains in detection accuracy.

Figure 20 depicts the final performance of our proposed

methodology with high accuracy, while increasing number

of nodes (clusters) by using unreal dataset, which is sim-

ulated for analyzing the scalability of the proposed

methodology. As shown in Fig. 20, anomaly detection and

misdetection fractions are attractively stable while

increasing numbers of nodes from 100 to 1000. At the same

time, large numbers of nodes yield moderate computational

and communication complexity with the help of subtractive

clustering with slight increase in space complexity. This

result implies that our subtractive clustering with fuzzy

logic-based anomaly detection has very fastidious scala-

bility as it works well under different network sizes.

Table 8 explains the complexity of different state-of-

the-art anomaly detection approaches. To understand the

performance of the proposed approach, it is essential to

relate it with state-of-the-art anomaly detection techniques.

To evaluate the efficiency of the SC with FIS model, the

computational complexity, communication overhead and

memory complexity are considered. The computational

complexity incurred by our model is O(ndc) related to the

calculation of n number of new of records at time, d-di-

mension of the observations, and c number of clusters. The

communication overhead is O(nd), and memory com-

plexity is O(ndr), where r represents number of rules.

Table 8 shows v- intermediate values, p-spatial correlation,

and q- temporal correlation in the remaining techniques.

Less number of rules saves more memory space. Our

method proves high accuracy compared to other available

peer methods. Computational complexity, communica-

tional complexity, and memory complexity are slightly

reduced when compared to other techniques.

6 Conclusion

In this paper, a system which employs fuzzy-based

anomaly detection is industrialized using fuzzy logic to

classify anomalous and normal data. Two real datasets are

evaluated with various numbers of clusters generated by

subtractive clustering. After cataloging of data, normal data

are labeled as customary and incorrect readings as anom-

aly. The overall accuracy and reliability are increased by

imputing data. The experimental result proves that the

proposed anomaly diagnosis and relief measures model

outperforms existing work in various aspects like anomaly

detection accuracy, false alarm, sensitivity, and specificity

in decision-making support.
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